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In this article we introduce a new method of mitigating the problem of long wait times
for low-priority customers in a two-class queuing system. To this end, we allow class
1 customers to be upgraded to class 2 after they have been in queue for some time. We
assume that there are ci servers at station i, i = 1, 2. The servers at station 1 are flexible
in the sense that they can work at either station, whereas the servers at station 2 are
dedicated. Holding costs at rate hi are accrued per customer per unit time at station
i, i = 1, 2. This study yields several surprising results. First, we show that stability
analysis requires a condition on the order of the service rates. This is unexpected
since no such condition is required when the system does not have upgrades. This
condition continues to play a role when control is considered. We provide structural
results that include a c-μ rule when an inequality holds and a threshold policy when
the inequality is reversed. A numerical study verifies that the optimal control policy
significantly reduces holding costs over the policy that assigns the flexible server to
station 1. At the same time, in most cases the optimal control policy reduces waiting
times of both customer classes.

1. INTRODUCTION

In service systems (such as call centers), it may be the case that two types of customers
must be served: the first, a high revenue (or high holding cost) stream and the second
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with correspondingly lower revenues or costs. If servers are capable (trained) to serve
both demand types, then the problem becomes one of assigning (static or dynamic)
priorities to arriving customers. Another means to indirectly enforce priorities is to
have a subset of the servers dedicated to the higher revenue arrivals. The remaining
flexible servers are capable of working on both types of customers. This has a benefit
of reducing the number of skills required by servers: The dedicated servers require
only one, which means a reduction in overhead if acquiring skills comes with a cost.
It also means that only the flexible servers need to be controlled. This leads itself to
analysis via the already classic “N-network” (cf. [15]). In the N-network, any time the
flexible servers spend on the high-priority customers is, in some sense, at the expense
of the low priority customers: a quality of service concern. Thus, there remains the
somewhat secondary concern of the waiting times of the lower-priority customers.

In this article we propose (and analyze) an extension of the N-network that has
the potential to address the allocation question above while giving consideration to
the waiting times of the lower-class customers. After having waited for some time
in the low-priority queue, we upgrade the low-priority customers to the high-priority
queue, treating them as high-priority customers thereafter. Rather than keeping track
of the current waiting time of each customer in queue and upgrading based on the
queue lengths, we assume that the time spent in queue before upgrades is random
and exponential. The decision maker still must allocate flexible servers based on the
number of customers currently in each queue, the holding costs at each station, and
the arrival, service, and upgrade parameters of the model.

We view the analysis that follows to be interesting from both a managerial and
theoretical standpoint. Suppose there is at most one server at each station and no
upgrades. When there are no dedicated servers and several parallel stations, it is well
known that a flexible server should be allocated using the c-μ rule (cf. [8]). In the two-
station case, when there is a dedicated server at one queue and a flexible server at the
other queue (the N-network), the c-μ rule is optimal (in the asymptotic sense) when
an inequality holds [6]. There exists a monotone optimal policy when the inequality is
reversed. Generalizations of these results can be found in [11,12,14,17]. All of these
latter results consider heavy traffic asymptotics.

The upgrade mechanism we consider has as a goal to take advantage of idle
periods of the dedicated servers, with minimal impact on the high-priority arrivals.
This effect appears to be lost in a heavy traffic setting, as there is asymptotically no
idling. We also note that in neither case (with or without the dedicated server) does
the relationship between the service rates between the two queues appear to play an
important role. We present stability conditions for the system with upgrades and show
that in fact when upgrades are allowed, the relationship between the service rates
plays a key role. This is somewhat surprising given the previously mentioned results
and serves as a warning that if this fact is ignored, an unstable design can result.

From these results it is clear that the ordering of the service rates cannot be ignored
in the control. We show that a c-μ rule holds in one direction and a monotone optimal
policy exists in the other direction when there are no upgrades (even in light traffic).
When upgrades are added, this result continues to hold, but only under the assumption
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that the service rates are ordered in a specific way. We also include a numerical study
that shows that the optimal policy in the system with upgrades performs well both in
terms of holding costs and waiting times when compared to the policy that always
prioritizes station 1. In many cases, the waiting times are improved for both customer
classes. In summary, the main contributions of the article are as follows:

• We introduce upgrades as a way to balance the load between customer classes
and alleviate excessive wait times of low-class customers.

• We derive stability conditions for the resulting system.

• We show that under certain conditions there exist optimal policies with
structure similar to that of a model without upgrades.

• We show that the aforementioned structure of the optimal policy does not
necessarily hold when the conditions are violated. In fact, stability might not
even hold.

• We discuss the effect of upgrades on optimal cost and waiting times.

We do not attempt a complete review of the related literature. The interested
reader should view the excellent literature surveys ofAksin,Armony, and Mehrotra [2]
and Gans, Koole, and Mandelbaum [13]. In this article we consider an extension of
the N-network, so we restrict attention to this model and its variants. With minor
modifications, the N-network can be described via the current study by setting the
upgrade rate to zero and the interarrival and service distributions to be exponential. The
exponential assumption allows the formulation of the decision scenarios as a Markov
decision process and significantly simplifies the fluid analysis. To our knowledge, the
N-network was first introduced (from a research standpoint) by Harrison [15]. The
asymptotic optimality of threshold policies in the N-network was shown by Bell and
Williams [6].

Other related studies on the N-network include that of Ahn, Duenyas, and
Zhang [1], in which the authors show that the optimal policy in a system without
arrivals (a clearing system) exhibits either a monotone switching curve structure or
is exhaustive in one of the queues. Additionally, there has been some work on bilin-
gual call centers. These call centers are somewhat new to the United States, but they
have been prevalent in other countries for quite some time (cf. Stanford and Grass-
man [19]). Although upgrades present different challenges, they are related to systems
with reneging. In [20,21] Ward and Glynn showed that the queue length processes of
systems with exponential interarrival service times and renege times with reneging
and balking and G/G/1 systems with reneging and balking (under heavy traffic) can
be approximated with a regulated Ornstein–Uhlenbeck process. Other possibilities
for reducing congestion and dealing with reneging are to announce a delay estimate
to arriving customers as described in Armony, Shimkin, and Whitt [5] or to pro-
vide callers with a call-back option as described in Armony and Maglaras [3,4]. Of
course, these estimation schemes do not work when the server allocation is adjusted
dynamically, as in the current model.
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The rest of the article is organized as follows. Section 2 contains a description of
the model. In order to simplify the analysis, we show that there exists an optimal non-
idling policy under the finite horizon discounted cost, the infinite horizon discounted
cost, and the average cost cases in Section 3. In Section 4 we provide the stability
analysis. We uniformize in Section 5. This allows us to define a discrete-time Markov
decision process and prove the existence of an optimal policy that follows a c-μ rule
in one direction but not the other. A detailed numerical study is provided in Section 6.
The article is concluded in Section 7.

2. MODEL DESCRIPTION

Consider a two-station parallel queuing system where station 1 (2) is equipped with c1

(c2) servers. Both stations are assumed to have infinite buffer space. Customers arrive
to station 1 (2) in accordance with a Poisson process of rate λ1 (λ2), and service times
at station 1 (2) by those servers originally assigned there are assumed to be exponential
with rate μ1 (μ2). Servers at station 1 are flexible in the sense that they are able to
work at either station. When a flexible server works at station 2, the service time is
still exponential, but the rate is denoted μ3. Furthermore, if there are more than c1

customers at station 1, then those customers above c1 are upgraded to station 2 after
an exponential amount of time with parameter β. The rate of upgrades is bounded by
Lβ, where initially L is assumed to be finite. That is to say, when the queue length
at station 1 is i, customers are being upgraded at the rate ((i − c1)

+ ∧ L)β. We note
that from a modeling perspective, it does not matter which customer is chosen to be
upgraded; however, from an implementation standpoint, it seems that upgrading from
the middle of the queue is most reasonable. Holding costs are accrued at rate hn > 0
for customers at station n, n = 1, 2. See Figure 1.

A few notes regarding the modeling assumptions are in order. First, we have cho-
sen to place an upper bound on the upgrade rate to provide a parameter to control the
worst-case rate at which customers are being upgraded. Of course, this also simplifies
the analysis. Second, again due to the fact that upgrades are a manager’s choice, we
have assumed that a customer that is being served (or could be served) is not upgraded.
Let X = {(i, j)|(i, j) ∈ Z

+ × Z
+} be the state space, where Z

+ represents the nonneg-
ative integers and i (j) represent the number of customers at station 1 (2) (including
those in service). A decision maker must decide how to dynamically allocate the flex-
ible servers based on the number of customers currently in each queue. Note that the
decision maker is relieved of the burden of deciding when to upgrade customers.

There are other possibilities for the upgrade mechanism. One possibility is to
make the upgrade times deterministic. Another is to enforce dynamic priorities by
increasing the priorities of both arrivals based on their time in queue and using these
priorities to schedule the flexible servers. Although both have their appeal from a
modeling standpoint, their analysis is quite difficult. Our goal here is to show that a
simple upgrade mechanism can yield significant performance gains. We would expect
the other mechanisms just described to have similar (if not better) performance gains.
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FIGURE 1. N-Network with upgrades (K is the number of servers assigned to
station 2).

Consider the cost function C((i, j), a) = ih1 + jh2, where the action a denotes
the number of flexible servers currently placed at station 2. We seek a policy that
prescribes the action to choose for each set of queue lengths for all time. The total
discounted expected cost of a policy π up to time t is

vπ
α,t(i, j) = E(i,j)

∫ t

0
e−αs

(
h1Qπ

1 (s) + h2Qπ
2 (s)

)
ds,

where Qπ
i (s) is the queue length (including those in service) at time s at station

i = 1, 2 under policy π . Along with the finite horizon discounted expected cost, the
other criteria considered in this article are the following:

vπ
α (i, j) = lim

t→∞ vπ
α,t(i, j) = E

π
(i,j)

∫ ∞

0
e−αs

(
h1Qπ

1 (s) + h2Qπ
2 (s)

)
ds,

ρπ(i, j) = lim sup
t→∞

vπ
0,t(i, j)

t
,

where vπ
α (i, j) represents the infinite horizon α-discounted cost under π starting in (i, j)

(the interchange of limit and expectation is justified by the monotone convergence
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theorem) and ρπ(i, j) represents the long-run average expected cost per unit time.
Note that in the finite horizon case, α ∈ [0, ∞), whereas in the infinite horizon case,
α ∈ (0, ∞). Under any of the optimality criteria, a policy π∗ is called optimal if
yπ∗

(i, j) = infπ∈� yπ (i, j), where � is the set of all (measurable, nonanticipating)
policies and y = vα,t , vα , or ρ depending on the optimality criterion.

3. NONIDLING POLICIES

In this section we show that a decision maker need not consider policies that idle
flexible servers when they could be working at station 2. We begin by providing the
following monotonicity result.

Proposition 3.1: Let y = vα or vα,t depending on the optimality criterion. For all
states (i, j) the following inequalities hold:

1. y(i, j + 1) ≥ y(i, j),

2. y(i + 1, j) ≥ y(i, j),

for each α, where in the finite horizon case, the result holds for all t.

Proof: We prove the assertions in the infinite horizon case via a sample path argument.
The finite horizon case is directly analogous. Consider the first result. Suppose we
start two processes on the same probability space so that they see the same arrivals,
(potential) services, and (potential) upgrades. Process 1 starts in state (i, j + 1) and uses
the optimal policy, say π∗. Process 2 uses the same allocation at station 1 as Process 1
(as though it started in (i, j + 1)) whenever possible but allows idling at station 2 if it
cannot match the service rate of Process 1. For example, suppose j + 1 = c1 + c2 and
π∗ assigns all servers to station 2. The service rate is c1μ3 + c2μ2. Since Process 1 has
assigned zero servers to station 1, Process 2 does the same. However, since Process
2 has only c1 + c2 − 1 customers at station 2, it assigns only that number of servers
there and idles the other server. The analysis follows as above if j = c2 and i = c1 − 1.
If Process 1 assigns c1 − 1 servers to station 1 and one to station 2, Process 2 matches
the number of servers at station 1 but idles the last server. Finally, note that if j = 0,
then Process 1 may still be serving at station 2, while Process 2 cannot. In each case,
since Process 1 has more customers at station 2 than Process 2, there is the possibility
that it will see an extra service (in fact eventually this will occur).

Define the event A as the event that there is a service seen by Process 1 that is
not seen by Process 2. If this extra service is seen, the relative position of the two
processes is now the same; they couple (using the same policy thereafter) and receive
the same cost streams. Let γ be the time that event A occurs. Note that before time γ ,
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Process 1 is accruing cost at rate h2 higher than that of Process 1. Thus,

vα(i, j) − vα(i, j + 1) ≤ vψ
α (i, j) − vα(i, j + 1)

= −h2

∫ ∞

0

1

α
(1 − e−αs) dP(γ ∈ (s, s + ds)) ≤ 0,

where ψ denotes the (potentially) suboptimal policy followed by Process 2.
To prove the second result, again define two processes on the same space. This

time let Process 1 start in (i + 1, j) and Process 2 start in (i, j). Process 2 uses the
same allocation at station 2 as Process 1 (as though it started in (i + 1, j)) whenever
possible, but it allows idling at station 1 if it cannot match the service rate of Process 1.
As in the proof of the previous assertion, there is the possibility that there is an extra
service seen by Process 1, not seen by Process 2. There is also the possibility of an
extra upgrade seen by Process 1. Let B be the event that the prior case occurs before
the latter. In this case, an argument similar to the proof of the first assertion leads to
the two processes coupling. On the complement of this event, Process 1 moves to a
state, say (i′, j′ + 1) while Process 2 is in (i′, j′). Let τ represent the time that either
the processes couple or an extra upgrade is seen by Process 1. We have

vα(i, j) − vα(i + 1, j) ≤ vψ̃
α (i, j) − vα(i + 1, j)

= −h1 E

[
1

α
(1 − e−ατ )|B

]
P(B)

+ E[e−ατ (vα(Xτ , Yτ ) − vα(Xτ , Yτ + 1))|Bc]P(Bc) ≤ 0,

where ψ̃ denotes the (potentially) sub-optimal policy used by Process 2, (Xτ , Yτ )

represents the state of the system in Process 2 immediately after time τ , and the
second inequality follows using the first result of the proposition. �

Consider a left-continuous policy f and let df (w) ∈ {0, 1, . . . , c1} denote the num-
ber of the c1 servers allocated to station 2 at time w under this policy. Note that
bf

1,k(w) := 1{k≤c1−df (w)} represents the indicator that the kth (flexible) server is avail-

able for service at station 1. Let bf
2,k(w) := 1{k≤df (w)} be the indicator that the kth

(flexible) server is available at station 2. Note that if we allow k to range over the
natural numbers, then bf

j,k(w) = 0, j = 1, 2 for k > c1. Define Ai(s) to be the Poisson
arrival process (rate λi) to queue i, i = 1, 2. Similarly, let Yμi

ki
be a Poisson process with

rates μi for i = 1, 2, 3 and k1 = 1, 2, . . . , c1, k2 = 1, 2, . . . , c2, and k3 = 1, 2, . . . , c1.
These represent the (potential) services of each server at each station. Denote by Yβ

k3

for k3 = 1, 2, . . . , L the Poisson processes of rate β that model the (potential) upgrades
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from queue 1 to queue 2. The queue length processes can be written

Qf
1(s) = Qf

1(0) + A1(s) −
c1∑

k1=1

∫ s

0
(1{Qf

1(w−)≥k1}b
f
1,k1

(w)) dYμ1
k1

(w)

−
L∑

k3=1

∫ s

0

(
1{Qf

1(w−)≥c1+k3}
)

dYβ

k3
(w)

and

Qf
2(s) = Qf

2(0) + A2(s) −
c2∑

k2=1

∫ s

0

(
1{Qf

2(w−)≥k2}
)

dYμ2
k2

(w)

−
c1∑

k2=1

∫ s

0

(
1{Qf

2(w−)≥c2+k2}b
f
2,k2

(w)
)

dYμ3
k2

(w)

+
L∑

k3=1

∫ s

0

(
1{Qf

1(w−)≥c1+k3}
)

dYβ

k3
(w).

Consider

h1 E Qf
1(s) = h1 E Qf

1(0) + λ1h1s − h1μ1

c1∑
k1=1

∫ s

0
E

(
1{Qf

1(w−)≥k1}b
f
1,k1

(w)
)

dw

− h1β

L∑
k3=1

∫ s

0
E

(
1{Qf

1(w−)≥c1+k3}
)

dw

and

h2 E Qf
2(s) = h2 E Qf

2(0) + λ2h2s − h2μ2

c2∑
k2=1

∫ s

0

(
E 1{Qf

2(w−)≥k2}
)

dw

− h2μ3

c1∑
k2=1

∫ s

0
E

(
1{Qf

2(w−)≥c2+k2}b
f
2,k2

(w)
)

dw

+ h2β

L∑
k3=1

∫ s

0

(
1{Qf

1(w−)≥c1+k3}
)

dw,

where the fact that we can replace the Poisson processes with their rates follows,
by, for example, Brémaud [7] (see the “Partial result” on page 24 of [7]). Assuming
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L ≥ max{c1, c2}, let

φf (s) =
L∑

k=1

∫ s

0

(
β(h2 − h1) E 1{Qf

1(w−)≥c1+k} − μ1h1 E 1{Qf
1(w−)≥k}b

f
1,k(w)

− μ3h2 E

(
1{Qf

2(w−)≥c2+k}b
f
2,k(w)

))
dw

− μ2h2

c2∑
k=1

∫ s

0

(
E 1{Qf

2(w−)≥k}
)

dw. (3.1)

We thus have the following alternative form for the total expected discounted cost:

vπ
α,t(i, j) = (ih1 + jh2)

(
1

α

)
(1 − e−αt)

+ (λ1h1 + λ2h2)

[(
1

α

)2

−
(

e−αt

α

) (
t + 1

α

)]
+

∫ t

0
e−αsφπ(s) ds.

This leads to the first major result that will considerably simplify the Markov decision
process formulation to follow.

Proposition 3.2: There exists an optimal policy that does not allow for unforced
idling.

Proof: The result is proved via a sample path argument. Suppose the system is initially
in state (i, j). Consider an arbitrary policy π and a fixed time w. Suppose Qπ

1 (w−) < c1

and Qπ
2 (w−) > c2. Thus, immediately prior to w (at time w−), there are more cus-

tomers at station 2 than can be handled by the c2 dedicated servers, but not enough
work for all servers to be busy at station 1. This implies that the first term of the inte-
grand in (3.1) is zero. Similarly, for any k such that Qπ

1 (w−) < k ≤ c1 corresponding
to a potentially idle server, the second term of the integrand is also zero. Suppose
π idles server k while another policy, say π ′, follows precisely the same actions of
π , but at time w−, it allows the kth server to work until either one customer service
is completed or π ceases to idle server k (whichever occurs first). Let the time of
this event be w + S1. There are several cases to consider. If w + S1 > t or w + S1

does not represent a time of a service completion by the kth server, then the queue
length processes under π and π ′ remain the same on (w, w + S1). Since the third term
of (3.1) is nonpositive, an optimal policy is minimized when bπ

2,k(w) is maximized.
That is, when extra servers are assigned to station 2. After this time, if the policies
coincide, then by (3.1) we have vπ

α,t(i, j) ≥ vπ ′
α,t(i, j). If, on the other hand, w + S1 cor-

responds to a service completion by the kth server, then the process under π ′ moves
to some state (i′, j′ − 1) while the process under π remains in state (i′, j′). Assuming
the processes follow the same policy from then on yields vπ

α,t(i, j) ≥ vπ ′
α,t(i, j) since

vπ
α,t−(w+S1)

(i′, j′) ≥ vπ
α,t−(w+S1)

(i′, j′ − 1) (almost surely) by Proposition 3.1. Thus, a
policy that does not allow unforced idling is optimal as desired. �
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We conclude this section by noting that the results of Propositions 3.1 and 3.2 do
not require that L < ∞.

4. STABILITY

In this section we consider the stability of the system. In particular, we are interested in
determining conditions under which the system admits a policy that has finite average
cost (which implies existence of a stationary distribution). Let {Si,j(t), t ≥ 0} denote
the Poisson processes consisting of independent and identically distributed (i.i.d.)
processing times for servers of type j at queue i, for (i, j) ∈ {(1, 1), (2, 1), (2, 2)}. Let
U(t) be the number of customers that have been upgraded in [0, t] and suppose Ti,j(t)
is the total time all servers of type j have worked at queue i in [0, t]. For example,
T1,1(t) is bounded by c1t. We can now rewrite the queue length processes (suppressing
the dependence on the policy f ) as

Q1(t) = A1(t) − U(t) − S1,1(T1,1(t)), (4.1)

Q2(t) = A2(t) + U(t) − S2,2(T2,2(t)) − S2,1(T2,1(t)). (4.2)

Of course, Ti,j(t) depends on the policy chosen. Rather than providing Ti,j(t) in
complete detail, we describe them sufficiently to provide stability conditions. To
do this, we will use the standard technique of fluid model analysis (see Dai
[9]). Suppose {xn, n ≥ 0} is a sequence of nonnegative real numbers such that
limn→∞ xn = ∞. Define a fluid limit (Q̄(t), T̄(t)), where Q̄(t) = (Q̄1(t), Q̄2(t)),
T̄(t) = (T̄1,1(t), T̄2,2(t), T̄2,1(t)), and

Q̄k(t) = lim
n→∞ x−1

n Qk(xnt),

T̄i,j(t) = lim
n→∞ x−1

n Ti,j(xnt).

From Theorem 4.1 of [10], we have that

Āi(t) = lim
n→∞ x−1

n Ai(xnt) = λit,

lim
n→∞ x−1

n Si,j(Ti,j(xnt)) = μiT̄i,j(t).

Scaling (4.1) and (4.2) yields

Q̄1(t) = λ1t − Ū(t) − μ1T̄1,1(t), (4.3)

Q̄2(t) = λ2t + Ū(t) − μ2T̄2,2(t) − μ3T̄2,1(t), (4.4)

where Ū(t) = limn→∞ x−1
n U(xnt).

We first examine the stability of queue 1. We will later connect this result to the
stability of the entire system for the underlying queuing network model. The arrival
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rate is λ1 and the maximum departure rate is c1μ1 + Lβ, due to the combined effects of
service completions and upgrades. Intuitively, one would expect that if the arrival rate
is less than the maximum departure rate, then queue 1 can be stabilized. The following
lemma makes this precise in terms of fluid limits. We postpone the connection to the
underlying queuing model.

Proposition 4.1: Consider the following cases:

1. Suppose λ1 < c1μ1 + Lβ. If either
(a) λ1 < Lβ or

(b) λ1 ≥ Lβ

and for some ε > 0, d(T̄1,1(t))/dt > (λ1 − Lβ + ε)/μ1 whenever Q̄1(t) > 0,
then there exists t1 < ∞ such that Q̄1(t) = 0 for all t ≥ t1.

2. If λ1 > c1μ1 + Lβ, then Q̄1(t) → ∞ as t → ∞.

Proof: Suppose Q̄1(t) > 0. As U(t) is bounded above by a renewal process of rate
Lβ, we have Ū(t) − Ū(s) ≤ Lβ(t − s). Combining this with the fact that T̄1,1(t) −
T̄1,1(s) ≤ c1(t − s) yields that Q̄1(t) is continuous. So, there exists an h > 0 such
that mins∈[t,t+h] Q̄1(s) := c > 0. Now, from Theroem 4.1 of [10], there exists a sub-
sequence {xnk , nk ≥ 0} such that {x−1

nk
Q1(xnk s), nk ≥ 0} converges uniformly to Q̄1(s)

for s in [t, t + h]. This implies that for large enough nk , we have x−1
nk

Q1(xnk s) ≥ c/2;
thus, the same {xnk } can be chosen such that Q1(u) > L for u ∈ [xnk t, xnk (t + h)]. As
Q1(u) remains above L in a neighborhood of xnk t, we have that d(Ū(t))/dt = Lβ and,
thus, from (4.3),

d

dt
Q̄1(t) = λ1 − Lβ − μ1

d

dt
T̄1,1(t).

Under the conditions in statement 1, we see that we have d(Q̄1(t))/dt < 0 and the
result follows with t1 ≤ Q̄1(0)/(λ1 − Lβ) under part (a) (as d(T̄1,1(t))/dt ≥ 0) and
t1 ≤ Q̄1(0)/ε under part (b). Statement 2 follows upon noting that d(T̄1,1(t))/dt ≤ c1

and, thus, if λ1 > c1μ1 + Lβ, d(Q̄1(t))/dt > 0 for all t. �

We now turn our attention to the entire system. As we have already examined for
station 1, it remains to consider station 2 under the assumption of stability of station 1.
However, system stability of station 2 is a little more subtle than that of station 1.

If h1 = h2, it seems intuitive that if μ3 ≥ (≤)μ1, the flexible servers should prefer
to serve customers at station 2 (1) since it can serve them faster there. A policy, say π s,
satisfying the following properties exhibits preference for serving at station 2 while
maintaining the stability of station 1:

1. If Q̄1(t) > 0, all flexible servers work at station 1.

2. If Q̄1(t) = 0, each flexible server works at station 1 a proportion of time equal
to max((λ1 − Lβ)/(c1μ1), 0).
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Proposition 4.2: Suppose π s is used. Assume λ1 < c1μ1 + Lβ.

1. If λ1 < Lβ and λ1 + λ2 < c1μ3 + c2μ2, then Q̄2(t) → 0 as t → ∞.

2. If λ1 ≥ Lβ and λ2 + Lβ < c1μ3 + c2μ2 − (μ3/μ1)(λ1 − Lβ), then Q̄2(t) →
0 as t → ∞.

Proof: To prove statement 1, note that since λ1 < Lβ, π s calls for the flexible servers
to not work at station 1 if Q̄1(t) = 0 (work at station 1 is handled by the upgrades
on the fluid scale). Moreover, by Proposition 4.1, we have for some t1 that Q̄1(t) =
0 for all t ≥ t1. Combining these two facts, from (4.3), d(Ū(t))/dt = λ1 for t ≥
t1. Assume Q̄2(t′) > 0 for some t′ ≥ t1. Since the flexible servers work at station 2
we have d(T̄2,1(s)|s=t′)/ds = c1 and d(T̄2,2(s)|s=t′)/ds = c2. Substituting into (4.4),
d(Q̄2(s)|s=t′)/ds = λ2 + λ1 − c1μ3 − c2μ2, and the result follows immediately.

Consider now statement 2. For π s, if Q̄1(t) > 0, d(T̄1,1(t))/dt = c1. Thus,
since λ1 < c1μ1 + Lβ by Proposition 4.1, part 1(b), we have for some t1 and
all t ≥ t1, Q̄1(t) = 0. Now, for t ≥ t1, from (4.3) and the second property of π s,
d(Ū(t))/dt = Lβ. Assume Q̄2(t′) > 0 for some t′ ≥ t1. We have d(T̄2,2(s)|s=t′)/ds =
c2 and d(T̄2,1(s)|s=t′)/ds = c1(1 − (λ1 − Lβ)/(c1μ1)). Substituting in (4.4),

d

ds
Q̄2(s)|s=t′ = λ2 + Lβ − c2μ2 − c1μ3

(
1 − λ1 − Lβ

c1μ1

)

and the result follows immediately. �

Consider the following sets of conditions.

Conditions (A1): λ1 < c1μ1 + Lβ and either

1. λ1 < Lβ and λ1 + λ2 < c1μ3 + c2μ2

or

2. λ1 ≥ Lβ and λ2 + Lβ < c1μ3 + c2μ2 − (μ3/μ1)(λ1 − Lβ).

Conditions (B1): Any of the following hold:

1. λ1 > c1μ1 + Lβ,

or

2. λ1 < Lβ and λ1 + λ2 > c1μ3 + c2μ2,

or

3. λ1 ≥ Lβ and λ2 + Lβ > c1μ3 + c2μ2 − (μ3/μ1)(λ1 − Lβ).

Note that conditions (A1) and (B1) are not exactly complementary (they are missing
the equals cases). The next theorem provides necessary and sufficient conditions
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(with the caveat of the missing equals cases) for the cost function to be finite and is
immediate from the previous results.

Theorem 4.3: The following hold:

1. If conditions (A1) hold, then there exists a server assignment policy π such
that ρπ(i, j) = ρ < ∞ for all initial states (i, j).

2. Assume μ3 ≥ μ1. If conditions (B1) hold, then for any policy π , ρπ(i, j) = ∞
for all initial states (i, j).

Proof: To prove statement 1, let each flexible server use π s. From the proof of
Proposition 4.2, we have Q̄1(t), Q̄2(t) → 0 as t → ∞. The result then follows from
Theorem 4.1 of [10].

To show the second statement, consider the workload function

W̄(t) = Q̄1(t)

μ1
+ Q̄2(t)

min{μ2, μ3} .

We show that in all three cases of conditions (B1), W̄(t) → ∞ and apply
Theorem 2.5.1 of [9]. If statement 1 of conditions (B1) hold, by Lemma 4.1, we
have Q̄1(t) → ∞ and, thus, W̄(t) → ∞. If statement 2 of conditions (B1) hold, we
consider two cases. First, if μ3 ≤ μ2,

W̄(t) =
(

λ1

μ1
+ λ2

μ3

)
t + Ū(t)

(
1

μ3
− 1

μ1

)
− (T̄1,1(t) + μ2

μ3
T̄2,2(t) + T̄2,1(t))

≥
(

λ1

μ1
+ λ2

μ3

)
t + λ1t

(
1

μ3
− 1

μ1

)
− c1t − μ2

μ3
c2t

≥
(

λ1

μ3
+ λ2

μ3

)
t − c1t − μ2

μ3
c2t,

where the second inequality follows from the facts that Ū(t) ≤ λ1t (recall μ3 ≥ μ1),
T̄1,1(t) + T̄2,1(t) ≤ c1t, and T̄2,2(t) ≤ c2t. If μ2 < μ3, the result follows in a similar
manner. We thus conclude that W̄(t) → ∞. Under statement 3 of conditions (B1),
we repeat the steps for statement 2 of conditions (B1), where now Ū(t) is bounded
above by Lβt. For all three statements in conditions (B1), we have W̄(t) → ∞ and
the result follows from Theorem 2.5.1 of [9]. �

In the case that μ3 ≥ μ1, Theorem 4.3 provides necessary and sufficient condi-
tions for stability. It remains to consider the case when μ1 > μ3. We cannot expect
that π s has finite average cost since it prioritizes station 2. As when μ3 ≥ μ1, we first
analyze station 1 if the flexible server gives priority to customers there.

Under the policy that serves at station 1 except to avoid idling, the number of
customers at station 1 (including the one in service) is a birth–death process with
birth rate λ1 everywhere and death rate nμ1 when there are n ≤ c1 customers in
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the system, c1μ1 + (n − c1)β when there are c1 + 1 ≤ n ≤ L + c1 customers in the
system, and c1μ1 + Lβ when n ≥ L + c1 + 1. If λ1 < c1μ1 + Lβ, then the steady-
state probability that there are n customers at station 1, pn, exists. In the usual manner
we have

pn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λn
1

n!μn
1

p0, 1 ≤ n ≤ c1

λn
1

c1!μc1
1

∏n−c1
i=1 (μ1 + iβ)

p0, c1 + 1 ≤ n ≤ L + c1

λn
1

c1!μc1
1 (c1μ1 + Lβ)n−L−c1−1

∏L
i=1(c1μ1 + iβ)

p0, n ≥ L + c1 + 1.

Solving for p0,

p0 =
(

1 +
c1∑

n=1

λn
1

n!μn
1

+
L+c1∑

n=c1+1

λn
1

c1!μc1
1

∏n−c1
k=1 (μ1 + kβ)

+ λ
L+c1+1
1

(c1μ1 + Lβ − λ1)c1!μc1
1

∏L

=1(c1μ1 + 
β)

)−1

.

Consider the following sets of conditions:

Conditions (A2): λ1 < c1μ1 + Lβ and

λ2 +
L+c1∑

n=c1+1

(n − 1)βpn

+ Lβp0
λ

L+c1+1
1

(c1μ1 + Lβ − λ1)c1!μc1
1

∏L

=1(c1μ1 + 
β)

< c2μ2 + p0c1μ3. (4.5)

Conditions (B2): Either

1. λ1 > c1μ1 + Lβ

or

2. λ1 < c1μ1 + Lβ and

λ2 +
L+c1∑

n=c1+1

(n − 1)βpn

+ Lβp0
λ

L+c1+1
1

(c1μ1 + Lβ − λ1)c1!μc1
1

∏L

=1(c1μ1 + 
β)

> c2μ2 + p0c1μ3.
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Theorem 4.4: The following hold:

1. If conditions (A2) hold, then there exists a server assignment policy π such
that ρπ(i, j) = ρ < ∞ for all initial states (i, j).

2. Assume μ1 > μ3. If conditions (B2) hold, then for any policy π , ρπ(i, j) = ∞
for all initial states (i, j).

Proof: Let the flexible servers give priority to station 1 and consider statement 1. By
Proposition 4.1, λ1 < μ1 + Lβ implies that there exists t1 such that Q̄1(t) = 0 for all
t ≥ t1. Using a renewal-reward argument, we have for t ≥ t1,

Ū(t) − Ū(t1)

= (t − t1)

(
L+1∑
n=2

(n − 1)βpn + Lβp0
λ

L+c1+1
1

(c1μ1 + Lβ − λ1)c1!μc1
1

∏L

=1(c1μ1 + 
β)

)

and

T̄1,1(t) − T̄1,1(t1) = c1(t − t1)(1 − p0).

Now, if Q̄2(t) > 0, we see that

d

dt
Q̄2(t) = λ2 +

L+1∑
n=2

(n − 1)βpn

+ Lβp0
λ

L+c1+1
1

(c1μ1 + Lβ − λ1)c1!μc1
1

∏L

=1(c1μ1 + 
β)

− c2μ2 − c1p0μ3,

and the result follows directly from Theorem 2.5.1 of [9].
To see statement 2, the policy that has the flexible servers give priority to station

1 trivially minimizes Q1(t)/μ1 + Q2(t)/μ3 (it minimizes the combined idle time of
the servers that can only work at queue 2). Combined with the proof of statement 1,
this then immediately yields statement 2. �

5. THE STRUCTURE OF OPTIMAL POLICES

In this section we discuss optimal policy structure. Since we have assumed that L < ∞,
we can apply uniformization with uniformization constant � = 1 ≥ λ1 + λ2 + (c1 +
c2) max{μ1, μ2, μ3} + Lβ in the spirit of Lippman [16] so that instead of consid-
ering the continuous-time problems described earlier, we consider the discrete-time
equivalents; that is, optimal policies remain unchanged while values coincide up to a
multiplicative constant. Since we have uniformized, we restrict attention to the infinite
horizon discounted cost and the average cost cases. We model the decision scenario as
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a Markov decision process. For a policy π = {d1, d2, . . .} and for initial queue lengths
x = (i, j), define

vπ
N ,θ (x) := E

π
x

N−1∑
n=0

[θnC(Xn, dn(Xn))], (5.1)

vπ
θ := lim

N→∞ vπ
N ,θ (x), (5.2)

wπ (x) := lim sup
N→∞

1

N
vπ

N ,1(x), (5.3)

where {Xn, n ≥ 0} denotes the stochastic process representing the queue lengths
at decision epoch n. Equations (5.1), (5.2), and (5.3) define the N-stage expected
discounted cost, the infinite horizon expected discounted cost, and the long-run
average expected cost, respectively. In the finite horizon problem, only the por-
tion of the policy required for the time horizon is used. Moreover, this has the
interpretation of considering an infinite horizon problem with only a finite num-
ber of decision epochs possible. Again, in each case we define the optimal val-
ues y(i, j) := infπ∈� yπ (i, j), where y = vN ,θ , vθ , or w depending on the optimality
criterion.

One might note that, as described, we have defined policies to only include those
that are Markovian. However, our assumptions imply that this set is actually sufficient
for finding an optimal policy among all nonanticipating policies in the sense that when
searching over either set the optimal values coincide.

5.1. The Multi Server Case

To ease notation, let g(i) := ((i − c1)
+ ∧ L)β. It is well known that for each n ≥ 0,

the value vn,θ satisfies the finite horizon optimality equations (FHOEs):

vn+1(i, j)

= ih1 + jh2 + θ
(
λ1vn(i + 1, j) + λ2vn(i, j + 1)

+ g(i)vn(i − 1, j + 1) + min{j, c2}μ2vn(i, j − 1)

+ min
k∈{0,1,...,c1}

{
min{i, c1 − k}μ1vn(i − 1, j) + k1{ j−c2k}μ3vn

× (i, j − 1) + [1 − (λ1 + λ2 + g(i)

+ min{i, c1 − k}μ1 + min{ j, c2}μ2

+ k1{j−c2≥k}μ3)]vn(i, j)
})

. (5.4)

Similarly, if we replace vn and vn+1 with v, we have the discounted cost optimality
equations (DCOEs) and the optimal value vθ = v. In either case, a policy that achieves
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the minimum is optimal under the respective criterion. We note that analogous results
hold in the average cost case, but the stability of the system must be considered.
Consider the average cost optimality equations (ACOEs):

w + u(i, j) (5.5)

= ih1 + jh2 + λ1u(i + 1, j) + λ2u(i, j + 1) + g(i)u(i − 1, j + 1)

+ min{j, c2 + k}μ2u(i, j − 1)

+ min
k∈{0,1,...,c1}

{min{i, c1 − k}μ1u(i − 1, j) + k1{j−c2≥k}μ3u(i, j − 1)

+ [1 − (λ1 + λ2 + g(i) + min{i, c1 − k}μ1

+ min{j, c2}μ2 + k1{j−c2≥k}μ3)]u(i, j)}. (5.6)

It should be clear that under any nonidling policy, all states communicate. It is well
known (at least when all states communicate) that if a solution (w, u) to the ACOEs
exists, w is the optimal average cost (independent of the initial state x) and u, called
a relative value function, is unique up to an additive constant. The next proposition
uses the results of Section 4 to provide conditions for convergence of the values and
policies in the infinite horizon discounted cost case to those in the average case.

Proposition 5.1: Suppose either conditions (A1) or (A2) hold. The following hold:

1. The optimal average cost can be computed by w̄ = limθ↑1(1 − θ)vθ (i, j) for
any (i, j) ∈ X.

2. There exists a subsequence {θn, n ≥ 0} such that θn ↑ 1 and uθn(i, j) :=
vθn(i, j) − vθn(0, 0) → u(i, j), where u is a relative value function such that
(w̄, u) satisfy the ACOEs.

Proof: Note that for any U > 0, the set {(i, j)|ih1 + jh2 ≤ U} is finite. Moreover,
under the hypotheses of the proposition, we have the existence of a policy with constant
finite average cost. This implies that the assumptions in Corollary 7.5.10 of [18] hold.
The results now follow from Theorems 7.2.3 and 7.5.6 of [18]. �

The next result states that all of the flexible servers should be allocated to the
station that is of higher priority while staying within the class of nonidling policies.

Theorem 5.2: In the finite or infinite horizon discounted cost cases and in the average
cost case under the hypotheses of Proposition 5.1, there exists an optimal policy that
satisfies the following properties:

1. Servers are not allocated to station 2 unless there are excess customers in the
buffer of station 2 ( j > c2).

2. If there is enough excess capacity at station 1 to serve all of the customers at
station 2 ( j − c2 ≤ (c1 − i)+), assign all excess capacity to station 2. (k =
c1 − i).
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3. If there are more customers at station 2 than can be served with the excess
capacity at station 1 (( j − c2)

+ ≥ c1 − i), there are but two possibilities:
(a) Prioritize station 1. Assign as many servers as possible to station 1 with

the caveat that unforced idling should be avoided (k = max{0, c1 − i}).
(b) Prioritize station 2. Assign as many servers as possible to station 2 with

the caveat that unforced idling should be avoided (k = min{c1, j − c2}).
Proof: We show the results in the finite horizon case. The other cases follow similarly.
The first result follows trivially from the fact that unforced idling is not optimal. This
implies that for j ≤ c2 (there is no extra work for flexible servers to do), the optimal
value for k is zero.

Assume now that j > c2 and note that the no unforced idling assumption also rules
out the possibility of an optimal k in (5.4) such that k < c1 − i and k < j − c2 (k <

min{c1 − i, j − c2}); otherwise servers would idle at station 1 while there is work in the
buffer at station 2. Similarly for k > c1 − i and k > j − c2 (k > max{c1 − i, j − c2}),
we would idle servers at station 2 while there is work to do at station 1. This leaves
two cases to consider. In the first case, c1 − i > j − c2; that is, there is more excess
capacity at station 1 than there is work at station 2. Consider the following set:

B(i, j) := {0 ≤ k ≤ c1 | j − c2 < k ≤ c1 − i}.
For i < c1 with k ∈ B(i, j), the minimum in (5.4) is independent of k. Moreover, this
is the same value we would obtain if k = c1 − i. Thus, an optimal action is to set
k = c1 − i and the second result is proven. Of course, when i ≥ c1, this case cannot
occur (when j > c2). Now consider the case where c1 − i ≤ j − c2; that is, there are
more customers at station 2 than can be served by the excess flexible servers at station 1.
Define the following set:

A(i, j) := {0 ≤ k ≤ c1 | c1 − i ≤ k ≤ j − c2}.
Thus,

vn+1(i, j) = ih1 + jh2 + λ1(vn(i + 1, j) − vn(i, j)) + λ2(vn(i, j + 1) − vn(i, j))

+ g(i)[vn(i − 1, j + 1) − vn(i, j)]
+ min

k∈A(i,j)
{−kμ1[vn(i − 1, j) − vn(i, j)] + kμ3(vn(i, j − 1) − vn(i, j))}

+ c1μ1(vn(i − 1, j) − vn(i, j)) + c2μ2(vn(i, j − 1) − vn(i, j)) + vn(i, j).

Since the quantities in the minimum are linear in k, the optimal action is found at
one of the extreme points. That is to say, the optimal action is at one of the following
points: k = min{c1, j − c2} or k = max{0, c1 − i}. This proves the last case and the
result is proven. �

The previous theorem implies that when the queue lengths are large enough so that
no servers are forced to idle, the prioritization of customer classes defines where all of
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the servers should be placed; the servers are not split between stations. In this case, one
might think of the servers as a single server with rates μ̄1 = c1μ1 or μ̄3 = c1μ3 and
μ̄2 = c2μ2, respectively. With this observation it seems intuitive that the allocation
decision can be translated to solving the analogous system with a single server at each
station.

5.2. The Single-Server Case

Case 3 of Theorem 5.2 still begs the question “When should one prioritize station 1 or
2?” Suppose c1 = c2 = 1. To ease notation define vn(−1, j) = vn(0, j) and vn(i, −1) =
vn(i, 0). Note that the optimality equations in the finite horizon case reduce to

vn+1(i, j)

= ih1 + jh2 +θ
(
λ1vn(i + 1, j)+λ2vn(i, j +1)+g(i)vn(i−1, j +1)+μ2vn(i, j −1)

+ min
k∈{0,1}

{
(1 − k)μ1vn(i − 1, j) + kμ3vn(i, j − 1)

+ [1 − (λ1 + λ2 + g(i) + (1 − k)μ1

+ kμ3 + μ2)]vn(i, j)
})

= ih1 + jh2 + θ
(
λ1vn(i + 1, j) + λ2vn(i, j + 1) + g(i)βvn(i − 1, j + 1)

+ μ1vn(i − 1, j) + μ2vn(i, j − 1)

+ [1 − (λ1 + λ2 + g(i) + μ1 + μ2)]vn(i, j)

+ min
k∈{0,1}

{
kμ3[vn(i, j − 1) − vn(i, j)]

− kμ1[vn(i − 1, j) − vn(i, j)]
})

. (5.7)

From (5.7) note that it is optimal to serve at station 1 (2) when μ3(vn(i, j − 1) −
vn(i, j)) ≥ (≤)μ1(vn(i − 1, j) − vn(i, j)). The next lemma follows in precisely the
same manner as Proposition 3.1. The proof is omitted for brevity.

Lemma 5.3: Let y = vn, vθ , or u depending on the optimality criterion. For all states
(i, j) the following inequalities hold:

1. y(i, j + 1) ≥ y(i, j),

2. y(i + 1, j) ≥ y(i, j),

for each θ , where in the finite horizon case the result holds for all n.

For any function f on the state space, let �1f (i, j) := f (i + 1, j) − f (i, j) and
�2f (i, j) := f (i, j + 1) − f (i, j). Additionally, recall that ak+1bk+1 − akbk = (ak+1 −
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ak)bk+1 + ak(bk+1 − bk) = ak+1(bk+1 − bk) + (ak+1 − ak)bk . The next result states
that when μ1 = μ3, there exists an optimal policy that is monotone in the number
of customers at station 2. This implies that for each fixed i, there exists a (possibly
infinite) control limit L2(i) such that it is optimal for the flexible server to work at
station 1 for j < L2(i) and at station 2 for j ≥ L2(i).

Theorem 5.4: Suppose μ1 = μ3 and let y = vn, v, or u depending on the optimality
criterion. The following hold:

1. Assume μ2 ≥ μ1. For all i, j ≥ 1, we have y(i, j − 1) − y(i − 1, j) − [y(i, j) −
y(i − 1, j + 1)] = �2y(i − 1, j) − �2y(i, j − 1) ≥ 0.

2. Suppose β = 0.
(a) For all i, j ≥ 0, we have y(i + 2, j) − y(i + 1, j) − [y(i + 1, j) − y(i, j)] =

�1(�1)y(i, j) = �2
1y(i, j) ≥ 0 (convexity in i).

(b) For all i ≥ 0, j ≥ 1, we have y(i + 1, j) − y(i, j) − [y(i + 1, j − 1) −
y(i, j − 1)] = �1y(i, j) − �1y(i, j − 1) ≥ 0.

(c) For all i, j ≥ 1, we have y(i, j − 1) − y(i − 1, j) − [y(i + 1, j − 1) −
y(i, j)] = �1y(i − 1, j) − �1y(i, j − 1) ≤ 0.

That is to say, from statements 1 and 2(c) we have the following under each
of the optimality criteria:

3. Assuming μ2 ≥ μ1, if it is optimal to allocate the flexible server to station 2 in
state (i, j), it is optimal to allocate it to station 2 for (i, j + 1) (monotone in j).

4. When β = 0, if it is optimal to allocate the flexible server to station 1 in state
(i, j), it is optimal to allocate it to station 1 for (i + 1, j) (monotone in i).

Proof: We show the results for vn. The others will follow by taking limits. Trivially,
all of the results hold for n = 0. Suppose the results hold for n and consider n + 1. A
little algebra yields

vn+1(i, j) = ih1 + jh2 + θ
(
λ1vn(i + 1, j) + λ2vn(i, j + 1) + g(i)vn(i − 1, j + 1)

+ [1 − (λ1 + λ2 + g(i) + μ1 + μ2)]vn(i, j)

+ μ1vn(i − 1, j) + μ2vn(i, j − 1)

+ μ1 min
k∈{0,1}

{k[vn(i, j − 1) − vn(i − 1, j)]}
)

. (5.8)

Let k be the optimal allocation (0 or 1) at time n + 1 in state (i − 1, j + 1) and let k′ be
the optimal allocation in state (i, j − 1). Using the same allocation in states (i − 1, j)
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and (i, j), respectively, we have for i ≥ 1, j ≥ 2 (suppressing the discount factor θ ),

�2vn+1(i − 1, j) − �2vn+1(i, j − 1)

≥ λ1[�2vn(i, j) − �2vn(i + 1, j − 1)] + λ2[�2vn(i − 1, j + 1) − �2vn(i, j)]
+ μ1[�2vn(i − 2, j) − �2vn(i − 1, j − 1)]
+ μ2[�2vn(i − 1, j − 1) − �2vn(i, j − 2)]
+ kμ1[�2vn(i − 1, j − 1) − �2vn(i − 2, j)]
+ k′μ1[�2vn(i − 1, j − 1) − �2vn(i, j − 2)]
+ g(i − 1)[�2vn(i − 2, j + 1) − �2vn(i − 1, j)]
+ [1 − (λ1 + λ2 + μ1 + μ2 + g(i))][�2vn(i − 1, j) − �2vn(i, j − 1)],

where the inductive hypothesis applies in each case except for the term with coefficient
k. In this case, if k = 1, the term cancels with the first term with coefficient μ1. This
is the case, for example, when i = 1. At j = 1, k′ = 0, but k = 0 or 1 and we must
allocate the server to station 1 in states (i − 1, 1) and (i, 1). The changes in the terms
with coefficient μ1 and μ2 (not including the uniformization terms which remain the
same) are

μ1�2−kvn(i − 2, 1) + (μ2 − μ1)�2vn(i − 1, 0) ≥ 0,

where the inequality follows by Proposition 3.1 and the assumption that μ2 ≥ μ1.
This completes the proof of statement 1.

Consider statement 2(a). Using (5.8) and ignoring the terms associated with g(i)
(since β = 0) yields

�2
1vn+1(i, j) = θ

(
λ1�

2
1vn(i + 1, j) + λ2�

2
1vn(i, j + 1) + [1 − (λ1 + λ2 + μ1 + μ2)]

× �2
1vn(i, j) + μ1�

2
1vn(i − 1, j) + μ2�

2
1vn(i, j − 1)

+ μ1

(
min{vn(i + 2, j − 1) − vn(i + 1, j), 0}
− min{vn(i + 1, j − 1) − vn(i, j), 0}
− min{vn(i + 1, j − 1) − vn(i, j), 0}
+ min{vn(i, j − 1) − vn(i − 1, j), 0}

))
.

It should be clear that the terms associated with λ1, λ2, μ2, and uniformization all are
nonnegative by the inductive hypothesis. Consider the terms with coefficient μ1. Let
k1 (0 or 1) be the optimal allocation in state (i + 2, j) and k′

1 be the optimal allocation
in state (i, j). Note that the inductive hypothesis from statement 2(c) implies that the
optimal policy is monotone in i, so k′

1 = 0 implies k1 = 0. Assuming that we use k1
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in the second minimum and k′
1 in the third, we get a lower bound on the terms in

question of

A(i, j) := μ1�
2
1vn(i − 1, j) + μ1(k1[�1vn(i + 1, j − 1) − �1vn(i, j)]

− k′
1[�1vn(i, j − 1) − �1vn(i − 1, j)]). (5.9)

There are three cases to consider. If k1 = k′
1 = 1, then A(i, j) = μ1�

2
1vn(i, j − 1). If

k1 = k′
1 = 0, then A(i, j) = μ1�

2
1vn(i − 1, j). In either case, the inductive hypothesis

yields 2(a). If k1 = 0 and k′
1 = 1, then a little algebra yields

A(i, j) = μ[�1vn(i, j) − �1vn(i, j − 1)] ≥ 0,

where the inequality holds by the inductive assumption 2(b).
To show that statement 2(b) holds, consider only the terms of �1vn+1(i, j) −

�1vn+1(i, j − 1) that have coefficient μ1 (the other terms are analogous to the previous
part):

μ1[�1vn(i − 1, j) − �1vn(i − 1, j − 1)]
+ μ1

(
min{vn(i + 1, j − 1) − vn(i, j), 0} − min{vn(i, j − 1) − vn(i − 1, j), 0}
− [min{vn(i + 1, j − 2) − vn(i, j − 1), 0}
− min{vn(i, j − 2) − vn(i − 1, j − 1), 0}]

)
.

Suppose k2 and k′
2 represent the optimal allocations in states (i + 1, j) and (i, j − 1),

respectively. If we mimic the allocations in the other two minimums, we have the
following lower bound:

B(i, j) := μ1[�1vn(i − 1, j) − �1vn(i − 1, j − 1)]
+ k2μ1[�1vn(i, j − 1) − �1vn(i − 1, j)]
− k′

2μ1[�1vn(i, j − 2) − �1vn(i − 1, j − 1)].

If k2 = k′
2 = 1, then B(i, j) = μ1[�1vn(i, j − 1) − �1vn(i, j − 2)] ≥ 0, where the

inequality follows from the inductive hypothesis of statement 2(b). If k2 = k′
2 = 0,

then, B(i, j) = μ1[�1vn(i − 1, j) − �1vn(i − 1, j − 1)] ≥ 0, again by the inductive
hypothesis. Consider now the case when k2 = 1 and k′

2 = 0. In this case, B(i, j) =
μ1[�2

1vn(i − 1, j − 1)] ≥ 0. To complete the proof of statement 2(b), suppose k2 = 0
and k′

2 = 1. In this case, we have B(i, j) = μ1[�1vn(i − 1, j) − �1vn(i, j − 1)] +
μ1[�1vn(i, j − 1) − �1vn(i, j − 2)] ≥ 0, by the inductive hypothesis.
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Consider now statement 2(c). Again we note that only the terms with coefficient
μ1 present a challenge. These terms are

μ1[�1vn(i − 2, j) − �1vn(i − 1, j − 1)] + μ[�1vn(i − 1, j − 1) − �1vn(i, j − 2)]
+ μ1

(
min{vn(i, j − 1) − vn(i − 1, j), 0} − min{vn(i − 1, j − 1) − vn(i − 2, j), 0}
− min{vn(i + 1, j − 2) − vn(i, j − 1), 0}
+ min{vn(i, j − 2) − vn(i − 1, j − 1), 0}

)
.

Let k3 and k′
3 represent the optimal allocation in states (i − 1, j) and (i + 1, j − 1),

respectively. An upper bound on the terms with coefficient μ1 is

C(i, j) := μ1[�1vn(i − 2, j) − �1vn(i − 1, j − 1)]
+ k3μ1[�1vn(i − 1, j − 1) − �1vn(i − 2, j)]
− k′

3μ1[�1vn(i, j − 2) − �1vn(i − 1, j − 1)].
If k3 = k′

3 = 1, then C(i, j) = μ1[�1vn(i − 1, j − 1) − �1vn(i, j − 2)] ≤ 0, where the
inequality holds from the inductive hypothesis of statement 2(c) when j ≥ 2 and state-
ment 2(a) when j = 1. Similarly, if k3 = k′

3 = 0, then C(i, j) = μ1[�1vn(i − 2, j) −
�1vn(i − 1, j − 1)] ≤ 0, where again the inductive hypothesis yields the inequality
when i ≥ 2 and Lemma 5.3 admits that it holds when i = 1. If k3 = 0 and k′

3 = 1,
then

C(i, j) = μ1[�1vn(i − 2, j) − �1vn(i − 1, j − 1)]
+ μ1[�1vn(i − 1, j − 1) − �1vn(i, j − 2)] ≤ 0,

where, again, the inductive hypothesis yields the inequality. If k3 = 1 and k′
3 = 0, then

C(i, j) = 0 (this case does not occur when j = 1). �

Theorem 5.5: Suppose μ1h1 ≥ μ3h2 and let y = vn, v, or u depending on the
optimality criterion. If

1. β = 0 (no upgrades)

or

2. μ1 ≥ μ3,

then for all i, j ≥ 0, we have

−μ3�2y(i, j − 1) = μ3[y(i, j − 1) − y(i, j)]
≥ μ1[y(i − 1, j) − y(i, j)]
= −μ1�1y(i − 1, j),

that is, μ1�1y(i − 1, j) ≥ μ3�2y(i, j − 1). Thus, under each of the optimality crite-
ria, there exists an optimal policy that always serves at station 1, except to avoid
unforced idling.
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Proof: Consider the finite horizon case. The result holds trivially for n = 0. Suppose
it holds for n. This implies that it is optimal to place the flexible server at station 1
except to avoid unforced idling. Consider n + 1 and suppose i ≥ 1, j ≥ 1:

�1vn+1(i − 1, j)

= h1 + θ
[
λ1�1vn(i, j) + λ2�1vn(i − 1, j + 1)

+ μ1�1vn(i − 2, j) + μ2�1vn(i − 1, j − 1)

+ g(i)vn(i − 1, j + 1) − g(i − 1)vn(i − 2, j + 1)

+ [1 − (λ1 + λ2 + μ1 + μ2)]�1vn+1(i − 1, j)

− g(i)vn(i, j) + g(i − 1)vn(i − 1, j)
]
.

Similarly,

�2vn+1(i, j − 1)

= h2 + θ
[
λ1�2vn(i + 1, j − 1) + λ2�2vn(i, j)

+ μ1�2vn(i − 1, j − 1) + μ2�2vn(i, j − 2) + g(i)�2vn(i − 1, j)

+ [1 − (λ1 + λ2 + μ1 + μ2 + g(i))]�2vn(i, j − 1)
]
.

Consider now μ1�1vn+1(i − 1, j) − μ3�2vn+1(i, j − 1). Suppose g(i) = 0 for all
i. Note that the differences in the terms involving λ1, λ2, μ1, and μ2 and that due to
uniformization are nonnegative by the inductive hypothesis in each case. That is to
say, the result holds for β = 0 as desired. Suppose now that g(i) > 0 for some i.
Combining the remaining terms yields

(1 − (λ1 + λ2 + μ1 + μ2 + g(i)))
[
μ1�1vn(i − 1, j) − μ3�2vn(i, j − 1)

]
+ g(i)[μ1�1vn(i − 2, j + 1) − μ3�2vn(i − 1, j)]
+ �1g(i − 1)μ1(vn(i − 2, j + 1) − vn(i − 1, j))

= (1 − (λ1 + λ2 + μ1 + μ2 + g(i)))
[
μ1�1vn(i − 1, j) − μ3�2vn(i, j − 1)

]
+ g(i − 1)[μ1�1vn(i − 2, j + 1) − μ3�2vn(i − 1, j)]
+ �1g(i − 1)(μ1 − μ3)(�2vn(i − 1, j)).

The second result now holds for i ≥ 2 by the inductive hypothesis, the assumption
that μ1 ≥ μ3, and Lemma 5.3. It remains to consider the case with i = 1. In this case,
the optimal policy in (i − 1, j) is to assign both servers to station 2 (or not at all when
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j = 1). Thus,

�1vn+1(0, j)

= h1 + θ
[
λ1�1vn(1, j) + λ2�1vn(0, j + 1)

+ μ2�1vn(0, j − 1) + [1 − (λ1 + λ2 + μ1 + μ2)]�1vn(0, j)

+ μ3�2vn(0, j − 1)
]
.

Again, the terms of μ1�1vn+1(0, j) − μ3�2vn+1(1, j − 1) associated with λ1, λ2, and
uniformization (recall g(1) = 0) are nonnegative via the inductive hypothesis; simi-
larly for μ2[μ1�1vn(0, j − 1) − μ3�2vn(1, j − 2)] ≥ 0. The last term �2vn(0, j − 1)

cancels and the proof is complete for all n. Taking limits as n → ∞ yields the analo-
gous result in the infinite horizon case. To get the average case, define a subsequence
{θn, n ≥ 0} as in Proposition 5.1, part 2. Taking limits and applying the ACOEs yields
the results in the average case. �

6. NUMERICAL STUDY AND EXAMPLES

In this section we provide several examples and a detailed numerical study. Unless
otherwise stated, in each of the examples the state space was truncated at 50 for
each station to make the Markov decision process tractable. Given the results of
Theorem 5.5, one might wonder if the condition that μ1 ≥ μ3 plays a significant role
in determining the optimal policy. The next example shows that indeed it does.

Example 6.1: Assume c1 = c2 = 1 and suppose λ1 = 2, λ2 = 3, μ1 = 2, μ2 = μ3 = 3,
β = 1, L = 7, h1 = 1.5, and h2 = 1.

Since μ1h1 = μ3h2 = 3, one might conjecture that the c-μ rule implies that the
optimal policy is to leave the flexible server at station 1 except to avoid unforced
idling. However, it turns out that the optimal policy is to have the flexible server serve
work at station 2 except to avoid unforced idling. Upon further inspection, this is
intuitive since λ1 < Lβ, so that on the fluid scale, all of the work is pushed to station
2. On the other hand, if we replace μ1 with 3, then, as expected, the optimal policy
is to leave the flexible server at station 1 except to avoid unforced idling (as expected
from the results of Theorem 5.5). In the prior case, the average cost is 7.8077, whereas
in the latter case, the average cost is 6.0735 (a 22% difference). Moreover, if we use
the policy that places the flexible server at station 1, in the system with μ1 = 2 the
average cost is 16.4862 (a 111% increase!).

The next example shows that there are cases that warrant a search for an optimal
upgrade rate.

Example 6.2: Suppose we have the following parameters: λ1 = 3, λ2 = 1, μ1 = 3,
μ2 = μ3 = 1.5, h1 = 1, h2 = 7, and L = 50.
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FIGURE 2. Average cost versus upgrade rate.

Allowing β to range from zero to 2 yields the results shown in Figure 2. It
should be clear that when β = 0, the system is unstable (Q1(t) → ∞). Moreover, one
should note that the curve is unimodal but not convex in β. Thus, given a fixed set of
parameters, one might search to find the best upgrade rate.

An experiment was designed to see how changing the system utilization and the
holding costs affect the usefulness of the optimal allocation of the flexible server in a
system with upgrades. In each run, we let the maximum buffer size of each queue be
35. We also fix the following parameters: λ1 = λ2 = 1, L = 10, and β = 0.05 and let
μ2 = μ3. Define

ρ1 = λ1

μ1 + Lβ
,

ρ2 = λ2 + Lβ

μ2(2 − (λ1 − Lβ)/μ1)
.

We note that in neither case does ρi < 1 for i = 1, 2 guarantee stability of the system.
However, each in some sense gives a measure of the congestion at each station. We
allow ρ1, ρ2 ∈ {.6, .8, .95} and h1, h2 ∈ {0.5, 1, 3, 7}. The service rates implied by each
combination of ρ1 and ρ2 are displayed in Table 1.

The average costs of the optimal policy and the base policy that assigns the flexible
server to station 1 except to avoid unforced idling were computed. For each run, the
percent difference (divided by 100) is obtained. The average cost percent difference
between the optimal and base policies across utilization and holding costs combi-
nations are displayed in Table 2. One immediately notices that as ρ2 increases, the
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TABLE 1. Service Rate Inputs

ρ1μ1
μ2 .6 .8 .95

ρ2 .6 1.1667 0.7500 0.5526
1.5909 1.8750 2.2826

.8 1.1667 0.7500 0.5526
1.1932 1.4063 1.7120

.95 1.1667 0.7500 0.5526
1.0048 1.1842 1.4416

TABLE 2. (Average Percent Difference)/100
Across Utilization and Holding Costs

ρ1

.6 .8 .95

ρ2 .6 0.0659 0.0579 0.0205
.8 0.0995 0.2242 0.1125

.95 0.1019 0.3270 0.3254

h1

.5 1 3 7

h2 0.5 0.0845 0.0310 0.0053 0.0029
1 0.1788 0.0845 0.0147 0.0046
3 0.3833 0.2548 0.0845 0.0237
7 0.5186 0.4102 0.2073 0.0845

average cost difference increases. This stands to reason since the higher the congestion
in station 2, the more important it becomes to spend time away from station 1 (unlike
the base policy). By the same token, the optimal policy is not often different than the
base policy when ρ2 is small and ρ1 is high (it is optimal to serve at station 1). The
point should also be made that the difference is significant when ρ2 = .95; it is above
10% in each case and above 32% when ρ1 ≥ .8.

We see similar results when we consider the average difference with regard
to holding costs. Of course, when the holding costs are the same and μ1 ≥ μ2,
Theorem 5.5 implies that the base case is optimal. This is only violated in one instance
(see Table 1), so that the terms down the diagonal are the same. As for the other terms,
one should note that as h2 increases relative to h1 the difference in costs becomes more
pronounced. In the worst case, it is over 17%.

We also examined (via simulation) the differences in average waiting times
between the base case and the optimal policy. To do so, we calculated the waiting
times of customers of each class after 30,000 time units of burn-in and 30,000 actual
time units. This was done for 30 replications over each of the combinations of the
previous study. The results are contained in Table 3, where Wi represents the average
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TABLE 3. (Average Percent Decrease in Average
Waiting Times)/100 Across Utilization and Holding
Costs

ρ1
W1
W2 .6 .8 .95

ρ2 .6 −0.1707 −0.0931 −0.0478
0.1750 0.2623 0.2432

.8 −0.3884 −0.1083 −0.0317
0.2347 0.5901 0.5735

.95 −0.2293 0.7544 0.7907
0.0502 0.8163 0.9800

h1
W1
W2 .5 1 3 7

h2 0.5 0.1690 0.0643 −0.2044 −0.3264
0.5 0.4476 0.5606 0.6652 0.6764
1 0.1992 0.1645 −0.0132 −0.2486
1 0.3628 0.4459 0.6097 0.6711
3 0.0879 0.1980 0.1661 0.0248
3 0.1326 0.3278 0.4460 0.5762
7 0.1057 0.0945 0.2001 0.1642
7 0.1279 0.1323 0.3514 0.4446

waiting time of type i customers and type 1 customers are called type 1 regardless of
which server actually serves them. The upper table, which for a fixed load averages
over the 16 holding cost cases, shows that for moderate loads, we get the intuitive
result that the optimal policy has relatively shorter waiting times for type 2 customers
and longer waiting times for type 1 customers. However, at high loads, there is a
dramatic improvement for both types. This appears to be due to the fact that more
customers are upgraded than at lower loads, and the base policy does poorly with
respect to these. In bottom table, we see that for almost all holding cost pairs, there is
improvement for both types.

7. CONCLUSIONS

In this article we have considered a new method of mitigating the concerns of waiting
times for low-priority customers while maintaining the prioritization in a system of
two parallel stations and flexible servers. This is obtained by upgrading customers to
high priority if they have been waiting in queue for some time. This is done using
a simple mechanism that is analytically tractable. From a managerial standpoint, the
effectiveness of such a simple mechanism suggests that allowing limited upgrades can
effectively take advantage of unused capacity.

https://doi.org/10.1017/S0269964809990222 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990222


N-NETWORK MODEL WITH UPGRADES 199

We also showed several results that at first glance might seem counterintuitive.
In particular, we showed that the allocation of flexible servers in this system needs
to consider the relationship between μ1 and μ3 directly (not just μ1h1 and μ3h2).
This occurs in both the stability calculations and the calculation of optimal policies.
Moreover, we provide conditions under which the optimal policy mirrors closely those
that can be found in the literature.

We feel that this article opens the door for several areas of research. Since upgrades
might be thought of as reneging without the customer actually leaving the system, it
would be interesting to know how control would work in larger multiclass networks
with reneging and upgrades. As we have pointed out, the questions of both stability
and control are worthwhile. There is also the question of direct control of upgrades
and flexible servers simultaneously. This is particularly interesting since one might
consider both upgrades and downgrades; it is unclear how much is gained by providing
immediate service in lieu of delayed service of lower-class customers. Since upgrades
in effect control the arrival process to the high-priority queue, one can also ask the
question if it would be more prudent to affect the arrival process by alternative means
for example, by pricing or even admission control.
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