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Unsteady convective–diffusive transport in
semicircular microchannels with irreversible
wall reaction
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The unsteady dispersion of a solute band by a steady pressure-driven flow in a semicircular
microchannel is theoretically studied via the generalized dispersion model. Considering
an irreversible first-order reaction at the curved wall while assuming a no-flux boundary
condition at the flat wall, analytical solutions are obtained for the exchange, convection
and dispersion coefficients as well as the dimensionless forms of solute concentration and
mean solute concentration. The solutions are obtained assuming an initial solute band
of arbitrary cross-sectional shape and axial distribution and the results are presented for
both circular and semicircular shapes with the uniform distribution being a special case
of the latter. Besides the general solutions, special solutions are also derived for uniform
velocity and no-reaction cases. In the following, the influences of the initial concentration
distribution and the Damköhler number, a measure of the reaction rate, on the transport
coefficients and the concentration distribution are investigated in depth. It is demonstrated
that the combination of the initial concentration distribution and the Damköhler number
specifies the variations of the transport coefficients in the short term but the Damköhler
number is the only parameter dominating the long-term values: the exchange and
convection coefficients are increasing functions of the Damköhler number whereas the
opposite is true for the dispersion coefficient. Moreover, we show that, provided the solute
injection is appropriately positioned and shaped, liquid-phase transportation with little
dispersion is possible in typical microchannels utilizing semicircular geometry.

Key words: dispersion, Navier–Stokes equations, microfluidics

1. Introduction

The hydrodynamic dispersion phenomenon has significant importance in various areas in
science and engineering processes such as homogenization (Matsunaga, Lee & Nishino
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2013; Cheng et al. 2015; Sadeghi 2016), separation (Garcia et al. 2005) and DNA
amplification (Tripathi, Bozkurt & Chauhan 2005). It has also attracted the attention of
researchers working on drug delivery systems (Siepmann & Siepmann 2013; Thomas et al.
2019) since the dependence of a drug release profile on the thickness of the hydrodynamic
diffusion layer has been proven (Patel et al. 2011). Furthermore, closely related to the
present topic, as the scattering of samples being transported by microflows must be
minimized for efficient functionality of microchannels, the efficacy of microfluidic devices
strongly depends on the control of the hydrodynamic dispersion (Ajdari, Bontoux & Stone
2006).

Pioneering research works on hydrodynamic dispersion were done by Taylor (1953)
and Aris (1956) assuming a steady and laminar flow in a circular channel, who
introduced the effective dispersion coefficient and presented a generalized solution
including axial diffusion, respectively. Their seminal works were followed by that of
Gill & Sankarasubramanian (1970) who were able to obtain a time-dependent dispersion
coefficient and an exact solution for the local concentration via a generalized dispersion
model; a steady and laminar flow in a circular geometry was considered by those authors
while adopting a uniform solute injection. They soon extended their work to situations that
involve non-uniform initial concentration distribution (Gill, Sankarasubramanian & Taylor
1971), time-dependent flow (Gill & Sankarasubramanian 1972; Sankarasubramanian &
Gill 1972) and interphase reaction (Sankarasubramanian & Gill 1973).

The works listed above constitute the most important progress made in the theoretical
modelling of hydrodynamic dispersion. There are, however, more recent studies that have
significantly contributed to the broadening of our knowledge of this phenomenon. By
numerically simulating the dispersion of a pulse of solute in a tube with irreversible,
heterogeneous reaction or reversible adsorption at the wall, Paine, Carbonell & Whitaker
(1983) established the foundations required for further study of mass transport in porous
media. In an attempt to extend the classical dispersion theory to multiphase flows, Phillips
& Kaye (1998) developed asymptotic approximations for the transport of solutes in
Poiseuille flow through a pipe having a permeable wall layer. More recently, Ajdari et al.
(2006) theoretically showed that the hydrodynamic dispersion in shallow microchannels
is controlled mostly by the width of the cross-section rather than by the channel height.
Taghizadeh, Valdés-Parada & Wood (2020) developed an upscaled formulation for the
description of solute spreading at early times that was shown to be capable of truly
modelling cases with multiple solute injections. Furthermore, Jiang and Chen extended
the concept of hydrodynamic dispersion to the situation where particles are active, a
condition that occurs in applications involving micro-organisms (Jiang & Chen 2019,
2020). Concurrently, Dehe, Rehm & Hardt (2021) derived a two-dimensional dispersion
model for inhomogeneous flow fields inside a Hele-Shaw cell. There is also a series of
recently published papers on the hydrodynamic dispersion caused by new flow generation
mechanisms that are particularly useful at the microscale such as electroosmosis (Dutta
2007; Paul & Ng 2012; Arcos et al. 2018; Hoshyargar et al. 2018; Muñoz et al.
2018; Sadeghi et al. 2020; Talebi, Ashrafizadeh & Sadeghi 2021), diffusioosmosis
(Hoshyargar, Ashrafizadeh & Sadeghi 2017) and capillarity (Fridjonsson, Seymour &
Codd 2014).

Although hundreds of papers have been published during the last seven decades,
from the time Taylor published his groundbreaking work (Taylor 1953), the semicircular
geometry has received no attention. A reasonable reason for such neglect might be the fact
that this geometry does not have significant importance at the macroscale. However, the
situation is totally different when it comes to the microscale. Before getting to the point,
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Figure 1. (a) Comparison between the cross-section of the Dolomite microfluidic channel under consideration
(www.dolomite-microfluidics.com) and the semicircular geometry adopted here as well as the cross-sectional
view of the CID that is of radius RD and is centred at R = CD where φ = π/2; note that the difference between
the actual and modelled geometries is exaggerated here to facilitate making a distinction between the two. (b) A
three-dimensional sketch of the microfluidic channel wherein the coordinate system, the SID with radius aRSC
and the broadening of a typical semicircular solute band over time are shown.

it is worth noting that there are different microfabrication techniques such as thin-film
deposition, lithography and etching, among others, and nearly all of them are only capable
of fabricating channels of specific cross-sectional geometries (Ziaie, Baldi & Atashbar
2010). In isotropic etching, since a material is under attack in all directions, a geometry
is created that is very similar to a semicircle (Ziaie et al. 2004; Sadeghi, Sadeghi &
Saidi 2016). Accordingly, semicircular microchannels are used not only by the scientific
community (Hisamoto et al. 2003; Asadi-Saghandi et al. 2022) but also in commercial
products such as the Dolomite Y-junction chips designed for the observation of the
dispersion process (www.dolomite-microfluidics.com). The datasheet of the Dolomite
product, sketched schematically in figure 1(a) by exaggerating the differences it has
from a semicircular geometry, indicates a channel radius-to-depth ratio of 1.025, which
is very close to unity. Consequently, approximating such a geometry by a semicircular
one, for better mathematical tractability, looks quite reasonable. This, together with the
fact that geometry plays a very important role in hydrodynamic dispersion (Lee et al.
2021), persuaded the authors to focus on the problem of hydrodynamic dispersion within
semicircular microchannels in the present study. To this end, the generalized dispersion
model (Sankarasubramanian & Gill 1973) is invoked to track an injected solute band
of arbitrary axial distribution and general shape in the cross-sectional area from the
time of injection considering a steady and fully developed flow. It is assumed that an
irreversible first-order reaction occurs at the curved channel wall while considering a
no-flux boundary condition at the flat wall. Analytical solutions are obtained for the
exchange, convection and dispersion coefficients while presenting formulas for calculating
higher-order coefficients as well as solutions for the local and cross-sectionally averaged
concentrations. Special solutions are also presented for uniform velocity and no-reaction
cases. It should be pointed out that although the present modelling is motivated by the
importance of the semicircular geometry in microfluidics, the results are general enough
to be used at both the microscale and macroscale.
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2. Problem formulation

2.1. Problem definition
The dispersion of a solute band injected into a straight semicircular microchannel with
radius Rsc is theoretically studied. Because of its practical importance in modelling of
short-term injections, it is first assumed that the extent of the solute band in the axial
direction is vanishingly small and then the solutions are extended to arbitrary axial
distributions. The band is supposed to be transported downstream by the flow of a
Newtonian fluid with constant physical properties. The flow is considered to be steady,
laminar and fully developed. Moreover, it is assumed that an irreversible first-order
reaction occurs at the curved wall of the channel. As the flat wall is only a cover to the
etched curved wall to create a closed fluidic passage, it is usually not used for reaction
purposes; hence, the no-flux boundary condition is assumed to be valid at this wall. It is
also assumed that the channel radius is at least two orders of magnitude larger than the
Debye length, which is usually between 1 and 100 nm (Karniadakis et al. 2005), to allow
for the neglect of the surface effects. Two types of initial distributions are considered for
the solute band in the cross-sectional area, namely circular and semicircular distributions,
with the uniform distribution being a special case of the latter. The schematics of the
circular initial distribution (CID) with radius RD centred at R = CD where φ = π/2 and
the semicircular initial distribution (SID) with radius aRsc are given in figures 1(a) and
1(b), respectively. Figure 1(b) also contains the details of the coordinate system along
with three different concentration distributions that show the broadening of a typical
semicircular solute band over time.

2.2. Velocity distribution
Considering a steady and fully developed flow, the basic law of momentum conservation
is mathematically expressed as (Azari, Sadeghi & Chakraborty 2020)

1
R
∂

∂R

(
R
∂U
∂R

)
+ 1

R2
∂2U
∂φ2 = 1

μ

dP
dX
. (2.1)

Here, U is the axial velocity, P is the pressure and μ stands for the dynamic viscosity.
In this study, the no-slip boundary condition is considered at the walls. Therefore, the
dimensionless form of (2.1) and the pertinent boundary conditions may be written as

1
r
∂

∂r

(
r
∂u
∂r

)
+ 1

r2
∂2u
∂φ2 = −4, (2.2a)

u|r=1 = u|φ=0 = u|φ=π = 0, u|r=0 = finite, (2.2b)

where r = R/Rsc and u = U/UR, with UR = −R2
sc(dP/dX)/4μ representing the reference

velocity, which is considered to be the same as the maximum fluid velocity in a circular
channel of radius Rsc. The solution of (2.2a) subject to the boundary conditions (2.2b) has
been shown to be (Alassar & Abushoshah 2012; Alassar 2014)

u = −2r2sin2φ +
∞∑

w=0

Dwr2w+1 sin[(2w + 1)φ], Dw = −16
π(8w3 + 12w2 − 2w − 3)

.

(2.3)
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Unsteady convective–diffusive transport

Considering the velocity distribution (2.3), it is straightforward to show that the
dimensionless mean velocity over the channel cross-sectional area is

um = ∫π
0 ∫1

0 ur dr dφ

∫π
0 ∫1

0 r dr dφ
= −1

2
+

∞∑
w=0

4Dw

π(4w2 + 8w + 3)
. (2.4)

2.3. Concentration distribution
The equation governing the solute concentration field can be considered as a
time-dependent form of the convection–diffusion equation that takes the following form
for the present problem:

∂Θ

∂T
+ U

∂Θ

∂X
= D

[
∂2Θ

∂X2 + 1
R
∂

∂R

(
R
∂Θ

∂R

)
+ 1

R2
∂2Θ

∂φ2

]
, (2.5)

where Θ is the number concentration of the solutes, T is the time and D represents the
molecular diffusivity. Recalling the assumptions made in the problem formulation section,
the solute concentration equation is constrained by the following initial and boundary
conditions:

Θ|T = 0 = Θ0Rscδ1(X)ψ1(R, φ), (2.6a)

Θ|X→∞ = ∂Θ

∂X

∣∣∣∣
X→∞

= ∂Θ

∂φ

∣∣∣∣
φ=0

= ∂Θ

∂φ

∣∣∣∣
φ=π

= 0, (2.6b)

Θ|R = 0 = finite, (2.6c)

∂Θ

∂R

∣∣∣∣
R=Rsc

= −kR

D
Θ|R=Rsc . (2.6d)

Equation (2.6a) is a manifestation of the facts that at time zero the solute band concentrates
longitudinally near the channel inlet, represented mathematically via the Dirac delta
function δ1, and possesses a prescribed distribution over the channel cross-sectional area,
represented mathematically via the dimensionless functionψ1. The parameterΘ0 in (2.6a)
is an arbitrary reference concentration. In addition, (2.6b) denotes that the concentration
and its axial derivative are both zero sufficiently downstream and there is no solute flux
at the flat wall of the channel. Finally, (2.6c) and (2.6d) reflect the facts that the solute
concentration is finite at the origin of the coordinate system and there is a first-order
reaction taking place at the curved wall with rate constant kR, respectively. Considering the
dimensionless parameters θ = Θ/Θ0, t = TD/R2

sc, Pe = RscUR/D and x = X/RscPe, the
scaled forms of the convection–diffusion equation and the associated initial and boundary
conditions may be written as

∂θ

∂t
+ u

∂θ

∂x
= 1

Pe2
∂2θ

∂x2 + 1
r
∂

∂r

(
r
∂θ

∂r

)
+ 1

r2
∂2θ

∂φ2 , (2.7)

θ |t=0 = δ(x)
Pe

ψ(r, φ), (2.8a)

θ |x→∞ = ∂θ

∂x

∣∣∣∣
x→∞

= ∂θ

∂φ

∣∣∣∣
φ=0

= ∂θ

∂φ

∣∣∣∣
φ=π

= 0, (2.8b)
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θ |r=0 = finite, (2.8c)

∂θ

∂r

∣∣∣∣
r=1

= −Da θ |r=1, (2.8d)

in which δ(x) ≡ RscPeδ1(X), ψ(r, φ) ≡ ψ1(R, φ) and Da = RsckR/D is the Damköhler
number, showing the ratio of the diffusion time scale R2

sc/D to the reaction time scale
Rsc/kR. The procedure chosen for solving (2.7) subject to the initial and boundary
conditions (2.8) is the powerful method proposed by Sankarasubramanian & Gill (1973)
that starts with the consideration of following infinite series for the concentration
distribution:

θ(t, r, φ, x) =
∞∑

k=0

fk(t, r, φ)
∂kθm(t, x)
∂xk , (2.9)

where θm is the mean dimensionless concentration over the channel cross-section, given
mathematically as

θm(t, x) = ∫1
0 ∫π

0 rθ dφ dr

∫1
0 ∫π

0 r dφ dr
= 2

π

∫ 1

0

∫ π

0
rθ dφ dr. (2.10)

Making use of the boundary conditions (2.8b) after integrating (2.7) over the channel
cross-sectional area, the following equation is obtained:

∂θm

∂t
+ 2

π

∂

∂x

(∫ 1

0

∫ π

0
ruθ dφ dr

)
= 1

Pe2
∂2θm

∂x2 + 2
π

∫ π

0

∂θ

∂r

∣∣∣∣
r=1

dφ. (2.11)

Substituting for θ in (2.11) from (2.9), we will have

∂θm

∂t
+ 2

π

∞∑
k=0

(
∂k+1θm

∂xk+1

∫ 1

0

∫ π

0
rufk dφ dr

)
= 1

Pe2
∂2θm

∂x2 + 2
π

∞∑
k=0

(
∂kθm

∂xk

π

∫
0

∂fk
∂r

∣∣∣∣
r=1

dφ
)
.

(2.12)
Equation (2.12) can be rearranged to yield

∂θm

∂t
=

∞∑
k=0

Kk(t)
∂kθm

∂xk , (2.13)

wherein

Kk = δk2

Pe2 + 2
π

∫ π

0

∂fk
∂r

∣∣∣∣
r=1

dφ − 2
π

∫ 1

0

∫ π

0
rufk−1 dφ dr, k = 0, 1, 2, . . . , (2.14)

where f−1 = f−2 = · · · = 0 and Kronecker delta δij equals one when i = j and is zero in
other situations. Expanding the series in (2.13) and truncating the terms corresponding to
k = 3 and larger, due to their negligible effect on the mean concentration, the well-known
dispersion model of Sankarasubramanian & Gill (1973) is recovered:

∂θm

∂t
= K0(t)θm + K1(t)

∂θm

∂x
+ K2(t)

∂2θm

∂x2 . (2.15)

Note that K0(t) is termed the exchange coefficient since it characterizes the degree of mass
exchange at the channel boundaries and K1(t) is called the convection coefficient and is
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due to the convective transport of the solutes. In addition, K2(t), known as the dispersion
coefficient, is a measure of solute dispersion due to the combined action of molecular
diffusion and non-uniformity of the velocity profile. This means that all the information
regarding the overall interphase mass transport at the wall, streamwise transport of the
solute band and the degree of band broadening can be obtained as soon as the transport
coefficients are known. Hence, different aspects of the hydrodynamic dispersion can be
well described by the transport coefficients Kk. In fact, these coefficients constitute all the
design parameters required for liquid-phase transportation with surface reaction in flow
conduits.

The determination of the transport coefficients is crucial for solving (2.15); to this end,
first the functions fk have to be obtained. This is sought by the substitution of (2.9) into
(2.7), which results in

∞∑
k=0

{
fk
∂k+1θm

∂t∂xk + ufk
∂k+1θm

∂xk+1 +
[
∂fk
∂t

− 1
r
∂

∂r

(
r
∂fk
∂r

)
− 1

r2
∂2fk
∂φ2

]
∂kθm

∂xk − fk
Pe2

∂k+2θm

∂xk+2

}
= 0.

(2.16)
Recalling (2.13), the first term in (2.16) can be written as

fk
∂k+1θm

∂t∂xk = fk
∂k

∂xk

[ ∞∑
i=0

Ki(t)
∂ iθm

∂xi

]
= fk

∞∑
i=0

Ki(t)
∂ i+kθm

∂xi+k . (2.17)

Combining equations (2.16) and (2.17) and equating the coefficients of ∂kθm/∂xk to zero,
the following set of equations can be generated:

∂fk
∂t

= 1
r
∂

∂r

(
r
∂fk
∂r

)
+ 1

r2
∂2fk
∂φ2 + fk−2

Pe2 − ufk−1 −
k∑

i=0

Kifk−i for k = 0, 1, 2, . . .

(2.18)
Substituting equation (2.9) into the initial and boundary conditions (2.8) with the
consideration of the fact that θm|t=0 = δ(x)ψm/Pe with ψm = 2

π

∫ 1
0

∫ π

0 rψ dφ dr, the
initial and boundary conditions associated with the functions fk are derived to be

fk(0, r, φ) = δk0
ψ(r, φ)
ψm

, (2.19a)

∂fk
∂φ

∣∣∣∣
φ=0

= ∂fk
∂φ

∣∣∣∣
φ=π

= 0, fk(t, 0, φ) = finite,
∂fk
∂r

∣∣∣∣
r=1

= −Da fk|r=1. (2.19b)

Moreover, integrating equation (2.9) over the channel cross-sectional area provides the
following constraints on fk: ∫ 1

0

∫ π

0
rfk(t, r, φ) dφ dr = π

2
δk0. (2.20)

The governing equation and the associated initial and boundary conditions for fk are now
complete and we are ready to tackle them. The next step in the analysis is, therefore, to
obtain the functions fk, which are then used for evaluating the transport coefficients Ki via
(2.14). Afterward, the transport equations can be used to solve (2.15) for θm, which, along
with fk, is the key factor in determining the concentration distribution within the channel
through (2.9).
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2.3.1. Exchange coefficient
The equation governing f0 can be recovered from (2.18) by setting k = 0 as

∂f0
∂t

= 1
r
∂

∂r

(
r
∂f0
∂r

)
+ 1

r2
∂2f0
∂φ2 − K0f0. (2.21)

Equation (2.21) together with the initial and boundary conditions (2.19) forms a
homogeneous partial differential equation that can be readily solved via the method of
separation of variables (Constanda 2016), and the result is

f0(t, r, φ) = A(t)
∞∑

m=0

∞∑
n=0

AmnJm(λmnr) cos(mφ)exp(−λ2
mnt), (2.22)

where

A(t) = exp(C0), C0(t) = −
∫ t

0
K0(τ ) dτ , (2.23)

and Jm is the Bessel function of the first kind and the order m. Moreover, the eigenvalues
λmn are the roots of the following nonlinear equation:

mJm(λmn)− λmnJm+1(λmn) = −Da Jm(λmn). (2.24)

To obtain the unknown coefficients Amn, the initial condition (2.19a) must be invoked.
Following the orthogonality conditions after integrating the resultant equation over the
dimensionless cross-sectional area, Amn is found to be

Amn = 1
ψmNmn

∫ 1

0

∫ π

0
rψ(r, φ)Jm(λmnr) cos(mφ) dφ dr, (2.25)

where

Nmn =
∫ 1

0

∫ π

0
rJ2

m(λmnr)cos2(mφ) dφ dr

= π

2
(1 + δm0)

[
1
2

J2
m(λmn)− mJm(λmn)Jm+1(λmn)

λm,n
+ 1

2
J2

m+1(λmn)

]
. (2.26)

Now, the time-dependent coefficient A may be evaluated utilizing the integral condition
(2.20) as

A(t) = π

2

[ ∞∑
m=0

∞∑
n=0

Amnexp(−λ2
mnt)

∫ 1

0

∫ π

0
rJm(λmn) cos(mφ) dφ dr

]−1

=
[

2
∞∑

n=0

A0n
J1(λ0n)

λ0n
exp(−λ2

0nt)

]−1

. (2.27)

Having completed the solution of f0, we are now able to derive the expression of the
exchange coefficient K0 by making use of (2.14):

K0(t) = 2
π

∫ π

0

∂f0
∂r

∣∣∣∣
r=1

dφ = −2Da A(t)
∞∑

n=0

A0nJ0(λ0n)exp(−λ2
0nt). (2.28)

It should be pointed out that the exchange coefficient does not depend on the velocity
distribution. However, as evidenced by (2.19), K0 is a function of both the initial form of
the solute band and the rate constant of the reaction.
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Unsteady convective–diffusive transport

2.3.2. Convection coefficient
As soon as f0 and K0 are determined, the convection coefficient can be obtained via solving
the equation governing f1, which is, according to (2.18), given as

∂f1
∂t

= 1
r
∂

∂r

(
r
∂f1
∂r

)
+ 1

r2
∂2f1
∂φ2 − (u + K1)f0 − K0f1. (2.29)

Even though the associated boundary conditions, given by (2.19b), are all homogeneous,
(2.29) itself is non-homogeneous and, hence, cannot be solved directly by the method
of separation of variables. Here, the solution is sought via the eigenfunction expansion
method (Constanda 2016), which provides the following solution:

f1(t, r, φ) = A(t)
∞∑

i=0

∞∑
j=0

[B1,ij(t)+ AijC1(t)]Ji(λijr) cos(iφ)exp(−λ2
ijt), (2.30)

wherein

(2.31a,b)

Here, represents the coefficients associated with the expansion of the term −uf0 in
(2.29), that is

(2.32)

Considering the orthogonality conditions, is obtained as

(2.33)
where

(2.34)
The time-dependent coefficient B1,ij can now be evaluated as

(2.35)
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The integral constraint (2.20) should be applied in order to obtain C1(t). The result reads

C1(t) =

∞∑
i=0

∞∑
j=0

[
B1,ij(t)exp(−λ2

ijt)
∫ 1

0

∫ π

0 rJi(λijr) cos(iφ) dφ dr
]

∞∑
i=0

∞∑
j=0

[
Aijexp(−λ2

ijt)
∫ 1

0

∫ π

0 rJi(λijr) cos(iφ) dφ dr
]

=

∞∑
j=0

[
B1,0j(t)

J1(λ0j)

λ0j
exp(−λ2

0jt)
]

∞∑
j=0

[
A0j

J1(λ0j)

λ0j
exp(−λ2

0jt)
] .

(2.36)

At this point, (2.14) can be again consulted, this time to evaluate the convection coefficient
as

(2.37)

where

(2.35)
with 1FR2 given as

1FR2(s,m, n) =
∫ 1

0
rsJ0(λmnr) dr

= λm
mn

21+mΓ

(
1 + m + s

2

)
1FR2

(
1 + m + s

2
; 3 + m + s

2
, 1 + m;−λ

2
mn

4

)
,

(2.39)

in which 1FR2 and Γ are the regularized hypergeometric and gamma functions,
respectively.
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2.3.3. Dispersion coefficient
The governing equation for f2 can be recovered by setting k = 2 into (2.18) as

∂f2
∂t

= 1
r
∂

∂r

(
r
∂f2
∂r

)
+ 1

r2
∂2f2
∂φ2 − K0f2 − (u + K1)f1 + (Pe−2 − K2)f0, (2.40)

which can be solved utilizing much the same procedure adopted for solving f1 to yield

f2(t, r, φ) = A(t)
∞∑

s=0

∞∑
q=0

[B2,sq(t)+ AsqC2(t)]Js(λsqr) cos(sφ)exp(−λ2
sqt), (2.41)

where

(2.42)

Here, stands for the coefficients associated with the expansion of the term −(u +
K1)f1 in (2.40), and is given as

(2.43)
Taking advantage of the integral condition (2.20), C2 is obtained as follows:

C2(t) = −

∞∑
q=0

[
B2,0q(t)

J1(λ0q)

λ0q
exp(−λ2

0qt)
]

∞∑
q=0

[
A0q

J1(λ0j)

λ0j
exp(−λ2

0qt)
] . (2.44)

Now, the dispersion coefficient can be derived from (2.14) as follows:

(2.45)

2.3.4. General solutions for higher-order transport coefficients
Considering the infinite set of (2.18) along with the relevant initial and boundary
conditions, given by (2.19), the following general solution can be proposed for the
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functions fk when 3 ≤ k:

(2.46)

in which

(2.47)

Ck(t) = −δk0

∫ t

0
K0(τ ) dτ + (1 − δk0)

∫ t

0
[δk2Pe−2 − Kk(τ )] dτ , (2.48)

where the coefficients are obtained via the following integral:

(2.49)

with

f ′
k = fk−2

Pe2 − ufk−1 −
k−1∑
i=1

Kifk−i, k = 3, 4, 5, . . . . (2.50)

Making use of the integral constraint (2.20), Ck(t) is determined as

(2.51)

Consequently, one can obtain the following formula for the transport coefficient Kk with
3 ≤ k:

(2.52)

2.3.5. Solute concentration distribution
It is now time to present a solution for the mean solute concentration since the exchange,
convection and dispersion coefficients, appearing in (2.15), have all been obtained. The
solution to (2.15) subject to the associated initial and boundary conditions, derived via the
cross-sectional averaging of (2.8a) and (2.8b), can be obtained utilizing the infinite Fourier
transform method. The pertinent procedure, along with details on how the solution can be
extended to situations in which the axial variation of the initial solute concentration is
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represented by functions other than a Dirac delta function, is given in Appendix A. The
final expression reads

θm(t, x) = ψm

2Pe
√

πξ
exp

[
−C0 − (x − C1)

2

4ξ

]
, (2.53)

where ξ(t) = Pe−2t − C2. Accordingly, the dimensionless local concentration can be
readily determined utilizing (2.9) as

θ(t, r, φ, x) = ψm

2Pe
√

πξ

{
f0 − x − C1

2ξ
f1 +

[
− 1

2ξ
+ (x − C1)

2

4ξ2

]
f2

}
exp

[
−C0 − (x − C1)

2

4ξ

]
.

(2.54)

2.3.6. Initial solute sources
As mentioned previously, two different shapes are considered for the initial form of the
solute band: circular and semicircular distributions over the cross-sectional area, both
having an infinitesimal length in the axial direction. The circular distribution considered,
with radius RD, is centred at R = CD, φ = π/2. Using dimensionless coordinates, ψ and
ψm associated with the circular solute band are given as

ψ(r, φ) =
{

1 for ω1 ≤ φ ≤ ω2 and R1 ≤ r ≤ R2
0 otherwise , ψm = 2r2

D, (2.55)

where ω1,2 = (π/2)∓ asin(rD/cD) and R1,2 = cD sin(φ)∓ [r2
D − c2

Dcos2φ]1/2 with cD
and rD being the dimensionless forms of CD and RD. The initial concentration distribution
can only influence the coefficients Amn, given by (2.24), which, for this case, is modified
as

Amn = 1
ψmNmn

∫ ω2

ω1

∫ R2

R1

rJm(λmnr) cos(mφ) dr dφ. (2.56)

Because of the complex forms of the integral limits on both r and φ, Amn has to be
calculated by standard numerical integration techniques for a circular initial concentration.
This is the only place where numerical methods are used in the present work. For
the case with a semicircular initial concentration distribution, the function ψ and its
cross-sectionally averaged value, ψm, are given as

ψ(r, φ) =
{

1 for 0 ≤ r ≤ a
0 otherwise , ψm = a2, (2.57)

where a is the dimensionless radius of the solute band. It can be shown that Amn = 0 when
m /= 0 for this case and

A0n = π

ψmN0n

∫ a

0
rJ0(λ0nr) dr = πJ1(λ0na)

aλ0nN0n
= 2J1(λ0na)

aλ0nJ2
0(λ0n)

. (2.58)

It should be noted that the semicircular distribution reduces to a uniform distribution when
a = 1.

The solutions developed in this section can be simplified under certain conditions. The
two main special cases for which such simplified solutions are possible include when there
is no wall reaction or when the velocity profile is uniform. The solutions to these special
cases are given in Appendices B and C.
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Number of series terms um −K0 −K1 K2 − Pe−2 θm,max

t = 10−4 t = 10−4 t = 10−1 t = 10−1

3 0.18992 0.93970 0.26129 3.13953 × 10−4 0.22256
5 0.18946 0.73039 0.26445 3.13953 × 10−4 0.22256
10 0.18943 0.52605 0.26446 3.15428 × 10−4 0.22201
15 0.18943 0.40326 0.26461 3.15492 × 10−4 0.22200
50 — 0.34966 — — —
100 — 0.34822 — — —
Number of series terms used 10 100 10 10 10

Table 1. Dependence of the dimensionless mean velocity, K0,1,2, and the maximum dimensionless mean
concentration θm,max on the number of terms considered in the series solutions. A circular initial concentration
distribution with cD = rD = 0.5 along with Da = 1 is considered for obtaining the mass transport results.

3. Results and discussion

Considering (2.7) and (2.8), it is clear that the parameters controlling the broadening of a
solute band by fully developed flow in semicircular microchannels with surface reaction
include the initial distribution function ψ , the Péclet number Pe and the Damköhler
number Da. Depending on the initial form of the injected band, the function ψ may
itself include several controlling parameters. Considering the two initial concentration
distributions considered in the present study, these additional controlling parameters
include cD, rD and a. A parametric study is performed in this section to reveal the
degree to which each of the above-mentioned parameters influences the mass transport
characteristics. Unless otherwise stated, all the results are obtained by setting Pe = 100
and utilizing appropriate numbers of the series terms, given in table 1. This table also
contains a convergence analysis that is performed by comparing the values of um, K0, K1,
K2 and θm,max obtained utilizing different series terms. Note that the times considered
for the last four parameters correspond to the situations where the highest sensitivity
of these parameters to the number of series terms exists. The selection of a CID with
cD = rD = 0.5 is also for exactly the same reason. Hence, the required number of the
series terms to obtain converged results, given in table 1, which is 100 for K0 and 10 for
other parameters, holds for any circumstance since the worst cases have been considered
in the convergence analysis. Moreover, to validate the solutions developed, numerical
simulations were also performed using COMSOL Multiphysics software, version 5.5.
The set of the governing equations, including (2.2a) and (2.7), was solved subject to the
pertinent initial and boundary conditions, given by (2.2b) and (2.8), using PDEs branch
of the Mathematics module of the software. The results of the numerical solutions are
presented alongside the analytical solution results when discussing the mean concentration
field.

3.1. Exchange coefficient
The discussion of results begins with investigating the effects of different influential
parameters on the exchange coefficient, which is a measure of solute exchange between
the wall and the flow due to surface adsorption or reaction. The influence of parameter a,
which controls the extent of injection for a SID, on the exchange coefficient at different
values of Da is shown in figure 2. The first point drawing attention in figure 2 is that the
exchange coefficient is an increasing function of Da (and of the same order of magnitude
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a = 0.95
a = 0.9
a = 0.7
a = 0.5

Da = 0.01

(b)(a)

(d )(c)

Figure 2. (a–d) Variations of the exchange coefficient with the dimensionless time for the SID at different
values of a and Da.

as Da), which is anticipated recalling the definition of K0 and the fact that the rate of
surface reaction depends directly on Da. It is also observed in figure 2 that the variation of
K0 with time is a strong function of the solute injection. For instance, while the exchange
coefficient is initially an increasing function of time for a /= 1, quite the opposite is true
for a = 1, that is, when solutes are initially distributed uniformly over the whole channel
cross-section. For the former, solutes initially do not exist at the curved wall, rendering K0
zero at very small times. As time goes by, solutes start to spread everywhere including
the near-wall area. Hence, surface reaction gradually starts to occur, rendering K0 an
increasing function of time. At these conditions, an increase in a gives rise to larger
exchange coefficients due to the fact that the higher a is, the sooner solutes reach the
curved wall. For a = 1, however, there is an abundance of solutes adjacent to the wall at
time zero; hence, K0 takes a large value. The situation is gradually changed because of
solute depletion in the bulk due to the advection mechanism that hinders the diffusion of
solutes to the curved wall, thereby reducing the exchange coefficient, as shown in figure 2.
Irrespective of a, all the graphs collapse to one in the long term, where the influences of
the initial conditions vanish.
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Figure 3. (a–d) Profiles of the exchange coefficient versus the dimensionless time for the circular initial
concentration distribution considering different rD and cD for both Da = 0.1 and Da = 10.

Considering different values for cD and rD, variations of the exchange coefficient over
time for a CID are plotted in figure 3. Comparing figures 2 and 3, it is deduced that, despite
the long-term conditions for which no dependence of results on the form of injection is
observed, the function ψ(r, φ) plays a very important role at short times. The location of
injection, controlled via cD, is found to significantly affect the variations of K0 with time.
At a fixed injection size, that is, for a fixed rD, higher values of K0 are achieved for a larger
cD. According to figure 1, a larger cD implies that the point of injection gets closer to the
curved wall, where the reaction takes place. Accordingly, more solutes will be available to
react, leading to larger solute exchange rates between the liquid and the wall. Exactly the
same behaviour is observed when rD is increased while keeping cD fixed.

As expected, K0 is zero at the beginning for the cases for which no solute is located at
the wall at time zero, that is, when rD + cD < 1. Under such circumstances, the value of
K0 might be kept at zero up to the dimensionless times of the order of 10−2 by injecting the
solute band at an appropriate place and with a sufficiently small radius; this is important
for applications where solute adsorption at the wall is to be avoided. Although for the cases
with rD + cD = 1, similar to SID with a = 1, non-zero values are observed for K0 at time
zero; however, the values are now significantly smaller. This is due to the fact that, unlike
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the SID case with a = 1 for which all the curved wall is in contact with solutes at time
zero, such contact exists only at one point for the CID case. Accordingly, solute exchange
between the fluid and the wall will be much less significant for the CID case. An important
phenomenon that is observed for both SID and CID cases, but is more pronounced for the
latter, is the occurrence of non-monotonic trends in the plots of K0 versus time under
some circumstances. Such a behaviour arises when a non-zero solute concentration exists
in the close vicinity of the curved wall, but not over the wall, at time zero. Hence, the
concentration front soon reaches the wall, leading to the sharp increase of K0 from zero to
a large value. A large value of K0 implies that there is a high degree of solute consumption
at the reactive wall, which leads to the depletion of the solution therein. Since, due to solute
advection in the bulk, the solute concentration away from the wall is also low, the depletion
of the solution near the wall cannot be compensated for; hence, a reduction occurs in K0.
Since the depletion of the solution is more noticeable when Da is high, because of higher
reaction rates, the mentioned phenomenon is more pronounced for larger values of Da, as
evidenced by both figures 2 and 3.

3.2. Convection coefficient
Now, we are ready to focus on K1. Plotted in figure 4 are the absolute values of K1 for SID
versus the normalized time at different a and Da. When a /= 1, the convection coefficient
is found to be independent of Da at small times, since there is no solute at the wall for
the reaction to take place. For a = 1, however, the influence of Da is felt even at very
small times because solutes are present at the wall at the beginning of the process. For this
case, a higher Da gives rise to higher values of K1 (ignoring the negative sign) because the
depletion of the solution within the low-velocity wall-adherent area due to the wall reaction
alters the convection transport in favour of the high-velocity core region. Moreover,
depending on a and Da, different time-dependence behaviours are observed. Whereas
an increasing trend is generally observed for a = 1 as a result of the reaction-caused
concentration alterations discussed above, quite the opposite is observed for a = 0.7
mainly because of the diffusion of solutes from the core to the wall-adherent area.
For cases such as a = 0.3, non-uniform trends are observed: the convection coefficient
increases first, and then it may either decrease or become nearly constant for a while
followed by a subsequent increase, depending on Da. The reason that K1 increases first
for a = 0.3 may be attributed to the fact that the majority of the sample is injected near
the flat wall where fluid velocity is low. Hence, the diffusional transport of solutes towards
the curved wall is initially accompanied by an increase in the convection rate. This trend
is changed as soon as a considerable number of solutes reach adjacent to the curved wall.
Now, the accumulation of solutes near the curved wall results in a reduction of K1 when Da
is not high enough, as is the case for Da = 0.01 and Da = 1. When Da = 10, the surface
reaction is high enough to disrupt solute accumulation, rendering K1 a nearly constant
function of time for a while after which an increasing trend is again observed as a result
of further depletion of the solute band near the wall. As expected, all the results become
independent of time in the long term where also there is no dependence on a due to the
damping of the initial condition.

Besides the time dependence of K1, its dependence on a for t = 10−4 is also shown in
figure 4, indicating an increasing trend at smaller values of a that is reversed at a ∼= 0.68.
This is because whereas at lower values of a increasing the radius of the solute band
results in the addition of a solute strip that mostly lies in the bulk, the increase in a at its
higher values is made via the addition of a solute strip that is located in the low-velocity
wall-adherent area.
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Figure 4. Time dependence of the convection coefficient for a semicircular initial injection at different values
of a and Da. The top and the right-hand axes, drawn in green, belong to the dependence of the convection
coefficient on a when Da = 1 and t = 10−4, the results of which are shown by a green line with circular
symbols.

The impact of the Damköhler number on the time development of the convection
coefficient for different circular injections is illustrated in figure 5. Shown in figure 5(a)
are plots of the convection coefficient at different values of Da and rD while keeping
cD = 0.5. While, as anticipated, the rD-dependence of the results vanishes in the long
term, higher convection coefficients are achieved by decreasing rD in the short term.
This occurs because the centre of the injected band is very close to the point where
the maximum velocity occurs (r ∼= 0.48); hence, the solute band is concentrated more
around the maximum velocity point by decreasing rD, leading to enhanced downstream
convection of mass. In the beginning, the Damköhler number is observed to have no effect
on K1 because the solute band, or at least a considerable part of it, is still away from
the curved wall. Since less time is required for a wider solute band to reach the curved
wall and take part in the reaction, the Damköhler number effect is felt sooner for a larger
rD. Unlike the SID case, the convection coefficient is now a monotonically decreasing
function of time in response to the diffusion of solutes from the high-velocity core area
to the low-velocity wall-adherent region. Such a monotonic behaviour is also observed in
figure 5(b), which plots the graphs of the convection coefficient at different Da and cD
while keeping rD = 0.3, except for the case with Da = 10 and cD = 0.7. For this special
case, the solute band is sufficiently close to the curved wall and the reaction rate is so
high that a considerable reduction occurs in solute concentration near the wall. Hence,
the convection coefficient increases first before reducing to its long-term value. Inspecting
the short-term results of the convection coefficient for the three values of cD considered,
namely 0.3, 0.5 and 0.7, indicates that the maximum convection rate belongs to the case
with cD = 0.5 for which the centroid of the solute band locates near the maximum velocity
point.
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Figure 5. Influence of the Damköhler number on the time dependence of the convection coefficient for the
circular initial condition. (a) The graphs are plotted at three different rD while keeping cD = 0.5 whereas (b)
cD is varied assuming rD = 0.3.

3.3. Dispersion coefficient
The influences of both Da and a on the time development of the dispersion coefficient
for the SID case are investigated in figure 6. It can be seen that K2 − Pe−2 is initially
zero and increases monotonically to its long-term value irrespective of Da and a. The
parameter K2 − Pe−2 denotes the part of the dispersion coefficient that is solely due
to the velocity variations. Hence, it takes a zero value at the beginning when the mass
transport mechanism is solely due to molecular diffusion owing to the creation of large
concentration gradients after the injection. As time passes, such large gradients are slowly
damping; therefore, advection starts to contribute to the mass transport mechanism and
K2 − Pe−2 takes non-zero values until it reaches an asymptotic value at sufficiently long
times. It is also observed in figure 6 that the transient dispersion coefficient is smaller
for a smaller a due to the fact that the injected solute band gets farther from the curved
wall where there is a region of high shear rate. In addition, a higher Da results in a
lower dispersion coefficient. This occurs because increasing the reaction rate gives rise
to the reduction of the solute concentration near the curved wall, thereby weighting the
concentration distribution in favour of the low-shear-rate bulk area.

An inspection of the effect of Damköhler number on the dispersion coefficient at
different versions of the circular initial concentration distribution, illustrated in figure 7,
confirms the results of figure 6 that Da is the only factor governing the long-term values
of the dispersion coefficient. Before reaching a quasi-steady state, however, the dispersion
coefficient is a strong function of both position and the extent of injection. Comparing the
results for rD = 0.3 and rD = 0.5, both with cD = 0.5, shows that the transient values of
K2 are smaller for a smaller rD. This is not surprising recalling that when rD decreases
while having a fixed cD of 0.5 the injection is more concentrated in the low-shear-rate
bulk area. On the other hand, when cD increases from 0.3 to 0.7 while keeping rD = 0.3,
a reduction occurs in the transient values of K2. The main reason is that, since the solute
band is closer to the reactive wall for cD = 0.7, there is a higher consumption of the solutes
for this case, leading to the depletion of the solution near the wall and, in turn, weighting
the concentration field in favour of the low-shear-rate bulk region. This can be verified
by the fact that the influence of cD on the results is more pronounced for a higher Da.
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Figure 6. Time development of the dispersion coefficient for the semicircular initial concentration
distribution at different values of Da and a.

Note that scrutiny of the results for rD = 0.3 and cD = 0.5 indicates that the dispersion
coefficient is practically zero up to t ∼= 0.002 that corresponds to a time of 5 s or a channel
of radius 500 μm and a molecular diffusivity of 10−10 m2 s−1. Then, considering a mean
fluid velocity of 1 cm s−1, it would be possible to transfer a solute band along a channel
of length 5 cm and shorter with practically no dispersion. This highlights the potentials of
the semicircular geometry for liquid-phase transportation with little dispersion in typical
microchannels by appropriately choosing the form and position of solute injection.

3.4. Long-term transport coefficients
The values of the transport coefficients, especially the dispersion coefficient, in the
long-term limit, or as it is usually referred to, the Taylor–Aris regime, are of significant
practical importance. The reason is that, for sufficiently long channels, the overall
dispersion is mainly dominated by the long-term dispersion coefficients. Considering the
very short length of most microfluidic devices, one might conclude that the Taylor–Aris
dispersion regime is not observed in microchannels. However, this is not the whole story.
By referring to the foundations of the Taylor–Aris theory, it can be inferred that the
long-term dispersion coefficient is valid for time scales larger than the time required for
the solutes to travel radially across the channel using the molecular diffusion mechanism,
given as R2

sc/D. This is verified by our presented results indicating that the values of the
transport coefficients tend to asymptotic values when the dimensionless time, TD/R2

sc, is of
the order of 1. It is obvious that the molecular diffusion time scale R2

sc/D decreases rapidly
with decreasing the channel radius. Hence, it takes very small values at the microscale.
Moreover, flow velocities are much smaller at the microscale as compared with those in
conventional channels, implying that the solute band may still need a significant time to
reach the channel outlet. Hence, the Taylor–Aris dispersion regime might practically be
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Figure 7. Time dependence of the dispersion coefficient for the circular initial concentration distribution at
different Da, rD and cD. The lower abscissa pertains to the graphs without a symbol while the upper abscissa
corresponds to those with green symbols.

important for microfluidic devices, especially when dealing with long microchannels like
those with a serpentine geometry.

Based on the above discussion, the plots of the transport coefficients with respect to
Da, given in figure 8, may be considered as one of the most important findings of this
study. Figure 8 confirms that the long-term values of both the exchange and convection
coefficients are monotonically increasing functions of Da, whereas the opposite is true for
the dispersion coefficient. Note that the results should finally tend to asymptotic values at
very high Da, but such values will be out of the practical range of the Damköhler number
and, hence, are not considered here. Closely related to figure 8, one of the most important
results for practitioners is the long-term value of the dispersion coefficient for the special
case for which no reaction occurs at the walls. Our calculations show that the long-term
value of K2 − Pe−2 for Da = 0 is 5.49 × 10−4, which is one order of magnitude smaller
than that for a circular channel (Sankarasubramanian & Gill 1973). The main reason is that
the mean velocity of a semicircular channel for a given pressure gradient is significantly
smaller than that for a circular channel. In fact, considering the value of the dimensionless
mean velocity, which is calculated to be 0.1894, and the reference velocity, which is
twice the mean velocity in a circular channel, the semicircular to circular channel mean
velocity ratio is only 0.3788. Note that, recalling that K2 scales inversely with the square
of velocity, the long-term value of K2 − Pe−2 based on the mean fluid velocity, which is
calculated to be 5.49 × 10−4/0.18942 = 0.0153, is still smaller than the well-known value
for a circular geometry, given as 1/48 = 0.0208 (Taylor 1953). However, this does not
necessarily mean that the Taylor–Aris dispersion in a semicircular duct is lower than that
in a circular channel because the dispersion coefficient is not the only determining factor.
For a meaningful comparison, the same flow rates in the ducts should be considered. Since
the cross-sectional area of a semicircular channel is half that of a circular channel with the
same radius, the mean velocity in the former should be twice that in the latter to yield
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Figure 8. Long-term values of the transport coefficients plotted as functions of the Damköhler number.

the same flow rate. Accordingly, the long-term hydrodynamic dispersion in a semicircular
channel will be higher than that in a circular duct, as it should be.

3.5. Solute concentration
It is now time to turn our attention to the dimensionless mean concentration profiles,
which are plotted using (2.53) only. We start with studying the axial distributions of θm
at different Da for a uniform initial distribution, illustrated in figure 9 for time t = 1.
The first obvious point in figure 9 is the decreasing dependence of the maximum mean
concentration on the reaction rate that is owing to the higher consumption of solutes at
the wall. In addition, the location of the maximum θm is shifted downstream when higher
values of Da are considered. This is a direct consequence of the fact that the convection
coefficient is larger for a higher reaction rate, resulting in a faster overall movement of
the solute band along the channel. Note that the connection between the location of the
maximum θm and the convection coefficient can also be inferred from a mathematical
point of view. Considering the formula of θm, it can be deduced that the maximum mean
concentration corresponds to the point x = C1(t) = − ∫ t

0 K1 dτ , which is a direct function
of the convection coefficient. Note that for no reaction case C1(t) = umt, which means that
the location of the maximum θm moves with a speed equal to the average fluid velocity, as
predicted by the classical Taylor dispersion theory (Taylor 1953).

In the following, we study the influence of changing the radius of the semicircular
injection on the time development of the dimensionless mean concentration profiles when
Da = 1. In figure 10, as time passes, the concentration profiles get wider as a result of
the hydrodynamic dispersion. The concentration peak is decreased at the same time due
to both widening of the profile and solute consumption at the wall because of surface
reactions. As is clear, an increase in a leads to higher solute concentrations. The reason
is that the amount of solute being injected into the channel increases with increasing a.
Note that all of the graphs are very similar to a Gaussian distribution, implying that the
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Figure 9. Dimensionless mean concentration plotted versus the dimensionless axial coordinate at different
Da. The results pertain to a uniform distribution of the initial concentration field and correspond to time t = 1.
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Figure 10. Axial dependence of the dimensionless mean concentration distribution at different times for the
semicircular initial concentration distribution with a = 0.5, 0.8 considering Da = 1.

Taylor–Aris dispersion regime is reached for 0.5 ≺∼ t. This is consistent with the results
presented in figure 6.

The influence of increasing the amount of solute being injected into the channel is much
more visible in figure 11 that plots the dimensionless mean concentration graphs for the
CID case at different cD and rD for fixed t and Da. A modified axial coordinate, given
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Figure 11. Plots of the dimensionless mean concentration versus the modified axial coordinate, x − C1(t), for
the circular initial condition at different cD and rD while keeping t = 0.5 and Da = 1. Line graphs represent
the results obtained utilizing the analytical solutions while the symbols show the numerical results.

as x − C1(t), has been used here to fix the location of the maximum mean concentration
at the centre of the coordinate system for a better comparison. The predictions of the
numerical simulations are given alongside the analytical solution results in this figure to
inspect the validity of the solutions developed. As observed, the results are in a good
agreement; the small discrepancy between the results may be attributed to the limitations
associated with accurately modelling the Dirac delta function in numerical simulations
when applying the initial condition. It is clear in figure 11 that an increase in the radius
of the concentration release at a fixed cD gives rise to larger values of θm. On the other
hand, the solute concentration reduces with increasing cD at a given rD. The reason is that,
by moving the centre of injection downward, the distance to the curved wall is reduced,
implying that more solutes will be available to take part in surface reactions. The final
outcome will be more consumption of solutes at the wall, leading to the depletion of the
solute band. All in all, figure 11 indicates that the mean concentration can be effectively
controlled by the initial solute distribution.

The last illustration, figure 12, is devoted to studying the time evolution of the
cross-sectional contours of θ at the channel inlet for two different Damköhler numbers.
Along this line, a circular distribution with cD = 0.5 and rD = 0.4 is considered for the
injected solute band and the Péclet number is fixed at 10. As seen in figure 12, the contours
are circular at the close vicinity of the centre of injection for t = 0.01 indicating that the
predominant mass transfer mode is still molecular diffusion. Even though the situation
is quite the same for both the Damköhler numbers considered at t = 0.01, significant
differences are observed afterward. For example, while the contour lines intersect the
curved wall perpendicularly for Da = 0.1 when t = 0.05 in response to low surface
reaction rates, this is not true for Da = 1 for which the reaction rates are high. Moreover,
although the high concentration area extends from the central region, where the injection
is made, to the curved wall for Da = 0.1, it is only limited to the core for Da = 1 due to
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Figure 12. Time evolution of the cross-sectional contours of the dimensionless concentration at the inlet for
both Da = 0.1 (a,c,e,g) and Da = 1 (b,d,f,h), assuming Pe = 10. Here, a circular distribution with cD = 0.5
and rD = 0.4 is considered for the injected solute band.

the depletion of the solution near the reactive wall. At t = 0.15, sufficient time has passed
for the advection to take effect. Accordingly, the solutes located in the core are mostly
conveyed downstream. Now, solute accumulation is observed in two different regions for
Da = 0.1, one near the flat wall and the other near the curved wall where fluid velocities
are low. The second region, however, is not observed for Da = 1 because of high solute
consumption due to surface reactions. The high-concentration areas near the walls for
Da = 0.1 still exist to a great extent at t = 0.3 while a minimum is established at the
core due to high velocities therein that cause significant advection of solutes toward
downstream. The situation is totally different for Da = 1: for this case, the minimum
concentration occurs at the curved wall owing to the high reaction rates, and the area
of maximum concentration is located near the middle of the flat wall that is at the farthest
place from the reactive surface. In fact, the influences of surface reactions are so high
as to overshadow the advection effects, leading to concentration contours that are almost
parallel to the curved wall, especially in its close proximity, a situation that is expected to
be observed only in purely diffusive transport.

4. Conclusions

The dispersion of a solute band by a steady-state and hydrodynamically fully developed
laminar flow in a semicircular microchannel was theoretically studied. An irreversible

949 A1-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.717


M. Azari and A. Sadeghi

first-order reaction was considered at the curved wall of the channel while considering
no-flux boundary conditions at the flat wall so as to follow the physics observed in
microfluidic applications. No constraint was imposed on the cross-sectional shape of the
initial solute band nor on its axial distribution. The generalized dispersion model was
used to obtain analytical solutions for the transport parameters including the exchange,
convection and dispersion coefficients as well as for the local and the cross-sectionally
averaged concentrations. Even though the solutions were obtained for a pressure-driven
flow, special solutions were also presented by assuming a uniform fluid velocity that
is typical of electroosmotic flow at high ionic concentrations. Special solutions were
also obtained for the conditions where no reaction occurs at the channel walls, a
special case that has applications in liquid-phase transportation. A parametric study
of the transport properties was then performed by focusing on the influences of the
Damköhler number, a measure of the surface reaction rate, and the initial concentration
distribution function considering two different injection forms: circular and semicircular
cross-sectional distributions with the uniform distribution being a special case of the latter.

It was found that the only factor determining the long-term values of the transport
coefficients is the Damköhler number: the dispersion coefficient is a decreasing function
of the Damköhler number whereas the opposite is true for the exchange and convection
coefficients. In fact, our results showed that the exchange coefficient is of the same order
as the Damköhler number. Besides dependence on the Damköhler number, the transport
coefficients are strongly influenced by the form of injection in the short term. At such
time scales, the dispersion coefficient always increases with time. The situation is more
complex for the exchange and convection coefficients: depending on the injection form and
the Damköhler number, each of increasing, decreasing and increasing–decreasing trends
is observed. In addition, it was shown that by appropriately positioning and shaping the
solute injection not only is it possible to avoid unfavourable solute adsorptions at the
wall but it is also feasible to perform liquid-phase transportation of samples with little
dispersion in semicircular microchannels of typical length.

The inspections of the mean concentration profiles revealed that the mean concentration
is smaller for a higher Damköhler number but, at the same time, its location moves faster
along the channel. It was shown that the mean concentration graphs become spread as time
passes while the maximum concentration decreases. Finally, it was observed that the mean
concentration can be effectively controlled by adjusting the initial solute concentration.
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Appendix A. Detailed solution of dimensionless mean concentration

The solution to (2.15) is here obtained using the Fourier transform technique. The Fourier
transform of θm, given as ϑ , and its inverse are defined as

ϑ(t, α) = 1√
2π

∫ ∞

−∞
θm(t, x) e−iαx d x, θm = 1√

2π

∫ ∞

−∞
ϑ eiαx dα. (A1)
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The application of the Fourier transform to (2.15) results in the following transformed
equation:

dϑ
dt

= K0ϑ + iαK1ϑ − α2K2ϑ, (A2)

which is a separable ordinary differential equation and can be readily integrated to yield

ϑ = ϑ(0, α)exp[−C0 − iαC1 − α2ξ ], (A3)

where

ϑ(0, α) = 1√
2π

∫ ∞

−∞
θm(0, x) e−iαx d x = 1√

2π

∫ ∞

−∞
δ(x)ψm

Pe
e−iαx d x = ψm

Pe
√

2π
.

(A4)
Now that we have the transform ϑ(t, α) in hand, θm can be evaluated using the inverse
formula as

θm = 1√
2π

∫∞
−∞

ψm

Pe
√

2π
exp[−C0 − iαC1 − α2ξ ]eiαx dα

= ψm

2π Pe

∫∞
−∞ exp[−C0 + iα(x − C1)− α2ξ ] dα

= ψm

2π Pe

∫∞
−∞ exp

{
−C0 −

[
i(x − C1)

2ξ1/2 − αξ1/2
]2

− (x − C1)
2

4ξ

}
dα

=
ψmexp

[
−C0 − (x − C1)

2

4ξ

]

2π Pe

∫∞
−∞ exp

{
−
[

i(x − C1)

2ξ1/2 − αξ1/2
]2
}

dα

= ψm

2Pe
√

πξ
exp

[
−C0 − (x − C1)

2

4ξ

]
.

(A5)

Due to the linearity of the mass transport equation, the solution given by (A5) can be easily
extended to the situations in which the axial variation of the initial solute concentration
is represented by functions other than a Dirac delta function utilizing the superposition
approach. To this end, attention should be first given to the fact that the solution to a
concentrated solute source of strength unity (the integral of the dimensionless mean solute
concentration over the whole x axis being unity), located at the origin, is

θm = 1
2
√

πξ
exp

[
−C0 − (x − C1)

2

4ξ

]
. (A6)

Hence, the solution corresponding to a concentrated solute source of strength g(η) dη,
located at x = η, becomes

dθm = g(η) dη
2
√

πξ
exp

[
−C0 − (x − η − C1)

2

4ξ

]
. (A7)

Given the fact that the transport coefficients are not dependent upon the axial dependence
of the initial concentration distribution, (A7) can be integrated to obtain θm for any g(η).
Even though in general numerical integrations are required, however, solutions in terms
of known functions are also possible. For example, the expression of θm for the case for
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which the initial solute band extends uniformly in the axial direction from x = 0 to x = xc
is obtained as

θm = ∫ xc
0

ψm

2
√

πξ
exp

[
−C0 − (x − η − C1)

2

4ξ

]
dη = ψm e−C0

2
√

πξ

∫ xc
0 exp

[
− (x − C1 − η)2

4ξ

]
dη

= ψm

2
e−C0

[
erf
(

x − C1

2
√
ξ

)
− erf

(
x − C1 − xc

2
√
ξ

)]
.

(A8)

Appendix B. Special solutions for Da = 0

In this appendix, solutions are obtained for the situation where no reaction occurs at the
channel walls, that is, when Da = 0. This situation arises when the channel is utilized for
liquid-phase transportation only. In the absence of surface reaction, the boundary condition
(2.8d) and its counterpart in (2.19b) are modified as

∂θ

∂r

∣∣∣∣
r=1

= 0,
∂fk
∂r

∣∣∣∣
r=1

= 0. (B1a,b)

From (2.28), it is obvious that the exchange coefficient K0 becomes zero when Da = 0.
Moreover, under such circumstances, (2.14) and (2.18) are modified as

Kk = δk2

Pe2 − 2
π

∫ 1

0

∫ π

0
rufk−1 dφ dr, k = 1, 2, . . . , (B2)

∂fk
∂t

= 1
r
∂

∂r

(
r
∂fk
∂r

)
+ 1

r2
∂2fk
∂φ2 + fk−2

Pe2 − ufk−1 −
k∑

i=1

Kifk−i, k = 0, 1, 2, . . . . (B3)

Note that even though K0 is zero for this case, we still have to determine f0 due to the fact
that the determination of Kk is possible only when fk−1 is available. It can be shown that
the solution of f0 now is given as

f0(t, r, φ) = A00 +
∞∑

n=1

A0nJ0(λ0nr)exp(−λ2
0nt)

+
∞∑

m=1

∞∑
n=0

AmnJm(λmnr) cos(mφ)exp(−λ2
mnt), (B4)

where the eigenvalues λmn satisfy the following equation:

mJm(λmn)− λmnJm+1(λmn) = 0. (B5)

Note that the reason for expanding the compact solution (2.22) in (B5) is to emphasize
the fact that, unlike the general solution, λmn = 0 is now one of the eigenvalues. This
results in the appearance of the constant term A00 that, upon the application of the integral
constraint (2.20), is determined to be 1. For other Amn coefficients, (2.25) may still be

949 A1-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

71
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.717
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consulted. Having f0 in hand, K1 can be readily calculated:

(B6)
where is still given by (2.38). For the SID, the solutions may simplify as

f0,SC(t, r, φ) = 1 +
∞∑

n=1

A0nJ0(λ0nr)exp(−λ2
0nt), (B7)

(B8)

where

(B9)

The solutions may be further simplified when the initial solute band is distributed
uniformly over the channel cross-section. Under these circumstances, it can be shown that
A0n = 0 for n /= 0; hence, (B7) and (B8) simplify to yield f0,U = 1 and K1,U = −um.

According to (B3), the equation governing f1 in the absence of surface reactions is given
as

∂f1
∂t

= 1
r
∂

∂r

(
r
∂f1
∂r

)
+ 1

r2
∂2f1
∂φ2 − (u + K1)f0, (B10)

for which the following solution can be provided:

f1(t, r, φ) =
∞∑

i=0

∞∑
j=0

[B1,ij(t)+ AijC1(t)]Ji(λijr) cos(iφ)exp(−λ2
ijt), (B11)

with B1,ij and C1 still being expressed by (2.31a,b). Now, the dispersion coefficient can be
evaluated from (B2) as

(B12)
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The solutions to f1 for the case of a semicircular initial concentration distribution may be
written as follows:

(B13)

wherein

(B14)

(B15)

It should be noted that C1,SC is obtained by using the integral constraint (2.20).
Consequently, we can evaluate the associated dispersion coefficient in the following form:

(B16)
The solutions are further simplified for a uniform solute band that corresponds to a = 1.
For this case, one may show that

(B17)

(B18)

Lastly, according to (B3), the equation governing f2 is given as

∂f2
∂t

= 1
r
∂

∂r

(
r
∂f2
∂r

)
+ 1

r2
∂2f2
∂φ2 + −(u + K1)f1 + (Pe−2 − K2)f0, (B19)

for which the following solution is obtained:

f2(t, r, φ) =
∞∑

s=0

∞∑
q=0

[B2,sq(t)+ AsqC2(t)]Js(λsqr) cos(sφ)exp(−λ2
sqt), (B20)

where B2,sq and C2 are given by (2.42). It is noteworthy that the expressions of the mean
and local concentrations are still given by (2.53) and (2.54), respectively.
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Appendix C. Special solutions for a uniform velocity field

The special solutions for a uniform velocity profile are relevant to the situations where
the system enjoys an electroosmotic pumping mechanism. Electroosmotic flow fields are
characterized by flat velocity profiles with sharp gradients near the wall. When the ionic
concentration of the liquid is high, which is usually the case, such velocity gradients occur
over extremely thin areas that constitute a very small portion of the channel cross-section
(Sadeghi et al. 2011). Hence, the velocity profile may be practically considered uniform
over the whole fluidic area.

As mentioned previously, the exchange coefficient is not influenced by the velocity
distribution. Accordingly, even in the presence of a uniform velocity field, f0 and K0 may
still be obtained via (2.22) and (2.28). However, the velocity profile strongly influences the
function f1 and the convection coefficient. For a uniform velocity profile, that is, u = 1,
(2.29) is modified as

∂f1
∂t

= 1
r
∂

∂r

(
r
∂f1
∂r

)
+ 1

r2
∂2f1
∂φ2 − (1 + K1)f0 − K0f1. (C1)

It can be shown that the solution to (C1) is given as

f1(t, r, φ) = A(t)
∞∑

i=0

∞∑
j=0

Aij[−t + C1(t)]Ji(λijr) cos(iφ)exp(−λ2
ijt). (C2)

The constraint (2.20) dictates the time-dependent function C1 to be t, resulting in f1 = 0
and

K1(t) = − 2
π

∫ 1

0

∫ π

0
rf0 dφ dr = −1. (C3)

Accordingly, the equation governing f2 is simplified as

∂f2
∂t

= 1
r
∂

∂r

(
r
∂f2
∂r

)
+ 1

r2
∂2f2
∂φ2 − K0f2 + (Pe−2 − K2)f0, (C4)

to which the following solution may be obtained:

f2(t, r, φ) = A(t)
∞∑

s=0

∞∑
q=0

AsqC2(t)Js(λsqr) cos(sφ)exp(−λ2
sqt). (C5)

Utilizing the constraint (2.20), it is straightforward to show that C2(t) = 0, leading to
f2 = 0 and K2 = Pe−2. With C1 = t and C2 = 0, the expression of the dimensionless
mean concentration, given by (2.53), is simplified for a uniform velocity profile to yield

θm(t, x) = ψm

2
√

πt
exp

[
−C0 − (x − t)2

4Pe−2t

]
. (C6)

Finally, the local dimensionless concentration becomes

θ(t, r, φ, x) = ψm

2
√

πt
exp

[
−(x − t)2

4Pe−2t

] ∞∑
m=0

∞∑
n=0

AmnJm(λmnr) cos(mφ)exp(−λ2
mnt). (C7)
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