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We investigate the question of how plasma currents circulate and close in the
scrape-off-layer (SOL) of convection-limited tokamak plasmas. A simplified two-fluid
model describes how currents must evacuate charge at the sheaths due to cross-field
currents that are not divergence-free. These include turbulence-driven polarization
currents and poloidally asymmetric equilibrium diamagnetic currents. The theory
provides an estimate for the radial profile of the floating potential, which reveals
a dipolar structure like the one observed experimentally. Simulations with a fluid
turbulence code provide evidence for the predicted behaviour of currents and floating
potential.
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1. Introduction
Recent experiments have shown that large steady-state plasma currents to the targets

establish in the scrape-off-layer (SOL) of limited tokamaks (Dejarnac et al. 2015;
Nespoli et al. 2016; Halpern et al. 2017; Nespoli et al. 2017; Tsui et al. 2017). These
currents, typically exceeding the ion saturation current, are radially localized and carry
large amounts of negative charge out of the plasma via the sheaths in the near SOL.
Given that essentially no charge is injected into the plasma, it must be that no net
charge can be flowing out of the plasma in steady state. These observations thus lead
to the following fundamental question: how are currents circulating and closing in the
SOL?

The answer to this question is probably one of the missing pieces of the puzzle
that is the generation of the so-called narrow heat flux feature in the SOL (Kocan
et al. 2015), which has recently become crucial for the design of ITER and future
magnetic fusion devices (Motojima 2015). While the sheath currents themselves are
not the main direct contributors to the increased heat flux in the near SOL (Dejarnac
et al. 2015), the plasma potential profile resulting from the non-ambipolarity at the
sheaths plays a crucial role in the description of the gradient steepening in the near
SOL via strongly sheared E× B flows (Tsui 1992; Halpern & Ricci 2017).
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If there were no radial cross-field currents in the SOL, then every flux tube
would be independent in terms of charge conservation. Namely, we would have
that in a given flux tube the plasma current to the targets, if any, is equal and
opposite at each end of the field line. Experiments show, however, that on certain
flux tubes, large equilibrium plasma currents evacuate net charge at the targets, and
associated with that a non-zero floating potential is measured. This suggests that
non-divergence-free cross-field currents must develop in the SOL to ensure charge
conservation. Furthermore, since the plasma density radially decays in the SOL, the
net positive charge that is transported by cross-field currents is most likely evacuated
through the sheaths as well, perhaps in the transition between the near SOL and
the far SOL. A somewhat equivalent picture was already realized in Tsui (1992).
In that work, however, a current circulation model was developed based on the
assumption that cross-field transport was dominated by ion–neutral collisions, and
the magnitude of the non-ambipolar flows established at the sheaths was predicted
to increase with the ion–neutral collision frequency. While this model may certainly
explain non-ambipolar flows in certain experiments (Strawitch & Emmert 1981), it
cannot describe the recent observations made in ITER-relevant tokamak devices: the
fact that the magnitude of these sheath currents decreases with plasma collisionality,
namely with the normalized collision frequency ν∗SOL (Tsui et al. 2017). Moreover,
it has been recently shown via nonlinear SOL turbulence simulations that both the
heat-flux narrow feature and the associated non-ambipolar flows arise even without
accounting for the effect of neutrals (Halpern & Ricci 2017).

In this paper, we develop a simple but useful model to elucidate the question of how
currents are circulating in the SOL of circular, limited tokamak plasmas (figure 1).
The model predicts that a non-zero floating potential profile with a dipolar structure
appears as a natural consequence of turbulence-driven cross-field currents, and we
provide estimates for its magnitude and scale. Some of these model predictions
have been recently shown to compare well with experimental measurements (Tsui
et al. 2017). Here we also show that numerical simulations carried out with a fluid
turbulence code lend further support to the model.

2. Theory of current closure
The fundamental equation we need to solve is the one that describes the

conservation of charge in the SOL, namely

∂ρ

∂t
+∇ · j = 0, (2.1)

where ρ is the charge density and j is the current density. We neglect here the effect
of neutrals, which may restrict the validity of the model to convection-limited regimes
(Stangeby 2000). Also, we use the drift-reduced Braginskii theory (Zeiler, Drake &
Rogers 1997), which may restrict the validity of the model to regimes in which the
scale lengths are larger than the ion gyroradius; this is particularly true in L-mode
plasmas. In this limit, the fluid velocities of electrons and ions are, respectively, ve=
v‖eb + vE×B + vdia,e and vi = v‖ib + vE×B + vdia,i + vpol. Namely, the perpendicular
velocity is expanded in terms of a small parameter, ε = ω−1

ci (d/dt) ∼ ρ2
i /L

2
⊥ � 1, so

that the E× B drift and diamagnetic drifts, vE×B and vdia, are the zeroth-order terms,
and the lowest-order ion polarization drift,

vpol = b
ωci
×
(
∂

∂t
+ (vE×B + v‖ib) · ∇

)
vE×B, (2.2)
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FIGURE 1. Sketch of the SOL geometry considered in this paper. The white lines indicate
typical magnetic field lines connecting the two sides of a toroidal limiter located on the
inboard side.

is of order O(ε). Here ωci = eB/mi is the ion gyrofrequency, ρi = vthi/ωci is the ion
gyroradius, vthi=√Ti/mi is the ion thermal speed, L⊥ is the equilibrium perpendicular
scale length and b= B/B. The absence of the ion diamagnetic drift in the convective
derivative is due to the so-called diamagnetic cancellation which arises from the
lowest-order term in the pressure tensor, in the large-aspect-ratio limit (Ramos 2005).
The electron polarization drift is of order (me/mi)O(ε) and is neglected. Under these
assumptions, equation (2.1) can be reduced to

〈∇‖ j‖〉t,θ + 〈∇ · jdia〉t,θ + 〈∇ · jpol〉t,θ = 0, (2.3)

where 〈·〉t,θ represents a time average and poloidal average,

〈F〉t,θ(r)≡ 1
2π

∫ 2π

0

[
1
T

∫ T

0
F(r, θ, ϕ, t) dt

]
dθ, (2.4)

where (r, θ, ϕ) are toroidal coordinates (figure 1) and the time interval T is much
larger than the time scale of turbulence fluctuations. Writing F(r, θ, ϕ, t)= 〈F〉t,θ(r)+
F̃(r, θ, ϕ, t), we consider T�|F̃/∂tF̃|. We note that in deriving (2.3) we have assumed
that ∇ · ( j‖b)=∇‖ j‖, or equivalently, ∇ · b= 0, which is true in the large-aspect-ratio
limit.

We now estimate the three terms in the charge-balance equation (2.3), which are the
divergence of the parallel, diamagnetic, and polarization currents. This will lead to an
equation for the radial profile of plasma potential, thereby providing a prediction for
the profile of floating potential.

2.1. Parallel term
In the absence of magnetic flutter, namely in the electrostatic limit, the time average
of the divergence of the parallel current is 〈∇‖ j‖〉t = ∇‖〈 j‖〉t. Assuming a circular
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tokamak equilibrium, we then have that

〈∇‖ j‖〉t,θ = 〈 j‖〉
+
t − 〈 j‖〉−t

L‖
, (2.5)

where L‖ = 2πqR is the parallel connection length, q= q(r) is the safety factor and
〈 j‖〉±t is the time-averaged parallel current evaluated at both sides of the limiter,
referred to as top (+) and bottom (−), respectively (figure 1). More precisely, these
are evaluated at the entrance of the magnetic presheath (Loizu et al. 2012). The
parallel current density is j‖ = en(v‖i − v‖e) and we assume that

〈 j‖〉t ≈ e〈n〉t(〈v‖i〉t − 〈v‖e〉t). (2.6)

In doing so, we have neglected the terms 〈ñṽ‖〉t with respect to the terms 〈n〉t〈v‖〉t.
This is justified since, even if fluctuations correlate perfectly, we have that

〈ñṽ‖〉t
〈n〉t〈v‖〉t ∼

(
ñ
〈n〉t

)(
ṽ‖
cs

)
� 1 (2.7)

because in typical SOL conditions, ñ/〈n〉t ≈ 0.05–1 (Zweben et al. 2007) and ṽ‖/cs≈
0.1–0.5 (Hidalgo et al. 2003). Here cs = √(Te + Ti)/mi is the plasma sound speed.
The equilibrium parallel current at the entrance of the magnetic presheath is taken as
the Bohm current, namely,

〈 j‖〉±t =±e〈n〉±t 〈cs〉±t
(

1− e〈Λ〉
±
t −(e〈φ〉±t /〈Te〉±t )

)
, (2.8)

where the plasma potential, φ, is measured with respect to the wall potential, which
is taken as the zero of the potential, φwall = 0. The quantity

Λ= log

√√√√√ mi

2πme

1

1+ Ti

Te

(2.9)

determines the ambipolar potential, i.e. 〈 j‖〉±t = 0 if and only if e〈φ〉±t = 〈Λ〉±t 〈Te〉±t .
In principle, the sheath parallel current contains an additional term mainly due to
the recirculation of the diamagnetic current (Loizu et al. 2012), but this does not
contribute to the outflow of charge since it is simply compensating the outflowing
diamagnetic current (Cohen & Ryutov 1995). In practice, therefore, the contribution
from the outflowing diamagnetic current at the sheaths shall be ignored.

2.2. Diamagnetic term
The divergence of the diamagnetic current is

∇ · jdia =∇p · ∇×
(

b
B

)
, (2.10)

where p = pe + pi is the total scalar plasma pressure. Assuming a large-aspect-ratio
circular magnetic equilibrium, equation (2.10) reduces to

∇ · jdia = 2
BR

(
cos θ

1
r
∂p
∂θ
+ sin θ

∂p
∂r

)
, (2.11)
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where R is the major radius of the tokamak. We now assume that〈
cos θ

1
r
∂p
∂θ

〉
t,θ

≈ 0 (2.12)

and 〈
sin θ

∂p
∂r

〉
t,θ

≈−δp
Lp
, (2.13)

where Lp = |〈p〉t,θ/∂r〈p〉t,θ | is the equilibrium pressure scale length, and δp= 〈p〉+t −〈p〉−t measures the poloidal asymmetry in the pressure. These assumptions are justified
in appendix A, based on the effects that E× B drifts and poloidally asymmetric cross-
field transport have on the equilibrium pressure profile. In particular, an estimate for
the pressure poloidal asymmetry is provided, showing that δp/p∼ 0.1 is expected for
an inner-wall-limited plasma with ballooning-like cross-field transport. Therefore, we
have that

〈∇ · jdia〉t,θ ≈− 2
BR

δp
Lp
. (2.14)

2.3. Polarization term
Turbulence simulations in tokamak SOL geometry with medium-size tokamak
parameters (Halpern & Ricci 2017) revealed that the divergence of the polarization
current is mainly due to the radially sheared convection of vorticity. Namely,

〈∇ · jpol〉t,θ ≈ e〈n〉t,θ
ωciB2

∣∣∣∣∣ ∂∂r

〈
Ω̃

1
r
∂φ̃

∂θ

〉
t,θ

∣∣∣∣∣ , (2.15)

where Ω̃ = ∇2
⊥φ̃ is the fluctuating vorticity. We now simplify this expression by

making a certain number of assumptions,

〈∇ · jpol〉t,θ ≈ e〈n〉t,θ
ωciB2

∣∣∣∣ ∂∂r
〈k2
⊥kθ φ̃2〉t,θ

∣∣∣∣
≈ e〈n〉t,θ

kθωci

∣∣∣∣∂γ 2

∂r

∣∣∣∣
≈ e〈n〉t,θ

kθωci

1
RLp

∣∣∣∣∂〈c2
s 〉t,θ
∂r

∣∣∣∣
≈ e〈n〉t,θ

kθωci

〈cs〉2t,θ
RLpLT

≈ e〈n〉t,θ 〈cs〉t,θ
kθ 〈ρs〉t,θR

2
5

( 〈ρs〉t,θ
Lp

)2

, (2.16)

where ρs = cs/ωci is the ion sound Larmor radius. Here we have assumed that
the saturated amplitude of the fluctuations has magnitude 〈φ̃2〉t,θ ∼ B2γ 2/(k2

θk
2
r ),

where γ ∼ cs/
√

RLp is the linear growth rate for interchange-like modes. We
have also assumed that eddies have comparable radial and poloidal wavenumbers,
k⊥ ∼ kr ∼ kθ (Zweben et al. 2015), and have taken LT = (5/2)Lp for the equilibrium
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temperature scale length. These assumptions are based on the hypothesis that (i)
resistive ballooning modes are dominant, (ii) saturation of fluctuations occurs due to
the gradient removal mechanism (Ricci & Rogers 2013) and (iii) there is no effect of
shear flows on mode growth (which may overestimate the term). Of course, because
of these assumptions a correction factor of order one may be applied in front of
this term. For our purposes, however, what matters is the scaling and the order of
magnitude of this term.

2.4. Overall charge balance
Bringing together the approximate expressions for each of the three terms in
(2.3), dropping the bracket notation (all quantities are now averages), and dividing
everything by encs/(2πqR), we get

Γ +

Γ

(
1− eΛ

+−(eφ+/T+e )
)
+ Γ

−

Γ

(
1− eΛ

−−(eφ−/T−e )
)

+ 2πq

[
1

kθρs

2
5

(
ρs

Lp

)2

− 2
δp
p

(
ρs

Lp

)]
≈ 0, (2.17)

where Γ = ncs and Γ ± = n±c±s . The validity of (2.17) is verified with turbulence
simulations in § 3. We now further simplify this expression in order to derive a simple
expression for the floating potential. In the limit of a sheath-limited regime (Stangeby
2000), in which we can assume that Γ ±≈Γ /2, Λ±≈Λ and φ±/T±e ≈φ/Te, equation
(2.17) reduces to

1− e−Vf /Te + 2πq

[
1

kθρs

2
5

(
ρs

Lp

)2

− 2
δp
p

(
ρs

Lp

)]
≈ 0, (2.18)

where Vf = eφ −ΛTe is the floating potential. Solving for Vf , we have that

Vf ≈−Te ln (1+∆), (2.19)

with

∆= 2πq

[
1

kθρs

2
5

(
ρs

Lp

)2

− 2
δp
p

(
ρs

Lp

)]
. (2.20)

The function ∆ determines whether there are electron currents to the sheath (∆> 0),
no sheath currents (∆= 0) or ion currents to the sheath (∆< 0). Here Lp and δp/p
are seen as functions of the radius, r, and so ∆ = ∆(r). The first term in (2.20)
is the polarization current contribution due to turbulent fluctuations, and the second
term is the diamagnetic current contribution, which is only non-zero due to finite
magnetic curvature and gradients, and whose poloidal average does not vanish when
pressure asymmetries are present. In appendix A, we estimate that typically δp/p ∼
0.1 is expected in inner-wall-limited plasmas with ballooning-like cross-field transport.
These numbers are also confirmed in SOL turbulence simulations (see § 3). Also, we
typically expect kθρs∼ 0.1 (Mosetto et al. 2013). We can thus estimate the ratio of the
two terms in (2.20) as ∆pol/∆dia ∼ 20ρs/Lp. In the near SOL, Lp is of the order of a
few millimetres (Tsui et al. 2017), thus ∆pol >∆dia; while it becomes of the order of
a few centimetres in the far SOL, and thus ∆pol <∆dia. Hence we expect that ∆> 0
in the near SOL and ∆< 0 in the far SOL.
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FIGURE 2. Schematic view of the current circulation in the SOL.

The picture of how currents circulate in the SOL emerges as follows (figure 2).
Radially increasing polarization currents push ions radially outward in the near SOL;
the sheath must then evacuate electrons to compensate the loss of charge (Vf < 0,
region I in figure 2). As Lp becomes larger, the increase in polarization current is
reduced; also, pressure asymmetries may have built up and produce diamagnetic
currents that push electrons radially outward; the sheath is then relieved from the
task of compensating (Vf ≈ 0, r = r1 in figure 2). The polarization contribution,
∆pol∼ (ρs/Lp)

2, dies out faster than the diamagnetic contribution, ∆dia∼ (ρs/Lp), thus
leading to an effective outward push of negative charge; the sheath must now evacuate
ions to compensate (Vf > 0, region II in figure 2). Finally, both contributions cancel
each other once again because the divergence of each current dies away (Vf ≈ 0,
r= r2 in figure 2).

3. SOL turbulence simulations
The Global Braginskii Solver, or GBS (Ricci et al. 2012; Halpern et al. 2016),

is used to simulate the SOL electrostatic turbulence in an inner-wall-limited
tokamak plasma configuration of relatively small size, R/ρs = 500; aspect ratio
R/a = 4; normalized plasma resistivity ν = e2necs/(miσ‖R) = 0.1, where σ‖ is the
Spitzer conductivity; mass ratio mi/me = 200; safety factor q = 4; and only with
an open-field-line region. The Boussinesq approximation is relaxed to ensure an
accurate conservation of charge (Halpern et al. 2016) and a complete set of boundary
conditions at the magnetic presheath entrance is used (Loizu et al. 2012). The effect
of finite ion temperature is captured (Mosetto et al. 2015) and controlled by the
dimensionless parameter τ = Ti/Te.

We consider two cases: cold ions (τ = 0) and warm ions (τ = 2). For each case, we
check the validity of the approximate charge-balance equation derived in § 2, namely
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FIGURE 3. Charge-balance terms computed from the different contributions in (2.17) and
using the equilibrium quantities obtained from GBS simulations with τ = 0. The vertical
violet stripe indicates the extent of the density and heat source in the simulations. From
(2.17), the dashed-blue curve is expected to approximately balance the solid blue line.

FIGURE 4. Same as figure 3 but with τ = 2.

(2.17), by comparing the three terms corresponding to the parallel, diamagnetic,
and polarization contributions, expressed analytically as a function of equilibrium
quantities. Figures 3 and 4 show these different contributions as a function of the
radial coordinate in the SOL. We observe that the three terms balance each other
relatively well, especially in the τ = 2 case. In both cases, the parallel term is
balanced first by the polarization term (near SOL), and then by the diamagnetic term
(far SOL). The maximum of the pressure asymmetry, δp/p, is ≈0.1 for the τ = 0
case and ≈0.25 for the τ = 2 case. This is in agreement with the magnitude and
sign estimated in the appendix A. We note that the imperfect balance of the three
terms in figures 3 and 4 is mainly due to the approximations made in deriving (2.8),
(2.13) and (2.16), i.e. the balance given by (2.3) is excellent in the GBS simulations,
as pointed out in Halpern & Ricci (2017).
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FIGURE 5. Radial profile of floating potential obtained from GBS (black curves) and from
the model (blue curve), equation (2.19), for the case τ = 0. The vertical violet stripe
indicates the extent of the density and heat source in the simulations.

The validity of (2.18), or equivalently, the predicted profile of floating potential,
equation (2.19), relies on the assumption that Vf is the same on both sides of
the limiter. Figures 5 and 6 show that this is not exactly true in the simulations,
especially in the τ = 0 case. Nevertheless, the predicted profile of Vf (r) does lie
in between V+f (r) and V−f (r), and shows a dipolar structure. This structure is in
agreement with the picture of current circulation proposed in § 2.

We would like to note that in both figures 4 and 6 the parallel current and the
floating potential at the sheaths seem to diverge in the ‘far far SOL’, namely as the
outer radial boundary is approached. This is due to the lack of appropriate radial
boundary conditions for the density and the ion temperature. This feature could be
removed by reducing the values of n and Ti at the right boundary or by considering a
larger radial domain in order to reduce the effect of the boundary. Since this behaviour
is present only in the ‘far far SOL’, it does not affect much the results in the near
and far SOL, and we shall ignore it for the purpose of this investigation.

4. Discussion and conclusions
The theory of current circulation developed herein is consistent with turbulence

simulations but the floating potential cannot be assumed to be poloidally symmetric.
Improving the predictions for Vf (r) may require a more detailed study of poloidal
asymmetries in the SOL, for example by coupling the charge-conservation equation
with a generalized Ohm’s law (Loizu et al. 2013, 2014). Nevertheless, the model
presented here predicts that a ‘Vf -hump’ appears as a consequence of two competing
non-divergence-free cross-field currents, namely (i) turbulence-driven polarization
currents and (ii) poloidally asymmetric diamagnetic currents. A relatively simple
expression for Vf (r), equation (2.19), has been derived that could be used for the
interpretation of experimental measurements.

The dependence of the amplitude of this hump, VLCFS
f ≡ max |Vf (r)|, on the

dimensionless parameter ν∗SOL was recently measured and shown to be consistent
with the predictions of the model (Tsui et al. 2017). Experimentally, the value of
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FIGURE 6. Same as figure 5 but with τ = 2.

ν∗SOL was varied by scanning Ip, namely the toroidal plasma current. The ‘Vf -hump’
was only observed for values of Ip above a certain threshold (Ip ∼ 90 kA), with an
amplitude that increases linearly with Ip. All these features were reproduced by the
model described herein (see figure 11 of Tsui et al. 2017). We would like to remark
that while Ip does not appear explicitly in the model prediction, equation (2.19), the
value of Ip significantly modifies the equilibrium electron temperature profile, Te(r),
in the SOL, thereby altering the values of ρs/Lp appearing in the model. For low
values of toroidal plasma current (e.g. Ip < 90 kA), the temperature profile is very
flat, thus ρs/Lp≈ 0 and hence from (2.19) one expects VLCFS

f /Te� 1. For large values
of Ip, however, the temperature profile becomes steeper, ρs/Lp increases, and thus the
expected value of VLCFS

f increases. As a matter of fact, we can estimate how VLCFS
f

is expected to scale with Ip. Assuming that ∆� 1 in (2.19) and that kθρs remains
constant, we obtain the scaling VLCFS

f /Te ∼ q(ρs/Lp)
2. Since the near-SOL width has

been shown to scale roughly as Lp/ρs ∼ q (Halpern & Ricci 2017), we expect that
VLCFS

f /Te ∼ q−1 ∼ Ip, namely a linear scaling with toroidal plasma current.
This paper provides a first detailed look at how currents circulate and close in the

SOL and proposes a simple expression for the radial profile of the floating potential.
Furthermore, this work may guide future investigations seeking to develop a more
detailed understanding of the formation of the narrow heat-flux feature as well as that
of a poloidally asymmetric floating potential profile.
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Appendix A
Here we estimate the effect of poloidal drifts (in general both E × B and

diamagnetic) on the pressure poloidal profile. This allows estimating the integrals
present in (2.12) and (2.13) and more generally provides an estimate for the expected
pressure poloidal asymmetry. First, we derive the equilibrium density poloidal profile
resulting from different possible combinations of plasma sources and poloidal drifts.

The ion continuity equation in a flux tube can be written as

∂

∂y
(nVy)= Sp, (A 1)

where y= rθ is the poloidal coordinate, Vy is the ion poloidal velocity (which is the
sum of the projected parallel velocity and the poloidal drifts) and Sp is the plasma
volumetric source in the flux tube, which is for example determined by the divergence
of the turbulent cross-field transport. This leads to

n(y)=

∫ y

y0

Sp(y′) dy′

Vy(y)
, (A 2)

where y0 is the location at which Vy(y0)= 0. We consider four cases:

(i) Sp = S0 and Vy = (2αcs/L)y;
(ii) Sp = S0 and Vy = (2αcs/L)y+ vD;

(iii) Sp = S0(1− y2/l2) and Vy = (2αcs/L)y;
(iv) Sp = S0(1− y2/l2) and Vy = (2αcs/L)y+ vD.

Here L = 2πr is the poloidal extent, y ∈ (−ym, ym), ym = L/2, α is the pitch
angle of the magnetic field, vD is the sum of poloidal drifts (which is assumed
constant) and l & L is the scale length of variation of the source, which mimics a
‘ballooning-like’ transport with maximum amplitude half-way between the two targets.
Cases (iii) and (iv) are thus implicitly assuming an inner-wall-limited plasma with
outboard-dominant transport. Cases (i) and (ii) assume a constant plasma source.
Cases (ii) and (iv) assume a finite poloidal drift.

For the case (i), y0 = 0 and (A 2) implies a constant density profile,

n(y)= S0L
2αcs
≡ n0. (A 3)

For the case (ii), y0 =−vDL/(2αcs) and we still get n(y)= n0. This implies that a
constant poloidal drift alone does not produce an asymmetry in the density.

For the case (iii), y0 = 0 and we get

n(y)= n0

∫ y

0
(1− y′2/l2) dy′

y
= n0

(
1− y2

3l2

)
, (A 4)

which is still poloidally symmetric.
For the case (iv), y0 =−vDL/(2αcs) and we get

n(y)= n0

∫ y

y0

(1− y′2/l2) dy′

y− y0
= n0

(
1− 1

3l2
(y2 + yy0 + y2

0)

)
. (A 5)
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Therefore there is only a density asymmetry, equation (A 5), if the poloidal flow
is asymmetric and the source is not constant. We can now estimate the density
asymmetry,

δn
n
≡ n+ − n−

n0
=−2y0ym

3l2
= 1

6
vD

αcs

(
L
l

)2

, (A 6)

which is non-zero if and only if vD 6= 0 and l<∞. Typically, we have vD . αcs and
l∼ L, thus δn/n . 1/6, or

δn
n
∼ 0.1. (A 7)

A similar exercise should be repeated for the ion and electron temperatures in order
to combine the results and estimate the total pressure profile, p(y)= n(y)T(y), and the
pressure asymmetry,

δp
p
= δn

n
T+

T0
+ δT

T
n−

n0
≈ δn

n
+ δT

T
, (A 8)

where T = Te + Ti. While the ion and electron equilibrium temperature profiles can
exhibit different poloidal asymmetries (Zhu, Francisquez & Rogers 2017), for example
due to the different heat conduction coefficients, the total pressure usually shows an
equilibrium profile similar to that depicted in (A 5). If we are only interested in
providing an estimate for the order of magnitude of the pressure asymmetry, we may
simply assume δT/T ∼ δn/n, and hence δp/p ∼ 0.1. Moreover, if the form of p(y)
resembles that of n(y), (A 5), then the fact that

1
2ym

∫ ym

−ym

cos
(

yπ
ym

)
∂n(y)
∂y

dy= 0 (A 9)

lends support to (2.12). Similarly, the fact that

1
2ym

∫ ym

−ym

sin
(

yπ
ym

)
n(y) dy=−n0

ymy0

3πl2
= n0

1
12π

vD

αcs

(
L
l

)2

∼ δn (A 10)

lends support to (2.13).
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