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We investigate the performance of channel assignment policies for cellular net-
works The networks are given by an interference graph which describes the reuse
constraints for the channell the first parf we derive lower bounds on the ex-
pected(weighted number of blocked calls under any channel assignment policy
over finite time intervals as well as in the average cdse lower bounds are
solutions of deterministic control problendss far as the average case is concerned
the control problem can be replaced by a linear progianthe second partve
consider the cellular network in the limiwhen the number of available channels as
well as the arrival intensities are linearly increas#e show that the network obeys

a functional law of large numbers and that a fixed channel assignment policy which
can be computed from a linear program is asymptotically optiSécial networks

like fully connected and star networks are considered

1. INTRODUCTION

Cellular telephony has become a standard in many countries and is still a rapidly
growing part of the telecommunication industifie coverage area is divided into
mutually disjoint cellseach with its own base station in the cenfemobile cus-
tomer in a cell can be connected via its base station to the international wire-line
telephone networkThe available bandwidth is divided into channedich we
assume to be frequency sloBae to interferenceneighboring cells are not permit-
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ted to use the same chanrtébweverthe possibility of channel reuse exists for cells
with a certain distance

When a call request appears in dethen either a free channel which does not
violate the interference constraints is assigned to this call or else it is blotkid
may also involve rearrangements of the channels assigned to calls already in progress
A common objective of channel assignment policies is to minimizéweighted
number of blocked call®Dutstanding channel assignment policies are as follows

1.1. Fixed Channel Assignment

The channels are permanently assigned to cells in such a way that the interference
constraints are not violated call requestin celi is then accepted if there still exists
a free channel in cell

1.2. Maximum Packing

A call is acceptegdwhenever this is possibl€hannel reassignments may be neces-
sary Robinson 12] was one of the first to consider the problem as a Markov deci-
sion processlin principle the optimal policy can be found by implementing the
standard Markov decision algorithnipolicy iteration algorithmvalue iteration
algorithm seg e.g., Chapter 3 in Tijm¢13] or Chapter 8 in Putermdi 1]). Due to
the large state space of the probléime state space can grow exponentially in the
number of cellg a numerical computation is often intractable several special
casesconditions can be given under which certain channel assignment policies are
optimal Robinson[12], for example gives necessary and sufficient conditions for
the optimality of a fixed channel assignment in the star netwididudek[4] and
Kind, Niessenpand Mathaf 8] have shown that under sufficiently light traffimax-
imum packing is optimal in any type of cellular netwotk order to deal with the
general problemour focus in this article is restricted to asymptotically optimal
policies In McEliece and Sivarajafil0] a lower bound on the average number of
blocked calls per channel in a cellular system has been derived which holds for any
channel assignment policMoreover it has been shown that this bound is asymp-
totically achieved by a fixed channel assignment policy when the number of chan-
nels as well as the traffic intensity are linearly incread®d will strengthen these
results by deriving lower bounds on the number of blocked calls over finite time
intervals as well as in the average casée limit behavior of the number of blocked
calls under any fixed channel assignment policy will be given explicitly as a func-
tion of time The analysis involves the proof of functional laws of large numbers and
isin the spirit of Hunt and Law{$6], Hunt and Kurt4 5], and Alanyali and HajeKl].
The asymptotic performance of the maximum packing policy has been investigated
in Kulshreshtha and Sivarajfi] (cf. also Kelly[7]).

Our article is organized as followm the next sectioywe present the model in
the framework of Markov decision processksSection 3we derive a lower bound
on the expected number of lost calls over a finite time interaalwell as in the
average casé&he lower bounds are obtained as solutions of deterministic control
problems Section 4 contains some auxiliary results about the convergence of the
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state and action processes if the number of available channels as well as the arrival
intensities are linearly increasadext, we show that the value of the lower bound in

the average case coincides with the value of a linear proghar8ection 6 we
characterize the limit behavior of the number of blocked calls under an arbitrary
fixed channel assignment policy as the unique solution of an initial value problem
Furtherwe show that the fixed channel assignment policy which can be constructed
from the solution of the linear program is asymptotically optimal in the sense that the
lower bound will be achieved in the limiBome numerical examples are given in
Section 7

2. FORMULATION AS A MARKOV DECISION PROCESS

Our cellular network consists ofcells and a sef of kchannelsC ={1,...,k}. Call
requests arrive in cellaccording to a Poisson process with paramgter 0. The
arrival processes for the cells are supposed to be independent of eact\athlér
request in cell can be accepted if there is a free channel which can be assigned to
this call This may also involve rearrangements of the channels assigned to calls
already in progres8locked calls are losDue to interference channel which is in

use in celli cannot be used simultaneously in a neighboring ¥ suppose that
these restrictions are given by aninterference g@aph(V, E), where the cells form

the set of vertice¥ = {1,...,n} and an edgé, j) € Eindicates that cellsand] are
neighbors and have to use different channefsis thestate spacef our network is
given by the se§of all admissible channel assignments

S= {x € Ng| there exisMy,...,M, C C, st. [M;| =x,M; N M; =, 0(i,j) € E}.

Forx = (Xy,...,Xn) € S x; gives the number of channels which are in use inicell
It has been shown in Kulshreshtha and SivarafdnhatScan also be written as

m
S= {x € Nj| there exists @2 € N, st. Az= X, >,z = k}

j=1
with A € {0,1} (™™ The state process itself is denoted(®) = (X,(t),..., X,(1)),
whereX;(t) gives the number of connected calls in aedit timet > 0. All holding
times of the calls are independent of each other and exponentially distributed with
parametegy; > 0 in celli. Upon arrival of a new call requeste have to decide
whether to accefif possible or reject the callA randomized decision will also be
allowed The action spaceis therefore given byA = [0,1]", wherea; gives the
probability with which the next call request in celvill be acceptedOf coursethe
set of admissible actions statexis givenbyD(x) ={a€ Ala; >0=>x+g €S
i =1,...,n}, whereg denotes théth unit vectorA (stationary channel assignment
policy for the Markov decision process is given by a decision fule— A with
f(x) € D(x). fselectgdepending on the current statethe acceptance probabili-
ties of new calls for any celFor a given channel assignment polithe state process
is obviously a continuous-time Markov chaiNow, suppose that the system is in
statex and actiorais chosenThe off-diagonal elements of the intensity matQx=
(g(x,a,x")) of the controlled state process are given by
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Aiai, X/:X‘i‘a

g(x,ax)=yHX, X =X—g
0 else

Our aim is to minimize the long-run average cost due to blocked. dedlsost rate
functionc: SX A — R, we choose&(x,a) = > (1 —a;)A; ¢, withc € R,. The
terms(1 — a;) A; are the rates of blocked calls in celsoc(x, a) is a weighted sum
of the blocking rates per cefor an arbitrary channel assignment poligye define
the associated long-run average ¢s#drting the system in stakey

1 T
Gi(X) = Iimsup? Ex{f c(X;, (X)) dt}.
0

T—oo

Since the corresponding Markov chain has only one positive recurrent class for all
decision ruled, the long-run average cost does not depend on the startingxstate
(i.e, G;(x) = G for all x € S). Hence the optimization problem is given by

andG is the minimal average cadtet us first look at two special types of networks

2.1. Star Network

A star network consists of a syoell 1) and planetgcells 2 through) such that
interference occurs only between the sun and each of the plansgtgen-cell star
network is depicted in Figure The state spac®is here given bys= {x € Nj| x, +
xi=ki=2,...,n}. Inthecasqi = --- =y, =1andc, = --- = ¢, =1, Robinson

[12] has shown that the fixed channel assignment which gives no channels to the sun
and all channels to the planets is optimal if and only if

> Erl(r) =1,
i—2

(&) @

FiGURE 1. A star of seven vertices
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where

pY/kl

Erl(p) =
> pi/j!
j=0

is the usual Erlang B-formula

2.2. Fully Connected Network

Acellular network is called fully connected if any two cells are neighbdgsx-cell
fully connected network is depicted in FigureThe state spac8is given byS=

{Xx &€ Nj|x, + --- + X, = k}. Houdek[ 4] has given a condition for general networks
under which maximum packing is optim#&lor fully connected networks with, =

.-+ = U, = W, this condition reduces to

A G
i-1 Erl(p)
n

2 /\ Er|k,1( p) o i=1,..., n

i=1

with p = 2L, (A /).
The following definitions will be used in the sequEbr a measurable function
v:RT — R, the generato; of the state process is given by

Aro(x) = X (0(x') = v(X))q(x, f(x),x").

x'eS
Thus if we plug inv;(x) = x;, i =1,...,n, we obtain

Avi(X) = A Fi(X) — i X

XK

FIGURE 2. A complete graph of six vertices
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In what follows we denotex = (A4,...,A,) andu = (Ug,..., H,). To simplify nota-
tion, we will write X oy = (X1V1,..., XnYn) to denote the coordinatewise product of

two vectors of equal dimensipandx’y = >i_; ; y; is the usual scalar product

3. LOWER BOUNDS

Let us first define the state space
m
S* = {x € R" |there exists @ € RT, st. Az= X, >, 7= k}.
j=1

SinceS™ is the projection of a polyhedroB6~ is a polyhedron itself and thus can be
written asS® = {x € R | Ax = b} with a matrixA and a vectob. Note thatS” is
boundedThe following deterministic control problem will play a crucial role

( 1 T/ n
limsup— ( (1—a;(t))A; ci> dt — min,
T 0 1

T—oo i=

t
N:X0+j(A°%_¢“XQdS
(©) 0

\a; = (a;(t),...,a,(t)) €[0,1]"

It is easy to see that we have the same problem when we replace the target func-
tion by

1 T n
Ac— liminf = J <2 Ci Wi X; (t)> dt — min.
T 0] i=1

T—oo

The finite horizon control problem with target function

T n
f (2(1—ai(t)))\ici>dt—> min
0 i=1

and the same constraints are denoted@). If we denote by ©(x) andV,c(x) the
optimal values of the control probleni€) and(Cy), respectivelyfor starting state
X, thenV €(x) provides a nontrivial lower bound for the minimal average ¢asff
the stochastic problem ang®(x) for the finite horizon problem

THeoreM 1: For all initial states x€ S and time points & 0, it holds that

T

(@) VE(x) = iqf Ex[f c(X,, f(X)) dt}.

(b) VE(x) = G.
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Proor: Suppose that € Sis the initial stateLetf be an arbitrary channel assign-
ment policy The induced state procegX;) is a Markov process with intensity ma-
trix Q = (q(x, f(x), x")). Hence it holds that

t
X~ x= [ (Ae10x) — e o) ds= M,
0

where(M,) is a martingale anil; = 0. Taking the expectation on both sides and
denotingx, := E,[X;] anda, := E,[ f(X;)] for t = 0, we obtain

t
xt=x+f (Aecag— Mo X)) ds
0

Moreover since f is admissible we get for allt = 0 as. Az(X;) = X,
2ih1z(X) =k X =0, z(X) = 0, andf(X;) € [0,1]" Thus it holds for all
t = 0 thatx, € S* (i.e, Ax = b, x, = 0, anda, € [0,1]"). This means that the
pair {(x;,a;), t = 0} is admissible for the deterministic control problef) and
(Cy) for every channel assignment poli€yMoreover

Ex{fT(}n:(l_ fi (X)) A Ci) dt] = fT< 3 (L—ai(t)A Ci) dt,

which implies the statement u

4. CONVERGENCE

We will now study the performance of the system under an arbitrary channel assign-
ment policy when the number of available channels as well as the arrival intensities
of the calls get largelhe increase is linear in both the number of available channels
as well as the arrival intensitieset f: S— A be an arbitrary channel assignment
policy for a problem withyk channelsy € N. The proces$X?) underf is given by

the intensity matriXonly the off-diagonal elements are indicated

yAifi(x), x' =x+e

q7(x, f(x),x") = { Wi X, X'=x—¢g
o, else

and initial stateyx. The scaled process is defined ¥ := (1/y)X7, t= 0. (X/) is
a Markov process on the state space

1 m
S = —{xeNS (zE NS‘st.Azzx,Ezisvk}-
Y 1=
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Further we define the integrated scaled action proo&ss: (Al (t),..., Ax(t)) by
t
Al(t) :=f fi(yX2) ds i=1...,n
0

We understand the proces$e§’, A) as random elements with valuesiri[0, o),

which is the space dR"-valued functions o1i0,00) that are right continuous and

have left-hand limitsThe space is endowed with the Skorokhod topol&yy— we

denote the weak convergence of the processes-aswo. The next theorem states

that every sequence of scaled state and action processes has a further subsequence
which converges weakly and the limit satisfies almost surely the constraints of the
deterministic control problefC). Thus every convergent subsequence satisfies the
following functional law of large numbers

THEOREM 2: Every sequenc€X/,Al) has a further subsequen¢X/", A;") such
that (X", A7") = (X;, A, = [yasds) and the limit satisfies .a. for all t = 0

0] xt—xo+fo(/\°as He X) ds
(i) A =Db
(i) Xy=0

(iv) a, €[0,1]".

The proof follows by showing the tightness of the sequeixtg AY) (cf. also
Hunt and Lawg6], Hunt and KurtZ5], and Alanyali and Hajek1]). For an arbi-
trary channel assignment poli€ythe scaled average cost are defined by

T—>oo

.
G/ = I|msup E, U c(X, f(yX) dt].
0

Remark: Note that the lower bound given in Theorem 1 holds for every scaled
system that is we have

G := ir;f G! =VE(x)
for all y > 0 and allx.

5. AN LP APPROACH

Let us next consider the following linear prograwhere we denotey; := A; /M,
i=1...,n,andn = (94,...,7n).

(LP)Y Ay =

2 Ci Ji X; — min,
b,
O0=x=

.
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Itis easy to see that the linear program has an optimal solution and we densté by
the optimal value of the problertt is now possible to show that the optimal value of
the linear program coincides with the optimal value of the deterministic control
problem(C), independent of the initial stat&he proof of Theorem 3 also shows
how to construct an optimal solution fO€) using the optimal solution afLP).

THEOREM 3: For all x € R, we hae VC(x) = V1P,

PrOOF: Suppose that, is admissible fo(C). In particular x; is a solution of the
initial value problem

Xi(t) = Ay (t) — pixi (1)
andx; (0) = x; is given Hence
t

xi(t) = e ™ix; (0) +f Aia(s)e =9 ds

0
and

f X; (S) ds= w (1_ e"“i) +f i ai(S)[l_ e*Hi(t*S)] ds
0 i o

As aresulfthe average integrated state of any admissible trajectdiy)as bounded
above by

}ftx'(s)d“} %O (1 gy |4 1e T[22
tJo Tt o mit o))

which converges ton; for t — oo. In particular every limit point & =
lim .. (1/t,) fonx; (s) dsof a sequencét,), t, — oo for n— oo, satisfies 0= & <,
i=1,...,n,andA¢ = b. Thus V'° = VC&(x).

Now, suppose that is admissible fofLP). Definef: R? — A by

1 if xj <X
HiXi .

fi(x) =fi(x)=¢—— ifx=x
0 if X; > X;.

The initial value problem

Xi (1) = A fi(xi (1)) — Wi % (1),
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X (0) = x; given has exactly one solutioief. Hartman 3, Thm. 6.2]). For; = x; (0)
the solution is given by

Lt Lt 1 ni — X
e M (0) +m(1—e ™Y, ts—alog —

i i — % (0)
(1) = DA, @)
i, t>——log<L>
i 7 — % (0)
and forx; = x;(0) by
e Mtk (0), t= _Hi |Og<x)_zo)>
X (1) = ' )

% t>—ilo<xi>
" w9 %)

Moreover x; = 0. Ax, = b can be obtained by first driving those cells witli0) > x;
tox; and then filling up those witk; (0) = X;. SinceAx, =< b, the inequality holds for
allt > 0. Last but not leasa, = f (x;) € [0,1]". Obviously this control for problem
(C) yields the valuex'c — X,c % and it follows thatV'® = VC(x).
[ ]

Remark: Instead of solving the deterministic control problé®), we have shown
that it is sufficient to solve the linear prograthP). However due to the compli-
cated state spagthe worst-case complexity 6EP) is exponential in the number of
cells(see McEliece and Sivarajam0]).

6. ASYMPTOTIC OPTIMALITY OF FIXED CHANNEL ASSIGNMENT

In this sectionwe investigate the limit behavior of fixed channel assignment poli-
cies The limit of the state process is defined here by the unique solution of an initial
value problemMoreover suppose that* is the optimal solution ofLP) with value

VP, From Theorem lwe know thatv'" is a lower bound foiG?,y > 0. In this
sectionwe show that this lower bound can be achieved in the limit by implementing
a fixed channel assignment policy which is given by the solutibof (LP). More
precisely in the scaled model witly > 0, we use the fixed channel assignment
which assignx;* y | channels to cell. We will denote this policy by FCAthat is for
XES

1 ifx+1=|x"vy]
0 else

FCA (X) = {

We obtain the following theorem
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THEOREM 4:

(a) Under a fixed channel assignment policy givenxbg S*, it holds that
(X{") = (%) and the limit(x,) is given by (1) and (2).

(b) The fixed channel assignment policy which is givenhig asymptotically
optimal; that is,

i Y — LP
lim Gl.a= V.
y—>0o0

Proor: Lety > 0 be fixed Under a fixed channel assignment policy giverxbthe
following additional equations are almost surely fulfilled for the stochastic pro-
cesses X/, Al):

ft[m - min(Xiy(s), M)T d(s— A/(s)) =0,
o Y Y

ft [max(Xi(s), LX; 7]) _ L%y ]
0 Y Y

Since| Xy | /v — X; for y — oo, it follows with Lemma 24 of Dai and Williamg 2]
that for any convergent subsequeri¢g™, A{") (which exists due to Theorem) 2
with limit (X, A;) the preceding expressions converge against

TdA}’(s) =0.

ft[f(i —min(Xi(s), %)]" d(s = Ai(s)) = 0,

ft[maX(Xi(S), %) — % ]"dA(s) = 0.

Thus it follows that under the fixed channel assignment pglibg limit controla,
at timet = 0 satisfies almost everywhere

1 if X, (1) < %
a;(t) = fi(Xp) =fi(X (1) = %'(t) if X (t) = x;
0 if X, (t) > %,.

In addition Theorem 2 tells us that every liniX;, A;) satisfies

t
Xt=x0+f (Aeag— Mo Xg)ds
0

However from the proof of Theorem ,3we then know that the limitX, A;) is
uniquely definediand the same for every convergent subsequeacd given as
stated If X = x*, we obtain
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T n n

> Xi(suigds=XNc— D x (S)u G = VP,
i=1

A'c—liminf =

Tooo 0 i=1
Now, for fixed y > 0, the state proces,") has a unique stationary distributiart
and

1 Tn n

Glea = N'c— liminf = E, {f > X (t) dt] =)Nc—E_, {2 G Xiy(t)}.
Too T 0 i=1 i=1

Since(X{) is stochastically dominated by a Poisson process with intefsity+

fky) and jumps of height 4y, we obtain with dominated convergence for> 0

large enough

n
lim GIZCA =\Nc— E G M Xi*
Y i=1

and the proof is complete |

7. NUMERICAL RESULTS

In this sectiopwe illustrate our results by some numerical examplésinvestigate

the performance of the asymptotically optimal fixed channel assignment policy FCA
for different scaling parameters for the star network and the fully connected net-
work. It turns out that FCA isin general different from the optimal assignment
policy. Indeedthere are cases where FCAis suboptimal for any scaling parameter
On the positive sidehere are examples where FCA is optimal forqall

7.1. Star Network

The limiting state space of the star networkS® = {x € R |x;, + X = k,
i =2,...,n}. The linear program of Section(Without constantis given by

n
> G My X — max

i=1
X, + X% =Kk i=2,...,n,

O0=x=nq

(LP)

and reduces to the one-dimensional optimization problem

n

CiMi Xy + 2 G M min(k— X1, ni) — max,
i=1

0=X3=n.
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We have chosen the following data for our numerical exampke 7 cells k = 4
channelsservice rateg, = --- = 4; =1, and costrates, = --- = ¢;=1. The arrival

rates are given by, = 7, A\, = 6, A3 = 4.8, A\, = 5.3, A5 = 4.7, A¢ = 5.1, and

A7 = 4.8. We will multiply the arrival rates\; by a parametex and varyx from 1 to

1.5. It is easy to see that the solution of the linear program is the fixed channel
assignment policy which gives no channels to the sun and all channels to the planets
(independent ok € [1, 1.5]). If we introduce the scaling parametgrit holds that

(cf. McEliece and SivarajafiL0, Sect 6])

p—k
. — ifp>k
lim Erl.,(py) =4 »p
y—o0

0 if p =k

and the mapping — Erly.,( py) is decreasing iry. Thus for our datait holds that
>, Erl,.,(Ayy) =1.277 > 1, which implies that the same fixed channel assign-
ment policy isindeed optimal for all values of (see Section2This is an example
where the asymptotically optimal fixed channel assignment policy coincides with
the optimal channel assignment policy for allin Figure 3 the expected minimal
average costs are plotted for different arrival ratasitiplied by A) and different
scaling parameterg =1, 5, and 50 The lower black line is the lower bound of the
linear program

01 11 12 13 14 15
2

FIGURE 3. VP andGY., = G” fory =1,5 and 50 and & A = 1.5.
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7.2. Fully Connected Network

The limiting state space of the fully connected networ8ts= {x € R |[x; + --- +
X, = k}. Consequentlythe linear program of Section(@ithout constantreduces to
the following knapsack problem

n

G Hi Xj — max
i=1

(LP)

Suppose that;; = c 4, = --- = C,U,; then the solution of the linear program is
given byx; =nq,..., X5 =m,, Xi 1 = k=217, X; 2 =0,..., X5 = 0, wherev =
max{m|>",;n; = k}. Hence the asymptotically optimal fixed channel assign-
ment policy assignisy; | channelstocelli=1,...,»,|k— >!/_+ n | channels to cell
v + 1 and no channels to the remaining celi&e have chosen the following data for
our numerical examplen = 6 cells k= 4 channelsservice rategl, = --- = 4y =1,
and costrates, = --- =c;,=1.The arrival rates are given by, = --- = Ag= A. The
parameten will be varied from 0 to 4In this caseit follows easily(see Section P
that maximum packing is optimal for any

In Figure 4 the performance of maximum packing is compared to the perfor-
mance of the asymptotically optimal fixed channel assignment policy withl.
This is an example in which the asymptotically optimal fixed channel assignment

A

FIGURE 4. G = Gax pack@NdGecafor 0= A = 4.
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FIGURE 5. VP andG} ., fory=1,5,and 50 and G= A < 4.

policy is indeed suboptimal for alf and differs completely from the optimal as-
signment policyFor vy tending to infinity both assignment rules achieve the lower
bound Figure 5 shows the expected average cost under FCA for different arrival
ratesA and different scaling parameters= 1, 5, and 50 The lower black line is the
lower bound of the linear program

References

1. Alanyali, M. & Hajek, B. (1998. Analysis of simple algorithms for dynamic load balanciMath-
ematics of Operations Resear2h: 840-871

2. Dai, d & Williams, R. (1995. Existence and uniqueness of semimartingale reflecting Brownian
motions in convex polyhedron$heory of Probability and Its Applicatior40: 1-4Q

3. Hartman P. (1982. Ordinary differential equationsBoston Birkhauser Verlag

4. HoudekA. (2000. Call admissionin cellular radio networf&/npublished dissertationUniversity
of Ulm.

5. Hunt, PJ & Kurtz, T.G. (1994. Large loss networksStochastic Processes and Their Applications
53: 363-378

6. Hunt, Pd & Laws, C.N. (1993. Asymptotically optimal loss network contrdlathematics of Op-
erations Research8: 880—900

7. Kelly, FP. (1986. Blocking probabilities in large circuit-switched networksdvances in Applied
Probability 18: 473-505

8. Kind, J, Niessen T., & Mathar, R. (1998. Theory of maximum packing and related channel
assignment strategies for cellular radio networdathematics and Methods of Operations Re-
search48: 1-16

https://doi.org/10.1017/50269964802161067 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964802161067

100 N. Bauerle and A. Houdek

9. KulshreshthaA. & Sivarajan K.N. (1999. Maximum packing channel assignment in cellular net-

works IEEE Transactions on Vehicular Technolog§: 858—872

10. McEliece R.J & Sivarajan K.N. (1994. Performance limits for channelized cellular telephone
systems|EEE Transactions on Information Theo#®: 21-34

11 PutermanM.L.(1994). Markov decision processes, discrete stochastic dynamic programviitey
Series in Probability and Mathematical StatistiChichesterWiley.

12 RobinsonD. (1992. The optimality of fixed channel assignment policies for cellular radio systems
Advances in Applied Probabilit®4: 474—495

13, Tijms, H.C. (1994. Stochastic models: An algorithmic approachichesterWiley.

https://doi.org/10.1017/50269964802161067 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964802161067

