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We investigate the performance of channel assignment policies for cellular net-
works+ The networks are given by an interference graph which describes the reuse
constraints for the channels+ In the first part, we derive lower bounds on the ex-
pected~weighted! number of blocked calls under any channel assignment policy
over finite time intervals as well as in the average case+ The lower bounds are
solutions of deterministic control problems+As far as the average case is concerned,
the control problem can be replaced by a linear program+ In the second part, we
consider the cellular network in the limit,when the number of available channels as
well as the arrival intensities are linearly increased+We show that the network obeys
a functional law of large numbers and that a fixed channel assignment policy which
can be computed from a linear program is asymptotically optimal+Special networks
like fully connected and star networks are considered+

1. INTRODUCTION

Cellular telephony has become a standard in many countries and is still a rapidly
growing part of the telecommunication industry+ The coverage area is divided into
mutually disjoint cells, each with its own base station in the center+ A mobile cus-
tomer in a cell can be connected via its base station to the international wire-line
telephone network+ The available bandwidth is divided into channels, which we
assume to be frequency slots+ Due to interference, neighboring cells are not permit-
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ted to use the same channel+However, the possibility of channel reuse exists for cells
with a certain distance+

When a call request appears in celli, then either a free channel which does not
violate the interference constraints is assigned to this call or else it is blocked+ This
may also involve rearrangements of the channels assigned to calls already in progress+
A common objective of channel assignment policies is to minimize the~weighted!
number of blocked calls+ Outstanding channel assignment policies are as follows+

1.1. Fixed Channel Assignment

The channels are permanently assigned to cells in such a way that the interference
constraints are not violated+Acall request in celli is then accepted if there still exists
a free channel in celli +

1.2. Maximum Packing

A call is accepted, whenever this is possible+ Channel reassignments may be neces-
sary+ Robinson@12# was one of the first to consider the problem as a Markov deci-
sion process+ In principle, the optimal policy can be found by implementing the
standard Markov decision algorithms~policy iteration algorithm, value iteration
algorithm; see, e+g+, Chapter 3 in Tijms@13# or Chapter 8 in Puterman@11# !+ Due to
the large state space of the problem~the state space can grow exponentially in the
number of cells!, a numerical computation is often intractable+ In several special
cases, conditions can be given under which certain channel assignment policies are
optimal+ Robinson@12# , for example, gives necessary and sufficient conditions for
the optimality of a fixed channel assignment in the star network+ Houdek@4# and
Kind,Niessen, and Mathar@8# have shown that under sufficiently light traffic,max-
imum packing is optimal in any type of cellular network+ In order to deal with the
general problem, our focus in this article is restricted to asymptotically optimal
policies+ In McEliece and Sivarajan@10# a lower bound on the average number of
blocked calls per channel in a cellular system has been derived which holds for any
channel assignment policy+ Moreover, it has been shown that this bound is asymp-
totically achieved by a fixed channel assignment policy when the number of chan-
nels as well as the traffic intensity are linearly increased+We will strengthen these
results by deriving lower bounds on the number of blocked calls over finite time
intervals, as well as in the average case+The limit behavior of the number of blocked
calls under any fixed channel assignment policy will be given explicitly as a func-
tion of time+The analysis involves the proof of functional laws of large numbers and
is in the spirit of Hunt and Laws@6# ,Hunt and Kurtz@5# , andAlanyali and Hajek@1# +
The asymptotic performance of the maximum packing policy has been investigated
in Kulshreshtha and Sivarajan@9# ~cf+ also Kelly@7# !+

Our article is organized as follows+ In the next section, we present the model in
the framework of Markov decision processes+ In Section 3,we derive a lower bound
on the expected number of lost calls over a finite time interval, as well as in the
average case+ The lower bounds are obtained as solutions of deterministic control
problems+ Section 4 contains some auxiliary results about the convergence of the
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state and action processes if the number of available channels as well as the arrival
intensities are linearly increased+Next,we show that the value of the lower bound in
the average case coincides with the value of a linear program+ In Section 6, we
characterize the limit behavior of the number of blocked calls under an arbitrary
fixed channel assignment policy as the unique solution of an initial value problem+
Further,we show that the fixed channel assignment policy which can be constructed
from the solution of the linear program is asymptotically optimal in the sense that the
lower bound will be achieved in the limit+ Some numerical examples are given in
Section 7+

2. FORMULATION AS A MARKOV DECISION PROCESS

Our cellular network consists ofn cells and a setC of k channels,C5 $1, + + + , k% +Call
requests arrive in celli according to a Poisson process with parameterl i . 0+ The
arrival processes for the cells are supposed to be independent of each other+ A call
request in celli can be accepted if there is a free channel which can be assigned to
this call+ This may also involve rearrangements of the channels assigned to calls
already in progress+Blocked calls are lost+Due to interference, a channel which is in
use in celli cannot be used simultaneously in a neighboring cell+We suppose that
these restrictions are given by an interference graphG5 ~V,E!,where the cells form
the set of verticesV5 $1, + + + , n% and an edge~i, j ! [ E indicates that cellsi andj are
neighbors and have to use different channels+ Thus, thestate spaceof our network is
given by the setSof all admissible channel assignments

S5 $x [ N0
n 6 there existM1, + + + ,Mn , C, s+t+ 6Mi 65 xi ,Mi ù Mj 5 B, ∀~i, j ! [ E%+

For x 5 ~x1, + + + , xn! [ S, xi gives the number of channels which are in use in celli +
It has been shown in Kulshreshtha and Sivarajan@9# thatScan also be written as

S5 Hx [ N0
n 6 there exists az [ N0

m, s+t+ Az$ x, (
j51

m

zj # kJ
with A [ $0,1% ~n,m! + The state process itself is denoted by~Xt ! 5 ~X1~t !, + + + ,Xn~t !!,
whereXi ~t ! gives the number of connected calls in celli at timet . 0+ All holding
times of the calls are independent of each other and exponentially distributed with
parameterµi . 0 in cell i + Upon arrival of a new call request, we have to decide
whether to accept~if possible! or reject the call+A randomized decision will also be
allowed+ The action spaceis therefore given byA 5 @0,1# n, whereai gives the
probability with which the next call request in celli will be accepted+Of course, the
set of admissible actionsin statex is given byD~x! 5 $a [ A6ai . 0n x1 ei [ S,
i 51, + + + , n% , whereei denotes thei th unit vector+A ~stationary! channel assignment
policy for the Markov decision process is given by a decision rulef :Sr A with
f ~x! [ D~x!+ f selects~depending on the current statex! the acceptance probabili-
ties of new calls for any cell+For a given channel assignment policy, the state process
is obviously a continuous-time Markov chain+ Now, suppose that the system is in
statex and actiona is chosen+ The off-diagonal elements of the intensity matrixQ5
~q~x,a, x '!! of the controlled state process are given by
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q~x,a, x ' ! 5 5
l i ai , x ' 5 x 1 ei

µi xi , x ' 5 x 2 ei

0 else+

Our aim is to minimize the long-run average cost due to blocked calls+ As cost rate
functionc :S3 Ar R1 we choosec~x,a! 5 (i51

n ~12 ai !l i ci , with ci [ R1+ The
terms~12 ai !l i are the rates of blocked calls in celli , soc~x,a! is a weighted sum
of the blocking rates per cell+ For an arbitrary channel assignment policyf,we define
the associated long-run average cost, starting the system in statex by

Gf ~x! 5 lim sup
Tr`

1

T
ExFE

0

T

c~Xt , f ~Xt !! dtG +
Since the corresponding Markov chain has only one positive recurrent class for all
decision rulesf, the long-run average cost does not depend on the starting statex
~i+e+, Gf ~x! 5 Gf for all x [ S!+ Hence, the optimization problem is given by

G 5 inf
f

Gf

andG is the minimal average cost+ Let us first look at two special types of networks+

2.1. Star Network

A star network consists of a sun~cell 1! and planets~cells 2 throughn! such that
interference occurs only between the sun and each of the planets+ A seven-cell star
network is depicted in Figure 1+ The state spaceSis here given byS5 $x [ N0

n6x11
xi # k, i 5 2, + + + , n% + In the caseµ1 5 {{{ 5 µn 51 andc1 5 {{{ 5 cn 51, Robinson
@12# has shown that the fixed channel assignment which gives no channels to the sun
and all channels to the planets is optimal if and only if

(
i52

n

Erlk~l i ! $ 1,

Figure 1. A star of seven vertices+
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where

Erlk~ r! 5
rk0k!

(
j50

k

r j0j!

is the usual Erlang B-formula+

2.2. Fully Connected Network

A cellular network is called fully connected if any two cells are neighbors+A six-cell
fully connected network is depicted in Figure 2+ The state spaceS is given byS5
$x [ N0

n6x1 1 {{{ 1 xn # k% + Houdek@4# has given a condition for general networks
under which maximum packing is optimal+ For fully connected networks withµ1 5
{{{ 5 µn 5 µ, this condition reduces to

(
i51

n

l i ci

(
i51

n

l i

Erlk~ r!

Erlk21~ r!
# min

i51, + + + , n
ci

with r 5 (i51
n ~l i 0µ!+

The following definitions will be used in the sequel+ For a measurable function
v :R1

n r R, the generatorAf of the state process is given by

Af v~x! 5 (
x '[S

~v~x ' ! 2 v~x!!q~x, f ~x!, x ' !+

Thus, if we plug in vi ~x! 5 xi , i 5 1, + + + , n, we obtain

Af vi ~x! 5 l i fi ~x! 2 µi xi +

Figure 2. A complete graph of six vertices+
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In what follows, we denotel 5 ~l1, + + + ,ln! andµ5 ~µ1, + + + ,µn!+ To simplify nota-
tion, we will write x + y 5 ~x1y1, + + + , xnyn! to denote the coordinatewise product of
two vectors of equal dimension, andx 'y 5 (i51

n xi yi is the usual scalar product+

3. LOWER BOUNDS

Let us first define the state space

S` 5 Hx [ R1
n 6 there exists az [ R1

m , s+t+ Az$ x, (
j51

m

zj # kJ +
SinceS` is the projection of a polyhedron, S` is a polyhedron itself and thus can be
written asS` 5 $x [ R1

n 6 NAx # Nb% with a matrix NA and a vector Nb+ Note thatS` is
bounded+ The following deterministic control problem will play a crucial role:

~C! 5
lim sup

Tr`

1

T
E

0

TS(
i51

n

~12 ai ~t !!l i ciD dt r min,

xt 5 x0 1E
0

t

~l + as 2 µ + xs! ds,

NAxt # Nb,

xt $ 0,

at 5 ~a1~t !, + + + ,an~t !! [ @0,1# n+

It is easy to see that we have the same problem when we replace the target func-
tion by

l'c 2 lim inf
Tr`

1

T
E

0

TS(
i51

n

ci µi xi ~t !D dt r min+

The finite horizon control problem with target function

E
0

TS(
i51

n

~12 ai ~t !!l i ciD dt r min

and the same constraints are denoted by~CT!+ If we denote byV C~x! andVT
C~x! the

optimal values of the control problems~C! and~CT!, respectively, for starting state
x, thenV C~x! provides a nontrivial lower bound for the minimal average costG of
the stochastic problem andVT

C~x! for the finite horizon problem+

Theorem 1: For all initial states x[ S and time points T$ 0, it holds that

(a) VT
C~x! # inf

f
ExFE

0

T

c~Xt , f~Xt!! dtG+
(b) VC~x! # G+
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Proof: Suppose thatx [ S is the initial state+ Let f be an arbitrary channel assign-
ment policy+ The induced state process~Xt ! is a Markov process with intensity ma-
trix Q 5 ~q~x, f ~x!, x '!!+ Hence, it holds that

Xt 2 x 2E
0

t

~l + f ~Xs! 2 µ + Xs! ds5 Mt ,

where~Mt ! is a martingale andM0 5 0+ Taking the expectation on both sides and
denotingxt :5 Ex@Xt # andat :5 Ex@ f ~Xt !# for t $ 0, we obtain

xt 5 x 1E
0

t

~l + as 2 µ + xs! ds+

Moreover, since f is admissible, we get for all t $ 0 a+s+ Az~Xt ! $ Xt ,
(j51

n zj ~Xt ! # k, Xt $ 0, z~Xt ! $ 0, and f ~Xt ! [ @0,1# n+ Thus, it holds for all
t $ 0 thatxt [ S` ~i+e+, NAxt # Nb, xt $ 0, andat [ @0,1# n!+ This means that the
pair $~xt ,at !, t $ 0% is admissible for the deterministic control problems~C! and
~CT! for every channel assignment policyf+ Moreover,

ExFE
0

TS(
i51

n

~12 fi ~Xt !!l i ciD dtG 5E
0

TS(
i51

n

~12 ai ~t !!l i ciD dt,

which implies the statement+ n

4. CONVERGENCE

We will now study the performance of the system under an arbitrary channel assign-
ment policy,when the number of available channels as well as the arrival intensities
of the calls get large+ The increase is linear in both the number of available channels
as well as the arrival intensities+ Let f :Sr A be an arbitrary channel assignment
policy for a problem withgk channels, g [ N+ The process~ ZXt

g! underf is given by
the intensity matrix~only the off-diagonal elements are indicated!

qg~x, f ~x!, x ' ! 5 5
gl i fi ~x!, x ' 5 x 1 ei

µi xi , x ' 5 x 2 ei

0, else

and initial stategx+ The scaled process is defined byXt
g :5 ~10g! ZXt

g , t $ 0+ ~Xt
g! is

a Markov process on the state space

Sg :5
1

g Hx [ N0
n 6 ∃z [ N0

m s+t+ Az$ x, (
j51

m

zj # gkJ +
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Further, we define the integrated scaled action processAt
g 5 ~A1

g~t !, + + + ,An
g~t !! by

Ai
g~t ! :5E

0

t

fi ~gXs
g! ds, i 5 1, + + + , n+

We understand the processes~Xt
g ,At

g! as random elements with values inDn@0,`!,
which is the space ofRn-valued functions on@0,`! that are right continuous and
have left-hand limits+ The space is endowed with the Skorokhod topology+ By n we
denote the weak convergence of the processes asg r `+ The next theorem states
that every sequence of scaled state and action processes has a further subsequence
which converges weakly and the limit satisfies almost surely the constraints of the
deterministic control problem~C!+Thus, every convergent subsequence satisfies the
following functional law of large numbers+

Theorem 2: Every sequence~Xt
g ,At

g! has a further subsequence~Xt
gn,At

gn! such
that ~Xt

gn,At
gn! n ~Xt ,At 5 *0

t as ds! and the limit satisfies a+s+ for all t $ 0

(i) Xt 5 x0 1 *0
t~l + as 2 µ + Xs! ds

(ii) NAXt # Nb
(iii) X t $ 0
(iv) at [ @0,1# n+

The proof follows by showing the tightness of the sequence~Xt
g ,At

g! ~cf+ also
Hunt and Laws@6# , Hunt and Kurtz@5# , and Alanyali and Hajek@1# !+ For an arbi-
trary channel assignment policyf, the scaled average cost are defined by

Gf
g 5 lim sup

Tr`

1

T
ExFE

0

T

c~Xt
g , f ~gXt

g!! dtG +
Remark: Note that the lower bound given in Theorem 1 holds for every scaled
system; that is, we have

Gg :5 inf
f

Gf
g $ V C~x!

for all g . 0 and allx+

5. AN LP APPROACH

Let us next consider the following linear program, where we denotehi :5 l i 0µi ,
i 5 1, + + + , n, andh 5 ~h1, + + + ,hn!+

~LP! 5l'c 2 (
i51

n

ci µi xi r min,

NAx# Nb,

0 # x # h+
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It is easy to see that the linear program has an optimal solution and we denote byV LP

the optimal value of the problem+ It is now possible to show that the optimal value of
the linear program coincides with the optimal value of the deterministic control
problem~C!, independent of the initial state+ The proof of Theorem 3 also shows
how to construct an optimal solution for~C! using the optimal solution of~LP!+

Theorem 3: For all x [ R1
n , we have VC~x! 5 V LP.

Proof: Suppose thatxt is admissible for~C!+ In particular, xt is a solution of the
initial value problem

_xi ~t ! 5 l i ai ~t ! 2 µi xi ~t !

andxi ~0! 5 xi is given+ Hence,

xi ~t ! 5 e2tµi xi ~0! 1E
0

t

l i ai ~s!e2µi ~t2s! ds

and

E
0

t

xi ~s! ds5
xi ~0!

µi

~12 e2tµi ! 1E
0

t

hi ai ~s!@12 e2µi ~t2s! # ds+

As a result, the average integrated state of any admissible trajectory of~C! is bounded
above by

1

t
E

0

t

xi ~s! ds#
1

t F xi ~0!

µi

~12 e2tµi !G1 hi F11
1

µi
Se2tµi

t
2

1

t DG ,
which converges tohi for t r `+ In particular, every limit point ji 5
limnr` ~10tn!*0

tn xi ~s! dsof a sequence~tn!, tnr` for nr`, satisfies 0# ji # hi ,
i 5 1, + + + , n, and NAj # Nb+ Thus, V LP # V C~x!+

Now, suppose thatSx is admissible for~LP!+ Define f :R1
n r A by

fi ~x! 5 fi ~xi ! 5 5
1 if xi , Sxi

µi xi

l i

if xi 5 Sxi

0 if xi . Sxi +

The initial value problem

_xi ~t ! 5 l i fi ~xi ~t !! 2 µi xi ~t !,
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xi ~0! 5 xi given, has exactly one solution~cf+Hartman@3, Thm+ 6+2# !+ For Sxi $ xi ~0!
the solution is given by

xi ~t ! 5 5e2µi txi ~0! 1 hi ~12 e2µi t !, t # 2
1

µi

logS hi 2 Sxi

hi 2 xi ~0!D
Sxi , t . 2

1

µi

logS hi 2 Sxi

hi 2 xi ~0!D
(1)

and for Sxi # xi ~0! by

xi ~t ! 5 5e2µi txi ~0!, t # 2
1

µi

logS Sxi

xi ~0!D
Sxi , t . 2

1

µi

logS Sxi

xi ~0!D+
(2)

Moreover, xt $ 0+ NAxt # Nb can be obtained by first driving those cells withxi ~0! . Sxi

to Sxi and then filling up those withxi ~0! # Sxi + Since NAx0 # Nb, the inequality holds for
all t . 0+ Last but not leastat 5 f ~xt ! [ @0,1# n+ Obviously, this control for problem
~C! yields the valuel'c 2 (i51

n ci µi Sxi and it follows that V LP 5 V C~x!+
n

Remark: Instead of solving the deterministic control problem~C!, we have shown
that it is sufficient to solve the linear program~LP!+ However, due to the compli-
cated state space, the worst-case complexity of~LP! is exponential in the number of
cells~see McEliece and Sivarajan@10# !+

6. ASYMPTOTIC OPTIMALITY OF FIXED CHANNEL ASSIGNMENT

In this section, we investigate the limit behavior of fixed channel assignment poli-
cies+ The limit of the state process is defined here by the unique solution of an initial
value problem+Moreover, suppose thatx* is the optimal solution of~LP! with value
V LP+ From Theorem 1, we know thatV LP is a lower bound forGg,g . 0+ In this
section,we show that this lower bound can be achieved in the limit by implementing
a fixed channel assignment policy which is given by the solutionx* of ~LP!+ More
precisely, in the scaled model withg . 0, we use the fixed channel assignment
which assigns{xi

*g} channels to celli +We will denote this policy by FCA; that is, for
x [ S

FCAi ~x! 5 H1 if xi 1 1 # {xi
*g}

0 else+

We obtain the following theorem+
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Theorem 4:

(a) Under a fixed channel assignment policy given bySx [ S` , it holds that
~Xt

g! n ~xt ! and the limit~xt ! is given by (1) and (2).
(b) The fixed channel assignment policy which is given by x* is asymptotically

optimal; that is,

lim
gr`

GFCA
g 5 V LP+

Proof: Let g . 0 be fixed+Under a fixed channel assignment policy given bySx, the
following additional equations are almost surely fulfilled for the stochastic pro-
cesses~Xt

g ,At
g!:

E
0

tF { Sxi g}

g
2 minSXi

g~s!,
{ Sxi g}

g
DG1

d~s2 Ai
g~s!! 5 0,

E
0

tFmaxSXi ~s!,
{ Sxi g}

g
D2

{ Sxi g}

g
G1

dAi
g~s! 5 0+

Since{ Sxi g}0g r Sxi for g r`, it follows with Lemma 2+4 of Dai and Williams@2#
that for any convergent subsequence~Xt

gn,At
gn! ~which exists due to Theorem 2!

with limit ~Xt ,At ! the preceding expressions converge against

E
0

t

@ Sxi 2 min~Xi ~s!, Sxi !#
1 d~s2 Ai ~s!! 5 0,

E
0

t

@max~Xi ~s!, Sxi ! 2 Sxi #
1dAi ~s! 5 0+

Thus, it follows that under the fixed channel assignment policy, the limit controlat

at timet $ 0 satisfies almost everywhere

ai ~t ! 5 fi ~Xt ! 5 fi ~Xi ~t !! 5 5
1 if Xi ~t ! , Sxi

µi Xi ~t !

l i

if Xi ~t ! 5 Sxi

0 if Xi ~t ! . Sxi +

In addition, Theorem 2 tells us that every limit~Xt ,At ! satisfies

Xt 5 x0 1E
0

t

~l + as 2 µ + Xs! ds+

However, from the proof of Theorem 3, we then know that the limit~Xt ,At ! is
uniquely defined~and the same for every convergent subsequence! and given as
stated+ If Sx 5 x*, we obtain
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l'c 2 lim inf
Tr`

1

T
E

0

T

(
i51

n

Xi ~s!µi ci ds5 l'c 2 (
i51

n

xi
*~s!µi ci 5 V LP+

Now, for fixed g . 0, the state process~Xt
g! has a unique stationary distributionpg

and

GFCA
g 5 l'c 2 lim inf

Tr`

1

T
ExFE

0

T

(
i51

n

ci µi Xi
g~t ! dtG5 l'c 2 EpgF(

i51

n

ci µi Xi
g~t !G+

Since~Xt
g! is stochastically dominated by a Poisson process with intensity~ Nlg 1

Tµkg! and jumps of height 10g, we obtain, with dominated convergence fort . 0
large enough,

lim
gr`

GFCA
g 5 l'c 2 (

i51

n

ci µi xi
*

and the proof is complete+ n

7. NUMERICAL RESULTS

In this section,we illustrate our results by some numerical examples+We investigate
the performance of the asymptotically optimal fixed channel assignment policy FCA
for different scaling parameters for the star network and the fully connected net-
work+ It turns out that FCA is, in general, different from the optimal assignment
policy+ Indeed, there are cases where FCA is suboptimal for any scaling parameterg+
On the positive side, there are examples where FCA is optimal for allg+

7.1. Star Network

The limiting state space of the star network isS` 5 $x [ R1
n 6x1 1 xi # k,

i 5 2, + + + , n%+ The linear program of Section 5~without constant! is given by

~LP! 5(
i51

n

ci µi xi r max,

x1 1 xi # k, i 5 2, + + + , n,

0 # x # h

and reduces to the one-dimensional optimization problem

5c1µ1 x1 1 (
i51

n

ci µi min~k 2 x1,hi ! r max,

0 # x1 # h1+
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We have chosen the following data for our numerical example: n 5 7 cells, k 5 4
channels, service ratesµ15 {{{ 5 µ751, and cost ratesc15 {{{ 5 c751+ The arrival
rates are given byl1 5 7, l2 5 6, l3 5 4+8, l4 5 5+3, l5 5 4+7, l6 5 5+1, and
l7 5 4+8+We will multiply the arrival ratesl i by a parameterl and varyl from 1 to
1+5+ It is easy to see that the solution of the linear program is the fixed channel
assignment policy which gives no channels to the sun and all channels to the planets
~independent ofl [ @1, 1+5# !+ If we introduce the scaling parameterg, it holds that
~cf+ McEliece and Sivarajan@10, Sect+ 6# !

lim
gr`

Erlk{g~ rg! 5 H r 2 k

r
if r . k

0 if r # k

and the mappingg ° Erlk{g~ rg! is decreasing ing+ Thus, for our data, it holds that

(i52
7 Erl4{g~l ig! $ 1+277 . 1, which implies that the same fixed channel assign-

ment policy is, indeed, optimal for all values ofg ~see Section 2!+This is an example
where the asymptotically optimal fixed channel assignment policy coincides with
the optimal channel assignment policy for allg+ In Figure 3, the expected minimal
average costs are plotted for different arrival rates~multiplied by l! and different
scaling parametersg 51, 5, and 50+ The lower black line is the lower bound of the
linear program+

Figure 3. V LP andGFCA
g 5 Gg for g 5 1, 5, and 50 and 1# l # 1+5+

CHANNEL ASSIGNMENT POLICIES 97

https://doi.org/10.1017/S0269964802161067 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964802161067


7.2. Fully Connected Network

The limiting state space of the fully connected network isS`5 $x [ R1
n 6x11 {{{ 1

xn # k% +Consequently, the linear program of Section 5~without constant! reduces to
the following knapsack problem:

~LP! 5(
i51

n

ci µi xi r max,

(
i51

n

xi # k,

0 # x # h+

Suppose thatc1µ1 $ c2µ2 $ {{{ $ cnµn; then, the solution of the linear program is
given byx1

*5 h1, + + + , xn
*5 hn, xn11

* 5 k2 (i51
n hi , xn12

* 5 0, + + + , xn
*5 0, wheren 5

max$m6(i51
m hi # k% + Hence, the asymptotically optimal fixed channel assign-

ment policy assigns{hi } channels to celli, i 51, + + + ,n, {k2(i51
n21 hi } channels to cell

n 11 and no channels to the remaining cells+We have chosen the following data for
our numerical example: n5 6 cells, k5 4 channels, service ratesµ1 5 {{{ 5 µ7 51,
and cost ratesc15 {{{ 5 c751+The arrival rates are given byl15 {{{ 5l65l+The
parameterl will be varied from 0 to 4+ In this case, it follows easily~see Section 2!
that maximum packing is optimal for anyg+

In Figure 4, the performance of maximum packing is compared to the perfor-
mance of the asymptotically optimal fixed channel assignment policy withg 5 1+
This is an example in which the asymptotically optimal fixed channel assignment

Figure 4. G 5 Gmax packandGFCA for 0 # l # 4+
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policy is indeed suboptimal for allg and differs completely from the optimal as-
signment policy+ For g tending to infinity, both assignment rules achieve the lower
bound+ Figure 5 shows the expected average cost under FCA for different arrival
ratesl and different scaling parametersg 51, 5, and 50+ The lower black line is the
lower bound of the linear program+
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