
J. Appl. Prob. 53, 130–145 (2016)
doi:10.1017/jpr.2015.14

© Applied Probability Trust 2016

WEAKENING THE INDEPENDENCE ASSUMPTION
ON POLAR COMPONENTS: LIMIT THEOREMS FOR
GENERALIZED ELLIPTICAL DISTRIBUTIONS

MIRIAM ISABEL SEIFERT,∗ Helmut Schmidt University Hamburg

Abstract

By considering the extreme behavior of bivariate random vectors with a polar repre-
sentation R(u(T ), v(T )), it is commonly assumed that the radial component R and the
angular component T are stochastically independent. We investigate how to relax this
rigid independence assumption such that conditional limit theorems can still be deduced.
For this purpose, we introduce a novel measure for the dependence structure and present
convenient criteria for validity of limit theorems possessing a geometrical meaning. Thus,
our results verify a stability of the available limit results, which is essential in applications
where the independence of the polar components is not necessarily present or exactly
fulfilled.
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1. Introduction

Analyzing and predicting extreme events for random vectors is of particular interest in
numerous applications. In contrast to the univariate case, there are different ways to define the
term extreme event by a requirement that one or several or even all of the vector components
have to be large simultaneously. An effective approach for the analysis of multivariate extreme
values was introduced by Heffernan and Tawn (2004). They examined the distribution tail of
a random vector in terms of the conditional distribution, given that one of the components of
the random vector becomes large. This approach was further developed and extended to the
conditional extreme value model by Heffernan and Resnick (2007) and Das and Resnick (2011).

Conditional limit statements for elliptical and more general random vectors possessing a po-
lar representation (X, Y ) = R(u(T ), v(T ))with radial componentR and angular component T
were intensively investigated among others by Berman (1983), Abdous et al. (2005), Fougères
and Soulier (2010), Hashorva (2012), and Seifert (2014). The latter three articles show that
rather weak and local assumptions on the coordinate functions u and v are sufficient to derive
limit statements. But one assumption made is very rigid, namely thatR and T are stochastically
independent. This requirement is global and unstable such that its validity is assumed to hold
even in regions which are not important for the limit behavior.

A possibility to weaken this independence assumption would underscore a certain stability
of the polar extreme value model with respect to the above mentioned limit results, which is of
particular interest for statistical inferences in applications. Hence, a natural question remains
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Weakening the independence assumption on polar components 131

open: how much can we deviate from the stochastic independence of the polar components R
and T such that we still obtain a conditional limit result for (X, Y ) = R(u(T ), v(T ))? Up to
now, to the best of the author’s knowledge, there is only one result in this direction, presented in
the book of Balkema and Embrechts (2007), which does not explicitly use polar representations.

In this paper we introduce a novel approach for weakening the independence assumption.
After definitions in Section 2, we present in Section 3 the extreme value model with independent
polar components where the radial component R belongs to the Gumbel max-domain of
attraction with some auxiliary function ψ . We unite two important results from Fougères and
Soulier (2010) and Seifert (2014) in Theorem 1, and deduce a new Theorem 2 for dependent
polar components which states: the limit results still hold if the conditional distributions of R,
given T = t , have a similar tail behavior with asymptotically equivalent auxiliary functionsψt .

In order to verify such a condition in empirical applications, we develop convenient and
model-independent geometric criteria. We describe the dependence between R and T by
comparing R(u(T ), v(T )) with some reference model R̃(u(T ), v(T )), where R̃ and T are
independent. The difference between the conditional distribution functions Ht(r) = P(R ≤
r | T = t) and the reference distribution function H̃ (r) = P(R̃ ≤ r) is measured by shifts δt (r).
In Section 4 we show in Theorem 3 that the limit results still hold for relative shifts δt (r)/r
vanishing asymptotically for r → ∞. Furthermore, we deduce in Theorem 4 limit results
for relative shifts which tend to a t-dependent limit so that the auxiliary functions ψt are no
more asymptotically equivalent. In Section 5 we compare our approach for weakening the
independence assumption with Balkema and Embrechts’ approach. In Theorem 5 we analyze
cases where Theorem 4 extends their results.

2. Preliminaries

First we give the definitions and important properties of the regular and of �-variation; see
Resnick (1987), Geluk and de Haan (1987), and de Haan and Ferreira (2006). All considered
functions are assumed to be Lebesgue measurable. Two functions f and g are said to be
asymptotically equivalent if f (x)/g(x)→ 1 for x →∞ (written f ∼ g).

Definition 1. An eventually positive function f : (0,∞)→ R is said to be regularly varying
at∞ with index α ∈ R (written f ∈ RVα(∞)), if for all λ > 0 it holds that

lim
x→∞

f (λx)

f (x)
= λα. (1)

A function g : R → R is said to be regularly varying at t0 with index α ∈ R (written g ∈
RVα(t0)) if for all λ > 0 it holds that

lim
s→0

g(t0 + λs)
g(t0 + s) = λ

α. (2)

If g ∈ RVα(t0) fulfills lims↓0 |g(t0 + s)/g(t0 − s)| = 1, we call it infinitesimally symmetric
and write g ∈ RVsα(t0).

Remark 1. (i) The convergence in (1) and (2) is locally uniform in λ.

(ii) For g ∈ RVα(t0) it follows that g(t) 	= 0 for t ∈ (t0 − ε, t0 + ε) \ {t0} for some ε > 0.

(iii) For f ∈ RVα(∞) it holds that limx→∞ f (x) = 0 for α < 0, limx→∞ f (x) = ∞ for
α > 0.
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132 M. I. SEIFERT

(iv) If f is eventually positive and limx→∞ f (λx)/f (x) exists, is finite and positive for all λ in
a set of positive Lebesgue measure, then f ∈ RVα(∞) for some α ∈ R (De Haan and Ferreira
(2006, Theorem B.1.3)).

Definition 2. A nondecreasing function f is said to be �(ψ)-varying (with a positive auxiliary
function ψ) if for all z ∈ R it holds that limx→∞ f (x + zψ(x))/f (x) = ez.

We say that a random variable R on [0,∞) and its distribution function H (respectively
survival function H = 1−H ) are of type �(ψ) if 1/H is �(ψ)-varying, i.e. if for all z ∈ R it
holds that

lim
r→∞

P{R > r + zψ(r)}
P{R > r} = lim

r→∞
H(r + zψ(r))

H(r)
= e−z. (3)

Remark 2. (i) The auxiliary function ψ is unique up to asymptotic equivalence, i.e. a positive
functionψ2 is an auxiliary function forR of type�(ψ1) if and only ifψ1 ∼ ψ2. It can be chosen
to be differentiable satisfying limr→∞ ψ ′(r) = 0 (Geluk and de Haan (1987, Theorem 1.28(ii),
Corollary 1.29)).

(ii) A random variable R is of type �(ψ) if and only if R is in the Gumbel max-domain of
attraction with infinite right endpoint sup{r : H(r) < 1} = ∞.

(iii) A distribution function H is of type �(ψ) if and only if it possesses a von Mises represen-
tation:

H(r) = 1−H(r) = a(r) exp

(
−

∫ r

0
1/ψ(u) du

)
(4)

with limr→∞ a(r) = a ∈ (0,∞), Resnick (1987, Proposition 1.4).

3. From independent to dependent polar components

We consider bivariate random vectors (X, Y ) ∈ [0,∞)× (−∞,∞) on the right half-plane,
since we are interested in the asymptotic behavior for X becoming large. (X, Y ) can be
represented in Euclidean polar coordinates (X, Y )

d=A(cos�, sin�) with Euclidean distance
A ≥ 0 and Euclidean angle � ∈ [−π/2, π/2].

The popular class of elliptical distributions is described conveniently by

(X, Y )
d= R(cos T , ρ cos T +

√
1− ρ2 sin T ), ρ ∈ (−1, 1) (5)

with stochastically independent R and T , where T is uniformly distributed.
More generally, we investigate random vectors which possess a polar representation

(X, Y )
d= R(u(T ), v(T )) (6)

with polar components R and T and quite arbitrary coordinate functions u and v.
Such elliptical and generalized distributions were intensively investigated with respect to

their conditional limit behavior. A detailed overview of this research field is given in Fougères
and Soulier (2010) and Seifert (2014). In this paper we start with random vectors with polar
representation (6) fulfilling the following three assumptions.

Assumption 1. The following hold:

(i) R takes values in [0,∞) and T in [−π/2, π/2];
(ii) (R, T ) possesses a positive, continuous joint density fRT ;
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(iii) there exists a diffeomorphism τ of [−π/2, π/2] with derivative τ ′ > 0 such that � =
τ(T ) for the Euclidean angle �.

Assumption 2. The following hold:

(i) R is of type �(ψ);

(ii) R and T are stochastically independent.

Assumption 3. It holds that

u(t) = umax − l(t) for t ∈
[
−π

2
,
π

2

]
with some umax ∈ (0,∞),

v(t) = tan(t)u(t) for t ∈ (t0 − ε0, t0 + ε0)

with some ε0 > 0, where l : [−π/2, π/2] → [0, umax] has a unique zero at t0 ∈ (−π/2, π/2)
and its derivative l′ is RVsκ−1(t0) for some κ > 0. We denote ρ := (v/u)(t0) = tan(t0).

According to Remark 1(ii), in some ε-neighborhood (t0 − ε, t0 + ε) \ {t0} it holds that
l′ 	= 0 and, hence, u′ 	= 0. Thus, u increases strictly on (t0 − ε, t0) and decreases strictly on
(t0, t0+ε). As a consequence, l possesses two branches of inverses l−1± ∈ RV1/κ (0) on (−ε, 0)
respectively (0, ε). Assumption 3 implies that l is RVsκ (t0) and that u has the unique global
maximum umax at t = t0.

Remark 3. There is much freedom to select a polar representation (6). The angular com-
ponent T simply labels the rays y = γ x, γ ∈ R in the (x, y)-plane. We specify T (in
Assumption 3) to coincide locally with the Euclidean angle� and assume (in Assumption 1) a
diffeomorphism τ between T and �, which enables us to obtain the density fXY of (X, Y ) by
using fXY (a cos(ϑ), a sin(ϑ)) = fA�(a, ϑ)/a such that

fXY (ru(t), rv(t)) = fRT (r, t)

r(u2(t)+ v2(t))τ ′(t)
(7)

as a2 = r2(u2(t) + v2(t)), ϑ = τ(t). For the radial component R only a linear scal-
ing is allowed: (X, Y ) = R(u(T ), v(T )) also possesses the polar representation (X, Y ) =
R∗(u∗(T ), v∗(T )) with R∗ = cR and u∗ = u/c, v∗ = v/c. If c ∈ (0,∞) is a constant then
this is a global rescaling of R, often done to obtain max u∗ = 1 as in (5). If c is a nonconstant
function of T then this changes the dependence structure between the polar components; in
Theorem 4 we take advantage of this possibility.

With k = κ−1/κ l−1+ for ζ ≥ 0, k = −κ−1/κ l−1− for ζ < 0, as well as

G(ζ) = 1

2κ1/κ−1�(1/κ)

∫ ζ

−∞
exp

(
−|s|

κ

κ

)
ds,

we state results of Fougères and Soulier (2010) for variation indices κ > 1, and of Seifert
(2014) for κ > 0 using random norming (cf. Heffernan and Resnick (2007)) with the bound
on Y evaluated not at the threshold x but at the actual value X.
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Theorem 1. (Independent polar components.) Let (X, Y ) = R(u(T ), v(T )) satisfy Assump-
tions 1, 2, and 3. Then for all ξ > 0, ζ ∈ R, and κ > 1 it holds that

lim
x→∞P

(
X ≤ x + ψ(x)ξ, Y ≤ ρx + xk

(
ψ(x)

x

)
ζ

∣∣∣∣ X > x

)
= (1− e−ξ )G(ζ ), (8)

and for arbitrary κ > 0 it holds that

lim
x→∞P

(
X ≤ x + ψ(x)ξ, Y ≤ ρX +Xk

(
ψ(X)

X

)
ζ

∣∣∣∣ X > x

)
= (1− e−ξ )G(ζ ). (9)

Note that the radial component R influences the limit statements of Theorem 1 only by its
tail behavior characterized by the auxiliary function ψ .

Now we deduce a generalization ofTheorem 1, whereR andT do not have to be stochastically
independent anymore. We assume the conditional distribution functions

Ht(r) = P(R ≤ r | T = t), r ∈ (0,∞), t ∈
[
−π

2
,
π

2

]
(10)

to be of type �(ψt ) with asymptotically equivalent auxiliary functions ψt , i.e. there exists
some ψ with ψt ∼ ψ for all t . Then the distinction among the Ht is captured by the at in the
von Mises representation, cf. Remarks 2(i) and 2(iii).

Theorem 2. (Dependent polar components with similar conditional tails.) Let (X, Y ) =
R(u(T ), v(T )) satisfy Assumptions 1 and 3. Instead of Assumption 2, let T have a positive,
continuous marginal density and Ht(r) = at (r) exp(−∫ r

0 1/ψ(u) du) with at (r) → at > 0
uniformly in t for r →∞. Then the limit statements (8) and (9) hold.

The proof of Theorem 2 is provided in Section 6.

Remark 4. The distribution of (X, Y ) according to Theorem 2 might differ substantially from
those with independent polar components, even in the asymptotic region; see Example 2 with
Figure 2.

4. Geometric dependence measure and criteria for limit theorems

Here we present criteria formulated in terms of the distributions (not using the auxiliary
functions) which allow us to apply Theorem 2. We describe the dependence betweenR and T by
comparing (X, Y ) = R(u(T ), v(T ))with a reference model (X̃, Ỹ ) = R̃(u(T ), v(T )). Hereby,
(X, Y ) fulfills only Assumptions 1 and 3, but (X̃, Ỹ ) fulfills also Assumption 2, in particular R̃
and T are independent. We denote quantities with respect to R̃ by a tilde: distribution H̃ ,
densities h̃, fR̃T and fX̃Y , etc.

The distance between the corresponding distributions H̃ of R̃ andHt from (10) is measured
by δ : [−π/2, π/2] × (0,∞)→ R, (t, r) �→ δt (r) with

δt = (H̃← −H←t ) ◦Ht ⇐⇒ Ht(r) = H̃ (r + δt (r)). (11)

The asymptotics of H̃ should correspond to that of the Ht . Besides that, the choice of H̃
is free; we assume for later considerations on densities that h̃ is monotonically decreasing.
Note that (R, T ) as well as (R̃, T ) fulfill Assumption 1(ii); hence, δt (r) is continuous in t and
continuously differentiable in r , and the Ht possess densities ht .
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Weakening the independence assumption on polar components 135

Figure 1: Meaning of δt : (a) distribution functions H̃ (solid), Ht (dashed); (b) their level lines for
r = 1, 2, 3.

In Figure 1(a) we illustrate the meaning of δt (r). In Figure 1(b) we illustrate δt in the
(x, y)-plane (considering r as a function of x, y) as a radially directed vector field δt (r)e with
e = (1/r)(x, y) = (u(t), v(t)). The sets {r = r1} = {H̃ (r) = f1} with f1 = H̃ (r1) do not
coincide with {Ht(r) = f1} but differ from them by the shifts δt (r1)e.

Each of the following two assumptions guarantees that all Ht are of type � with asymptoti-
cally equivalent auxiliary functions.

Assumption 4. The following hold:

(i) ψ̃ ∈ RVα(∞);
(ii) δ′t (r)→ 0 uniformly in t for r →∞.

In the standard cases of elliptical vectors with R̃ of type �(ψ̃), e.g. bivariate normal, Kotz,
and logistic distributions, the auxiliary function ψ̃ is regularly varying and, hence, fulfills
Assumption 4(i). However, if H̃ cannot be chosen such that it possesses a regularly varying ψ̃
then we have the following assumption.

Assumption 5. The following hold:

(i) δt (r)ψ̃ ′(r)/ψ̃(r)→ 0 for r →∞;

(ii) δ′t (r)→ 0 uniformly in t for r →∞.

Note that Assumptions 4 and 5 do not exclude shifts δt (r)→∞; see Example 2.
Geluk and de Haan (1987) investigated the class of �-varying functions and provided their

major properties. We state one result (in their proof of Proposition 1.31(3)) in the following
lemma.

Lemma 1. Let H̃ be a distribution function of type �(ψ̃) and w a differentiable function with
w′ ∈ RVβ(∞), β > −1. Then the composition H̃ ◦ w is of type �((ψ̃ ◦ w)/w′).
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136 M. I. SEIFERT

Under Assumption 4(ii) or 5(ii) for (11), this lemma with wt(r) = r + δt (r), i.e. w′t ∈
RV0(∞), shows that all Ht are of type �(ψt ) with

ψt(r) = ψ̃(r + δt (r))
1+ δ′t (r)

∼ ψ̃(r + δt (r)). (12)

With Assumption 4(i) or 5(i), we have the following proposition.

Proposition 1. Under Assumption 4 or 5, the conditional distribution functions Ht defined
in (10) are of type �(ψ̃) for all t ∈ [−π/2, π/2].

Proof. Under Assumption 4, with Remark 1(i) and λt (r) := 1+ δt (r)/r → 1 for r →∞,
it follows that

ψ̃(r + δt (r))
ψ̃(r)

= ψ̃(λt (r)r)

ψ̃(r)
→ 1.

Under Assumption 5, it follows that for r →∞,

ψ̃(r + δt (r))
ψ̃(r)

= exp(ln ψ̃(r + δt (r))− ln ψ̃(r))

∼ exp(δt (r)(ln ψ̃(r))
′)

= exp

(
δt (r)

ψ̃ ′(r)
ψ̃(r)

)
→ 1.

Consequently, in both cases we have ψt(r) ∼ ψ̃(r) for all t ∈ [−π/2, π/2] and r → ∞.
Remark 2(i) yields that ψ̃ is an auxiliary function for all Ht . �

Example 1. We consider ψ̃(r) = f (r) exp(−γ rτ ) for γ, τ > 0 with f ′ ∈ RVα−1(∞) and
α ∈ R as an example for a not regularly varying auxiliary function.

Let δ′t (r)→ 0 for r →∞. With λt (r) := 1+ δt (r)/r and (12), we obtain

ψt(r)

ψ̃(r)
∼ ψ̃(λt (r)r)

ψ̃(r)
= f (λt (r)r)

f (r)
exp(−γ rτ [(λt (r))τ − 1]).

It holds that

ψt(r) ∼ ψ̃(r) ⇐⇒ −γ rτ ((λt (r))τ − 1) = −γ r
τ τδt (r)

r
+ o

(
δt (r)

r

)
→ 0,

or, equivalently, δt (r) = o(r1−τ ), i.e. the bounding condition for δt in Assumption 5(i) is just
fulfilled:

δt (r)
ψ̃ ′(r)
ψ̃(r)

= δt (r)
(
f ′(r)
f (r)

− γ τrτ−1
)
→ 0.

Thus, weakening Assumption 5 is not possible, as it would violate ψt ∼ ψ̃ .

Lemma 2. Under Assumption 4(ii) or 5(ii) for (11), the functions at (r) from the von Mises
representation of Ht(r) converge to ã of H̃ uniformly in t for r →∞.
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Proof. Assumptions 4(ii) and 5(ii)) imply the existence of D := max(|δ′t (r)|) as well as of
a monotonic sequence ξn → ∞ such that for all t and r > ξn it holds that |δ′t (r)| ≤ D2−n;
hence, |δt (r)| ≤ |δt (ξn)| +D2−n(r − ξn). Thus, all graphs of |δt | lie below a polygon of lines
between ξn and ξn+1 with slopes D2−n → 0 and, consequently, δt (r)/r → 0 uniformly in t
for r → ∞. Hence, for at and ã from the von Mises representations of Ht and of H̃ it holds
that at (r) = ã(r(1+ δt (r)/r))→ ã uniformly in t for r →∞. �

Proposition 1 and Lemma 2 show that for δt (r) fulfilling Assumption 4 or Assumption 5, we
can apply Theorem 2 and obtain the following theorem.

Theorem 3. (Dependent polar components, asymptotically vanishing relative shifts.) Let the
reference model (X̃, Ỹ ) fulfill Assumptions 1 and 2 (with fR̃T and ψ̃), and let (X, Y ) =
R(u(T ), v(T )) satisfy Assumptions 1, 3, and 4 or Assumptions 1, 3, and 5. Then the limit
statements (8) and (9) hold.

Example 2. We start with the elliptical normal distribution with correlation ρ = 0.5 as the
reference model (X̃, Ỹ ), i.e. H̃ (r) = 1− exp(−r2/2). We choose the shifts

δt (r) =
√

r3 sin2(t)

(1+ r2 sin2(t))
= √r sin(arctan(r sin(t)))

fulfilling the assumptions of Theorem 3. As t0 = 0 and δ0(r) = 0, H̃ coincides with H0.
In Figure 2(a) we compare the level lines of the joint densityfXY of (X, Y )with the dependent

polar components to those of the reference density fX̃Y (dashed ellipses) of (X̃, Ỹ ). Along
some t-rays, the distance between the level lines of fXY and fX̃Y becomes arbitrarily large as
δt (r)→ ∞, which is not excluded by δ′t (r)→ 0. We can also see that the level lines do not
possess their maximal x-values on the ray y = ρx any longer, not even along any other fixed
ray. However, Theorem 3 verifies that the limit results (8) and (9) hold with unchanged ρ,
which means that the asymptotic behavior of (X, Y ) is still determined by an arbitrarily small
sector around the ray {y = ρx} = {t = t0}.

Figure 2: For Example 2. Level lines of the density of (X, Y ) illustrating
(a) Theorem 3 and (b) Corollary 2(i).
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Now we generalize Theorem 3 by considering relative shifts δ′t (r) which do not vanish
asymptotically but tend to a t-dependent limit, i.e. the auxiliary functions ψt are no longer
asymptotically equivalent. For this purpose, we construct another polar representation for
(X, Y ) with a new radial component R∗ counterbalancing the T -dependence and make the
following assumptions.

Assumption 6. The following hold:

(i) ψ̃ ∈ RVα(∞), α < 1;

(ii) δ′t (r) → c(t) − 1 uniformly in t for r → ∞ with some function c : [−π/2, π/2] →
(0,∞).

Assumption 7. Let u : [−π/2, π/2] → [0, 1], v : [−π/2, π/2] → R be such that u∗ := u/c
and v∗ := v/c fulfill Assumption 3 (with corresponding quantities u∗max, l∗, t∗0 , κ∗, ρ∗).

Proposition 2. Under Assumption 6 for (11), the conditional distribution functions Ht are of
type �(ψt ) with ψt(r) ∼ cα−1(t)ψ̃(r) for r →∞.

Proof. With Lemma 1 and λt (r) := 1+ δt (r)/r → c(t) for r →∞, it follows that

ψt(r) = ψ̃(r + δt (r))
1+ δ′t (r)

∼ ψ̃(λt (r)r)

ψ̃(r)

ψ̃(r)

c(t)
∼ cα(t) ψ̃(r)

c(t)
. �

Remark 5. Assumption 6 is the counterpart to Assumption 4 for ψ̃ ∈ RVα(∞). There exists
no analogue to Assumption 5 for ψ̃ /∈ RVα(∞) because of the following argument. If δ′t →
c(t)− 1 with a continuous nonconstant c(t) and it holds that ψt ∼ a(t)ψ̃ , a(t) ∈ (0,∞) as in
Proposition 2, then ψ̃ has to be regularly varying.

This can be shown by the following argument. We have δt (r) = (c(t)− 1)r + o(r); hence,
with Lemma 1 it follows that ψt(r)/ψ̃(r) ∼ (1/c(t))ψ̃(c(t)r)/ψ̃(r) ∼ a(t). Remark 1(iv)
implies that ψ̃ is regularly varying.

What happens for not regularly varying ψ̃ can be seen in this example. For H̃ (r) = 1 −
exp(1− er ), ψ̃(r) = e−r , the quotient ψ̃(c(t)r)/ψ̃(r) = exp(−(c(t)− 1)r) tends to 0 or to∞
for c(t) 	= 1.

Now we construct forR(u(T ), v(T )) a new polar representationR∗(u∗(T ), v∗(T )), keeping
the angular component T but changing the radial component as follows.

Proposition 3. Let be R∗ = c(t)R for T = t . Then, under Assumptions 6 and 7, the
distributions H ∗t (r) = P(R∗ ≤ r | T = t) are of type �(ψ̃) for all t ∈ [−π/2, π/2].

Proof. Lemma 1 with wt(r) = r/c(t) yields that H ∗t ∈ �(ψ∗t ) with auxiliary functions
ψ∗t (r) = c(t)ψt (r/c(t)). Under Assumptions 6 and 7, and with Proposition 2, we have
ψ∗t (r)/ψ̃(r) = c(t)cα−1(t)ψ̃(r/c(t))/ψ̃(r) ∼ cα(t)c−α(t) = 1. Thus, all H ∗t ∈ �(ψ̃).

�
Lemma 3. Under Assumption 6(ii) for (11), the functions a∗t (r) from the von Mises represen-
tation of H ∗t (r) converge to ã of H̃ uniformly in t for r →∞.

Proof. From H ∗t (r) = Ht(r/c(t)) it follows that δ∗t (r) = (1/c(t) − 1)r + δt (r/c(t)). We
decompose δt (r) = 1δt (r)+ 2δt (r) with 1δt (r) = (c(t)− 1)r and 2δ

′
t (r)→ 0. Then Lemma 2

implies that both δt (r)/r → c(t)− 1 and δ∗t (r)/r → 0, and, hence, a∗t (r)→ ã uniformly in t
for r →∞. �
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Proposition 3 and Lemma 3 show that for (X, Y ) = R∗(u∗(T ), v∗(T )) we can apply
Theorem 2 and obtain the following theorem.

Theorem 4. (Dependent polar components, asymptotically finite relative shifts.) Let the refer-
ence model (X̃, Ỹ ) fulfillAssumptions 1 and 2 (withfR̃T and ψ̃), and let (X, Y ) = R(u(T ), v(T ))
satisfy Assumptions 1, 6, and 7. Then the limit statements (8) and (9) hold with ρ∗, κ∗, and l∗.

In the situation of Theorem 4, we demand Assumption 3 only for the new coordinate
functions u∗ and v∗ so that the limit statements depend on their parameters.

Given a polar random vector as in Section 3 (fulfilling Assumptions 1, 2, and 3) for the
original u and v, how much can we deviate from the independence of R and T such that the
original limit statements remain valid? The next corollary gives an answer.

Corollary 1. Let (X, Y ) = R(u(T ), v(T ))have coordinate functionsuandv fulfillingAssump-
tion 3 and dependent polar components fulfilling Assumptions 1 and 6 with (c− 1) ∈ RVsβ(t0)
for some β > κ and umax = u∗max. Then, the limit statements (8) and (9) hold with the original
parameters ρ and κ .

Proof. The condition (c − 1) ∈ RVsβ(t0) implies that (1− 1/c) ∈ RVsβ(t0). Hence,

l∗ = u∗max − u∗ = u∗max −
u

c
=

(
umax − u+

(
1− 1

c

)
u

)
∈ RVsκ (t0). �

Example 3. Here we present an example for a polar random vector (X, Y ) according to
Theorem 4 and choose the same reference model as in Example 2, but now with

δt (r) = r(c(t)− 1)+ sin(r)t
4
√
r + 2

, c(t) = t

2
sin(−|3t |)+ 1.

Since (c− 1) ∈ RVs1(0), the criterion of Corollary 1 is not fulfilled. The limit statements of
Theorem 4 hold for κ∗ = 2, u∗max = 1.009 95, t∗0 = −0.289 84, and ρ∗ = 0.244 13.

In Figure 3(a) we display—analogously to Figure 2(a)—level lines of the joint density fXY
and those of the reference density fX̃Y (dotted ellipses). In Figure 3(b) the curve (u∗(t), v∗(t))
(solid line) is contrasted to the reference curve (u(t), v(t)) (dotted line). Note that the reference
curve coincides with one of the level lines of fX̃Y , while the curve (u∗(t), v∗(t)) in general
does not coincide with any level line of fXY .

The functions δt introduced as the shifts between the distributions Ht of R and H̃ of R̃ also
provide information about the density fXY of (X, Y ). We compare fXY with the density fX̃Y
of the reference model (X̃, Ỹ ) = R̃(u(T ), v(T )). An interpretation of the first statement in
the following corollary is given in Figure 2(b): in the context of Theorem 3, δt (r) displays the
asymptotic distance between the level lines offXY andfX̃Y measured by the radial componentR
(not by the Euclidean distance).

Corollary 2. (i) Let (X, Y ) and (X̃, Ỹ ) fulfill the assumptions of Theorem 3. Then

fXY (r(u(t), v(t))) ∼ fX̃Y ((r + δt (r))(u(t), v(t))) for r →∞.
(ii) Analogously, under the assumptions of Theorem 4 it holds that for r →∞,

fXY (r(u(t), v(t))) ∼ c2(t)fX̃Y ((r + δt (r))(u(t), v(t)))
= fX̃Y ((r + δt (r))(u∗(t), v∗(t))).
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Figure 3: For Example 3. (a) Level lines of the density of (X, Y ) illustrating Theorem 4
(b) Curve (u∗(t), v∗(t)) (solid) in contrast to (u(t), v(t)) (dotted).

In Examples 2 and 3 we point out the meaning of Theorems 3 and 4 for given shifts δt (r).
But in concrete situations, one usually starts from the (estimated) distributions and calculates
the shifts, which is considered in the following example.

Example 4. Consider a mixture of normal distributions with survival functions 1Ht(r) =
exp(−r2/(2σ 2

t )), where σt is continuous in t and other distributions with a quicker tail de-
cay 2Ht(r) = exp(−ft (r)), where f : [−1, 1] × (0,∞) → [0,∞) is continuous in t and
differentiable in r fulfilling ft (0) = 0, f ′t (r) > 0, and ft (r)/r2 →∞ for r →∞,

Ht(r) = 1− a(t) exp

(
− r2

(2σ 2
t )

)
− b(t) exp(−ft (r)),

where a and b are positive continuous functions with a(t)+ b(t) = 1.
The natural choice of the reference model is H̃ (r) = 1 − exp(−r2/2), and we derive the

corresponding shifts from H̃ (r + δt (r)) = Ht(r) as

− (r + δt (r))
2

2
= lnHt(r) �⇒ δt (r) = −r +

√
−2 lnHt(r) ≥ −r. (13)

For r →∞ it holds that

Ht(r) = exp

(
− r2

(2σ 2
t )
+ ln a(t)

)[
1+ exp

(
−ft (r)+ r2

(2σ 2
t )
+ ln

(
b(t)

a(t)

))]
= exp

(
− r2

(2σ 2
t )
+ ln a(t)

)[
1+

(
b(t)

a(t)

)
exp

(
−r2

(
ft (r)

r2 −
1

(2σ 2
t )

))]
∼ exp

(
− r2

(2σ 2
t )
+ ln a(t)

)
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and, hence, with (13), we have

δt (r) ∼ −r +
√
r2

σ 2
t

− 2 ln a(t) ∼ r
(
−1+

(
1− σ 2

t ln a(t)/r2

σt

))
.

For σ 2
t = 1 the shifts δt (r) ∼ − ln a(t)/r fulfill the assumptions from Theorem 3. For σ 2

t 	= 1
it holds that δt (r) ∼ r(1− σt )/σt according to Theorem 4 with c(t) = 1/σt .

Remark 6. The result in Example 4 is as expected. The component of the distribution with
the quicker tail decay is asymptotically negligible, the t-dependence of the variance can be
removed with a change of the radial component. Theorems 2, 3, and 4 give a safe mathematical
basis for such plausibility arguments.

Remark 7. If δ′t ∈ RVβ(∞) with β > 0 then no scale transformation of R permits to apply
Theorem 2 as Lemma 1 shows. If δ′t /∈ RVβ(∞) there exist cases with ψt ∼ ψ for all t
although δ′t (r) does not converge to 0, as the following example shows. We have Ht(r) =
exp(−r − t sin(r)/π) are of type �(1) for all t , but the shifts with respect to H̃ = H0 yield
δ′t (r) = t cos(r)/π not converging to 0 or to some other limit.

5. Comparison with Balkema and Embrechts’ approach

Now we contrast our geometric approach for weakening the independence assumption to
those of Balkema and Embrechts (2007). They do not explicitly use polar representations;
however, in the bivariate case their model can be reformulated in terms of a polar representation
for (X, Y ) with κ = 2 and R ∈ �(ψ). Balkema and Embrechts (2007) transfer the limit result
in their Theorem 9.1 (p. 137) for some random vector with density fX̃Y to another one in their
Theorem 11.2 (p. 158) with density

fXY (ru(t), rv(t)) = Q(r, t)fX̃Y (ru(t), rv(t)), (14)

where Q is in L, meaning that

Q(r, t) := Q(r + r0, t)
Q(r, t)

, lim
r→∞Q(r, t) = 1 for all r0 > 0 and all t .

Under Assumption 1, Q is also the quotient fRT /fR̃T , cf. (7).
This paper extends the results of Balkema and Embrechts (2007) for the bivariate case in the

sense that we consider more general polar distributions with arbitrary κ > 0. But even forκ = 2,
we cover cases not included by Balkema and Embrechts (2007), i.e. with limr→∞Q(r, t) 	= 1,
as it is shown in the following theorem.

Theorem 5. (Ratio of densities.) Let (X, Y ) fulfill the assumptions of Theorem 4, then for Q
from (14) we obtain the following results, depending on the variation index α of the auxiliary
function ψ̃ and the values of the function c from Assumption 6.

(a) For α < 0 (i.e. ψ̃(r)→ 0): for t with c(t) < 1,= 1, > 1, we have limr→∞Q(r, t) =
0,= 1,= ∞, respectively.

(b) For α > 0 (i.e. ψ̃(r)→∞): we have limr→∞Q(r, t) = 1.

(c) For α = 0: we have: if ψ̃(r)→ 0 or ψ̃(r)→∞, then (a) or (b) holds, respectively; if
ψ̃(r) → k ∈ (0,∞) then it holds that limr→∞Q(r, t) = exp((1 − 1/c(t))r0/k) for t
with c(t) 	= 1 and limr→∞Q(r, t) = 1 for t with c(t) = 1.
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Proof. With (7), we obtain

Q(r, t) = fXY (ru(t), rv(t))

fX̃Y (ru(t), rv(t))
= fRT (r, t)

fR̃T (r, t)
= ht (r)

h̃(r)
= (1+ δ′t (r))

h̃(r + δt (r))
h̃(r)

.

Hence, we have

Q(r, t) = 1+ δ′t (r + r0)
1+ δ′t (r)

h̃(r + r0 + δt (r + r0))
h̃(r + r0)

h̃(r)

h̃(r + δt (r))
∼ h̃(r)

h̃(r + δt (r))
h̃(r + r0 + δt (r + r0))

h̃(r + r0)
∼ exp

(∫ r+δt (r)

r

1

ψ̃(u)
du

)
exp

(
−

∫ r+r0+δt (r+r0)

r+r0
1

ψ̃(u)
du

)
. (15)

For the last step, we exploit the fact that 1/(1 − H̃ ) and 1/h̃ are �(ψ̃)-varying due to the
assumed monotony of h̃ (with l’Hospital in (3), ψ̃ ′ → 0). Thus, we can apply the von Mises
representation (4) for h̃. As ψ̃ ∈ RVα(∞) with α < 1 (Assumption 6), it holds that S(x) :=∫ x

0 1/ψ̃(u) du ∈ RV1−α(∞) with a positive variation index; hence,

exp

(∫ r+δt (r)

r

1

ψ̃(u)
du

)
= exp

(
S(r)

(
S((1+ δt (r)/r)r)

S(r)
− 1

))
∼ exp(S(r)(c1−α(t)− 1)).

Putting the last expression into (15), we finally obtain

Q(r, t) ∼ exp((c1−α(t)− 1)(S(r)− S(r + r0))) = (exp(c1−α(t)− 1))S(r)−S(r+r0). (16)

The limit of (16) results from the behavior of S: for α < 0 the variation index of S is 1−α > 1,
and for α > 0 it is 1− α < 1, and for α = 0 it is 1− α = 1. �
Remark 8. (i) For the situation considered in Theorem 3 with δ′t → 0, i.e. c ≡ 1, the density
quotient Q is in L as in Balkema and Embrechts (2007).

(ii) The case distinction in Theorem 5 corresponds to the tail behavior of H̃ . If 1− H̃ decreases
at least exponentially fast (‘light tail’), we are in case (a) or (c) and generallyQ /∈ L. If 1− H̃
decreases slower than any exponential but faster than any power function (‘mildly heavy tail’),
we are in case (b) and Q ∈ L.

(iii) In Example 4 (for σ 2
t 	= 1), the correspondingQ is not in L, the quotient Q(r, t) tends to 0

if σ 2
t < 1 or to∞ if σ 2

t > 1. Thus, this example is not covered by the theorem of Balkema and
Embrechts (2007).

Our approach to measure the dependence between the polar components R and T with the
shifts δt (r) is intuitive and is based primarily on distributions and not on densities. Both criteria
for δt (r) provided in Theorem 3 and in Theorem 4 possess a geometrical interpretation, while
Balkema and Embrechts (2007, p. 158) ‘warn the reader that functions from the class L are not
as tame as they may seem’.

To sum it up, describing random vectors using a polar representationR(u(T ), v(T )) permits
a lot of freedom in modeling the asymptotic behavior as it requires only weak and local
assumptions on u and v. Allowing a certain dependence between R and T , we show validity
of the limit results, which is of importance for empirical applications.
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6. Proof of Theorem 2

To prove Theorem 2 we follow the strategy of the proof for independentR and T in Fougères
and Soulier (2010), cf. Seifert (2014). The additionally required steps are presented in the
following. Under the assumptions of Theorem 2 for anyp > 0, α > 1 there exist t-independent
constants Cp, Cp,α such that for x large enough and z ≥ 0,

Ht(x + zψ(x))
H t (x)

≤ Cp(1+ z)−p, H t (αx)

H t (x)
≤ Cp,α

(
ψ(x)

x

)p
, (17)

and for k̆ ∈ RVα(0) with α > −1 bounded on compact subsets of (0,∞] it holds that, locally
uniformly in d ≥ 0,

lim
x→∞

∫ ∞
d

H t(z)(x + zψ(x))
H t(z)(x)

k̆(zψ(x)/x)

k̆(ψ(x)/x)
dz =

∫ ∞
d

e−zzα dz. (18)

For H instead of Ht , this is shown in Fougères and Soulier (2010, Lemmas 5.1 and 5.2). So it
remains to prove that the constants can be chosen independent of t . The condition at (x)→ at
uniformly in t implies that for all A > 1 and x large enough it holds that 1/

√
A ≤ at (x)/at ≤√

A and 1/
√
A ≤ at (x + zψ(x))/at ≤

√
A. Thus, we have

1

A
≤

(
Ht(x + zψ(x))

H t (x)

)
exp

(∫ x+zψ(x)

x

1

ψ(u)
du

)
= at (x + zψ(x))

at (x)
≤ A.

Now we sketch the proof of Theorem 2. The probability of a set Bxy := {X > x, Y > y}
with y > 0 is calculated by integrating the conditional survival function Ht over the boundary
of Bxy parameterized by t ∈ (t−, π/2), where t− := τ−1(0) with τ from Assumption 1(iii)
and g denoting the continuous and positive marginal density of T . Thus,

P{X > x, Y > y} =
∫ π/2

t−
Ht

(
max

(
x

u(t)
,
y

v(t)

))
g(t) dt

=
∫ t1(x)

t0−ε
H t

(
y

v(t)

)
g(t) dt

+
∫ t0+ε

t1(x)

H t

(
x

u(t)

)
g(t) dt +

∫
|t−t0|>ε

H t

(
max

(
x

u(t)
,
y

v(t)

))
g(t) dt

=: I (x)+ J (x)+ rem(x) (19)

with an arbitrary ε ∈ (0, t−), y = ρx + xk(ψ(x)/x)ζ with k from (8), and t1(x) :=
(v/u)−1(y/x) = arctan(ρ + k(ψ(x)/x)ζ )→ arctan(ρ) = t0 for x →∞.

We treat the case ρ > 0, t0 ≤ t1(x) < t0 + ε, from which the other cases can be deduced as
in Seifert (2014). For dependent R and T the mean value theorem is required:

J (x) = Hq(x)(x)

∫ t0+ε

t1(x)

(
Ht(x/u(t))

H t (x)

)
g(t) dt =: Hq(x)(x)L(x) (20)

for some mean value q(x) ∈ (t1(x), t0 + ε). For x → ∞ it holds that J (x) ∼ Ht0(x)L(x),
as we show later, cf. (21). Analogously to the proof presented in Seifert (2014, Theorem 1
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with τ = 0), a substitution t �→ z is made such that the argument of H becomes x + zψ(x)
and (18) can be applied such that for x →∞, we have

J (x) ∼ Ht0(x)κ
1/κ−1kJ

(
ψ(x)

x

) ∫ ∞
|ζ |κ /κ

e−zz1/κ−1 dz,

I (x) ∼ Ht0(x)kI

(
ψ(x)

x

)
fζ (x)

∫ ∞
|ζ |κ /κ

e−z dz

with kJ ∈ RV1/κ (0) and kI ∈ RV1+1/κ (0) for ρ = 0, kI ∈ RV1(0) for ρ 	= 0, and some
bounded function fζ . Since for κ > 1 as well as for ρ = 0 the variation index of kJ is smaller
than that of kI , and it follows that I (x) = o(J (x)) for x →∞.

Since u has a unique global maximum 1 at t0, for all ε > 0 there exists an ηε ∈ (0, 1) with
u(t) < 1− ηε for all |t − t0| > ε. The mean value theorem for some |q̆ − t0| > ε yields

rem(x) ≤
∫
|t−t0|>ε

H t

(
x

u(t)

)
g(t) dt ≤ Hq̆

(
x

1− ηε
) ∫
|t−t0|>ε

g(t) dt ≤ Hq̆

(
x

1− ηε
)
.

The second statement of (17) implies that for α > 1, p > 0, and for all q there exists a
Cq,p,α with Hq(αx)/H t0(x) ≤ Cq,p,α(ψ(x)/x)p. Choosing α = 1/(1 − ηε), it follows that
rem(x) = o(H t0(x)(ψ(x)/x)

p) for all p > 0 and, hence, rem(x) = o(J (x)) for x → ∞.
Consequently, for κ > 1 and ρ = 0, J determines the asymptotics of (19). The proof of
Theorem 2 can be completed as in Seifert (2014), where it is also shown how to deduce the
statement (9) for random norming from the case ρ = 0.

Now we prove J (x) ∼ Ht0(x)L(x), cf. (20). For any ε1 ∈ (0, ε), we can decompose

J (x) =
∫ t0+ε1

t1(x)

H t

(
x

u(t)

)
g(t) dt +

∫ t0+ε

t0+ε1

Ht

(
x

u(t)

)
g(t) dt =: J1(x)+ J2(x). (21)

Analogously to rem(x) = o(J (x)) as proved above, it follows that J2(x) = o(J1(x)) and,
hence, J (x) ∼ J1(x) = Hq1(x)(x)L(x) for some mean value q1(x) ∈ (t0, t0 + ε1). Since this
holds for any arbitrarily small ε1, it follows that J (x) ∼ Ht0(x)L(x).
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