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Abstract

Background: Targeted screening for carbapenem-resistant organisms (CROs), including carbapenem-resistant Enterobacteriaceae (CRE) and
carbapenemase-producing organisms (CPOs), remains limited; recent data suggest that existing policies miss many carriers.

Objective: Our objective was tomeasure the prevalence of CRO andCPOperirectal colonization at hospital unit admission and to usemachine
learning methods to predict probability of CRO and/or CPO carriage.

Methods: We performed an observational cohort study of all patients admitted to the medical intensive care unit (MICU) or solid organ
transplant (SOT) unit at The Johns Hopkins Hospital between July 1, 2016 and July 1, 2017. Admission perirectal swabs were screened
for CROs and CPOs. More than 125 variables capturing preadmission clinical and demographic characteristics were collected from the
electronic medical record (EMR) system. We developed models to predict colonization probabilities using decision tree learning.

Results: Evaluating 2,878 admission swabs from 2,165 patients, we found that 7.5% and 1.3% of swabs were CRO and CPO positive, respec-
tively. Organism and carbapenemase diversity among CPO isolates was high. Despite including many characteristics commonly associated
with CRO/CPO carriage or infection, overall, decision tree models poorly predicted CRO and CPO colonization (C statistics, 0.57 and 0.58,
respectively). In subgroup analyses, however, models did accurately identify patients with recent CRO-positive cultures who use proton-pump
inhibitors as having a high likelihood of CRO colonization.

Conclusions: In this inpatient population, CRO carriage was infrequent but was higher than previously published estimates. Despite including
many variables associated with CRO/CPO carriage, models poorly predicted colonization status, likely due to significant host and organism
heterogeneity.

(Received 11 November 2018; accepted 4 February 2019)

Carbapenem-resistant organisms (CROs) are an important cause of
healthcare-acquired infections and are particularly concerning
because they are associated with high morbidity and mortality.1–6

Carbapenem-resistant Enterobacteriaceae (CRE) have received
significant attention,7 but glucose non-fermenting (NF) gram-
negatives, such as Acinetobacter baumannii and Pseudomonas
aeruginosa, are an additional and increasingly recognized carbape-
nem resistance reservoir.8,9 Of particular concern among CROs is

the subset of carbapenemase-producing organisms (CPOs), for
which carbapenem resistance is generally plasmid-mediated and
which can transfer between organisms and across bacterial species.
CPOs have been implicated in high-profile healthcare-associated
outbreaks10 and may be associated with poorer clinical outcomes
than non-CPOs.11

Admission screening for CRO and/or CPO carriage enables
prompt implementation of isolation precautions for colonized
patients and may provide an opportunity for individualized care,
such as targeted empiric antibiotic therapy.12–14 The Centers for
Disease Control and Prevention (CDC) recommends CRE coloni-
zation screening in limited instances,15 but most US hospitals do
not perform routine CRE or CRO screening. Given limited data
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on inpatient colonization prevalence in non-outbreak periods and
current limitations of CRO and CPO diagnostics, universal screen-
ing remains impractical in many acute-care settings. However,
recent CRE data indicate that existing targeted screening policies
(eg, for recent foreign hospitalization, on direct transfer from out-
side facilities) miss many colonized patients.16,17

Better identifying predictors of colonization and developing
algorithms to predict colonization probability may improve tar-
geted screening approaches. Existing strategies often rely on risk
factors (ie, “independent” variables), but strong risk factors may
not be good predictors. Our objectives were to measure the preva-
lence of CRO and CPO perirectal colonization at hospital unit
admission and to develop machine learning–derived decision trees
to predict patients’ probability of organism carriage.

Methods

Study setting and population

This study included patients aged ≥16 years admitted to the Johns
Hopkins Hospital (JHH) medical intensive care unit (MICU) or
solid organ transplant (SOT) unit between July 1, 2016 and July
1, 2017. Both units have longstanding vancomycin-resistant
Enterococcus (VRE) surveillance programs and collect patient peri-
rectal Eswabs (COPAN Diagnostics, Murrieta, CA) at unit admis-
sion (defined as ≤2 calendar days from unit entry) and weekly
thereafter. This study was approved by the Johns Hopkins
University School of Medicine Institutional Review Board, with
a waiver of informed consent.

Microbiology methods and outcome definitions

Residual Amies media from Eswab collection vials was stored at 4°
C, and within 4 days of swab collection, 100 μL was streaked for
isolation onto a MacConkey agar with ertapenem and meropenem
disks.18 Colonies growing within 27 mm of ertapenem and
within 32 mm of meropenem were identified by matrix-assisted
laser-desorption ionization time-of-flight mass spectrometry
(MALDI-TOF MS, Bruker Daltonics, Billerica, MA). Carbapenem
antimicrobial susceptibility testing (ertapenem, meropenem, and
imipenem) was performed by disk diffusion applying Clinical and
Laboratory Standards Institute guidelines.19

Enterobacteriaceae resistant to ertapenem, meropenem, or imipe-
nem were categorized as CRE. Glucose NF gram-negative bacilli
resistant to meropenem and/or imipenem were categorized as
NFCROs. Stenotrophomonas maltophilia was excluded due to its
intrinsic carbapenem resistance. All CROs were tested for carbapene-
mase production using themodified carbapenem inactivationmethod
(mCIM).20 CRE andNFCROspositive for carbapenemase production
by the mCIM test were defined as CP-CRE and CP-NFCROs, respec-
tively (collectively calledCPOs).mCIM-negative isolates were defined
as non–CP-CRE and non-CP-NFCROs. CPOs underwent molecular
carbapenemase genotype testing using the Check-MDR CT103XL
assay (CheckPoints, Wageningen, Netherlands).

We coded all study laboratory data with a study identifier. We
linked laboratory results and clinical data 6 months after sample
collection or following patient discharge. Neither infection control
nor clinical staff were aware of patient colonization status during
the hospital admission.

Clinical data collection

Patient data were retrospectively collected using bulk extraction
methods from the JHH electronic medical records (EMR) system

and infection control and administrative databases. EMR data were
available for inpatient and outpatient encounters across 5 Johns
Hopkins Health System hospitals across Maryland and the
District of Columbia. Extracted patient data included >125 varia-
bles capturing demographic, pre-existing medical condition,
procedure, medication, and other clinical data (Table 1 and
Supplemental Material online).

Statistical methods

Data analysis and logistic regression
Descriptive statistics for patient variables were calculated using
mean (standard deviation [SD]), median (interquartile range
[IQR]), or frequency count (percentage), as appropriate, with
Clopper-Pearson binominal 95% confidence intervals (CIs) for
proportions. We compared CRO colonization at admission among
MICU patients and SOT unit patients using the Fisher exact test.
The relationship between each covariate and the study outcomes
was evaluated using univariable logistic regression with general
estimating equations and robust standard errors to account for
patient clustering due to repeat unit admissions. Descriptive and
logistic regression analyses were performed in Stata version 13.0
software (StataCorp, College Station, TX).

Machine learning-derived prediction models and validation
Using all collected variables (n= 134), we developed prediction
models for the outcomes of CRO, CRE, and CPO colonization
at unit admission. We built decision trees applying the classifica-
tion and regression tree (CART) algorithm21 using the rpart
(recursive partitioning and regression trees) package, version
4.1–13. To fit our trees, we employed the Gini impurity criterion
for splitting rules.22 Ensemble-based decision tree learning meth-
ods were utilized in sensitivity analyses (see Supplemental Material
online). All machine learning models were developed using the R
statistical package version 3.0.5 (R Foundation for Statistical
Computing, Vienna, Austria). CART decision trees were internally
evaluated using leave-one-out cross-validation.22 The discrimina-
tion of all models, both original (in sample) and cross-validated
(out of sample), were assessed through the generation of receiver
operating characteristic (ROC) curves and the calculation of C
statistics in R software.

Results

Study population

This study included 3,327 unit admissions during the one-year
study period: 1,796 (54%) in the MICU and 1,531 (46%) in the
SOT unit. Of these encounters, 2,878 (87%), representing 2,165
unique patients, had stored perirectal admission screening swabs
that were processed for CROs (Fig. 1).

Patient characteristics are presented in Table 1. In the 6 months
preceding unit admission, 54% of patients had been hospitalized,
17.5% had a prior ICU stay, 6.0% had been discharged to a post-
acute care facility, and 1.0% of patients had documented overnight
hospitalization in a foreign country. In the prior 3 months, 21.1%
of patients had received antibiotics with gram-negative coverage,
including 4.5% with carbapenems.

CRO and CPO colonization admission prevalence

Overall, 217 swabs (7.5%; 95% CI, 6.6%–8.5%) from 192 unique
patients tested positive for 1 or more CROs (Fig. 1). Prevalence
was higher among MICU admissions (9.4%; 95% CI, 8.0%–10.9%)
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Table 1. Characteristics of Patients in the Medical Intensive Care Unit (MICU) and Solid Organ Transplant (SOT) Unit with Carbapenem-Resistant Organism (CRO) and
Carbapenemase-Producing Organism (CPO) Perirectal Colonization at Unit Admission

Variables at or preceding unit admissiona
Total swabbed cohort
(n=2,878), No. (%)

CRO Colonized
(n=217), No. (%)

CPO Colonized
(n=36), No. (%)

Demographics

Age, y ± SD 55 ± 15.4 59 ± 16.1** 59 ± 15.85

Female 1,325 (46) 99 (46) 14 (44)

Race

White 1,317 (46) 111 (51) 17 (47)

Black 1,272 (44) 81 (37) 12 (33)

Asian 61 (2) 5 (2) 1 (3)

American Indian, Alaska Native or Native
Hawaiian, or Pacific Islander

13 (0.5) 0 (0) 0 (0)

Other 215 (8) 20 (9) 6 (17)

Foreign permanent residence 29 (1) 4 (1.8) 1 (3)

ENCOUNTER-LEVEL CHARACTERISTICS

Admission type

Emergency/urgent (nontrauma) 2,646 (92) 210 (97) 35 (97)

Trauma 26 (1) 1 (0.5) 1 (3)

Nonurgent/elective 206 (7) 6 (3) 0 (0)

Admission source

ER/Community 2,353 (82) 154 (71) 27 (75)

Acute-care hospital, direct transfer 434 (15) 46 (21)** 7 (19)

Post-acute care facility (nonacute), direct transfer 74 (3) 16 (7)*** 2 (6)

Other/unknown 17 (0.6) 1 (0.5) 0 (0)

ELIXHAUSER COMOBIDITY SCORE AND SELECT PRE-EXISTING MEDICAL CONDITIONS

Elixhauser score, median (IQR) 4 (2–7) 5 (3–7) 5 (3.5–6)

Chronic peptic ulcer disease 81 (3) 10 (5) 2 (6)

Solid tumor without metastasis 468 (16) 41 (19) 9 (25)

Metastatic cancer 197 (7) 24 (11) 4 (11)

Renal failure 1164 (40) 89 (41) 14 (39)

Liver disease 852 (30) 55 (25) 13 (36)

Diabetes 912 (32) 82 (38)* 11 (31)

Iron-deficiency anemia 1203 (42) 103 (48) 20 (56)

Chronic pulmonary disease 630 (22) 49 (23) 7 (19)

Paralysis 68 (2) 12 (6)*** 3 (8)**

HIV positive 159 (6) 8 (4) 1 (3)

Immunosuppressedb 772 (27) 69 (32) 15 (42)

INDWELLING HARDWARE OR EXTERNAL DEVICES AT ADMISSION 887 (31) 89 (41)** 17 (47)

Central linec 393 (14) 42 (19)* 10 (28)**

Urologic catheter 631 (22) 55 (25) 11 (31)

Mechanical ventilation 207 (7) 22 (10) 1 (3)

Gastrointestinal upper or lower tube 122 (4) 10 (5) 0 (0)

Fecal management device 8 (0.3) 2 (0.9) 1 (3)

Ostomy pouching system 1 (0.03) 1 (0.5) 1 (3)

INDWELLING HARDWARE OR EXTERNAL DEVICES <3 MO 1,148 (40) 112 (52)*** 24 (67)**

Central linec 569 (20) 58 (27)** 16 (44)***

Urologic catheter 876 (30) 76 (35)* 16 (44)*

(Continued)
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Table 1. (Continued )

Variables at or preceding unit admissiona
Total swabbed cohort
(n=2,878), No. (%)

CRO Colonized
(n=217), No. (%)

CPO Colonized
(n=36), No. (%)

Mechanical ventilation 324 (11) 39 (18)* 8 (22)*

Gastrointestinal upper or lower tube 189 (7) 27 (12)** 3 (8)

Fecal management device 0 (0) 0 (0) 0 (0)

Ostomy pouching system 13 (0.5) 9 (4)*** 2 (6)***

INFECTION CONTROL CHARACTERISTICS AT ADMISSION

On contact precautions at admissiond 796 (28) 100 (46)*** 20 (56)*

Admission swab positive for VRE colonization 315 (11) 51 (24)*** 12 (33)***

MDRO HISTORY OF COLONIZATION OR INFECTION <6 MO PRIOR TO ADMISSION

VRE 274 (10) 39 (18)*** 12 (33)***

MRSA 168 (6) 28 (13)*** 7 (19)***

ESBL or ceftriaxone-resistant Enterobacteriaceae 107 (4) 30 (14)*** 9 (25)***

CRO 74 (3) 34 (16)*** 14 (39)***

CRE 11 (0.4) 7 (3)*** 6 (17)***

NFCRO 64 (2) 27 (12)*** 8 (22)***

MDR Pseudomonas sppe 28 (1) 12 (6)*** 2 (6)***

MDR Acinetobacter sppe 41 (1) 9 (4)*** 4 (11)***

RECENT MEDICATION EXPOSURE <3 MO PRIOR TO ADMISSION

Immunosuppressive therapyf 620 (22) 63 (29)* 14 (39)

Gastric acid suppressantsg 611 (21) 76 (35)*** 17 (47)**

ANTIBIOTIC EXPOSURE <3 MO PRIOR TO ADMISSION

Extended-spectrum penicillin therapy 313 (11) 43 (20)*** 12 (33)**

Third- and fourth-generation cephalosporin therapy 379 (13) 37 (17) 9 (25)

Aztreonam therapy 21 (0.7) 6 (3)** 1 (3)

Carbapenems 128 (4) 30 (14)*** 8 (22)***

Fluoroquinolone therapy 144 (5) 21 (10)** 4 (11)

Aminoglycoside therapy 49 (2) 14 (7)*** 2 (6)

Any antibiotics (combined) 607 (21) 72 (33)*** 14 (39)

DURATION OF TIME FROM HOSPITAL ADMISSION TO UNIT
ADMISSION, MEDIAN D (IQR)

0 (0 – 1) 0 (0-2)*** 0 (0-4.5)***

RECENT INTERNATIONAL EXPOSURE

International hospitalization ≥1 night,
<6 mo prior to admission

30 (1) 4 (2) 1 (3)

International travel, patient or spouse,
<21 d prior to admission

18 (0.6) 3 (1) 2 (6)***

OTHER HIGH-RISK HEALTHCARE EXPOSURES <6 MO PRIOR TO ADMISSION

Inpatient hospitalization 1553 (54) 132 (61)* 21 (58)

Intensive care unit 503 (18) 60 (28)*** 12 (33)*

Post-acute care facility 173 (6) 32 (15)*** 7 (19)**

Long-term acute-care hospital 34 (1) 8 (4)** 0 (0)

Skilled nursing or rehabilitation facility 153 (5) 29 (13)*** 7 (19)***

INVASIVE PROCEDURE <3 MO PRIOR TO ADMISSION

Endoscopy 330 (12) 41 (19)** 6 (17)

Lower endoscopy 93 (3) 12 (6) 2 (6)

Upper endoscopy 302 (11) 33 (15)* 6 (17)

Bronchoscopy 56 (2) 3 (1) 0 (0)

(Continued)
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than among SOT unit admissions (5.0%; 95% CI, 3.9%–6.4%;
P < .001). Of the CRO-positive swabs, 36 (16.7%) from 32
unique patients demonstrated carbapenemase production, yielding
a CPO colonization admission prevalence of 1.3% (95% CI,
0.9%–1.7%).

In total, 121 admission swabs from 113 unique patients were
positive for CREs. The overall prevalences of CRE andCP-CRE peri-
rectal colonization at admissionwere 4.2% (95%CI, 3.5%–5.0%) and
0.8% (95% CI, 0.5%–1.2%), respectively (Fig. 1). Twenty percent of
CRE isolates were carbapenemase-producers.

One hundred and seven admission swabs from 92 unique
patients tested positive for 1 or more NFCROs. The overall prev-
alences of NFCRO and CP-NFCRO perirectal colonization at
admission were 3.7% (95% CI, 3.0%–4.4%) and 0.4% (95% CI,
0.2%–0.7%), respectively. Eleven percent of NFCRO isolates were
carbapenemase-producers. The distribution of CRE and NFCRO
organisms by bacterial class and carbapenemase production status
is provided in Fig. 2.

Overall, 33 organisms from 32 of 36 CPO-positive swabs
(1 swab was co-colonized with 2 CP-CREs), as defined by a positive

Table 1. (Continued )

Variables at or preceding unit admissiona
Total swabbed cohort
(n=2,878), No. (%)

CRO Colonized
(n=217), No. (%)

CPO Colonized
(n=36), No. (%)

Surgery 306 (11) 16 (7) 4 (11)

Colorectal surgery 6 (0.2) 1 (0.5) 1 (3)**

Abdominal surgery 282 (10) 14 (7) 3 (8)

Urologic surgery 22 (0.8) 1 (0.5) 0 (0)

Note. SD, standard deviation; ER, emergency room; IQR, interquartile range; NA, not applicable due to model nonconvergence or nonestimability. CRE, carbapenem-resistant
Enterobacteriaceae; NFCRO, carbapenem-resistant glucose non-fermenting bacilli; HIV, human immunodeficiency virus; MDR, multidrug resistant; MDRO, multidrug-resistant organism; ESBL,
extended-spectrum β-lactamase; VRE, vancomycin-resistant Enterococcus spp; MRSA, methicillin-resistant Staphylococcus aureus; WBC, white blood cell count.
aTable 1 does not include all variables and permutations evaluated in prediction models.
bReceipt of chemotherapy or immunosuppressive therapy in the prior 3 mo, HIV positive, and/or documented CBC immunosuppressive abnormalities within 24 h preceding unit admission
(defined as absolute neutrophil counts or total WBC < 500 cells/mm3).
cDefined in reference to the National Healthcare Safety Network (NHSN) 2018 definition of “central line,” available at: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf.
dIndications for contact precautions are a flagged history of: (1) MRSA; (2) VRE; (3) Clostridioides difficile; (4) MDR gram-negative bacteria; (5) CRE (which are classified separately from other MDR
gram-negative bacteria at JHH); (6) respiratory viruses; and (7) other indications, including “CRE rule-out” for patients recently hospitalized internationally (≤6 mo prior to admission), enteric
pathogens, and contact precautions without associated infection control flag(s).
eResistant to 4 of 5 antibiotic classes tested.
fImmunosuppressant or nontopical glucocorticoid.
gProton-pump inhibitors (PPIs) or histamine H2-receptor antagonists (H2-blockers). These medications were analyzed as a composite category in logistic regression, but were evaluated both
individually and as a composite category in predictive models.
*Significant at P ≤ .05; **significant at P ≤ 0.01; ***significant at P ≤ .001, based upon a 2-tailed significance test in univariable logistic regression with general estimating equations and robust
standard errors to account for patient-clustering due to repeat unit admissions.

Fig. 1. Study flowchart of carbapenem-resistant organism (CRO) and carbapenemase-producing organism (CPO) colonization at hospital unit admission. Note. CRE,
carbapenem-resistant Enterobacteriaceae; NFCRO, non-fermenter carbapenem-resistant organism; CP-CRE, carbapenemase-producing CRE; CP-NFCRO, carbapenemase-
producing NFCRO.
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mCIM test, underwent molecular genotyping. Of the 33 processed
mCIM-positive organisms, 23 (70%) were positive for carbapene-
mase genes by the Check-MDR CT103XL assay. The gene
distribution was as follows: KPC (12, 52%), NDM (2, 9%), VIM
(1, 4%), OXA-23 (2, 9%), OXA-24 (2, 9%), OXA-48-like
(1, 4%), and NDM þ OXA-48-like (3, 13%) (Supplemental
Table 1 online).

Characteristics of patients with CRO and CPO colonization
at unit admission

A large proportion of exposures were associated with CRO
colonization (Table 1), including ostomy within 3 months of unit
admission, history of a CRE-positive or NFCRO-positive culture in
the prior 6 months, carbapenem or gastric acid suppressant

(proton-pump inhibitor (PPI) or histamine H2-receptor antago-
nist) use in the prior 3months, and post-acute care facility exposure
(direct-admission from a skilled nursing/rehabilitation facility, or
discharge to a long-term acute-care hospital or skilled nursing/
rehabilitation facility in the prior 6 months).

When we restricted our analysis to the subset of CPO-colonized
patients, the preceding variables remained associated with CPO
colonization (Table 1). Additional variables were also associated
with CPO colonization, including colorectal surgery in the
prior 3 months and foreign travel by the patient or a partner
in the preceding 21 days. Nevertheless, only 2 patients with
molecularly confirmed carbapenemases (a KPC-producing
K. pneumoniae and an OXA-48-like–producing K. pneumoniae)
had documented foreign travel; none reported recent international
hospitalization.

Fig. 2. Distribution of organisms by bacterial class and carbapenemase-production status (defined by a positive mCIM test), among 217 perirectal unit admission
swabs positive for carbapenem-resistant organism (CRO) colonization. Overall, 20% of carbapenem-resistant Enterobacteriaceae (CRE) organisms, accounting for 24
swabs from 22 unique patients, were carbapenemase-producers (CP-CREs). Of 109 NFCROs, 12 (11.0%), accounting for 12 swabs from 10 unique patients, were
carbapenemase-producers (CP-NFCROs). In addition, 11 admission swabs (0.4%), all from unique patients, were co-colonized with CRE(s) and NFCRO(s); 3 of these
swabs possessed a carbapenemase-producing organism (CPO), but no admission swabs were CP-CRE and CP-NFCRO co-colonized. *Aeromonas categorized with
glucose non-fermenting gram-negative bacilli for purposes of this study.
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Both CRO- and CPO-colonized patients were significantly
more likely than non-carriers to be on contact precautions at unit
admission; however, only 46.1% of CRO carriers were on contact
precautions at unit admission. CRO and CPO carriers were also
more likely to test positive for VRE colonization during admission
screening, that is, on the same swab that underwent CRO process-
ing. These VRE-colonized patients accounted for 24% and 33% of
CRO and CPO colonizations, respectively.

Predicting probability of colonization at unit admission

We evaluated all collected study variables, including permutations
(eg, varied retrospective periods and composite and individual var-
iable categories) for inclusion in decision tree models. These
machine learning approaches are well suited to large EMR datasets
because they can accommodate high predictor-to-outcome ratios,
variable collinearities, and interaction effects by default.21,23 Using
branching logic rather than calculations, decision trees are also rel-
atively user-friendly for manual bedside use. We derived models
for 3 alternate outcomes: CRO, CPO, and CRE colonization (see
Supplemental Material online for CRE colonization models).

The final decision tree for predicting CRO colonization at unit
admission included 3 study variables (Fig. 4). The first question in
the tree (“root node”), which is reserved for the most discrimina-
tory variable, asked (1) “Did the patient have a CRO-positive
culture in the previous 6 months?” If the answer was “yes,” the sec-
ond question queried (2) “Did the patient receive 26 or more days
(model-derived cut-point) of PPIs in the prior 3 months?” Patients
meeting these criteria were classified as CRO positive with 93%
probability (terminal node 4). In patients with a CRO history
but lacking this PPI exposure, the tree questioned (3) “Has the
patient been hospitalized for 51 or more days (model-derived
cut-point) in the prior 6 months?” If the answer was “yes,” patients
were classified as CRO positive (terminal node 3, 80% probability),
and if the answer was “no,” patients were classified as CRO
negative (terminal node 2, 74% probability).

For the 2,804 patients lacking a recent CRO history, the root
node branched left and terminated. Patients lacking this history
were classified as CROnegative (terminal node 1, 93% probability).

The overall tree possessed a sensitivity of 9.8% and a specificity
of 99.9%. The positive and negative predictive values were 87.5%
and 93.1%, respectively. Incorporating outcome probabilities
based on terminal node impurities, the C statistic for the final tree
trained on the full dataset was 0.57 and remained unchanged
following cross-validation.

The CPO decision tree truncated at a single variable, history of a
CRE-positive culture in the prior 6 months (Fig. 3). Its sensitivity

Fig. 3. Decision tree for predicting CRO perirectal colonization
at hospital unit admission. Gray-shaded terminal nodes indi-
cate that the tree would classify patients as CRO colonized,
and accompanying percentages reflect the probability that
patients assigned to a given terminal node are CRO positive.
Terminal node numbering, 1–4, is included in parentheses.
The tree had an area-under-the-curve (C statistic) of 0.57, which
was unchanged in cross-validation. Its sensitivity and specificity
were 9.8% and 99.9%, respectively, and its positive and nega-
tive predictive values were 87.5% and 93.1%, respectively.

Fig. 4. Decision tree for predicting CPO perirectal colonization at hospital unit admis-
sion. The gray-shaded terminal node indicates that the tree would classify patients as
CPO colonized, and accompanying percentages reflect the probability that patients
assigned to a given terminal node are CPO positive. Terminal node numbering,
1–2, is included in parentheses. The tree had an area-under-the-curve (C statistic)
of 0.58, which was unchanged in cross-validation. Its sensitivity and specificity were
16.7% and 99.8%, respectively, and its positive and negative predictive values were
54.5% and 99.0%, respectively.

Infection Control & Hospital Epidemiology 547

https://doi.org/10.1017/ice.2019.42 Published online by Cambridge University Press

https://doi.org/10.1017/ice.2019.42


was 16.7% and its specificity was 99.8%. The CPO tree’s
discrimination was 0.58 (unchanged following cross-validation).

To optimize model performance and address possible outcome
misclassification, we performed multiple sensitivity analyses:
(1) we built predictionmodels for CRO and CPO colonization with
random forests analysis; (2) we refit CART trees to increase sensi-
tivity by imposing a greater “cost” for misclassifying colonized
patients as negative; (3) we refit CART trees restricting to first,
unique patient encounters (n= 2,165); and (4) we reperformed
CART and random forests analyses after restricting the CPO out-
come to isolates with molecularly confirmed carbapenemases.
With more complicated models in sensitivity analyses 1 and 2,
performance improved by ∼15%–20%; performance in analyses
3 and 4 was similar to the primary analyses. Results are provided
and discussed in the Supplemental Material online.

Discussion

Identifying CRO- and CPO-colonized patients at hospital unit
admission could facilitate timely infection control interventions,
such as implementing prompt contact isolation precautions for
colonized patients to limit healthcare-associated transmission.
Evaluating patients admitted toMICUand SOT units, we found that
7.5% and 1.3% of patients were perirectally colonized with CROs
and CPOs, respectively. Among CROs, the distribution of CRE
versus NFCROs was roughly similar (54% vs 46%), with a CRE
admission prevalence of 4.2%. This estimate is higher than the pro-
portion of CRE (3.1%) among clinical isolates reported to the
National Healthcare Safety Network in 201524 and considerably
higher than the 0.5% CRE admission prevalence recently reported
at a Chicago tertiary-care hospital (2013 data from ICU popula-
tions).16 Importantly, most colonized patients (54%) were not on
contact precautions at unit admission (for any indication), posing
a potential reservoir for transmission during their unit encounter.

Our study included many variables known to be risk factors
for CRO and CPO colonization or infection, including MDRO his-
tory,25–27 antibiotic exposure overall,28–30 or to carbapenems specifi-
cally,31,32 post-acute care facility stay,33,34 immunosuppression,28

endoscopy,30,31,35 and indwelling hardware.28,33,36 Despite including
these known risk factors and >100 other variables, our constructed
models did not highly accurately predict CRO and CPO coloniza-
tion, with C statistics of 0.57 and 0.58, respectively. Performance
improved by ∼15%–20% in sensitivity analyses, with more compli-
cated models that may be less likely to replicate in other settings and
which would be less practical as bedside tools. Despite suboptimal
global performance, however, the CRO decision tree did, with high
accuracy, identify certain higher-colonization risk patient popula-
tions: patients with recent CRO-positive cultures (≤6 months)
who had either ≥26 days of PPI usage in the prior 3 months
(93% colonization probability) or ≥51 days of hospitalization in
the prior 6 months (80% colonization probability). This observation
comports with recent studies identifying PPI or other gastric acid
suppressant use as a significant risk factor for MDRGN carriage.37,38

Using these criteria for targeted surveillance would capture 21 of 217
colonized patients while producing only 3 false-positive screening
referrals. Although recent CRO-positive cultures combined with
either PPI usage or prior hospitalizationwere highly predictive, how-
ever, these criteria would still have missed 196 CRO-colonized
patients (90%) who did not have these characteristics.

Interestingly, only 1 CPO-colonized patient had documented
recent international hospitalization, the current CDC-recommended
exposure for targeted CRE screening.15 Moreover, although

CPO-colonized patients were significantly more likely than non-
colonized patients to report foreign travel of themselves or a partner
within the 21 preceding days, this variable did not emerge as a strong
predictor in decision tree models (likely due to the few patients, only
0.6%, with this exposure).

This study highlights key challenges that may make predicting
patients’ CRO/CPO colonization status, and in turn implementing
successful targeted screening algorithms, difficult. First, although
risk factors are important explanatory variables from an etiologic
perspective and can identify where we may intervene to prevent an
outcome, these variables reflect relative risk, not absolute risk. Risk
factors are not necessarily good at predicting (ie, distinguishing
between) who does or does not have an outcome, particularly when
the number of affected patients is small. For example, although a
recent CRO-positive culture was a strong risk factor (P < .001) for
CRO colonization at admission, it only accounted for 34 of 217
cases. Eighty-four percent of CRO-colonized patients did not have
a recent CRO-positive culture, and for the majority of our cohort,
this variable would therefore not be helpful for predicting CRO sta-
tus at admission. Second and similarly, high bacterial and genomic
diversity among colonizing isolates may contribute to difficulty in
predicting carriage by increasing outcome heterogeneity. In par-
ticular, CPOs reflected considerable organism and carbapenemase
diversity, with one-third of CP-CREs encoding carbapenemases
other than KPCs, including 2 genes (blaNDM and blaOXA-48-like)
in a single organism. Third, although we collected extensive
EMR data on healthcare-associated exposures, poormodel sensitiv-
ity may reflect limitations of EMR data and not the absence of true
predictive characteristics, particularly if colonization acquisition
predated available retrospective periods. Finally, although risk fac-
tors for CRE and other CROs in US patients have traditionally
focused on healthcare settings, increasing reports describe commu-
nity reservoirs of carbapenem resistance (eg, porcine farms, retail
seafood).39,40 These non-traditional exposures are unlikely to be
systematically captured in the EMR.

Notwithstanding these challenges, our results offer actionable
information. Recent CRO- or CRE-positive culture was consis-
tently the strongest predictor of admission colonization, and many
infection control programs already capture and flag these cultures.
Moreover, 24% and 33% of CRO- and CPO-colonized patients,
respectively, were co-colonized with VRE detected during routine
admission screening. These patients would be placed on contact
isolation precautions even without dedicated CRO surveillance.
These findings suggest that existing screening policies may have
unrecognized benefits and may justify continued surveillance
and/or contact precautions for endemic VRE colonization.41,42

Our study has several limitations. First, this was a single-
center study, and although we internally validated our models,
our results should be validated in other cohorts. Our results
may not be generalizable to other, lower-risk hospitalized popu-
lations or higher-endemicity areas (eg, New York City). Second,
concordance between phenotypic and molecular carbapenemase
assays was lower than expected,20 particularly for E. cloacae, and
further whole genome sequencing is planned to clarify this
discrepancy. Nevertheless, sensitivity analyses restricting the
CPO outcome to molecularly confirmed isolates yielded similar
findings. Third, despite gathering extensive demographic and
clinical information, there was likely missing exposure data
(eg, outpatient antibiotic use, data that does not interface across
hospitals). Many exposures, however, were strongly associated
with study outcomes, consistent with other published literature.
More importantly, because the prediction models were designed
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to inform real-world screening decisions, their performance
under the practical constraints of potentially incomplete EMR
data is arguably relevant.

Overall, in this high-risk inpatient population, CRO and
CPO carriage was infrequent but higher than previously published
estimates, including from other US ICU populations. There was
significant organism and resistance mechanism diversity. We
molecularly identified carbapenemases in 7 different bacterial
species, providing an important reminder thatmany GI-colonizing
organisms can serve as carbapenemase gene reservoirs. Despite
including many patient characteristics associated with coloniza-
tion or infection in the literature, overall, neither our machine
learning–derived models nor current CDC targeted screening
criteria (ie, recent foreign hospitalization) were highly accurate
in predicting whether patients were colonized at admission. An
important goal of artificial intelligence and other machine learning
applications in health care is to capitalize on ‘Big data,’ despite its
imperfections, to improve patient outcomes. Our study has dem-
onstrated that currently available EMR data did not meet these
targets. We believe that this was attributable, in part, to high expo-
sure and microbiological heterogeneity, raising questions about
how useful targeted screening strategies will be to identify CRO-
colonized patients. Our models did successfully identify certain
patient subgroups with high probabilities of colonization, however,
including those with a recent history of CRO-positive culture(s)
who use PPIs. Expanding upon existing CDC criteria to include
other high-risk sub-groups may be useful as efforts continue to
optimize CRE and CRO screening policies.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/ice.2019.42.
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