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Abstract

In their 1960 book on finite Markov chains, Kemeny and Snell established that a certain
sum is invariant. The value of this sum has become known as Kemeny’s constant. Various
proofs have been given over time, some more technical than others. We give here a very
simple physical justification, which extends without a hitch to continuous-time Markov
chains on a finite state space. For Markov chains with denumerably infinite state space,
the constant may be infinite and even if it is finite, there is no guarantee that the physical
argument will hold. We show that the physical interpretation does go through for the
special case of a birth-and-death process with a finite value of Kemeny’s constant.
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1. Introduction

Consider a discrete-time, irreducible and aperiodic Markov chain {Xt : t = 0, 1, . . .} on
a finite state space S, with transition matrix P and stationary probability vector π such that
π�P = π� and π�1 = 1. For i ∈ S, define the first passage times

Ti = inf{t ≥ 1 : Xt = i}.
Denoting by Ei[·] the conditional expectation given that X0 = i, Kemeny and Snell [10,
Theorem 4.4.10] proved that ∑

j∈S

πjEi[Tj ] = K, (1.1)

independently of the initial state i. The value K is known as Kemeny’s constant.
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A prize was offered to the first person to give an intuitively plausible reason for the sum in
(1.1) to be independent of i (Grinstead and Snell [7, p. 469]). The prize was won by Doyle [5]
with an argument given in the next section. We prove in Theorem 3.1 that (1.1) results from
the obvious fact that a discrete-time Markov chain takes n steps during an interval of time of
length n, independently of the initial state i. We move on to extend the argument to finite-state
continuous-time Markov chains; see (3.5). In Section 3 we also discuss an important connection
between K and the deviation matrix of the Markov chain.

In Section 4 we consider Markov chains with a denumerably infinite state space S. Here,
the situation becomes more complex because the sum in (1.1) might not converge. We show
that it is independent of i in the sense that it is infinite for all i or a constant independent of i.

In Section 5 we restrict our discussion to positive recurrent birth-and-death processes.
We show that K is infinite in discrete time, and in continuous time it is finite if transitions
from state i occur sufficiently fast as i approaches ∞. Furthermore, our physical explanation
holds for birth-and-death processes if K < ∞.

2. A simple algebraic proof

The simplest proof goes as follows: define ωi = ∑
j∈S πjEi[Tj ] and ω = [ωi]i∈S , condition

on X1, and write

ωi = 1 +
∑
j∈S

πj

∑
k∈S,k �=j

PikEk[Tj ]

= 1 +
∑
j∈S

πj

∑
k∈S

PikEk[Tj ] −
∑
j∈S

Pij (using πj = 1/Ej [Tj ])

=
∑
j∈S

πj

∑
k∈S

PikEk[Tj ]

=
∑
k∈S

Pikωk

so that ω = Pω (see, for example, Hunter [9]). Doyle [5] argued from the maximum principle
that all components of ω must be equal. Alternatively, one may conclude from the Perron–
Frobenius theorem that ω must be proportional to the eigenvector 1 of P .

Instead of the passage times Tj , we shall use the first hitting times {θi : i ∈ S} with

θi = inf{t ≥ 0 : Xt = i}.

The only difference is that θi = 0 < Ti if X0 = i, otherwise θi = Ti ≥ 1. Using θj instead
of Tj , we obtain another version of Kemeny’s constant:

∑
j∈S

πjEi[θj ] = K ′, (2.1)

where K ′ = K − 1. We prefer to work with this version of Kemeny’s constant because the
equality (2.1) holds in continuous time as well; furthermore, using Ei[θj ] helps us establish a
direct connection with the deviation matrix D of the Markov chain. We shall discuss this in
the next section.
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Figure 1: Visits to j starting in j (upper) and i (lower).

3. The case when S is finite

Our physical justification is based on the following argument. We start from

∑
j∈S

πjEi[θj ] =
∑
j∈S

Ei[θj ]
Ej [Tj ] (3.1)

which we transform to

∑
j∈S

πjEi[θj ] =
∑
j∈S

lim
n→∞(Ej [Nj(n)] − Ei[Nj(n)]), (3.2)

where

Nj(n) =
∑

0≤t≤n

1{Xt=j}

is the total number of visits to j during the interval of time [0, n].
The formal justification for the transition from (3.1) to (3.2) is given in Lemma 3.1 below,

but we provide a heuristic argument first, explained with the help of Figure 1. The upper line
is a representation of a trajectory of the renewal process {θ(k)

j : k ≥ 0} of successive visits
to j , starting from X0 = j ; the θ

(k)
j s are marked with a cross ×. The lower line represents a

trajectory of the delayed renewal process of visits to j , starting from X0 = i �= j .

Now, the j th term in the right-hand side of (3.2) is the expected difference between the
total number of events in the two processes. We observe a smaller expected number of visits
to j if the process starts from i �= j because of the initial delay. The expected length of this
delay is Ei[θj ] and Ej [Tj ] is the expected length of intervals between visits to j . The ratio
Ei[θj ]/Ej [Tj ] is the expected number of visits that are missed over the whole history of the
process by starting from i instead of j . The formal argument is as follows.

Lemma 3.1. For all i and j ,

Ei[θj ]
Ej [Tj ] = lim

n→∞(Ej [Nj(n)] − Ei[Nj(n)]).

Proof. The statement is obvious if i = j since then Ej [θj ] = 0 by the definition of θj .
We assume now that i and j are different, arbitrary but fixed, and to simplify the notation we
define Ñi(n) = Ei[Nj(n)] and fi(t) = Pi[θj = t], with fi(0) = 0. We have

Ñj (n) =
∑

0≤ν≤n

Pj [Xν = j ].
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Furthermore, conditioning on the first visit to state j , we can write, for n ≥ 0,

Ñi(n) =
∑

0≤t≤n

fi(t)Ñj (n − t)

=
∑

0≤t≤n

fi(t)
∑

0≤ν≤n−t

Pj [Xν = j ]

=
∑

0≤ν≤n

Pj [Xν = j ]
∑

0≤t≤n−ν

fi(t)

and so
Ñj (n) − Ñi(n) =

∑
0≤ν≤n

Pj [Xν = j ]Pi[θj > n − ν].

Finally,

lim
n→∞(Ñj (n) − Ñi(n)) = lim

n→∞
∑

0≤ν≤n

Pj [Xn−ν = j ]Pi[θj > ν] = 1

Ej [Tj ]
∑
ν≥0

Pi[θj > ν]

by the key renewal theorem (Resnick [13, Section 3.8]), and is equal toπjEi[θj ]. This completes
the proof. �

Lemma 3.1 leads immediately to an understanding of the reason why the left-hand side of
(1.1) is independent of i.

Theorem 3.1. For an irreducible and aperiodic discrete-time Markov chain with finite state
space S and stationary distribution π ,

∑
j∈S πjEi[Tj ] is independent of i.

Proof. Since S is finite, we can interchange the limit and sum in (3.2) to obtain∑
j∈S

πjEi[θj ] =
∑
j∈S

lim
n→∞(Ej [Nj(n)] − Ei[Nj(n)])

= lim
n→∞

(∑
j∈S

Ej [Nj(n)] −
∑
j∈S

Ei[Nj(n)]
)

= lim
n→∞

(∑
j∈S

Ej [Nj(n)] − (n + 1)

)
(3.3)

independently of i. �
We see that the change of perspective from first hitting times to numbers of visits brings a

different physical interpretation from those previously suggested. Indeed, as mentioned above,
the second term under the limit in (3.3) just counts the number of steps that the Markov chain
has taken, independently of its starting state.

The deviation matrix lends itself beautifully to such a change of point of view. It is defined as

D =
∑
n≥0

(P n − 1 · π�)

if the series converges. From [4, Theorem 4.1], and [15, Proposition 3.2], the series converges
if and only if Eπ [θj ] < ∞ for some state j ∈ S, and then it is finite for every j , where
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Eπ [·] denotes the conditional expectation, given that X0 has the distribution π . An equivalent
condition is that Ej [θ2

j ] < ∞ for some j . When |S| < ∞, the series always converges and
D = (I − P)#, the group inverse of I − P (see [3]).

Obviously,

Dij = lim
n→∞

n∑
t=0

([P t ]ij − πj )

= lim
n→∞

n∑
t=0

(Ei[1{Xt=j}] − Eπ [1{Xt=j}])

= lim
n→∞(Ei[Nj(n)] − Eπ [Nj(n)]).

In addition, Djj = πjEπ [θj ] using [15, Proposition 3.3] with the discrete-time analogue of
the argument in [4, Equation (5.7)], and so∑

j∈S

Djj =
∑
j∈S

πjEπ [θj ]

=
∑
j∈S

πj

∑
i∈S

πiEi[θj ]

=
∑
i∈S

πi

∑
j∈S

πjEi[θj ]

=
∑
i∈S

πiK
′

= K ′. (3.4)

Equation (3.4) provides a convenient representation for Kemeny’s constant in terms of the trace
of the deviation matrix.

The point of view that we have taken in this section extends to finite-state continuous-time
Markov chains. For such a chain with irreducible generator Q, define the first hitting time and
the first passage time as

θi = inf{t ≥ 0 : Xt = i}, Ti = inf{t ≥ J1 : Xt = i},
where J1 is the first jump time of the Markov chain; if X0 = i then θi = 0 < Ti , otherwise
θi = Ti > 0. Lemma 3.1 then becomes our next lemma.

Lemma 3.2. For a continuous-time Markov chain,

πjEi[θj ] = lim
t→∞(Ej [Mj(t)] − Ei[Mj(t)]),

where Mj(t) = ∫ t

0 1{X(u)=j} du is the total time spent in j until time t .

Proof. We follow the same steps as in Lemma 3.1 with the only difference that here

Ej [Mj(t)] =
∫ t

0
Pj [X(u) = j ] du and Ei[Mj(t)] =

∫ t

0
dGi(v)Ej [Mj(t − v)],

where Gi(t) = Pi[θj ≤ t]. �
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From this, we obtain

∑
j∈S

πjEi[θj ] = lim
t→∞

(∑
j∈S

Ej [Mj(t)] − t

)
(3.5)

independently of i. By an argument similar to that leading to (3.4), we also have∑
j∈S

πjEi[θj ] =
∑
j∈S

πjEπ [θj ] =
∑
j∈S

Djj

with the continuous-time deviation matrix defined by D = ∫ ∞
0 (eQt − 1 · π�) dt .

4. The case when S is infinite

If S is denumerably infinite, it is not easy to see in general how the exchange of limit and sum
inherent in the step between the first and second equations of (3.3) can be justified. However,∑

j∈S πjEi[θj ] is still independent of i in the sense that it is either finite and constant with
respect to i, or infinite for all i.

Theorem 4.1. For an irreducible, positive-recurrent discrete or continuous-time Markov chain
{Xt } with a countably-infinite state space S, either

(i)
∑

j∈S πjEi[θj ] is equal to a finite constant that is independent of i, or

(ii)
∑

j∈S πjEi[θj ] is infinite for all i ∈ S.

Proof. The argument presented in Section 2 due to [5] and [9] holds even when the state space
is infinite. Writing the expressions in terms of Ei[θj ] rather than Ei[Tj ], for a discrete-time
Markov chain with transition matrix P, we have

ξi ≡
∑
j∈S

πjEi[θj ]

=
∑
j �=i

πj

[
1 +

∑
k∈S

PikEk[θj ]
]

= 1 − πi +
∑
k∈S

Pik

∑
j �=i

πjEk[θj ]

= 1 − πi +
∑
k∈S

Pik

(∑
j∈S

πjEk[θj ] − πiEk[θi]
)

(4.1)

= 1 − πi +
∑
k∈S

Pik

∑
j∈S

πjEk[θj ] − πi

∑
k∈S

PikEk[θi], (4.2)

where the series in (4.1) and the first series in (4.2) both converge or both diverge, and the
second series in (4.2) converges to Ei[Ti] − 1 < ∞ by assumption. Thus, we may write

ξi = 1 − πi +
∑
k∈S

Pikξk − πi[Ei[Ti] − 1] =
∑
k∈S

Pikξk. (4.3)

Since we have assumed that {Xt } is recurrent, it follows from [14, Theorem 5.4D] that, if ξ is
entrywise finite, then it must be a multiple of 1. On the other hand, if ξk is infinite for some k
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then (4.3) implies that ξi must be infinite for any i such that Pik > 0. It follows by irreducibility
that ξi must be infinite for all i ∈ S.

For a continuous-time Markov chain with transition matrix Q, similar reasoning holds with P

the transition matrix of the jump chain with entries Pij = qij 1{i �=j}/qi . �
Remark 4.1. In Section 5 we shall show that, for a discrete-time birth-and-death process with
state space {0, 1, . . .}, K ′ = ∑

j∈S πjEi[θj ] is infinite for all i.
For a general m-state discrete-time Markov chain, Hunter [8, Theorem 4.2] used a spectral

argument to show that K ≥ 1
2 (m + 1) which implies that K ′ ≥ 1

2 (m − 1). We do not see
how to extend this argument to show that K ′ is infinite for a general infinite-state discrete-time
Markov chain, but we do not know of an example of such a chain with finite K ′. We conjecture
that K ′ is infinite for all infinite-state, discrete-time Markov chains.

On the other hand, it is possible for K ′ to be finite for an infinite-state continuous-time
Markov chain. We shall present some examples in Section 5.

Remark 4.2. In Section 3 we showed that, when S is finite, K ′ is equal to the trace of the
deviation matrix. The argument in Appendix A shows that this is the case when S is infinite
and D exists. Specifically, K ′ is finite and equal to

∑
j∈S Djj if this sum is finite, and infinite

when
∑

j∈S Djj is infinite.
When D does not exist, Eπ [θj ] must be infinite for all j ∈ S, by [4, Theorem 4.1] and [15,

Proposition 3.2]. Then∑
i∈S

πi

∑
j∈S

πjEi[θj ] =
∑
j∈S

πj

∑
i∈S

πiEi[θj ] =
∑
j∈S

πjEπ [θj ] = ∞.

Since
∑

j∈S πjEi[θj ] must be independent of i if it is finite, the last equality can occur only if
K ′ = ∑

j∈S πjEi[θj ] = ∞.

5. Birth-and-death processes

Let us assume now that {Xt } is a birth-and-death process on the infinite state space {0, 1, . . .}.
Choosing X0 = 0 without loss of generality, we have

K ′ =
∑
j≥0

πjE0[θj ]. (5.1)

We shall examine continuous and discrete-time processes simultaneously. In continuous time,
we denote by λn and μn the transition rates from n to n + 1 and from n to n − 1, respectively;
in discrete time, these are the one-step transition probabilities. We assume that λn > 0 for all
n ≥ 0, μn > 0 for all n ≥ 1, so that the process is irreducible. We further assume that the
birth-and-death process is positive recurrent, so that B = ∑

n≥0 βn is finite, where

β0 = 1, βn = λ0λ1 · · · λn−1

μ1μ2 · · · μn

for n ≥ 1, (5.2)

and the stationary distribution is given by πn = B−1βn (see [4, Equation (6.3)]), which is still
valid in the discrete-time case.

Theorem 5.1. For an irreducible, positive recurrent, birth-and-death process on {0, 1, . . .},
the constant K ′ is finite if and only if

	 =
∑
k≥0

(λkπk)
−1

∑
j≥k+1

πj < ∞. (5.3)
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In that case, K ′ = 	 − Eπ [θ0], with

Eπ [θ0] =
∑
k≥0

(λkπk)
−1

( ∑
j≥k+1

πj

)2

< 	.

Proof. We start from (5.1) and write

K ′ =
∑
j≥1

πj

∑
0≤k≤j−1

(λkπk)
−1

∑
0≤
≤k

π


=
∑
k≥0

(λkπk)
−1

( ∑
j≥k+1

πj

)(
1 −

∑

≥k+1

π


)

=
∑
k≥0

(λkπk)
−1

∑
j≥k+1

πj −
∑
k≥0

(λkπk)
−1

( ∑
j≥k+1

πj

)2

(5.4)

if both series converge, with the first equation following from [4, Equation (6.4)], which is still
valid in the discrete-time case. The first series is 	 by definition, the second is equal to Eπ [θ0]
by [4, Equation (6.6)]. It is obvious that Eπ [θ0] ≤ 	.

If 	 < ∞ then Eπ [θ0] < ∞, the deviation matrix exists, and K ′ = 	 − Eπ [θ0] by (5.4).
If 	 = ∞ and Eπ [θ0] < ∞ then K ′ = ∞ by (5.4) again. Finally, if Eπ [θ0] = ∞ then we
have already seen in Remark 4.2 that K ′ = ∞. �
Remark 5.1. First, let us deal with discrete-time birth-and-death processes. From [4, Equation
(6.6)], we see that 	 = limn→∞ En[θ0] and we may interpret Theorem 5.1 as saying that, for
Kemeny’s constant to be finite, it is necessary (and sufficient) that having ventured to any state n,
no matter how far from the origin, the process will reach state 0 in bounded expected time.

In discrete time, every transition from a state to one of its neighbours requires at least one unit
of time, so that En[θ0] ≥ n is unbounded. This tells us that (5.1) diverges for all discrete-time
birth-and-death processes.

Remark 5.2. For the continuous-time birth-and-death process with birth rates λn and death
rates μn, the right-hand side of (5.3) is the ‘D series’; see [1, p. 261] or [11, p. 245]. A recurrent
continuous-time birth-and-death process with a finite D series is said to have an entrance
boundary at ∞, a classification that goes back to Feller [6]. Bansaye et al. [2] described this
as instantaneously coming down from infinity.

A number of authors have looked at the consequences of the D series being finite. For
example, when there is an absorbing state at −1, this condition is equivalent to the existence of
a unique quasistationary distribution (see [16, Theorem 3.2]). The condition is also equivalent to
strong ergodicity of the birth-and-death process in the sense that limt→∞ supi |pij (t)−πj | = 0;
see [12, Theorem 3.1], [17, Theorem 3.1], and [18, Corollary 2.4].

For a continuous-time birth-and-death process with finite K ′, we can show that the change
of limit and sum in (3.3) can be justified, and so the physical interpretation given in Section 3
holds in this case as well. The details are given in the following lemma.

Corollary 5.1. Consider a continuous-time, irreducible, positive recurrent, birth-and-death
process on {0, 1, . . .}. If 	 < ∞ then

K ′ = lim
t→∞

(∑
j∈S

Ej [Mj(t)] − t

)
.
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Proof. We fix i = 0 and note that

K ′ =
∑
j∈S

πjE0[θj ] =
∑
j∈S

lim
t→∞(Ej [Mj(t)] − E0[Mj(t)])

by Lemma 3.2. We plan to use the Fatou–Lebesgue dominated convergence theorem to justify
the change of limit and sum. To that end, we construct a bound mj for Ej [Mj(t)]−E0[Mj(t)]
such that

∑
j mj < ∞.

Denote by (0)mj (t) the expected sojourn time in j during the interval (0, t), starting from j ,
under taboo of state 0 and let (0)mj (∞) = limt→∞((0)mj (t)). Then

Ej [Mj(t)] − E0[Mj(t)] = (0)mj (t) +
∫ t

0
E0[Mj(t − u)] dPj [θ0 ≤ u] − E0[Mj(t)]

≤ (0)mj (t) − (1 − P0[θ0 ≤ t])E0[Mj(t)]
≤ (0)mj (t)

≤ (0)mj (∞).

It is a simple matter to show that (0)mj (∞) = πj

∑
1≤k≤j 1/(πkμk) and that

∑
j∈S

(0)mj (∞) =
	, which is finite by assumption. Thus,

K ′ = lim
t→∞

∑
j∈S

(Ej [Mj(t)] − E0[Mj(t)]) = lim
t→∞

∑
j∈S

(Ej [Mj(t)] − t])

by dominated convergence, and this concludes the proof. �

Example 5.1. For the M/M/1 queue, λn = λ and μn = μ, independently of n. The process is
positive recurrent if and only if the ratio ρ = λ/μ is strictly less than 1, and πn = (1 − ρ)ρn.
Equation (5.3) becomes

	 =
∑
k≥0

λ−1ρ−k
∑

j≥k+1

ρj =
∑
k≥0

1

μ − λ
= ∞

so that Kemeny’s constant is infinite. However, it may be finite for a process that we name
the sped-up M/M/1 queue: we take an arbitrary sequence {λn} and define μn = ρλn−1, with
ρ < 1. Here, βn = ρn so that the process is positive recurrent, πn = (1 − ρ)ρn, and

	 =
∑
k≥0

λ−1
k ρ−k

∑
j≥k+1

ρj =
∑
k≥0

λ−1
k ρ

1 − ρ
,

which converges if λn → ∞ sufficiently fast. In that case, μn → ∞ also.

The sped-up M/M/1 queue example illustrates that for Kemeny’s constant to be finite,
transitions have to occur faster as the process is further away from 0. Actually, as we show in
the next lemma, it is necessary that transitions from n to n− 1 occur sufficiently fast, transition
rates from n to n + 1 being less critical.

Lemma 5.1. For 	 to be finite, it is necessary, but not sufficient, that the series
∑

j≥11/μj

converges.
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Proof. We write (5.3) as
	 =

∑
j≥1

fj (5.5)

with

fj = πj

∑
0≤k≤j−1

(λkπk)
−1

= πj−1
λj−1

μj

( ∑
0≤k≤j−2

(λkπk)
−1 + (λj−1πj−1)

−1
)

= λj−1fj−1 + 1

μj

for j ≥ 1, (5.6)

if we define f0 = 0.
This shows that fj ≥ 1/μj , so that the series (5.5) diverges if

∑
j≥1 1/μj diverges.

The proof that this is not a sufficient condition is given in Example 5.3 below. �
Remark 5.3. Lemma 5.1 gives a different justification for the fact that (5.1) diverges for all
discrete-time birth-and-death processes: here, μn ≤ 1 − λn < 1 by assumption, and the series∑

j≥1 1/μj diverges.

Example 5.2. A direct consequence of Lemma 5.1 is that K ′ is infinite for the M/M/∞ queue
for which μn = nμ: the transition rates from n to n−1 are not large enough. We may, however,
use Lemma 5.1 to design processes for which Kemeny’s constant is finite. To that end, we choose
a sequence {fj } such that the series (5.5) converges, use (5.6) to define the sequence

μj = λj−1fj−1 + 1

fj

,

and then find a sequence {λj } such that the process is positive recurrent, that is, such that∑
n≥0 βn converges, with βn defined in (5.2). Two such examples follow. For the first,

• f1 = 0, fj = 1/j2 for j ≥ 1,

• μ1 = 1, μj = j2(1 + 1/(j − 1)2) for j ≥ 2, and

• λj = 1 for all j .

We easily see that

βn = 1∏
2≤j≤n j2(1 + 1/(j − 1)2)

<
1

(n!)2 .

For the second,

• fj = γ j , with γ < 1,

• μj = γ −j + λj−1γ
−1, and

• {λj } is arbitrary.

Here,

βn =
∏

0≤j≤n−1 λj∏
0≤j≤n−1(λjγ −1 + γ −(j+1))

< γ n.
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Example 5.3. In this last example we show that Lemma 5.1 is not a necessary and sufficient
condition. Take

• μj = j1+α , with 0 < α < 1, and

• λj = μj for j ≥ 1, λ0 = 1.

With these parameters, βn = 1/μn, so that both
∑

n≥1 1/μn and
∑

n≥1 βn converge.
By (5.6), we have fjμj = 1 + fj−1μj−1 = j , so that

∑
j≥1

fj =
∑
j≥1

j

μj

=
∑
j≥1

1

jα

diverges.

Appendix A. Proof that when D exists, K ′ is given by its trace

Here we show that, whenever the deviation matrix D exists, which occurs if and only if
Eπ [θj ] < ∞ for some state j ∈ S, then K ′ is finite and equal to

∑
j∈S Djj if this sum is finite,

and infinite when
∑

j∈S Djj is infinite.
Since the deviation matrix exists, [4, Equation (5.5)] implies that

Dij = πj (Eπ [θj ] − Ei[θj ])

which yields

πjEi[θj ] = Djj − Dij , (A.1)

observing that Ej [θj ] = 0. Summing (A.1) over j, we see that

∑
j∈S

πjEi[θj ] =
∑
j∈S

(Djj − Dij ) = lim
K→∞

∑
j∈SK

(Djj − Dij ) = lim
K→∞

( ∑
j∈SK

Djj −
∑
j∈SK

Dij

)
,

where {SK} is a monotone sequence of finite subsets converging to S.
By [4, Theorem 5.2],

∑
j∈S Dij = 0 for all i ∈ S. Therefore, for any ε > 0, there exists

K0(i) such that

−ε

2
≤

∑
j∈SK

Dij ≤ ε

2
for all K ≥ K0(i).

If
∑

j∈S Djj = ∞ then, for any M > 0, there exists K1 such that
∑

j∈SK
Djj ≥ M for all

K > K1. It follows that, if K > max(K0(i), K1) then

∑
j∈SK

Djj −
∑
j∈SK

Dij ≥ M − ε

2

and so ∑
j∈S

πjEi[θj ] =
∑
j∈S

(Djj − Dij ) = ∞

independently of i.
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On the other hand, if
∑

j∈S Djj = L < ∞ then, for any ε > 0, there exists K1 such
that L − 1

2ε ≤ ∑
j∈SK

Djj ≤ L + 1
2ε for all K > K1. Then, again for fixed i, taking

K > max(K0(i), K1),

L − ε ≤
∑
j∈SK

Djj −
∑
j∈SK

Dij ≤ L + ε

and so ∑
j∈S

πjEi[θj ] =
∑
j∈S

Djj = L.

This argument holds for all i, and we see that
∑

j∈S πjEi[θj ] is independent of i.
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