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A new linearly unstable mode in the core-annular
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The linear stability characteristics of pressure-driven core-annular pipe flow of two
immiscible fluids are considered to investigate the effects of the density and viscosity
ratios, the Reynolds number, the interface location and the interfacial tension. Both
liquid–liquid and gas–liquid systems are examined. A new type of interfacial mode
associated with the axisymmetric and corkscrew perturbations is discovered for certain
ranges of the viscosity and density ratios in the immiscible liquid–liquid system. Two
distinct unstable regions at long and short wavelengths are observed. The long-wavelength
unstable region forms a close loop, indicating that it is not a Tollmien–Schlichting mode.
The new interfacial mode observed in the present study is similar to that discovered
by Mohammadi & Smits (J. Fluid Mech., vol. 826, 2017, pp. 128–157) in two-layer
Couette flow for low viscosity ratios. In contrast to the two distinct unstable regions found
in the immiscible configuration, the corresponding miscible system contains only one
unstable mode. It is found that, in the liquid–liquid systems, the corkscrew (axisymmetric)
perturbation is dominant when the annular fluid is less (more) viscous than the core
fluid. On the other hand, the axisymmetric perturbation is always the dominant one
in the gas–liquid system. In gas–liquid systems, the interfacial tension stabilises the
short-wave and destabilises the long-wave perturbations, while increasing the interface
radius stabilises the flow due to the presence of a plug region in the pipe.

Key words: core-annular flow, gas/liquid flow

1. Introduction

Two-layer flows are commonly observed in many natural phenomena, such as magma
flows, glaciers, the Earth’s outer core, the ocean and atmosphere (Govindarajan & Sahu
2014) and industrial applications, such as crude oil transport in pipelines (Saffman &
Taylor 1958; Joseph et al. 1997; Cao et al. 2003), coating technology (Weinstein &
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Ruschak 2004), displacement flow (Redapangu, Sahu & Vanka 2012), de-icing aircraft
wings (Yih 1990) to name a few. The pioneering work by Yih (1967) demonstrated
the existence of an interfacial unstable mode associated with an infinitesimal small
long-wave perturbation at any Reynolds number in plane Couette and plane Poiseuille
flows of two immiscible fluids with different viscosities separated by a sharp interface.
Since then, several researchers have studied the interfacial instability in the long-wave
limit (Hooper 1985), short-wave limit (Hooper & Boyd 1983) and also via full linear
stability analysis in two-layer plane Poiseuille (Yiantsios & Higgins 1988a,b; Sahu et al.
2007; Valluri et al. 2010; Sahu & Matar 2010), Couette (Mohammadi & Smits 2017),
three-layer channel (Malik & Hooper 2005; Sahu et al. 2007; Redapangu et al. 2012)
and core-annular cylindrical pipe (Hickox 1971; Joseph, Renardy & Renardy 1984; Salin
& Talon 2019; Usha & Sahu 2019) flows. The mechanism of the short-wave interfacial
instability was provided by Hinch (1984). By conducting an energy budget analysis for the
linear perturbations, Boomkamp & Miesen (1996) showed that the interfacial instability is
driven by the work done at the interface due to the jump in viscosity across the interface.

Instability in the core-annular cylindrical pipe flow of two miscible (Scoffoni,
Lajeunesse & Homsy 2001; Selvam et al. 2007, 2009; Sahu 2016, 2019) and immiscible
fluids (Hickox 1971; Joseph et al. 1984; Salin & Talon 2019; Usha & Sahu 2019) has
received increasing attention recently, not only because of its importance in many practical
applications but also due to its fundamental interest. The single-fluid Hagen–Poiseuille
flow is known to be linearly stable for all values of Reynolds number (Schmid &
Henningson 2001), which is not true in two-fluid flows in a cylindrical pipe. The focus of
all of the above investigations in core-annular cylindrical pipe flows was to demonstrate the
behaviour of the linearly unstable axisymmetric and corkscrew perturbations associated
with viscosity stratification (in the miscible configuration) or viscosity contrast (in the
immiscible configuration) between the fluids in density matched systems. The main
findings of the earlier studies in the stability of core-annular pipe flows of miscible
and immiscible fluids are summarised below. (i) While the immiscible configuration is
unstable if the core fluid is more viscous than the annular fluid (Joseph et al. 1997), the
miscible configuration is found to be unstable beyond a critical viscosity ratio (Selvam
et al. 2007). (ii) In miscible configurations, the axisymmetric perturbation is dominant
when the core fluid is more viscous than the annular fluid, but when the core fluid is less
viscous, the corkscrew perturbation is most dangerous (Selvam et al. 2007). This result is
in contrast with that of the immiscible core-annular pipe flow in which the axisymmetric
perturbation was found to be most unstable when the core fluid is less viscous than the
annular fluid (Usha & Sahu 2019). It is also worth mentioning that in the Hagen–Poiseuille
single-fluid flow (albeit stable for any Reynolds number), the corkscrew perturbation is
always the least stable one (Schmid & Henningson 2001). (iii) Selvam et al. (2009) and
Salin & Talon (2019) demonstrated the transition from the convective instability to the
absolute instability in miscible and immiscible core-annular flows of two immiscible fluids
of different viscosities but of the same density.

In the present work, we demonstrate the appearance of a new mode of instability distinct
from the Tollmien–Schlichting (TS) mode and Yih’s interfacial mode in core-annular
cylindrical pipe flow of two immiscible fluids. In this context, it is important to discuss
the earlier studies on the stability of two-layer plane Poiseuille flow of two miscible fluids
(Ranganathan & Govindarajan 2001; Govindarajan 2004; Malik & Hooper 2005; Sahu &
Govindarajan 2016) and two-layer Couette flow of two immiscible fluids (Ern, Charru &
Luchini 2003; Mohammadi & Smits 2017). Ern et al. (2003) demonstrated that the most
unstable mode in the miscible configuration is similar to that observed in immiscible flows
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without surface tension for low diffusivity and in the limit of zero thickness of the mixed
region. However, in the miscible configuration, they also found that, for a certain range
of diffusivity and interfacial thickness, the growth rate of the perturbations is higher than
the corresponding interfacial mode. In a three-layer channel flow, Govindarajan (2004)
reported the existence of a linearly unstable regime distinct from the TS mode and showed
that these unstable regions merged when the mixed layer overlaps with the critical layer
(i.e. the location at which the perturbation phase velocity is equal to the mean streamwise
velocity). By comprising the instability behaviour of two miscible and immiscible fluids in
a two-layer plane Poiseuille flow, Malik & Hooper (2005) showed that when the thickness
of the mixed region is comparable to the thickness of the critical layer, the most unstable
mode resembles the interfacial mode (Yih 1967). In a miscible channel flow, Talon &
Meiburg (2011) observed four different types of modes depending on the location of the
mixed region in the Stokes flow regime. By analysing the concentration perturbation, they
showed that the most unstable mode is similar to that of Ern et al. (2003).

Most relevant to the present study is the discovery of a new type of interfacial instability
distinct from Yih’s mode (Yih 1967) in a two-layer Couette flow for low viscosity ratio
by Mohammadi & Smits (2017). They also investigated the influence of the density ratio
and interfacial tension. In the present study, besides demonstrating the distinct interfacial
mode of instability in a core-annular cylindrical pipe flow, the effect of the viscosity and
density ratios is also studied, with an emphasis on investigating the linear instability in
the core-annular gas–liquid system that has not yet been studied to the best of the author’s
knowledge. The new interfacial instability mode is compared with the most unstable mode
observed in the corresponding miscible core-annular flow. Two configurations have been
considered in the gas–liquid system, namely, when the annular fluid is a liquid and the
core fluid is a gas, and vice versa. The effects of interface location and interfacial tension
have also been investigated. The rest of this paper is organised as follows. The problem
is formulated and the governing linear stability equations for immiscible and miscible
core-annular configuration are derived in § 2. The associated boundary conditions are
also presented in this section. The linear stability results are discussed in § 3. Concluding
remarks are provided in § 4.

2. Formulation

2.1. Immiscible core-annular configuration
Linear instability characteristics of a steady and fully developed core-annular
pressure-driven flow of two Newtonian and immiscible, incompressible fluids in a vertical
cylindrical pipe of radius R are considered. This schematic diagram is shown in figure 1. A
cylindrical coordinate system (r, θ, z) is used, where r, θ and z denote the radial, azimuthal
and axial coordinates, respectively. The density and viscosity of the core fluid (fluid ‘1’ in
0 � r � R0) and annular fluid (fluid ‘2’ in R0 � r � R) are denoted by (ρ1, μ1) and (ρ2,
μ2), respectively. The interfacial tension acting at the interface separating the immiscible
fluids is denoted by σ . Both liquid–liquid and gas–liquid systems are considered in this
study. The flow dynamics is governed by the continuity and the Navier–Stokes equations
in the cylindrical coordinate system, which are non-dimensionalised using the radius of the
pipe (R) and average velocity (V = Q/πR2) as the length and velocity scales, respectively.
Here, Q is the volumetric flow rate. In the non-dimensionalisation, the properties of
fluid ‘1’ are used as the reference scales. The reduced dimensionless pressure pk in fluid
k (k = 1, 2) is related to the corresponding total dimensional pressure, pd,k as

pk = ( pd,k + ρkgz)/ρkV2. (2.1)
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Figure 1. Schematic of the pressure-driven core-annular flow of two immiscible fluids in a vertical pipe of
radius R. The acceleration due to gravity, g acts in the positive z-direction. The fluids are separated by a sharp
interface located at r = R0.

The various dimensionless numbers are the Reynolds number, (Re = ρ1VR/μ1), the
viscosity ratio (μr = μ2/μ1), the density ratio (ρr = ρ2/ρ1), the dimensionless radius
of the interface, (Ri = R0/R) and the inverse capillary number, (Γ = σ/μ1V). Here, V
denotes the average velocity.

2.1.1. Basic state
The basic state is a steady, parallel, fully developed unidirectional flow in the axial
direction, Uz,k in the core (k = 1) and annular (k = 2) regions of the pipe. The basic
state velocity profiles in the core (r ∈ [0, Ri]) and annular (r ∈ [Ri, 1]) regions are given
by

Uz,1 = −dP
dz

Re
4

(Ri
2 − r2) − dP

dz
Re

4μr
(Ri

2 − 1), (2.2)

Uz,2 = −dP
dz

Re
4μr

(1 − r2), (2.3)

respectively. Equations (2.2) and (2.3) are obtained using the following boundary
conditions: (i) the no-slip boundary condition at the pipe wall (r = 1), (ii) the velocity
maximum condition (U′

z,1 = 0) at the centreline of the pipe (r = 0) and (iii) the continuity
of velocities (Uz,1 = Uz,2) and the shear stresses (dUz,1/dr = μr dUz,2/dr) at the interface
(r = Ri). The pressure gradient, dP/dz (whose value is negative for flow in the positive z
direction) is calculated by maintaining the constant volumetric flow condition, such that
dimensionless average velocity, V = Q/2π

∫ 1
0 Uzr dr = 1.

2.1.2. Linear stability equations
The temporal linear stability equations for the basic flow (2.2)–(2.3) subjected to
infinitesimal perturbations are discussed in this section. A normal mode analysis is used
to express each flow variable as a sum of the basic state and a time-dependent perturbation
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(designated by hat)

(ur,k, uθ,k, uz,k, pi)(r, θ, z, t) = (
0, 0, Uz,k(r), P(z)

) + (iûr,k, ûθ,k, ûz,k, p̂k)(r, θ, z, t),
(2.4)

where

(iûr,k, ûθ,k, ûz,k, p̂k) = (iur,k, uθ,k, uz,k, pk)(r) exp(i (αz + βθ − αct)). (2.5)

Similarly, the perturbed interface can be represented as Ri + ri exp(i(αz + βθ − αct)).
Here, i ≡ √−1, α, β and c(≡ cr + ici) are the wavenumbers in the axial and azimuthal
directions (real), and the phase speed (complex) of the perturbation, respectively. The
real and imaginary parts of c are denoted by cr and ci, respectively. Thus a given mode
is temporally unstable if ci > 0, stable if ci < 0 and neutrally stable if ci = 0. The
governing temporal linear stability equations are derived using the standard approach
(Schmid & Henningson 2001; Usha & Sahu 2019), i.e. by substituting the perturbations
in the dimensionless continuity and Navier–Stokes equations and then subtracting the
corresponding unperturbed equations followed by linearising the resulting equations. After
suppressing the hat notations, the temporal linear stability equations for both the layers,
k = (1, 2) are given by

u′
r,k + ur,k

r
+ βuθ,k

r
+ αuz,k = 0, (2.6)

ρk
(−αcur,k + αur,kUz,k

) = p′
k − iμk

Re

[
u′′

r,k + u′
r,k

r
−

(
β2 + 1

r2 + α2
)

ur,k − 2β

r2 uθ,k

]
,

(2.7)

ρk
(−αcuθ,k + αuθ,kUz,k

)
= −βpk

r
− iμk

Re

[
u′′
θ,k + u′

θ,k

r
−

(
β2 + 1

r2 + α2
)

uθ,k − 2β

r2 ur,k

]
, (2.8)

ρk
(−αcuz,k + U′

z,kur,k + αUz,kuz,k
) = −αpk − iμk

Re

[
u′′

z,k + u′
z,k

r
−

(
β2

r2 + α2
)

uz,k

]
,

(2.9)
where the prime denotes differentiation with respect to r, ρk = (1, ρr) and μk = (1, μr).
Here, k = 1, 2 indicates the flow region. The stability equations in each layer are the
same as those given in Schmid & Henningson (2001). The boundary conditions for the
perturbation variables are discussed below.

At the centreline of the pipe (r = 0), the boundary conditions are

ur,1 = 0, uθ,1 = 0, u′
z,1 = 0, p′

1 = 0 for β = 0, (2.10)

ur,1 + uθ,1 = 0, 2u′
r,1 + u′

θ,1 = 0, uz,1 = 0, p1 = 0, for β = 1, (2.11)

ur,1 = 0, uθ,1 = 0, uz,1 = 0, p1 = 0, for β � 2. (2.12)

At the pipe wall (r = 1), the boundary conditions are

ur,2 = 0, uθ,2 = 0, uz,2 = 0, (2.13a–c)

for all values of β.
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The tangential stress balance equations for the perturbation at r = Ri in the azimuthal
and axial directions are given by

μr
[−βur,2 + Riu′

θ,2 − uθ,2
] + [

βur,1 − Riu′
θ,1 + uθ,1

] = 0, (2.14)

and
μr

[−αur,2 + riU′′
z,2 + u′

z,2
] = −αur,1 + riU′′

z,1 + u′
z,1, (2.15)

respectively. The normal stress balance boundary condition at r = Ri is given by

Re( p1 − p2) + 2i
[
μru′

r,2 − u′
r,1

] = −Γ ri

R2
i

[
1 − β2 − α2R2

i

]
. (2.16)

The velocity components are also continuous at the interface (r = Ri), i.e.

ur,1 = ur,2, uθ,1 = uθ,2, uz,1 = uz,2. (2.17a–c)

The kinematic boundary condition for perturbation is given by

ri = ur,1

α(Uz,1 − c)
= ur,2

α(Uz,2 − c)
. (2.18)

Equations (2.6)–(2.9), along with the boundary conditions (2.10)–(2.18), constitute an
eigenvalue problem with the eigenvalue as the frequency of the perturbation (ω = αc) and
eigenvectors [ur,k, uθ,k, uz,k, pi]T. The domains [0, Ri] and [Ri, 1] are discretised using the
Chebyshev spectral collocation method (Canuto et al. 1987), and the eigenvalue problem
is solved using a public domain software, LAPACK, such that for domain [0, Ri]

rj = Ri

2

[
1 − cos

(
π(j − 1)

N − 1

)]
, (2.19)

and for domain [Ri, 1]

rj = 1
2

[
1 + cos

(
π(j − 1)

N − 1

)]
+ Ri

2

[
1 − cos

(
π(j − 1)

N − 1

)]
, (2.20)

where rj are the locations of the Chebyshev collocation points, and N is the number of
collocation points in each layer. The governing equations for the corresponding miscible
core-annular configuration are described in Appendix A.

2.2. Validation
The linear stability solver developed for the immiscible configuration, as discussed in
§ 2.1, has been validated against several known results for the single-fluid flow (Schmid
& Henningson 2001) and also plane Poiseuille flow configuration of two immiscible fluids
(Sahu et al. 2007). Table 1 shows a comparison between the most unstable eigenmode
obtained using the current solver with the results of Hu & Joseph (1989) for two different
set of parameters. Several authors have used the results of Hu & Joseph (1989) to validate
their solvers (e.g. Orazzo, Coppola & De Luca 2014). In table 1, it can be seen that
the present results are in good agreement with Hu & Joseph (1989). In addition, a grid
convergence test is also performed (see figure 16 in Appendix B) to ensure that the number
of grids used in the present study is adequate to generate the eigenvalues accurately, at least
up to five decimal places. It is found that using more than 41 grids in each layer in the case
of the immiscible configuration and 81 grids in the miscible configuration are sufficient to
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Parameters Hu & Joseph (1989) Present

Set 1: Rec = 499.5, Ri = 0.9, Γ = 2, 0.38425 + 0.02075i 0.38405 + 0.02081i
μr = 0.05, ρr = 1, α = 5.0, β = 0
Set 2: Rec = 37.82, Ri = 0.7, Γ = 0, 0.66929 + 0.00413i 0.66916 + 0.00405i
μr = 0.5, ρr = 1, α = 10, β = 0

Table 1. Comparison of the most unstable phase speed (c) with Hu & Joseph (1989). Here, Rec = ρ1VcR/μ1
is the Reynolds number used by Hu & Joseph (1989), where Vc is the centreline velocity.

0.60.2 0.4 0.8 1.0

cr/Umax

–1.0

–0.8

–0.6

–0.4

–0.2

0
(a) (b)

(0.51,0)

0.5 0.60.2 0.3 0.4 0.7 0.8 0.9 1.0

cr/Umax

–1.0
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–0.4

–0.2

0

c i/U
m

ax

(0.51,0)

Figure 2. Comparison of the eigenvalue spectra obtained from the present simulations for the immiscible
configuration with Γ = 0 (‘◦’, red) and those given in Schmid & Henningson (2001) for the single-fluid flow
through a pipe (‘+’); (a) α = 1, β = 0 and (b) α = 0.5, β = 1. Other parameters are Re = 1000, Ri = 0.7,
μr = 1 and ρr = 1. The additional mode (‘•’) obtained in the immiscible configuration (mode ‘I’) is a neutrally
stable (ci = 0) mode with cr = Uz|Ri = 0.51Umax.

achieve the desired accuracy. Figures 2(a) and 2(b) show the comparisons of the eigenvalue
spectra obtained from the present simulations for the immiscible configuration (§ 2.1) with
Γ = 0 and those presented in Schmid & Henningson (2001) in the case of single-fluid flow
through a pipe for (α = 1, β = 0) and (α = 0.5, β = 1), respectively. Other parameters
are Re = 1000, Ri = 0.7, μr = 1 and ρr = 1. The real and imaginary parts of the phase
speed are normalised with the maximum velocity (Umax) of the basic state. It can be seen
that all the eigenvalues are overlapped, except for one additional mode in the case of the
immiscible configuration (shown by ‘•’). This is a neutrally stable (ci = 0) mode with
cr = Uz|Ri , which is a solution of the kinematic boundary condition (2.18). Hereafter, this
mode is termed as mode ‘I’. It is observed (as also can be seen below in several figures) that
mode ‘I’ is always present in the immiscible core-annular flow configuration (figure 1). In
the following, mode ‘I’ will be used to distinguish the other unstable modes, namely mode
‘1’ and mode ‘2’, in the interfacial core-annular flow.

3. Results and discussion

3.1. Liquid–liquid system
In order to identify the dominant mode of the perturbation in liquid–liquid systems
(ρr = O(1)), the variations of the normalised growth rate, αci,max/Umax associated with
the most unstable axisymmetric (β = 0) and corkscrew (β = 1) perturbations (excluding
‘I’ mode) are plotted for different viscosity ratios for ρr = 1.1 and density ratios for
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0.022
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1.02

0
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β

Figure 3. Effect of β on the variations of αci,max/Umax (excluding the neutrally stable interfacial ‘I’ mode)
with (a) the viscosity ratio, μr for ρr = 1.1, and (b) the density ratio, ρr for μr = 1.2 in the immiscible
core-annular configuration. Other parameters are Re = 1000, Ri = 0.7 and Γ = 0.1. The insets in (a,b) are
the magnified views near μr = 1 and ρr = 1, respectively.

μr = 1.2 in figures 3(a) and 3(b), respectively. Other parameters are Re = 1000, Ri = 0.7,
Γ = 0.1 and ci,max is the phase speed of the perturbation corresponding to the most
unstable wavenumber (α) for each set of parameters. It is found (not shown) that the
higher modes (β � 2) are stable for the range of parameters considered in this study. It
can be seen in figure 3(a) that, for ρr = 1.1, while the corkscrew (β = 1) perturbation
is dominant for μr < 1 (i.e. when the annular fluid is less viscous than the core fluid),
the axisymmetric (β = 0) perturbation is more unstable for μr > 1 (i.e. when the annular
fluid is more viscous than the core fluid). This is also true for other values of the density
ratios, albeit for ρr = O(1), i.e. in liquid–liquid systems, as shown in figure 3(b). Usha
& Sahu (2019) also found that the axisymmetric perturbation is the dominant one in the
core-annular flow of two immiscible fluids for μr > 1 and ρr = 1. However, this behaviour
contrasts with the miscible configuration of two isodense fluids, in which the axisymmetric
perturbation is dominant for μr < 1, but the corkscrew perturbation is more unstable for
μr > 1 (Selvam et al. 2007; Sahu & Govindarajan 2016).

3.1.1. Axisymmetric perturbation: β = 0
In this section, the linear instability behaviour of the axisymmetric perturbation (β = 0)
in the immiscible core-annular flow is discussed. The unstable mode in the immiscible
configuration is also compared with that of the corresponding miscible configuration.
Figures 4(a) and 4(b) show the neutral stability curves for the most unstable mode
(excluding the ‘I’ mode) in the (Re, α)-plane and the variations of the normalised real
part of the phase speed (cr/Umax) along the neutral stability boundaries, respectively. The
parameters used for the immiscible configuration are Ri = 0.7, Γ = 0, ρr = 1, μr = 0.1
and β = 0. It can be seen in figure 4(a) that there are two distinct unstable regions
corresponding to the long wavelengths (small α) and short wavelengths (large α). The
normalised phase speeds of these modes are approximately 0.5 and 0.9 (see, figure 4b),
which are termed as ‘mode 1’ and ‘mode 2’, respectively. It can also be seen that only
one mode is unstable in the corresponding miscible core-annular configuration with
Schmidt number, Sc = 1 and mixed layer thickness, q = 0.02 (shown by the dashed line
in figure 4a,b). The value of cr/Umax in the miscible configuration lies in between the
two unstable modes in the immiscible configuration. It is also verified that the result
qualitatively remains the same even when the value of q is 10 % of the pipe radius and
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Figure 4. (a) The neutral stability curves corresponding to the most unstable axisymmetric (β = 0)
perturbation (excluding the ‘I’ mode). (b) Variation of the real part of the phase speed of the most unstable
mode as a function of Re. The inset in (b) corresponds to mode ‘1’ in the linear scale. The result associated
with the corresponding miscible configuration (with Sc = 1, q = 0.02) is shown by the black dashed line in
(a,b). The eigenvalue spectra in the immiscible configuration for (c) Re = 500, α = 1 and (d) Re = 100, α = 5.
The mode ‘I’ with cr = 0.91234 is shown by symbol (•) in (c,d). Other parameters are Ri = 0.7, Γ = 0, ρr = 1
and μr = 0.1.

for a range of finite Sc values (see, figure 15 in Appendix A). It is found that mode ‘1’
in the low α region becomes stable at sufficiently high values of Re. This indicates that
this mode is inviscidly stable and thus, cannot be a TS mode. Mohammadi & Smits (2017)
found a similar unstable mode in two-layer Couette flow for low viscosity ratios. This point
is discussed further in § 3.1.2.

The eigenvalue spectra associated with the immiscible configuration for Re = 500,
α = 1 (one typical set of parameters in the long-wavelength unstable region) and Re =
100, α = 5 (one typical set of parameters in the short-wavelength unstable region) are
shown in figures 4(c) and 4(d), respectively. It can be seen that, for Re = 500, α = 1,
mode ‘1’ is unstable (cr1, ci1 = 0.49100, 0.0067) and mode ‘2’ is stable (cr2, ci2 =
0.93783, −0.02550). On the other hand, for Re = 100, α = 5, mode ‘1’ becomes stable
(cr1, ci1 = 0.53618, −0.10152) and mode ‘2’ is unstable (cr2, ci2 = 0.91531, 0.07105). It
is also observed that, for μr < 1, while in the long-wavelength region the real part of
the phase speed of the most unstable mode is smaller than that of the ‘I’ mode, in the
short-wavelength region it is higher or of the same order.

To further understand the behaviour of the two distinct unstable modes in the immiscible
configuration, the neutral stability curves are plotted for different values of the viscosity
ratio in figure 5(a–f ). The rest of the parameters are the same as those used to generate
figure 4(a). It can be seen that, as we increase the value of μr (while remaining below one),
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Figure 5. The neutral stability curves associated with the most unstable axisymmetric (β = 0) perturbation
(excluding mode ‘I’) for different viscosity ratios in the immiscible configuration. (a) μr = 0.05, (b) μr = 0.1,
(c) μr = 0.12, (d) μr = 0.15, (e) μr = 0.5 and ( f ) μr = 0.95. The rest of the parameters are Ri = 0.7, Γ = 0
and ρr = 1.

the neutral stability boundaries associated with mode ‘1’ and mode ‘2’ come closer and
merge at μr ≈ 0.12. The overlap region (where both the modes are unstable) grows while
the unstable region associated with mode 2 shrinks as we further increase the viscosity
ratio, and it disappears for μr = 0.95. Close inspection of figure 5(a–f ) also reveals that the
smallest Reynolds number for which either mode ‘1’ or mode ‘2’ is unstable increases with
an increase in the viscosity ratio. In figures 6(a) and 6(b), the dispersion curves (ci/Umax
vs α) for different viscosity ratios are plotted for Re = 100 and Re = 1500, respectively.
Other parameters are the same as those used to generate figure 5(a–f ). In figure 6(a,b), it
can be seen that ci/Umax > 0 over a finite band of wavenumbers, indicating the presence of
linear instability. Figure 6(a) shows that only mode ‘2’ (in the large α region) is unstable
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Figure 6. Effect of the viscosity ratio on the variation of ci/Umax vs α for (a) Re = 100 and (b) Re = 1500.
Other parameters are β = 0, ρr = 1, Γ = 0 and Ri = 0.7.
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Figure 7. Effect of the density ratio on the neutral stability curve for μr = 0.1 in the immiscible core-annular
configuration. Other parameters are β = 0, Γ = 0 and Ri = 0.7.

for Re = 100, which can also be seen in the neutral stability curve plotted in figure 5.
For Re = 100, it can be observed that the ‘dominant’ mode that corresponds to the value
of α for which ci/Umax is maximum, decreases with increasing the viscosity ratio (μr).
In contrast, depending on the value of the viscosity ratio (μr), mode ‘1’ and/or mode
‘2’ become the dominant mode for Re = 1500. It is also observed that the value of α

associated with the dominant mode has a non-monotonic variation with μr. In particular,
inspection of figure 6(b) reveals the following: (i) only mode ‘2’ (with large α value) is
unstable for μr = 0.05, (ii) for μr = 0.15, mode ‘1’ (with small α value) is the dominant
mode as the value of ci,max/Umax is higher than that of mode ‘2’ and (iii) mode ‘2’ is the
dominant mode for μr = 0.5.

Then, the effect of the density ratio on the neutral stability curves is investigated for
the axisymmetric perturbation (β = 0) in the immiscible configuration with μr = 0.1
in figure 7. Other parameters are Γ = 0 and Ri = 0.7. It can be seen that the distinct
modes merge and becomes a single unstable mode for ρr = 0.1 and 10. In order to
find the range of the density ratios for which the two distinct modes are present, the
variations of ci/Umax and cr/Umax with α are plotted for μr = 0.1, Re = 1000, Γ = 0
and Ri = 0.7 in figures 8(a) and 8(b), respectively. It is observed that two unstable modes
associated with low and high α values appear in the range 0.7 � ρr � 5 for the set of
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Figure 8. Variations of the normalised real (cr/Umax) and imaginary (ci/Umax) parts of the phase speed of the
most unstable axisymmetric perturbation (β = 0); (a) cr/Umax vs α and (b) ci/Umax vs α. Other parameters
are μr = 0.1, Re = 1000, Γ = 0 and Ri = 0.7.

parameters considered. Inspection of figures 8(a) and 8(b) reveals that for ρr = 0.5 and
ρr = 7 there is only one unstable mode (ci/Umax > 0).

3.1.2. Corkscrew perturbation: β = 1
After establishing the new mode of instability associated with the axisymmetric
perturbation (β = 0), the linear stability behaviour of the corkscrew perturbation (β = 1)
is investigated in this section. Figure 9(a) depicts the neutral stability curves associated
with the most unstable mode (excluding mode ‘I’ with its real part, crI = Uz|Ri) in the
(Re, α)-plane. The other parameters used to generate these results are Ri = 0.7, Γ = 0,
ρr = 1 and μr = 1.2. It can be seen that the corkscrew perturbation (β = 1) also exhibits
two distinct unstable regions corresponding to the long (small α) and short wavelengths
(large α) for the set of parameters considered. This is also clearly evident in figure 9(b),
which presents the variations of the normalised real part of the phase speed (cr/Umax)
along the neutral stability boundaries. However, close inspection of figures 9(a) and
9(b) reveals that, in contrast to the axisymmetric perturbation (β = 0), the long- and
short-wavelength unstable regions are associated with mode ‘2’ (whose cr > crI) and
mode ‘1’ (whose cr < crI) in the case of the corkscrew perturbation (β = 1). The results
for the corresponding miscible configuration (with Sc = 1, q = 0.02) is shown by the
black dashed line in figures 9(a) and 9(b). It can be seen in figure 9(a) that the neutral
stability curves for mode ‘2’ (in the small α regime) in the immiscible configuration look
similar to that of the single unstable TS mode observed in the miscible case. However,
the critical Reynolds number associated with mode ‘2’ in the immiscible configuration is
much smaller than that of the TS mode in the miscible configuration.

The characteristics of modes ‘1’ and ‘2’ in the immiscible configuration for β = 1 are
illustrated in figures 9(c) and 9(d), which show the eigenvalue spectra for two typical sets
of parameters, namely (Re = 3000, α = 1) and (Re = 3000, α = 6) in the unstable long-
and short-wavelength regions, respectively. In figure 9(c), it can be seen that the real part
of the phase speed of the most unstable mode, cr is greater than crI ; thus, it is mode ‘2’ by
definition. On the other hand, in figure 9(d), the phase speed of the most unstable mode,
cr is less than crI ; thus, it is mode ‘1’ by definition.

The effect of the viscosity ratio for ρr = 1 and the density ratio for μr = 1.2 on the
neutral stability curve associated with the most unstable corkscrew (β = 1) perturbation
(excluding mode ‘I’) in the immiscible configuration is investigated in figures 10(a) and
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Figure 9. (a) The neutral stability curves for the most unstable corkscrew (β = 1) perturbation. (b) Variation
of the real part of the phase speed of the most unstable mode as a function of Re. The result associated with a
miscible configuration (with Sc = 1, q = 0.02) is shown by black dashed line in (a,b). The eigenvalue spectra
for (c) Re = 3000, α = 1 and (d) Re = 3000, α = 6 in the immiscible configuration. Mode ‘I’ with cr =
Uz|Ri = 0.46448 is shown by symbol (•) in (c,d). Other parameters are Ri = 0.7, Γ = 0, ρr = 1 and μr = 1.2.

10(b), respectively. The other parameters are fixed at Γ = 0 and Ri = 0.7. The two distinct
unstable regions for the long- and short-wavelength perturbations are apparent figure 10(a)
for different viscosity ratios. Another important point to be noted here that, for μr = 1.5,
the neutral stability boundary in the long-wavelength region forms a closed loop. It can be
seen in figure 10(b) that, while only mode ‘1’ is unstable for low density ratios (see, for
instance, ρr = 0.1), the two distinct unstable regions are present for ρr � 0.5. However,
increasing the density ratio shifts the neutral boundary towards high Reynolds number
for the set of parameters considered in figure 10(b). It is found (not shown) that all the
neutral stability boundaries for mode ‘2’ in figures 10(a) and 10(b) form close loops (albeit
that this happens at large values of Re). This behaviour indicates that the unstable mode
‘2’ in the interfacial configuration is not a TS mode. The new type of interfacial mode
observed in this study for the immiscible core-annular configuration is similar to that found
in two-layer Couette flow for a low viscosity ratio (Mohammadi & Smits 2017).

3.2. Gas–liquid systems
Finally, a parametric study is conducted to study the effect of the location of the interface
(Ri) and the inverse capillary number (Γ ) on the linear stability behaviour in gas–liquid
systems. Two configurations, namely, (i) when the core fluid is a gas and the annular fluid is
a liquid (i.e. ρr = 103 and μr = 102) and (ii) when the core fluid is a liquid and the annular
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Figure 10. The neutral stability curves associated with the most unstable corkscrew (β = 1) perturbation
(excluding mode ‘I’) for different (a) viscosity ratios for ρr = 1 and (b) density ratios for μr = 1.2 in the
immiscible configuration. Other parameters are Γ = 0 and Ri = 0.7.
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Figure 11. Effect of β on the dispersion curves associated with the most unstable mode (excluding mode
‘I’). (a) Core (gas)-annular (liquid) configuration (ρr = 103, μr = 102). (b) Core (liquid)-annular (gas)
configuration (ρr = 10−3, μr = 10−2). Other parameters are Re = 104, Ri = 0.7 and Γ = 0.1.

fluid is a gas (i.e. ρr = 10−3 and μr = 10−2) are considered. Figures 11(a) and 11(b) depict
the dispersion curves (αci/Umax vs α) associated with the most unstable axisymmetric
(β = 0) and corkscrew (β = 1) perturbations (excluding ‘I’ mode) in gas–liquid systems
for (ρr = 103, μr = 102) and (ρr = 10−3, μr = 10−2), respectively. It can be seen that,
unlike the liquid–liquid system (discussed in § 3.1), the axisymmetric perturbation (β = 0)
is the dominant mode in gas–liquid system. Thus, only the axisymmetric perturbation
(β = 0) is examined hereafter in this section.

The effect of the interface location (Ri) and the inverse capillary number (Γ ) on
the dispersion curves for the most unstable mode (excluding mode ‘I’) are shown in
figures 12(a) and 12(b) for β = 0, ρr = 103 and μr = 102 (when the core fluid is a gas
and the annular fluid is a liquid). The other parameters in figure 12(a) are Re = 104 and
Γ = 0.1, and in figure 12(b) are Re = 5000 and Ri = 0.7. Increasing Ri decreases the
gradient of velocity in the annular region (U′

z,2) and decreases the centreline velocity
to maintain the constant volumetric flow rate condition. Thus, increasing Ri makes the
flow in the annular region like a plug, which in turn stabilises the flow, as seen in
figure 12(a). It can also be seen in figure 12(a) that the wavelength of the perturbation
(2π/α) associated with the highest growth rate decreases as the value of Ri increases.
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Figure 12. Dispersion curves associated with the most unstable mode (excluding mode ‘I’) for β = 0
(axisymmetric perturbation). (a) Effect of Ri for Re = 104, Γ = 0.1 and (b) effect of Γ for Re = 5000 and
Ri = 0.7. The other parameters are ρr = 103 and μr = 102.
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Figure 13. Dispersion curves associated with the most unstable mode (excluding mode ‘I’) for β = 0
(axisymmetric perturbation). (a) Effect of Ri for Re = 104, Γ = 0.1 and (b) effect of Γ for Re = 2000 and
Ri = 0.7. The other parameters are ρr = 10−3 and μr = 10−2.

It can be seen in figure 12(b) that increasing Γ , which corresponds to increasing the
surface tension, stabilises the short-wave (high α) perturbation.

Figures 13(a) and 13(b) depict the effect of the interface location (Ri) for Re = 104,
Γ = 0.1 and the inverse capillary number (Γ ) for Re = 2000, Ri = 0.7 on the growth
rate of the perturbation for ρr = 10−3 and μr = 10−2. In this case, as the core is a liquid
(highly viscous as compared with gas), the plug flow region appears in the core layer,
which stabilises the flow. In other words, increasing Ri decreases the maximum growth
rate of the perturbation (figure 13a). In the case of visco-plastic fluid flow in a channel,
Frigaard (2001) also found that the presence of unyielded (plug) region highly stabilises
the flow. It is found that increasing Γ destabilises the long-wave perturbation (figure 12b).
Thus, it can be concluded that increasing Γ , which corresponds to increasing the surface
tension, stabilises the short-wave (high α) but destabilises the long-wave perturbations
(low α) via the Rayleigh–Plateau instability. It is also observed (not shown) that the effect
of Γ on the stability characteristic is similar in the liquid–liquid configuration described
in § 3.1.

918 A11-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

34
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.349


K.C. Sahu

4. Conclusions

The linear stability behaviour of the axisymmetric (β = 0) and corkscrew (β = 1)

perturbations in the core-annular pressure-driven flow of two immiscible fluids in a
cylindrical pipe is examined and compared to that observed in the corresponding
configuration of two miscible fluids. The effects of the viscosity ratio (μr), the density
ratio (ρr), the Reynolds number (Re), the dimensionless interface location (Ri) and the
inverse capillary number (Γ ) have been investigated. Both liquid–liquid and gas–liquid
systems are considered. A new mode of instability distinct from the TS mode and Yih’s
interface mode (Yih 1967) is discovered for a certain range of viscosity and density
ratios in the immiscible liquid–liquid system (ρr = O(1)). The corkscrew perturbation
also exhibits the new mode of instability for a certain range of density ratios. Contrary to
the immiscible core-annular configuration, in which two regions of instability are observed
for a range of viscosity and density ratios, only one mode is found to be unstable in the
miscible core-annular flow. The new interfacial mode observed in the present study is
similar to that found in two-layer Couette flow for low viscosity ratios (Mohammadi &
Smits 2017). It is also observed that in the liquid–liquid systems (ρr = O(1)), while the
corkscrew perturbation is dominant when the annular fluid is less viscous than the core
fluid, the axisymmetric perturbation becomes more unstable when the annular fluid is
more viscous than the core fluid. In contrast to the liquid–liquid system, the axisymmetric
perturbation is always the dominant one in the gas–liquid system. It is found that increasing
the interface radius stabilises the flow due to the presence of a plug flow region.
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Appendix A. Miscible core-annular configuration

In order to compare the linear stability behaviour of the immiscible configuration with the
corresponding miscible system, the basic state and the linear stability equations associated
with the core-annular flow of two miscible fluids are discussed briefly in this section.
The reader is referred to Sahu (2016) for more details. The schematic diagram of the
pressure-driven core-annular miscible flow configuration is shown in figure 14. In this
configuration, the fluids are miscible and separated by a mixed region of thickness q0 in
region R0 − q0/2 � r � R0 + q0/2 of the pipe. The dimensionless dynamic viscosity is
given by

μ0 = exp (s0 ln μr), (A1)
where s0 is given by

s0 = 0, 0 � r � Ri − q/2,

s0 =
6∑

i=1

airi−1, Ri − q/2 � r � Ri + q/2,

s0 = 1, Ri + q/2 � r � 1,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A2)
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Figure 14. Schematic of the pressure-driven core-annular flows of two miscible fluids in a vertical pipe of
radius R. The acceleration due to gravity, g acts in the positive z−direction. The fluids are separated by a mixed
region of thickness q0 occupying the region R0 − q0/2 � r � R0 + q0/2.
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Figure 15. Effect of Sc on the most unstable mode in the miscible core-annular flow configuration for
Re = 1500, α = 2.5, β = 0, q = 0.02, μr = 0.5, Ri = 0.7 and ρr = 1. The complete eigenvalue spectrum
corresponds to Sc = 1. The unstable modes ‘1’ and ‘2’ in the corresponding immiscible configuration with
Γ = 0 are shown by (‘◦’, red) and (‘◦’, blue), respectively. It can be seen that increasing Sc has a non-monotonic
effect on the growth rate of the most unstable mode in the miscible configuration.

where ai (i = 1, 6) are obtained by assuming that the scalar is continuous up to the second
derivative at r = Ri − q/2 and r = Ri + q/2 (Govindarajan 2004; Sahu & Govindarajan
2011), wherein q = q0/R. The other variables are non-dimensionalised in the same
manner as described in § 2.1 for the immiscible configuration. When the Péclet number
Pe(≡ ReSc) is large, s0 could be approximated by an error function that depends on the
combination (r − Ri)

√
Pe/z. In the stability calculation, the dependence of s0 on z is

neglected. This ‘quasi-steady’ approximation to represent basic concentration profile in
miscible flows is justified if the wavelength 2π/α of the disturbance is much shorter than
the length scale over which s0 varies with z, namely q2Pe. It is also to be noted here that,
after Tan & Homsy (1986), several authors have used the quasi-steady approximation to
represent basic concentration profile in miscible flows in the form of a hyperbolic tangent
(Ern et al. 2003), an error function (Selvam et al. 2007; Talon & Meiburg 2011) and a
fifth-order polynomial (Ranganathan & Govindarajan 2001; Sahu 2016).
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In the case of the miscible core-annular flow, the basic state is given by

1
r

∂

∂r

[
rμ0

∂Uz

∂r

]
= dP

dz
Re, (A3)

which is solved using the no-slip boundary condition at the pipe wall and the symmetric
boundary condition at the centreline of the pipe. Unlike the immiscible configuration,
the interfacial boundary conditions are not needed in this case as the dynamics is
characterised by the diffusion coefficient (D) of the scalar and not the interfacial tension
(no sharp interface). The dimensionless pressure gradient, dP/dz is obtained using
constant volumetric flow condition.

In the derivation of the linear stability equations for the miscible configuration, the
scalar variable can be expressed as s0(r) + s(r) exp(i(αz + βθ − αct)), such that the
amplitude of the perturbation viscosity, μ = (∂μ0/∂s0)s. The normal mode analysis used
in this case is also similar to that given in § 2.1.2. The linear stability equations for the
miscible configuration are given by

u′
r + ur

r
+ βuθ

r
+ αuz = 0, (A4)

ρ(−αcur + αurUz) = p′ − i
Re

[
μ0

{
ur

′′ + ur
′

r
−

(
β2 + 1

r2 + α2
)

ur − 2β

r2 uθ

}

+ 2μ′
0ur

′ + αU′
zμ

]
, (A5)

ρ(−αcuθ + αuθUz) = −βp
r

− iμ0

Re

{
uθ

′′ + uθ
′

r
−

(
β2 + 1

r2 + α2
)

uθ − 2β

r2 ur

}

− iμ0
′

Re

[
uθ

′ − uθ

r
− βur

r

]
, (A6)

ρ(−αcuz + Uz
′ur + αUzuz) = −αp − iμ0

Re

{
uz

′′ + uz
′

r
−

(
β2

r2 + α2
)

uz

}

− iμ′
0

Re

[
v′

z − αvr
] − iU′

z

Re
μ′ − iμ

Re

[
Uz

′′ + U′
z

r

]
, (A7)

− αcs + s0
′ur + αUzs = − i

ReSc

{
s′′ + s′

r
−

(
β2

r2 + α2
)

s
}

. (A8)

Here, ρ = s0ρr + (1 − s0) and Sc(≡ μ1/ρD) is the Schmidt number. It is noted here that
(A4)–(A7) are similar to the stability equations for each layer in the case of immiscible
core-annular flow configuration (§ 2.1.2). The boundary conditions for the perturbation
velocity field (vr, vθ , vz) at the centreline and wall of the pipe are the same as (2.10) and
(2.13a–c). The boundary conditions for the scalar variable, s are s = 0 and s′ = 0 at the
centreline and wall of the pipe, respectively. For more details and validation of the stability
analysis of the miscible configuration presented in this section, the reader is referred to our
previous studies Sahu & Govindarajan (2011), Sahu (2016, 2019).
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Appendix B. Grid convergence test
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Figure 16. The eigenvalue spectra obtained using different numbers of grids (N) in the (a) immiscible
configuration (figure 1) with Γ = 0 and (b) miscible configuration (figure 14) with Sc = 1 and q = 0.02. The
other parameters are Re = 1500, α = 2.5, β = 0, Ri = 0.7, μr = 0.5 and ρr = 1.
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