
Math. Struct. in Comp. Science (2015), vol. 25, pp. 135–202. c© Cambridge University Press 2014

doi:10.1017/S0960129514000061

Retrenchment and refinement interworking:

the tower theorems

R I C H A R D B A N A C H and C Z E S �L A W J E S K E

School of Computer Science, University of Manchester,

Oxford Road, Manchester, M13 9PL, U.K.

Email: banach@cs.man.ac.uk;jeske@xsys.org.uk

Received 31 August 2010; revised 27 March 2013

Retrenchment is a flexible model evolution formalism that compensates for the limitations

imposed by specific formulations of refinement. Its refinement-like proof obligations feature

additional predicates for accommodating design data describing the model change. The best

results are obtained when refinement and retrenchment cooperate, the paradigmatic scheme

for this being the commuting square or tower, in which ‘horizontal retrenchment rungs’

commute with ‘vertical refinement columns’ to navigate through a much more extensive

design space than permitted by refinement alone. In practice, the navigation is accomplished

through ‘square completion’ constructions, and we present and prove a full suite of square

completion theorems.

1. Introduction

As a design and development technique, model-based refinement (see, for example, de

Roever and Engelhardt (1998) for a survey) has proved its worth on many occasions.

Despite the broad reluctance among mainstream developers to embrace as mathematical

an approach to development as refinement proposes, a number of well-known industrial-

scale developments have demonstrated the enhanced dependability that accrues from

using a technique enjoying such a level of rigour. See, for instance: Stepney et al. (1998)

and Stepney et al. (2000) for a public presentation of the Mondex formal development

in Z, and Jones and Woodcock (2008) for a more recent reappraisal of it in the context

of the Verification Grand Challenge (Jones et al. 2006; Woodcock 2006; Woodcock and

Banach 2007); and Behm et al. (1999) and Behm et al. (2000) for the use of the B-Method

in the development of MÉTÉOR, and its subsequent further development in projects

such as Roissy-VAL (Badeau and Amelot 2005). In niche areas, where the benefits of

the aforementioned dependability has been appreciated, these techniques continue to be

applied, though it is often the case that little appears in the public domain for reasons of

commercial confidentiality†.

† For example, the proceedings of FM 2005 (Springer-Verlag Lecture Notes in Computer Science 3582) contain

a collection of short papers documenting the Industry Day, whereas the proceedings of FM 2011 (Springer-

Verlag Lecture Notes in Computer Science 6664) do not have any Industry Day papers since in that year the

day was confined to oral presentations only.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 136

As a design and development technique, a given, specific, incarnation of model-based

refinement can sometimes fall short of what is desired, as regards treating specific

requirements issues in the most faithful way possible. Retrenchment was introduced

as a means of addressing such awkward requirements issues, with the aim of allowing

them to be treated in a formal manner, whilst at the same time not interfering with

the benefits of a possibly over-idealised refinement development. Banach et al. (2007a)

provides a comprehensive and broadly based overview of retrenchment, with an extensive

discussion of the background and context, a description of some key issues arising with

retrenchment and an exploration of some case studies†. Moving on from that starting

point, the current paper is concerned with a key technical topic: viz. the interworking of

retrenchment and refinement.

The issue is that retrenchment, as conventionally presented, is extremely permissive (and

deliberately so). Hence, using it as the sole formal technique in a development process can

let through a whole host of design deviations that might be considered undesirable, and

could derail the development process. This possibility can in turn require considerable

self-discipline and intensive investment in validation to ensure that the development stays

on track. However, using retrenchment in a controlled way in concert with refinement

can considerably alleviate this situation, since a good deal of what would otherwise be

validation burden can be delegated to the guarantees that (some particular notion of)

model-based refinement offers, especially when backed up by the use of an appropriate

tool.

How then can we arrange for such fruitful cooperation between the two notions?

The paradigm investigated in the current paper views retrenchment and refinement as

orthogonal directions in a development landscape that enjoys a higher ‘dimensionality’

than one in which refinement is seen as being the only possible means of progress.

Thus, we can visualise refinement as proceeding ‘downwards’ from abstract to concrete

(this being the only possible means of progress in a conventional formal development

world), and retrenchment as proceeding ‘horizontally’, bridging between refinement strands

that would remain isolated from one another without the use of retrenchment. This

architecture is given solidity by demanding that diverse paths through this two dimensional

landscape between the same two system models should be related in a composable and

understandable way. And this in turn can be realised if we establish a sufficient store of

‘square completion’ constructions, each of which fills in a missing piece in an incomplete

square of horizontal retrenchments and vertical refinements. One thing that this achieves is

to allow us to interchange suitable retrenchment/refinement pairs, and thus, by repeated

application, to morph one path between the two system models into a different one.

Going further, the automatic construction of systems afforded by such square completion

constructions widens the scope for ‘system building by theorem’ from the pure refinement

† See the Retrenchment homepage at http://www.cs.man.ac.uk/∼banach/retrenchment/ for the latest

developments.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 137

paradigm† to a wider range of requirements issues that include ones that become formally

addressable only by means of retrenchment. This is the aim of the current paper.

1.1. Organisation of the paper

In Section 2, we give a broad informal overview of retrenchment and describe some of the

case studies and scenarios in which it has been employed. In Section 3, we change from

an informal to a technically rigorous orientation, recalling the basics of retrenchment,

and give a fairly general purpose formulation of refinement for interworking with it. The

refinement notion is one that can be instantiated to capture a range of existing refinement

formulations in the literature‡. In Section 4, we cover the compositions of retrenchments

and refinements that we will need later in the paper.

In Section 5, we outline the main results of the rest of the paper, summarising the

theorems and indicating their use in the tower pattern (Banach et al. 2005) – this section

can be used as convenient overview. The following sections focus on the technical details

of each of the specific theorems: Section 6 covers the Lifting Theorem; Section 7 covers

the Lowering Theorem; Section 8 covers the Postjoin Theorem; and Section 9 covers the

Prejoin Theorem. Since we adhere to a rather categorical paradigm, all of these results

are proved up to notions of equivalence: specifically, these amount to inter-simulability,

inter-retrenchability and inter-refinability, as appropriate, and as described in detail for

each theorem as required. This gives a precise definition of the way that each of the

results obtained is characterised beyond the details of the explicit construction given.

This, in turn, helps when replacing the explicit construction by something equally useful,

but more appealing from a system requirements point of view. Those unconcerned with

the technical details can skip over the proofs in Sections 6–9.

In Section 10, we discuss associativity, general tower constructions and system engin-

eering, and give a sketch of how the technical material presented earlier might be applied.

Finally, we present our conclusions in Section 11.

1.2. Background

The current paper looks again at the results and constructions originally investigated

in depth in Jeske (2005). The results in that paper took a particular stance on how the

constructions should be approached, and strove to achieve the greatest degree of generality

possible from that perspective. While this aim appeared at the outset to be innocuous

† This is exemplified at the time of writing by toolsets such as Rodin (for further details, see http://www.event-

b.org/, http://www.rodintools.org/ and http://sourceforge.net/projects/rodin-b-sharp/) and

others, each of which is designed for the formal development of systems using (some specific notion of)

refinement.
‡ In a further paper, Banach (2009), we examine a number of specific real-world refinement formulations in

order to infer the most appropriate way to design retrenchment notions, and the insights of the current paper

are used to reinforce the conclusions drawn. In turn, the formulation of refinement used here is designed to be

capable of realising various specific notions examined in Banach (2009). Thus, although the current paper is

technically self-contained, it has benefited from strong conceptual cross-fertilisation between it, Banach (2009)

and Banach et al. (2007b).

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 138

enough, it led, in the end, to some ferociously complicated results, and the overwhelming

technical convolutedness of those results certainly proved to be an impediment to their

widespread application. The aim of the current paper is to revisit the same issues, but

employing the wisdom of hindsight, and thereby to give counterparts that are much more

approachable and thus more readily applicable. Although a comparison of the present

work with Jeske (2005) would show extensive detailed technical differences, the debt

the current paper owes to Jeske (2005) for illuminating the consequences of the earlier

approach cannot be overstated.

Assumptions 1.1. We work in a set theoretic and relational framework in which relations

are manipulated using logical operations on the predicates that define their bodies. To

avoid a proliferation of pathological cases, we assume that any set or relation mentioned

in the hypotheses of a construction or theorem is non-empty, so that, for example, a

mentioned putative choice of some element from the set or relation can actually be

made.

Notation 1.2. We write XT for the transpose of a relation X (that is, xX x′ if and only if

x′ XT x). We write Z � X for the domain restriction of a relation X, that is,

Z � X ≡ X ∩ ((Z ∩ dom(X)) × rng(X)).

2. Retrenchment, an overview

What we now refer to as model-based refinement had its origins in the work of Wirth,

Dijkstra and Hoare in papers such as Wirth (1971), Dijkstra (1972) and Hoare (1972).

In those days, the message was straightforward enough in that refinement was a process

whereby a piece of abstract program could be replaced by a piece of more concrete

program without changing the observable behaviour. If, for some set of sufficient

conditions, it could be proved that observations were unchanged, those conditions could

be adopted as a general purpose working method for establishing refinement.

As with any technique that gets fixed a priori, but deals with problems expressible in a

‘general purpose programming-like notation’, as problem instances of increasing size are

tackled, complexity eventually rears its head and becomes an issue to contend with. In the

case of notions of refinement, there is not only the complexity of problem descriptions in

the sense of some formal complexity measure or other, as one would normally understand

such a concept, but there is also complexity of a less precisely defined kind that has its

roots in various ‘management level’ concerns that have an impact during the development

of real-world applications.

Thus, applying some particular flavour of model-based refinement to a real application

‘out of the box’ may become infeasible, not only because the problem instance becomes too

big according to some objective formal measure, but also, and at an earlier stage, because

modelling at the level needed to take proper account of all the relevant requirements

concerns increases the model (and development) complexity to a level unacceptable from

a management perspective: for instance, because the resulting model is not clear enough

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 139

to be understood, or for other reasons emerging from the wider problem context or the

real-world system construction context.

Retrenchment, which we will cover in some detail later in the paper (see Banach

et al. (2007b), Banach et al. (2008) and Banach and Jeske (2010), and other work

available from the Retrenchment homepage at http://www.cs.man.ac.uk/∼banach/

retrenchment/) was introduced to address the issues mentioned in the previous para-

graph. The idea was to introduce a notion that would accommodate departures from

the exigencies of formal refinement, yet would be capable of smooth interworking with

refinement when circumstances allowed. Informally, if we say that the core idea of model-

based refinement is captured in a ‘forward simulation’ proof obligation of the form

G ∧ stpOpC ⇒ (∃stpOpA ∧ G′) (1)

where:

— G is a retrieve, or gluing relation;

— the prime decoration refers to after states; and

— stpOpC and stpOpA are concrete and abstract steps of the operation Op;

then the form adopted for the corresponding proof obligation of retrenchment is

G ∧ POp ∧ stpOpC ⇒ (∃stpOpA ∧ ((G′ ∧ OOp) ∨ COp)) (2)

where:

— POp is the within, or provided relation, tightening the scope of the proof obligation;

— OOp is the output relation allowing strengthening of the claim made by the PO; and,

crucially,

— COp is the concedes relation, which allows arbitrary departures from refinement-like

behaviour, which is the essential characteristic of retrenchment.

The broad similarity between the shapes of (1) and (2) leads us to conjecture that a

mathematically rigorous integration of refinement and retrenchment ought to be possible,

and, indeed, this is the main topic of the current paper.

Of course, being construed in a similar way to model-based refinement (that is, as a

more or less fixed scheme for relating system models and for generating proof obligations

regarding such relationships), retrenchment ultimately suffers from similar complexity

challenges to those already described. Nevertheless, being a weaker notion than refinement

(in the sense of offering weaker guarantees than refinement typically does), it is hoped that

the point at which the complexity issues start to defeat development strategies that employ

suitable combinations of retrenchment alongside refinement lies considerably further out,

which should considerably increase the number of real-world developments that can be

feasibly given a formal treatment.

Giving a precise meaning to the phrase ‘suitable combinations’ is the main technical

contribution of the current paper, and we will discuss this extensively below. For now,

we will just describe how these techniques have already been used fruitfully in the

development of some applications.

The most visible use of the technology proposed here has been in the treatment of a

number of requirements issues in the Mondex formal development. The Mondex Purse

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 140

is a smartcard based electronic purse, whose security architecture permits payments from

person to person using a wallet device or telephone line without the need for separate

authorisation. The Mondex project was one of the earliest formal development exercises

in which refinement played a central role (Stepney et al. 1998; Stepney et al. 2000). In

seeking to keep the refinement tractable, a number of requirements issues were deliberately

simplified and then treated informally outside the formal development. Subsequently, these

were revisited using retrenchment to integrate a more formal treatment with the existing

idealised development.

One such issue was the boundedness of Mondex sequence numbers. For the usual

security reasons, Mondex transactions need to have unique sequence numbers. For

simplicity, these were modelled as natural numbers in Stepney et al. (2000), though,

in practice, they are obviously bounded. The difference between idealised and realistic

sequence numbers, and its consequences, was treated in a retrenchment in Banach

et al. (2005).

Another issue was the boundedness of Mondex error logs. For predictable reasons

connected with transaction recovery, Mondex purses need to log various kinds of failed

transaction. For simplicity, these logs were modelled as unbounded sets in Stepney

et al. (2000), though, in practice, they are obviously bounded. For implementation reasons,

the size of the log is rather small, which imposes a collection of requirement issues quite

different from those connected with the finiteness of the sequence number bound. These

issues were treated in a retrenchment in Banach et al. (2006a).

Yet another issue was connected with the properties of a hash function used during

Mondex transaction recovery. For simplicity, and, more importantly, to make the security

proof go through at all, this hash function was modelled as an injective function, though

in practice any real hash function is obviously going to be many-to-one. This opens

up interesting security repercussions, which were treated in a retrenchment in Banach

et al. (2006b).

Finally, for subtle reasons connected with the use of backward refinement in the

Mondex development, an operation as simple as a purse balance enquiry could not be

modelled in the original development. The whole issue was revisited and a satisfactory

resolution developed using retrenchment in Banach et al. (2007a). This later led to

an abstract development of protocol refinement in general in Banach and Schellhorn

(2010).

All of the above were treated using the precursor of the theory of the current paper,

namely, using the theory in Jeske (2005). Given that the details of the theorems of

Jeske (2005) differ from those in the current paper, it is worth asking how these earlier

Mondex retrenchments might be affected if redone using the revised theory. The good

news is that they are not affected at all because of the extreme simplicity of the relevant

refinements in Stepney et al. (2000) through which the retrenchments of interest were

pulled: these refinements are, in fact, injections on the state space, and when applied

to such simple refinements, the theorems of Jeske (2005) have the same effects as the

theorems developed in the current paper. Therefore, the earlier case studies serve just as

well as confirmations of the utility of the revised theory as they did as confirmations of

the earlier theory.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 141

Looking beyond the applications just described:

— Jeffords et al. (2009) adapted the basic retrenchment idea and, by adding a suitable

collection of additional conditions (policed by corresponding proof obligations within

the tool), was able to formally introduce faulty behaviours into the system model that

depart from and subsequently rejoin (a refinement of) the nominal abstract behaviour.

— Banach (2011) introduced an extension of the Event-B formalism to include retrench-

ment development steps (precisely along the lines of the theory expounded in the

current paper). Some of the ramifications of this are being explored in the ADVANCE

project†.

— Banach et al. (2012) showed that the greater flexibility of retrenchment can be extremely

useful in accommodating variable discrepancies between abstract continuous model

behaviour and concrete discretised model behaviour in situations where these cannot be

statically bounded. Again, cooperation between refinement and retrenchment aspects

is policed using the theoretical ideas of the current paper.

We can foresee there being many further applications of a similar kind.

3. Transition systems, retrenchment and refinement

In this section we present our basic definitions and notation. At any single moment in a

development activity, we will typically be dealing with a pair of systems, with the first in

some sense more ‘abstract’ than the second, which is more ‘concrete’. We model systems

as transition systems, which are organised as follows.

An abstract system Abs has a set of operation names OpsA, with typical element OpA.

An operation OpA works on the abstract state space U having typical element u (the

before state), and on an input space IOpA with typical element i. The operation OpA will

produce an after state typically written u′ and once more in U, and an output o drawn

from an output space OOpA . Initial states satisfy the predicate InitA(u′), which allows initial

states to be viewed as results of an initialisation operation if need be.

Individual steps of OpA are written u -(i, OpA, o)->>> u′. Taken together, they constitute the

step relation stpOpA (u, i, u′, o) of OpA. Aggregating over all of OpsA, we obtain the complete

transition relation for the Abs system:

stpA =
⋃

OpA∈OpsA

stpOpA ,

where the union is necessarily disjoint since the relevant OpA name is part of every

execution step.

Later, we will have several systems in play simultaneously, and we will use similar

notational conventions for them. We will set out our generic notions using a pair of

concrete systems, which we name ConcT and ConcF . For ConcT :

† Advanced Design and Verification Environment for Cyber-physical System Engineering – ADVANCE is

an FP7 Information and Communication Technologies (ICT) Project funded by the European Commission

(grant number 287563). For details, see //http://www.advance-ict.eu/.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 142

— the operation names are OpC ∈ OpsC;

— the states are v ∈ V;

— the inputs are j ∈ JOpC ;

— the outputs are p ∈ POpC ;

— the initial states satisfy InitC (v′);

— the transitions are v -(j, OpC, p)->>> v′, which are elements of the complete step relation

stpOpC (v, j, v′, p).

For ConcF , we assume:

— the operation names are also OpC ∈ OpsC ; but

— the variables are w ∈ W;

— the inputs are k ∈ KOpC ;

— the outputs are q ∈ QOpC ; and

— the rest are the obvious counterparts.

3.1. Retrenchment

Given the above context, a retrenchment from Abs to ConcT is defined by three facts:

(1) We have

OpsA ∩ OpsC = OpsAC �= �,

that is, the abstract and concrete operation name sets have some elements in common.

(2) We have a collection of relations as follows:

— a retrieve relation G(u, v) between abstract and concrete state spaces;

— for each common operation name Op ∈ OpsAC , a family of within, output and

concedes relations:

POp(i, j, u, v)

OOp(o, p; u′, v′, i, j, u, v)

COp(u
′, v′, o, p; i, j, u, v),

respectively†.

These relations are over the variables shown: specifically, the within relations involve

the inputs and before states, while the output and concedes relations predominantly

involve the outputs and after states, though inputs and before states can also feature if

required (the semicolon is used to separate these additional possibilities cosmetically).

The relations are collectively referred to as the retrenchment data, and, for brevity,

we will refer to the retrenchment as G,P,O,C . Note that we suppress the ‘A’ and

† The notation here confirms that the ‘A’ and ‘C’ and (later) similar subscripts on operation names are meta-

level tags, which will be suppressed if it is convenient to do so and does not cause confusion. OpsA ⊆ OpsC is

usually assumed, but we will be more general here. Also, nothing prevents arbitrary correspondences between

(otherwise unrelated) names in OpsA and OpsC being set up using suitable mappings, and though it would

just add unnecessary theoretical clutter, such a property is highly desirable to add flexibility in the context of

an industrial-strength tool.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 143

‘C ’ subscripts on Op in these relations since they concern both levels of abstraction

equally.

(3) The following collection of properties must hold (these are the proof obligations or

POs):

— The initial states must satisfy

InitC(v′) ⇒ (∃u′ • InitA(u′) ∧ G(u′, v′)); (3)

— for every corresponding operation pair OpA and OpC , the abstract and concrete

step relations must satisfy the operation PO:

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC (v, j, v′, p) ⇒
(∃u′, o • stpOpA(u, i, u′, o)

∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v))

∨ COp(u
′, v′, o, p; i, j, u, v))).

(4)

For an Op ∈ OpsAC , an important counterfoil to the operation PO is the operation’s

simulation relation. This holds for an abstract step u -(i, OpA, o)->>> u′ and a corresponding

concrete step v -(j, OpC, p)->>> v′, the two steps being in simulation if and only if

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpC (v, j, v′, p) ∧ stpOpA(u, i, u′, o) ∧
((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨ COp(u

′, v′, o, p; i, j, u, v))
(5)

holds.

A retrenchment (with retrenchment data as above) is a biretrenchment if and only if,

in addition to (3) and (4), we also have

InitA(u′) ⇒ (∃v′ • InitC(v′) ∧ G(u′, v′)) (6)

and

G(u, v) ∧ POp(i, j, u, v) ∧ stpOpA(u, i, u′, o) ⇒
(∃v′, j • stpOpC (v, j, v′, p)

∧ ((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v))

∨ COp(u
′, v′, o, p; i, j, u, v))).

(7)

Thus, we can exchange the roles of abstract and concrete systems in a biretrenchment

with impunity using the same data.

Going further, if we only have (6) and (7) (and not (3) and (4)), we call such a setup a

converse retrenchment – that is, a converse retrenchment is characterised by having the

signatures of the constituent relations the opposite way round to what we would normally

expect.

Finally, suppose we simply have some relations defined on two transition systems and

appropriately indexed by operation names as above, which have the signatures required

to qualify as retrenchment data, but we cannot (or choose not to try to) establish (3) and

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 144

(4). Then the relations G(u, v) and

G(u, v) ∧
POp(i, j, u, v) ∧
((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨ COp(u

′, v′, o, p; i, j, u, v))

(8)

(the latter from u, i, u′, o, to v, j, v′, p, with Op ∈ OpsAC) constitute a pseudoretrenchment.

So, in a pseudoretrenchment, we have the simulation relations (5) without the abstract

and concrete transitions.

3.2. Refinement

Given two systems Abs and ConcF , we will now set up refinement as a relationship

between the operations with identical names. In the current paper, we will assume that

the abstract and concrete operations’ name sets are identical for a refinement†. The

refinement data will consist of a retrieve relation G(u, w) and a family of input and output

relations for each common Op ∈ Ops: InOp(i, k) and OutOp(o, q). These latter relations are

over the variables shown, that is, just the I/O variables. For brevity, we will refer to the

refinement as G,In,Out.

The POs are:

— for initialisation

InitC(w′) ⇒ (∃u′ • InitA(u′) ∧ G(u′, w′)); (9)

— for the operations

G(u, w) ∧ InOp(i, k) ∧ stpOpC (w, k, w′, q) ⇒
(∃u′, o • stpOpA(u, i, u′, o) ∧ G(u′, w′) ∧ OutOp(o, q)).

(10)

Many notions of refinement feature additional criteria in addition to (9) and (10), and

these are typically expressed using subsets of the before spaces and input spaces, and

control the detailed semantics of operations. They often have names such as domain

conditions, preconditions or guards. To mimic these generically, we let each common

operation Op ∈ Ops have an associated applicability set, with appOpA for OpA and appOpC

for OpC . Since some theories insist on weakening and others on strengthening such

applicability criteria, typical conditions that such sets have to satisfy are either

appOpA(u, i) ∧ G(u, w) ∧ InOp(i, k) ⇒ appOpC (w, k) (11)

or

appOpA(u, i) ⇐ G(u, w) ∧ InOp(i, k) ∧ appOpC (w, k). (12)

As a shorthand, we will refer to both (11) and (12) using the notation

appOpA(u, i) ∧ G(u, w) ∧ InOp(i, k)
⇐⇒ G(u, w) ∧ InOp(i, k) ∧ appOpC (w, k), (13)

† We could, of course, opt for greater generality here along the lines of the footnote on page 142.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 145

where the symbol
⇐⇒ represents the two separate cases in (11) and (12). Thus (9), (10) and

(13) represent three species of refinement theory: the first has (9) and (10); the second has

(9), (10) and (11); and the third has (9), (10) and (12).

The simulation relation corresponding to these notions of refinement is

G(u, w) ∧ InOp(i, k) ∧ [appOpA(u, i) ∧ appOpC (w, k)] ∧
stpOpC (w, k, w′, q) ∧ stpOpA(u, i, u′, o) ∧ G(u′, w′) ∧ OutOp(o, q),

(14)

and again we say that the two steps are in simulation. The term

[appOpA(u, i) ∧ appOpC (w, k)]

in (14) is bracketed to indicate that it is not relevant for the simple formulation of

refinement.

As with retrenchment, if in addition to (9) and (10), we also have

InitA(u′) ⇒ (∃w′ • InitC(w′) ∧ G(u′, w′)) (15)

and

G(u, w) ∧ InOp(i, k) ∧ stpOpA(u, i, u′, o) ⇒
(∃w′, q • stpOpC (w, k, w′, q) ∧ G(u′, w′) ∧ OutOp(o, q)),

(16)

then the refinement is a birefinement. If we are dealing with a notion of refinement

requiring the use of app sets, then in the corresponding notion of birefinement we also

insist on

appOpA(u, i) ∧ G(u, w) ∧ InOp(i, k) ⇔ G(u, w) ∧ InOp(i, k) ∧ appOpC (w, k). (17)

Going further, if we only have (15) and (16), and the converse of (13) if appropriate

(and not (9) and (10), and (13) if appropriate), then we call such a setup a converse

refinement.

Finally, if we have three relations defined on two transition systems that are ap-

propriately indexed by operation names and have the signatures required to qualify as

refinement data, but we cannot (or choose not to try to) establish (9) and (10) (and (13)

if appropriate), then the relations G(u, w) and

G(u, w) ∧ InOp(i, k) ∧ [appOpA(u, i) ∧ appOpC (w, k)] ∧ G(u′, w′) ∧ OutOp(o, q), (18)

with the latter from u, i, u′, o, to w, k, w′, q, with Op ∈ Ops, are referred to as a pseudo-

refinement. As with a pseudoretrenchment, a pseudorefinement omits the transitions from

the simulation relation.

4. Compositions

We will make much use later in the paper of compositions of relationships between

systems. The relationships are retrenchments, refinements, their converses, their pseudo-

analogues, and so on. Various notions of composition involving the basic retrenchment

and refinement concepts were thoroughly studied in Banach et al. (2008), so we will just

review the relevant results here. It turns out that these notions of composition are all based

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 146

on various compositions of relations, so they can be readily extended to the converse

and pseudo variants. We will principally need vertical composition of retrenchments (and

refinements) and disjunctive fusion composition.

4.1. Vertical composition

Suppose we have a system Sys0 that is retrenched to a system Sys1, and that Sys1 is

further retrenched to a system Sys2. Assuming that the granularity of the individual

transitions in these models does not change, Sys0 and Sys2 are related by a vertical

composition. Subscripting the retrenchment data for the two original retrenchments with

‘1’ and ‘2’, respectively, and subscripting the retrenchment data for the composition with

‘(1, 2)’, we find

G(1,2) ≡ G1
o
9G2 (19)

POp,(1,2) ≡ (G1∧POp,1)o
9(G2∧POp,2) (20)

OOp,(1,2) ≡ OOp,1
o
9OOp,2 (21)

COp,(1,2) ≡ (G′
1∧OOp,1

o
9COp,2) ∨ (COp,1

o
9G

′
2∧OOp,2) ∨ (COp,1

o
9COp,2) (22)

where the forward relational composition o
9 is through the relevant variables of the

intermediate system. Thus:

— The composed retrieve and the composed output relations are just the composition of

the two retrieves and the two outputs, respectively.

— The composed within relation is the composition of the two withins, but strengthened

by the composed retrieve.

— The composed concession has a more complex form and is one of:

(a) the after state retrieve and output relations for the first retrenchment, composed

with the concession for the second; or

(b) the converse of (a); or

(c) the composition of the two concessions.

Since much will depend on this composition, we will give a precise statement, which

also explains what me meant when we wrote ‘we find’ just before (19) – it referred

to a soundness result, since the proof of Proposition 4.1 requires that the hypothesised

retrenchment data do in fact satisfy the POs (3) and (4).

Proposition 4.1. Let Sys0 (with variables u0, i0, o0) be retrenched to Sys1 (with variables

u1, i1, o1) using

G1, {POp,1, OOp,1, COp,1|Op ∈ Ops01},
and Sys1 be retrenched to Sys2 (with variables u2, i2, o2) using

G2, {POp,2, OOp,2, COp,2|Op ∈ Ops12}.

Then Sys0 is retrenched to Sys2 using retrieve, within and concedes relations

G(1,2), {POp,(1,2), OOp,(1,2), COp,(1,2)|Op ∈ Ops01 ∩ Ops12},

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 147

where†:

G(1,2)(u0, u2) ≡ (∃u1 • G1(u0, u1) ∧ G2(u1, u2)) (23)

POp,(1,2)(i0, i2, u0, u2) ≡ (∃u1, i1 • G1(u0, u1) ∧ G2(u1, u2) ∧
POp,1(i0, i1, u0, u1) ∧
POp,2(i1, i2, u1, u2))

(24)

OOp,(1,2)(o0, o2; u′
0, u

′
2, i0, i2, u0, u2) ≡ (∃u′

1, o1, u1, i1•
OOp,1(o0, o1; u′

0, u
′
1, i0, i1, u0, u1) ∧

OOp,2(o1, o2; u′
1, u

′
2, i1, i2, u1, u2))

(25)

COp,(1,2)(u
′
0, u

′
2, o0, o2; i0, i2, u0, u2) ≡(∃u′

1, o1, u1, i1•
{[G1(u′

0, u
′
1) ∧

OOp,1(o0, o1; u′
0, u

′
1, i0, i1, u0, u1) ∧

COp,2(u′
1, u

′
2, o1, o2; i1, i2, u1, u2)] ∨

[COp,1(u′
0, u

′
1, o0, o1; i0, i1, u0, u1) ∧

G2(u′
1, u

′
2) ∧

OOp,2(o1, o2; u′
1, u

′
2, i1, i2, u1, u2)] ∨

[COp,1(u′
0, u

′
1, o0, o1; i0, i1, u0, u1) ∧

COp,2(u′
1, u

′
2, o1, o2; i1, i2, u1, u2)]}).

(26)

So far we have considered the composition of two retrenchments. The composition of

a retrenchment (first) with a refinement (second) follows by defaulting the data for the

second retrenchment. In more detail:

— the retrieve relation is the same as (23);

— we get the counterpart of (24) by replacing POp,2 by InOp,2, which is the relevant input

relation;

— we get the counterpart of (25) by replacing OOp,2 by

OutOp,2∧G′
2∧InOp,2∧G2,

which is the relevant output relation strengthened by the retrieve relation (in both the

after and before values) and the input relation – we do all this to match all of the ‘1’

variables of OOp,1;

— we get the counterpart of (26) by setting COp,2 to false and replacing OOp,2 as in the

previous point.

† In (26), and later in the paper, we use braces to delimit large disjunctions (especially those which are not at

top level), with the individual large disjuncts delimited by square brackets.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 148

We can summarise the result as:

G(1,2) ≡ G1
o
9G2 (27)

POp,(1,2) ≡ (G1∧POp,1)o
9(G2∧InOp,2) (28)

OOp,(1,2) ≡ OOp,1
o
9(OutOp,2∧G′

2∧InOp,2∧G2) (29)

COp,(1,2) ≡ COp,1
o
9(OutOp,2∧G′

2∧InOp,2∧G2). (30)

Note that the result is a retrenchment, so there is no appOp data to worry about – the

appOp from the refinement (if applicable) is simply discarded.

If we have a refinement (first) composed with a retrenchment (second), we simply

interchange the roles of the two in the preceding discussion.

If we have two refinements, the reasoning is relatively familiar, and it is easy to prove

that the following data yield a sound composed refinement:

G(1,2) ≡ G1
o
9G2 (31)

InOp,(1,2) ≡ InOp,1o
9InOp,2 (32)

OutOp,(1,2) ≡ OutOp,1o
9OutOp,2. (33)

From these, it is also easy to show that for any relevant ‘appOp’ criteria, either two

instances of (11) or two instances of (12) compose in a sound way.

4.2. Disjunctive fusion composition

The fact that retrenchment is described using a PO whose top level structure is an

implication, together with the fact that A ⇒ B and C ⇒ D implies

A ∨ C ⇒ B ∨ D,

yields a strategy for composing different retrenchments for the same pair of abstract and

concrete systems, which we call disjunctive fusion composition†.

If the retrenchment data for the first retrenchment are subscripted with ‘1’ and for

the second with ‘2’, we will subscript the composed data with ‘(1∨2)’. In outline, the

retrenchment data for disjunctive fusion composition is

G(1∨2) ≡ G1∨G2 (34)

POp,(1∨2) ≡ (G1∨POp,2) ∧ (POp,1∨G2) ∧ (POp,1∨POp,2) (35)

OOp,(1∨2) ≡ (G′
1∨OOp,2) ∧ (OOp,1∨G′

2) ∧ (OOp,1∨OOp,2) (36)

COp,(1∨2) ≡ COp,1∨COp,2. (37)

In more detail, the basic soundness result is stated in the following proposition.

Proposition 4.2. Let Abs be retrenched to Conc using

G1, {POp,1, OOp,1, COp,1|Op ∈ OpsAC}

† Since we could replace ‘∨’ by ‘∧’ in this statement, there is also a conjunctive variant, but it will play a much

smaller role than the disjunctive case, and we will just mention it in a couple of places when required.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 149

(with the usual variables). Let Abs also be retrenched to Conc using

G2, {POp,2, OOp,2, COp,2|Op ∈ OpsAC}

(with the usual variables). Then Abs can also be retrenched to Conc using

G(1∨2), {POp,(1∨2), OOp,(1∨2), COp,(1∨2)|Op ∈ OpsA}

where:

G(1∨2)(u, v) ≡ G1(u, v) ∨ G2(u, v) (38)

POp,(1∨2)(i, j, u, v) ≡ (G1(u, v) ∨ POp,2(i, j, u, v)) ∧
(POp,1(i, j, u, v) ∨ G2(u, v)) ∧
(POp,1(i, j, u, v) ∨ POp,2(i, j, u, v))

(39)

OOp,(1∨2)(o, p; u′, v′, i, j, u, v) ≡ (G1(u′, v′) ∨ OOp,2(o, p; u′, v′, i, j, u, v)) ∧
(OOp,1(o, p; u′, v′, i, j, u, v) ∨ G2(u′, v′)) ∧
(OOp,1(o, p; u′, v′, i, j, u, v) ∨
OOp,2(o, p; u′, v′, i, j, u, v))

(40)

COp,(1∨2)(u
′, v′, o, p; i, j, u, v) ≡ COp,1(u′, v′, o, p; i, j, u, v) ∨

COp,2(u′, v′, o, p; i, j, u, v).
(41)

5. Square completions

In this section we give a schematic outline of the main results of the next four sections to

help make the details more easily digestible.

The main idea is ‘square completion’. Consider the left-hand side of Figure 1, which

consists of two triangles. The upper triangle has two solid boxes, which represent the

two given systems, and the solid arrow is a retrenchment between them (with given

retrenchment data). The third, hollow, box in the triangle represents another system: it

is drawn hollow to represent the fact that it is to be constructed from the given data.

The Lifting Theorem (see Section 6) shows that we can indeed construct this system from

the given data in a generic way, and that, moreover, it can be connected to the given

systems through the dashed arrows, the horizontal arrow being a retrenchment and the

vertical one being a refinement (with the retrenchment and refinement data for these

again being constructed from the given data in a generic way). Not only this, but the

constructed retrenchment and refinement can be composed using (27)–(30) to yield an

equivalent of the original (solid) retrenchment. Furthermore, the construction is unique

up to inter-refinability: this fact is important since the generically constructed system (in

this and subsequent theorems) is frequently rather unnatural-looking from an application

perspective, so the opportunity to replace it with something that is theoretically equivalent

but more intuitively appealing with respect to the application is highly desirable from a

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 150

Fig. 1. Illustration of the lifting and lowering constructions – the vertical arrows are refinements

and the horizontal arrows are retrenchments

systems engineering vantage point – see Section 10 for a more extensive discussion of this

point.

Now consider the lower triangle of the left-hand side of Figure 1. It shows a vertical

refinement followed by a horizontal retrenchment. The composition of these (using the

dual of (27)–(30)) yields a retrenchment represented by the hypotenuse of the lower

triangle. We may suppose that this retrenchment is the starting point of the construction

we have just discussed in the upper triangle. Therefore, the Lifting Theorem enables us to

complete the ‘L shape’ in the lower triangle to a square. This allows us to interchange the

order of a refinement and retrenchment in a composition in such a way that the result

of the two compositions, either way round, yields the same retrenchment (that is, the

diagonal). The fact that the construction only requires the diagonal as input data means

that many of the details of the specific refinement and retrenchment are irrelevant for the

carrying out of the interchange.

We will now consider the right-hand side of Figure 1, which also consists of two triangles.

The lower triangle has two solid boxes, which again represent two given systems, and the

solid arrow is a retrenchment between them (with given retrenchment data). The third,

hollow, box in the triangle again represents another system that is to be constructed from

the given data. The Lowering Theorem (Section 7) shows that we can indeed construct this

system from the given data in a generic way, and that, moreover, it can be connected to the

given systems through the dashed arrows, the horizontal arrow being a retrenchment and

the vertical one being a refinement (with the retrenchment and refinement data for these

again being constructed from the given data in a generic way). Again, the constructed

refinement and retrenchment can be composed using the dual of (27)–(30) to yield an

equivalent of the original (solid) retrenchment. As before, the construction is unique up

to inter-refinability, and this is again useful for the reasons previously stated. The upper

triangle of the right-hand side of Figure 1 plays the same role as the lower triangle of the

left-hand side of Figure 1, so we have another square completion, and we can interchange

the order of a refinement and retrenchment in a composition, but this time in the other

direction, with the same retrenchment resulting.

We have now covered the first two major results of the paper. For the remaining results,

consider Figure 2. The square on the left-hand side has two solid sides and two dashed

ones. As before, the horizontal arrows are retrenchments and the vertical arrows are

refinements, with the dashed arrows to be constructed out of the (given) solid arrows. The

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 151

Fig. 2. Illustration of the postjoin and prejoin constructions – the vertical arrows are refinements

and the horizontal arrows are retrenchments

Postjoin Theorem (see Section 8) shows that there is a generic construction that allows

this to be done in such a way that the composition of the given retrenchment with the

constructed refinement combines with the composition of the given refinement with the

constructed retrenchment (using disjunctive fusion composition) to yield a retrenchment

(which is not shown explicitly in the figure) from the top left system to the bottom right

(constructed) system. The construction of the dashed system in the bottom right corner

is again unique, but up to a weaker notion (inter-simulability in the sense defined in

Section 3), which subsumes inter-refinability (hence, using inter-refinability to police the

replacement of the generically constructed system by one closer to application concerns

remains acceptable). We thus obviously have another square completion.

The square on the right-hand side of Figure 2 is the dual of this construction. It shows

that if we are given a (vertical) refinement and (horizontal) retrenchment that converge

to the same system, we can complete the square generically to create a system, together

with a suitable refinement and retrenchment, such that the dual properties of the postjoin

construction hold. Thus, we again have a retrenchment from top left to bottom right

given by a fusion composition of the two routes round the square, and the universality of

the basic construction is again characterised by inter-simulability, which again strengthens

under suitable circumstances to inter-refinability.

6. The Lifting Theorem

In this section we consider the Lifting Theorem in detail. The relevant part of Figure 1 is

elaborated in Figure 3. The given systems are Abs and Conc, with the usual retrenchment

between them. The constructed system is Univ, and the universal nature of its relationship

with Abs and Conc is expressed by saying that whenever there is a system Xtra enjoying

similar properties to Univ, then Xtra is more abstract than Univ, that is, there is a

refinement from Xtra to Univ.

Theorem 6.1. Let Abs (with variables u, i, o) and Conc (with variables v, j, p) be two

systems, and let there be a retrenchment from Abs to Conc with retrenchment data

G, {POp, OOp, COp|Op ∈ OpsAC}

where OpsAC is the set of common names of related operations of Abs and Conc.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 152

Abs

Conc

Univ
retrenchment

retrenchment
G, P, O, C

H•, Q•, N •, D•

Xtra

retrenchment
H ,̃ Q˜, N ,̃ D˜

refinement
K˜, R˜, V˜

refinement
K•, R•, V •

refinement
K˚, R˚, V˚

Fig. 3. The lifting construction in detail.

Then we have:

(1) There is a system Univ (with variables t, h, n) with operation name set OpsU , where

OpsU = OpsC , such that:

(i) there is a retrenchment from Abs to Univ with retrenchment data, say

H•(u, t), {Q•
Op, N

•
Op, D

•
Op|Op ∈ OpsAU};

(ii) there is a refinement from Univ to Conc with refinement data, say

K•(t, v), {R•
Op, V

•
Op|Op ∈ OpsU},

which is a birefinement;

(iii) the composition (in the sense of (27)–(30)) of the retrenchment H•,Q•,N•,D• and

the refinement K•,R•,V • yields the retrenchment G,G∧P,O,C;

(iv) if the notion of refinement in question requires the use of appOp sets, then the

appOp sets of Univ are given by

appOpU (t, h) ≡ (∃v, j • K•(t, v) ∧ R•
Op(h, j) ∧ appOpC (v, j)). (42)

(2) Whenever there is

— a system Xtra (with variables t̃ , h̃ , ñ), with operation name set OpsX where

OpsX = OpsC ,

— a retrenchment from Abs to Xtra given by H ,̃Q ,̃N ,̃ D ,̃ and

— a refinement from Xtra to Conc given by K ,̃R ,̃ V ,̃

where the composition of H ,̃Q ,̃N ,̃ D˜ and K ,̃R ,̃ V˜ yields G,G∧P,O,C , we have:

(i) there is a refinement from Xtra to Univ with refinement data, say

K◦(t̃ , t), {R◦
Op, V

◦
Op|Op ∈ OpsU};

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 153

(ii) we have

H˜ o
9 K

◦ ⇐ H•

(H˜∧Q˜) o
9 (K◦∧R◦) ⇐ (H•∧Q•)

N˜ o
9 (K◦′∧V ◦∧R◦∧K◦) ⇐ N•

D˜ o
9 (K◦′∧V ◦∧R◦∧K◦) ⇐ D•;

(iii) we have

K◦ o
9 K

• = K˜

R◦ o
9 R

• = R˜

V ◦ o
9 V

• = V .̃

(3) If a system Univ* has the properties (1) and (2) above of Univ, then Univ and Univ*

are inter-refinable.

Proof.

(1) We start by completing the details of Univ, the retrenchment H•,Q•,N•,D• and the

refinement K•,R•,V •. Assuming the usual conventions for Abs and Conc, the state

space of Univ is t ∈ T = U × V. There are two cases for the input and output spaces

of Univ :

— If Op ∈ OpsAU (in other words Op ∈ OpsAC), then we have

h ∈ HOp = IOp × JOp

n ∈ NOp = OOp × POp.

— If Op ∈ OpsU\AU (in other words Op ∈ OpsC − OpsAC = OpsC\AC), then

h ∈ HOp = JOp

n ∈ NOp = POp.

Initialisation in Univ is given by

InitU(t′) ≡ (t′ = (u′, v′) ∧ InitA(u′) ∧ InitC (v′) ∧ G(u′, v′)). (43)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 154

The operations of Univ are given by

stpOpU (t, h, t′, n) ≡⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t′ = (u′, v′) ∧ n = (o, p) ∧
h = (i, j) ∧ t = (u, v) ∧
{[G(u, v) ∧ POp(i, j, u, v) ∧

stpOpA(u, i, u′, o) ∧ stpOpC (v, j, v′, p) ∧
((G(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨
COp(u

′, v′, o, p; i, j, u, v))] ∨
[¬(G(u, v) ∧ POp(i, j, u, v)) ∧
stpOpC (v, j, v′, p)]})

if Op ∈ OpsAU

(t′ = (u′, v′) ∧ n = p∧
h = j ∧ t = (u, v) ∧
stpOpC (v, j, v′, p))

if Op ∈ OpsU\AU .

(44)

The retrenchment H•,Q•,N•,D• is given by the data†

H•(u, t) ≡ (t = (u, v) ∧ G(u, v)) (45)

Q•
Op(i, h, u, t) ≡ (h = (i, j) ∧ t = (u, v) ∧ POp(i, j, u, v)) (46)

N•
Op(o, n; u′, t′, i, h, u, t) ≡ (t′ = (u′, v′) ∧ n = (o, p) ∧

h = (i, j) ∧ t = (u, v) ∧
OOp(o, p; u′, v′, i, j, u, v))

(47)

D•
Op(o, n, u

′, t′; i, h, u, t) ≡ (t′ = (u′, v′) ∧ n = (o, p) ∧ h = (i, j) ∧
t = (u, v) ∧ COp(o, p, u

′, v′; i, j, u, v)).
(48)

The refinement K•,R•,V • is given by the data

K•(t, v) ≡ (t = (u, v)) (49)

R•
Op(h, j) ≡

{
(h = (i, j)) if Op ∈ OpsAU
(h = j) if Op ∈ OpsU\AU

(50)

V •
Op(n, p) ≡

{
(n = (o, p)) if Op ∈ OpsAU
(n = p) if Op ∈ OpsU\AU.

(51)

We will now prove parts (i)–(iv):

(i) We need to check that H•,Q•,N•,D• is a retrenchment.

It is easy to check that with the G,P,O,C retrenchment initialisation PO, (43) and

(45) give the required H•,Q•,N•,D• initialisation PO. For the operation PO, we

† Equation (45) is in fact an abbreviation of

H•(u, t) ≡ (t = (u, v) ∧ u = u ∧ G(u, v))

with an application of the one-point rule. We will use this kind of short-cut extensively in the rest of the

paper.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 155

assume H•, Q•
Op, and the Op ∈ OpsAU case of (44) (for which we only need the

G∧POp subcase). It is easy to see that we can produce a u′ and an o (the u′ and o

inside the t′ and n in (44)) for which both stpOpA and

(G′∧OOp)∨COp

(which are also in the G∧POp subcase) hold. Repackaging the G′∧OOp into

H•′∧N•
Op, and repackaging COp into D•

Op, we then get what we need.

(ii) We need to check that K•,R•,V • is a refinement.

For the initialisation PO, we assume InitC(v′). By (3), we have v′ ∈ ran(G), so we

can find a u′, and hence a t′, that makes (43) true – this t′ is obviously related to

v′ by K•.

There are two cases for the operation PO:

— Case Op ∈ OpsAU:

We assume K•, R•
Op and stpOpC .

Given K•∧R•
Op, there are two subcases:

– G∧POp (for the i, j, u, v, inside the t and h chosen for K•∧R•
Op):

Since we have G∧POp∧stpOpC , we can apply the G,P,O,C retrenchment’s

operation PO (4) to get u′ and o values that make the G,P,O,C retrenchment’s

simulation condition

G∧POp∧stpOpA∧stpOpC ∧((G′∧OOp)∨COp)

true, which gives us a stpOpU transition for this subcase.

– ¬(G∧POp):

The ¬(G∧POp) subcase of (44) offers us a stpOpU transition

¬(G∧POp)∧stpOpC
based on the stpOpC , which we assumed.

In either case, all that we require of this transition is the projection K•′∧V •
Op,

which is immediate given the first two clauses of (44).

— Case Op ∈ OpsU\AU:

The argument for this case is similar to the previous one, except that the

K•′∧V •
Op projection is simpler.

For the birefinement claim, we need to check the converse refinement. For the

initialisation PO, we assume InitU(t′). The t′ obviously projects under K• to a v′

for which InitC (v′) holds.

For the operation PO, let t -(h, OpU, n)->>> t′ be a step of Univ. If t and h project to v

and j under K•′∧R•
Op, then t′ and n project to v′ and p under K•′∧V •

Op, and (44)

confirms that v -(j, OpC, p)->>> v′ is a step of Conc since every case of (44) includes

stpOpC , thereby discharging the PO.

(iii) We need to check that the composition of H•,Q•,N•,D• and K•,R•,V • (according

to (27)–(30)) yields G,G∧P,O,C . But this is obvious given that K•,R•,V • are simple

projections.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 156

(iv) Note that since K•∧R•
Op is a total function from T × HOp onto V × JOp, it follows

that

(K•T∧R•T
Op) o

9 (K•∧R•
Op) = IdV×JOp .

Consequently, the definition of the appOp sets of Univ in (42) satisfies the

stipulation in (17) regarding the K•,R•,V • birefinement.

This completes the proof of part (1).

(2) We start with the data for the refinement K◦,R◦,V ◦, which is given by

K◦(t̃ , t) ≡ (∃v • K˜(t̃ , v) ∧ K•(t, v)) (52)

R◦
Op(h̃ , h) ≡ (∃j • R Õp(h̃ , j) ∧ R•

Op(h, j)) (53)

V ◦
Op(ñ , n) ≡ (∃p • V Õp(ñ , p) ∧ V •

Op(n, p)). (54)

We will now prove parts (i)–(iii):

(i) We start with the initialisation PO and assume InitU(t′), which gives InitC∧G′,

which then gives InitC∧K•′ when projected to Conc. From InitC , we can then

derive InitX∧K˜ ′ from the K ,̃R ,̃V˜ refinement initialisation PO. So we have

InitX∧(K˜ ′∧K•′), which gives InitX∧K◦′, which is what we need.

For the operation PO, we argue as follows. We let t -(h, OpU, n)->>> t′ be a step of

Univ, and suppose that

K◦(t̃ , t) ∧ R◦
Op(h̃ , h)

holds. This implies:

— K˜(t̃ , v) ∧ K•(t, v) for the unique v that t projects to under K•;

— R Õp (h̃ , j) ∧ R•
Op(h, j) for the unique j that h projects to under R•.

As in the birefinement proof above, we derive a v -(j, OpC, p)->>> v′ step of Conc

to which t -(h, OpU, n)->>> t′ projects. With this, and K˜∧R Õp, and the K ,̃R ,̃V˜

refinement operation PO, we derive a t̃ -(h̃ , OpX, ñ)->>> t̃ ′ step of Xtra such that

K˜ ′ ∧V Õp holds for t̃ ′ and ñ . Putting this all together, we have now derived

from step t -(h, OpU, n)->>> t′ and K◦∧R◦
Op the step t̃ -(h̃ , OpX, ñ)->>> t̃ ′ such that

K˜ ′∧K•′∧V Õp∧V •
Op

holds, in other words, K◦′∧V ◦
Op holds, which is what we need.

Going beyond this, if the notion of refinement requires the use of appOp sets, we

must show that if a dependency like (11) or (12) holds between the appOp sets of

Conc and those of Xtra in the context of the K ,̃R ,̃V˜ refinement, then a similar

dependency holds between the appOp sets of Univ and those of Xtra in the context

of the K◦,R◦,V ◦ refinement. To do this, we first note that the stipulation (17)

means that, for an (11) type dependency, if

appOpX (t̃ , h̃) ∧ K˜(t̃ , v) ∧ R Õp(h̃ , j) ⇒ appOpC (v, j)

holds, then

appOpX (t̃ , h̃) ∧ K◦(t̃ , t) ∧ R◦
Op(h̃ , h) ⇒ appOpU (t, h)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 157

will also hold by composing K˜∧R Õp with K•T∧R•T
Op . Similarly, for a (12) type

dependency, again by composing K˜∧R Õp with K•T∧R•T
Op , if

appOpX (t̃ , h̃) ⇐ K˜(t̃ , v) ∧ R Õp(h̃ , j) ∧ appOpC (v, j)

holds, then

appOpX (t̃ , h̃) ⇐ K◦(t̃ , t) ∧ R◦
Op(h̃ , h) ∧ appOpU (t, h)

will also hold.

(ii) Since K◦ = K˜ o
9 K

•T and H˜ o
9 K˜ = G, we have

H˜ o
9 K

◦ = H˜ o
9 K˜ o

9 K
•T = G o

9 K
•T ⇐ H•,

where the last implication holds because, while every t = (u, v) with ¬G(u, v) is in

ran(K•T), no such t is in ran(H•).

The proofs of the other results are similar.

(iii) Since K◦ = K˜ o
9 K

•T , we have

K◦ o
9 K

• = K˜ o
9 K

•T o
9 K

• = K˜ o
9 IdV = K˜

(since K•T is an inverse function).

The proofs of the other results are similar.

This completes the proof of part (2).

(3) Note that Univ itself satisfies the criteria required for Xtra, so if we have a system

Univ* with the properties (1) and (2) of Univ, then Univ* satisfies the criteria required

for Xtra too. Hence, we can construct two instances of Figure 3 as follows. In the first,

Univ is in its conventional place and Univ* replaces Xtra, and there is a refinement

K◦,R◦,V ◦, from Univ* to Univ. In the second instance, Univ* replaces Univ, and Univ

replaces Xtra, and there is a refinement K*,R*,V*, from Univ to Univ*. So Univ and

Univ* are inter-refinable.

6.1. Remarks

Remark 6.2. Referring to the last clause of Theorem 6.1, the composition of K*,R*,V*

with K◦,R◦,V ◦ yields a refinement from Univ to itself (and similarly for Univ*). However,

this refinement is not required to be the identity. In particular, if the Univ system contains

internal symmetries of a suitable kind, K* o
9 K

◦ may permute ‘similar’ states, or worse,

map some of them to the same state, and so on. Our notion of ‘inter-refinable’ does not

prevent this. Of course, if it is a permutation, composing it suitably with one of the two

refinements will yield a birefinement.

Remark 6.3. The last clause of Theorem 6.1 presents, in effect, a notion of system

equivalence, namely ‘inter-refinability’. It is important to be aware that this is potentially

a rather weak notion of equivalence, related to notions of bisimilarity, and much weaker

than, say, a set theoretic isomorphism of transition systems. Much hinges on the strength

or weakness of the retrieve relation connecting the state spaces. If it is strong, and relates

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 158

a state in one system to only a few states in the other, then the correspondence established

can be precise and informative. However, if it is weak, and relates a state in one system

to many states in the other, then the correspondence established can be rather vague. In

our particular case, we had a retrieve relation that was a projection – such a relation

completely ignores what may or may not be going on in the ‘orthogonal’ component of

the projected system. As a consequence of all this, the fact that a certain system might be

appropriate for a certain set of requirements does not automatically imply that a system

inter-refinable with it is equally appropriate for those requirements – unless we take great

care over what we mean by ‘requirements’ and ‘appropriate’.

Remark 6.4. It is tempting to think† that the K◦,R◦,V ◦ arrow in Figure 3 is the wrong

way round. Looking at the diagram, and the relative dispositions of Abs and Conc

within it, it seems that the most natural property we should ask of the Univ system is

that it furnishes the most abstract system that accomplishes the factorisation. In such

a case, there ought to be a refinement from Univ to the system Xtra that accomplishes

any alternative factorisation. This was the strategy pursued in Jeske (2005) and earlier

investigations. However, looking into the mathematics of this approach, the details are

neither simple, nor do they suggest a straightforward integration with the other results

we pursue in the current paper in terms of characterising the notion of universality that

composite constructions might enjoy.

The alternative, described here, focuses on the most concrete system that accomplishes

the factorisation. With this, the technical difficulties that plagued the earlier approaches

just melt away. Furthermore, the composite constructions that we might imagine are

much more understandable. For instance, imagine a commuting square of retrenchments

and refinements (as in Figure 2) abutting the Abs to Univ retrenchment of Figure 3.

Then, in a natural way, Univ refines the system (call it Xtra) directly above it. Composing

the converse refinement directly above Abs with the retrenchment across the top of

the square yields, in benign cases, a retrenchment from Abs to Xtra that, with the

Xtra to Univ refinement, can be understood to yield an instance of Figure 3. The

alternative approach, with Univ as the most abstract system, does not enjoy such natural

properties.

Another reason to prefer the current approach is that it allows a very natural decoupling

of the appOp sets discussion from the remainder of the construction, thereby giving a very

generic feel to this aspect of the theory. Again, this smooth genericness does not emerge

using alternative approaches. In the end, the argument between ‘most abstract’ and ‘most

concrete’ is not one that can be resolved unequivocally using meta-criteria alone, and it

is the persuasiveness of the mathematics that sways our treatment in the current paper.

7. The Lowering Theorem

In this section we consider the Lowering Theorem in detail. It can be viewed as the dual,

in a suitable sense, of the Lifting Theorem. The relevant part of Figure 1 is elaborated

† Translation: ‘For a long time the authors thought’ .

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 159

retrenchment

retrenchment
G, P, O, C

H •, Q•, N •, D•

retrenchment
H ˜,Q˜, N ˜,D˜

refinement
K˜, R˜, V ˜

refinement
K˚, R˚, V˚

Abs

Univ Conc

Xtra

refinement
K•, R•, V •

Fig. 4. The lowering construction in detail.

in Figure 4, where the given systems are Abs and Conc, with the usual retrenchment

between them. The constructed system is Univ again, and the universal nature of its

relationship with Abs and Conc is expressed by saying that whenever there is a system

Xtra enjoying similar properties to Univ, then Xtra is more concrete than Univ, that is,

there is a refinement from Univ to Xtra.

Theorem 7.1. Let Abs (with variables u, i, o) and Conc (with variables v, j, p) be two

systems, and let there be a retrenchment from Abs to Conc with retrenchment data

G, {POp, OOp, COp|Op ∈ OpsAC}

where OpsAC is the set of common names of related operations of Abs and Conc. Then

we have the following:

(1) There is a system Univ (with variables t, h, n), with operation name set OpsU , where

OpsU = OpsA, such that:

(i) there is a refinement from Abs toUniv with refinement data, say

K•(u, t), {R•
Op, V

•
Op|Op ∈ OpsA},

which is a birefinement;

(ii) there is a retrenchment from Univ to Conc with retrenchment data, say

H•(t, v), {Q•
Op, N

•
Op, D

•
Op|Op ∈ OpsUC};

(iii) the composition (in the sense of the dual of (27)–(30)) of the refinement K•,R•,V •

and retrenchment H•,Q•,N•,D• yields the retrenchment G,G∧P,O,C;

(iv) if the notion of refinement in question requires the use of appOp sets, then the

appOp sets of Univ are given by

appOpU (t, h) ≡ (∃u, i • K•(u, t) ∧ R•
Op(i, h) ∧ appOpA(u, i)). (55)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 160

(2) Whenever there is:

— a system Xtra (with variables t̃ , h̃ , ñ), with operation name set OpsX where

OpsX = OpsA;

— a refinement from Abs to Xtra given by K ,̃R ,̃ V ;̃ and

— a retrenchment from Xtra to Conc given by H ,̃Q ,̃N ,̃ D˜

where the composition of K ,̃R ,̃ V˜ and H ,̃Q ,̃N ,̃ D˜ yields G,G∧P,O,C, we have:

(i) there is a refinement from Univ to Xtra with refinement data, say

K◦(t, t̃), {R◦
Op, V

◦
Op|Op ∈ OpsU};

(ii) we have

K◦ o
9 H˜ ⇐ H•

(K◦∧R◦) o
9 (H˜∧Q)̃ ⇐ (H•∧Q•)

(K◦′∧V ◦∧R◦∧K◦) o
9 N˜ ⇐ N•

(K◦′∧V ◦∧R◦∧K◦) o
9 D˜ ⇐ D•;

(iii) we have

K• o
9 K

◦ = K˜

R• o
9 R

◦ = R˜

V • o
9 V

◦ = V .̃

(3) If a system Univ* has properties (1) and (2) above of Univ, then Univ and Univ* are

inter-refinable.

Proof.

(1) We start by completing the details of Univ, and of the refinement K•,R•,V • and

retrenchment H•,Q•,N•,D•. Assuming the usual conventions for Abs and Conc, the

state space of Univ is t ∈ T = U × V. There are two cases for the input and output

spaces of Univ :

— If Op ∈ OpsUC (in other words Op ∈ OpsAC , then

h ∈ HOp = IOp × JOp

n ∈ NOp = OOp × POp.

— If Op ∈ OpsU\UC (in other words Op ∈ OpsA − OpsAC = OpsA\AC), then

h ∈ HOp = IOp

n ∈ NOp = OOp.

Initialisation in Univ is given by

InitU(t′) ≡ (t′ = (u′, v′) ∧ InitA(u′)). (56)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 161

The operations of Univ are given by

stpOpU (t, h, t′, n) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t′ = (u′, v′) ∧ n = (o, p) ∧
h = (i, j) ∧ t = (u, v) ∧
stpOpA(u, i, u′, o))

if Op ∈ OpsUC

(t′ = (u′, v′) ∧ n = p∧
h = j ∧ t = (u, v) ∧
stpOpA(u, i, u′, o))

if Op ∈ OpsU\UC .

(57)

The refinement K•,R•,V • is given by the data

K•(u, t) ≡ (t = (u, v)) (58)

R•
Op(i, h) ≡

{
(h = (i, j)) if Op ∈ OpsUC

(h = i) if Op ∈ OpsU\UC

(59)

V •
Op(o, n) ≡

{
(n = (o, p)) if Op ∈ OpsUC

(n = o) if Op ∈ OpsU\UC.
(60)

The retrenchment H•,Q•,N•,D• is given by the data

H•(t, v) ≡ (t = (u, v) ∧ G(u, v)) (61)

Q•
Op(h, j, t, v) ≡ (h = (i, j) ∧ t = (u, v) ∧ POp(i, j, u, v)) (62)

N•
Op(n, p; t′, v′, h, j, t, v) ≡ (t′ = (u′, v′) ∧ n = (o, p) ∧ h = (i, j) ∧

t = (u, v) ∧ OOp(o, p; u′, v′, i, j, u, v))
(63)

D•
Op(t

′, v′, n, p; h, j, t, v) ≡ (t′ = (u′, v′) ∧ n = (o, p) ∧ h = (i, j) ∧
t = (u, v) ∧ COp(o, p, u

′, v′; i, j, u, v)).
(64)

We will now prove parts (i)–(iv):

(i) We need to check that K•,R•,V • is a refinement.

For the initialisation PO, suppose InitU(t′) holds. Since this implies InitA(u′) for

the u′ inside t′, and K• projects t′ to u′, the PO is discharged.

For the operation PO, suppose we have a step t -(h, OpU, n)->>> t′ of Univ and

K•(u, t) ∧ R•
Op(i, h).

The Univ step clearly contains an Abs step u -(i, OpA, o)->>> u′ in which u′ and o are

the projections of t′ and n under K•′∧V •
Op. The latter is the case regardless of

whether the projections R•
Op and V •

Op belong to the Op ∈ OpsUC or Op ∈ OpsU\UC

cases. This gives us the required result.

For the birefinement claim, for the initialisation PO, we let InitA(u′) hold. Then

K•(u′, t′) holds for any v′ where t′ = (u′, v′), which is enough for (56), thereby

discharging the PO.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 162

For the operation PO, suppose we have a step u -(i, OpA, o)->>> u′ of Abs, and

K•(u, t) ∧ R•
Op(i, h).

The Abs step extends to any Univ step t -(h, OpU, n)->>> t′ such that t′ and n project

through K•′∧V •
Op to u′ and o, thereby discharging the PO. This again works

regardless of whether the projections R•
Op and V •

Op belong to either the Op ∈ OpsUC

or Op ∈ OpsU\UC case.

(ii) We need to check that H•,Q•,N•,D• is a retrenchment.

For the initialisation PO, we suppose InitC (v′) holds. Then, by (3), there is a u′

such that

InitA(u′) ∧ G(u′, v′)

holds. But this is equivalent to

InitU(t′) ∧ H•(t′, v′)

for the obvious t′, thereby discharging the PO.

For the operation PO, suppose we have H• and Q•
Op and stpOpC . Then we combine

the G and POp inside H• and Q•
Op with stpOpC and the G,P,O,C retrenchment

operation PO (4) to derive a step u -(i, OpA, o)->>> u′ of the Abs system for which

(G′∧OOp)∨COp

holds. Repackaging the G′∧OOp into H•′∧N•
Op, and repackaging COp into D•

Op, we

get the required result.

(iii) We need to check that the composition of K•,R•,V • and H•,Q•,N•,D• (according to

the dual of (27)–(30)) yields G,G∧P,O,C .

This is obvious given that K•,R•,V • are simple projections.

(iv) Since K•T∧R•T
Op is a total function from T × HOp onto U × IOp, we have

(K•∧R•
Op)

o
9 (K•T∧R•T

Op) = IdU×IOp .

Consequently, the definition of the appOp sets of Univ in (55) satisfies the

stipulation in (17) for the K•,R•,V • birefinement.

This completes the proof of part (1).

(2) We start with the data for the refinement K◦,R◦,V ◦, which is given by

K◦(t, t̃) ≡ (∃u • K•(u, t) ∧ K˜(u, t̃)) (65)

R◦
Op(h, h̃) ≡ (∃i • R•

Op(i, h) ∧ R Õp(i, h̃)) (66)

V ◦
Op(n, ñ) ≡ (∃o • V •

Op(o, n) ∧ V Õp(o, ñ)). (67)

We will now prove parts (i)–(iii):

(i) We must show that K◦,R◦,V ◦ is a refinement.

For the initialisation PO, we assume InitX(t̃ ′). Since K ,̃R ,̃V˜ is a refinement,

there is a u′ for which

InitA(u′) ∧ K˜(u′, t̃ ′)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 163

holds. Since InitA(u′) holds, taking any v′ and setting t′ = (u′, v′), we get InitU(t′)

by (56). We also have K•(u′, t′), so K◦(t′, t̃ ′) holds by (65) and we are done.

For the operation PO, let t̃ -(h̃ , OpX, ñ)->>> t̃ ′ be a step of Xtra such that

K◦(t, t̃) ∧ R◦
Op(h, h̃)

also holds. From K◦∧R◦
Op, which is

K•∧K˜∧R•
Op∧R Õp,

we get a u and i such that

K˜∧R Õp

holds. Hence, since K ,̃R ,̃V˜ is a refinement, there is a step u -(i, OpA, o)->>> u′ of Abs

such that

K˜ ′∧V Õp

holds for u′ and o. This Abs step, and

K•∧R•
Op,

can be combined with the fact that K•,R•
Op,V

•
Op is a birefinement to derive a Univ

step t -(h, OpU, n)->>> t′ for which

K•′∧V •
Op,

and hence

K◦′∧V ◦
Op,

holds for t′ and n, which discharges the PO.

Going beyond this, if the notion of refinement requires the use of appOp sets, we

must show that if a dependency like (11) or (12) holds between the appOp sets of

Abs and those of Xtra in the context of the K ,̃R ,̃V˜ refinement, then a similar

dependency holds between the appOp sets of Univ and those of Xtra in the context

of the K◦,R◦,V ◦ refinement.

To do this, we note that the stipulation (17) means that for an (11) type dependency,

if

appOpA(u, i) ∧ K˜(u, t̃) ∧ R Õp(i, h̃) ⇒ appOpX (t̃ , h̃)

holds, then

appOpU (t, h) ∧ K◦(t, t̃) ∧ R◦
Op(h, h̃) ⇒ appOpX (t̃ , h̃)

will also hold by composing

K˜T∧R˜T
Op

with

K•∧R•
Op.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 164

Similarly, for a (12) type dependency, by composing

K˜T∧R˜T
Op

with

K•∧R•
Op,

we again have that if

appOpA(u, i) ⇐ K˜(u, t̃) ∧ R Õp(i, h̃) ∧ appOpX (t̃ , h̃)

holds, then

appOpU (t, h) ⇐ K◦(t, t̃) ∧ R◦
Op(h, h̃) ∧ appOpX (t̃ , h̃)

will also hold.

(ii) Since

K◦ = K•T o
9 K˜

K˜ o
9 H˜ = G,

we have

K◦ o
9 H˜ = K•T o

9 K˜ o
9 H˜ = K•T o

9 G ⇐ H•,

where the last implication holds because, while every t = (u, v) with ¬G(u, v) is in

dom(K•T), no such t is in dom(H•).

The proofs of the remaining results are similar.

(iii) Since K◦ = K•T o
9 K ,̃ we have

K• o
9 K

◦ = K• o
9 K

•T o
9 K˜ = IdT

o
9 K˜ = K˜

since K•T is a function.

The proofs of the remaining results are similar.

This completes the proof of part (2).

(3) Note that Univ itself satisfies the criteria required of Xtra. Therefore, if we have a

system Univ* with the properties (1) and (2) of Univ, then Univ* also satisfies the

criteria required of Xtra. Hence, we can construct two instances of Figure 4 as follows.

In the first instance, Univ is in its conventional place and Univ* replaces Xtra, and

there is a refinement K◦,R◦,V ◦, from Univ to Univ*. In the second instance, Univ*

replaces Univ, and Univ replaces Xtra, and there is a refinement K*,R*,V*, from

Univ* to Univ. So Univ and Univ* are inter-refinable.

7.1. Remarks

The following remarks are similar to the corresponding remarks in Section 6, so are stated

briefly.

Remark 7.2. As in Remark 6.2, the composition of K∗,R∗,V ∗ with K◦,R◦,V ◦ need not be

the identity. As before, if it happens to be a permutation, we can recover a birefinement.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 165

retrenchment

retrenchment

H, Q, N, D

H •, Q•, N •, D•

retrenchment
H˜, Q˜, N˜, D˜

refinement
K˜, R˜, V ˜

Abs

Univ

Xtra

refinement
K •, R•, V •

Ref

Ret

refinement
K, R, V

H˚, Q˚, N˚, D˚ retrenchment data
K˚, R˚, V˚ refinement data

HK˚, QR˚, NV˚, DV˚ retrenchment
KK˚, RR˚, VV˚ refinement

Fig. 5. The postjoin construction in detail – the pseudoretrenchment G×,G×∧P×,O×,C× (not shown)

connects Ret to Ref.

Remark 7.3. As in Remark 6.3, the ‘inter-refinability’ notion of equivalence is weaker than

a given requirements context might need, so it should be used with care in an applications

scenario.

Remark 7.4. As in Remark 6.4, it is tempting to think that the K◦,R◦,V ◦ arrow in Figure 4

is the wrong way round. However, the comments in Remark 6.4 apply just as strongly

here, though in a suitably dual sense.

8. The Postjoin Theorem

In this section we consider the Postjoin Theorem in detail. The relevant part of Figure 2 is

elaborated in Figure 5, where the given systems are Abs together with Ret and Ref. There

is a retrenchment from Abs to Ret and a refinement from Abs to Ref, the data for these

being the usual ones. The constructed system is Univ, with a retrenchment from Ref to

Univ and a refinement from Ret to Univ. The universal nature of the relationship between

Univ and the other systems is expressed by saying that whenever there is a system Xtra

enjoying similar properties to Univ, then Xtra is more concrete than Univ, witnessed by

‘in simulation’ relationships between the transitions of Univ and Xtra, strengthened under

relatively benign conditions, to a retrenchment – and still further to a refinement – from

Univ to Xtra.

Theorem 8.1. Let Abs (with variables u, i, o, operation names OpsA), Ret (with variables

v, j, p, operation names OpsT) and Ref (with variables w, k, q, operation names OpsF) be

three systems. Let there be a retrenchment from Abs to Ret with retrenchment data

H, {QOp,NOp, DOp|Op ∈ OpsAT }

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 166

where OpsAT is the set of the common names of related operations of Abs and Ret. Let

there be a refinement from Abs to Ref with refinement data

K, {ROp, VOp|Op ∈ OpsA = OpsF}

where OpsA is the set of operation names of both Abs and Ref. Finally, suppose, for all

Op, that H∧QOp is a non-empty relation.

Then we have the following:

(1) There is a system Univ (with variables t, h, n), with operation name set OpsU , where

OpsU = OpsT , such that:

(i) there is a refinement from Ret to Univ with refinement data, say

K•(v, t), {R•
Op, V

•
Op|Op ∈ OpsT = OpsU};

(ii) there is a retrenchment from Ref to Univ with retrenchment data, say

H•(w, t), {Q•
Op, N

•
Op, D

•
Op|Op ∈ OpsFU};

(iii) the composition of the pseudoretrenchment HT,QT,NT,DT with the refinement

K,R,V yields a pseudoretrenchment G×,G×∧P×,O×,C×, which is also given by the

composition of the refinement K•,R•,V • with the pseudoretrenchment H•T,Q•T,

N•T,D•T ;

(iv) each transition of Univ is in simulation with a transition of Ret, and if Op ∈
OpsFU , it is also in simulation with a transition of Ref, and in the latter

case, any such pair of Ret and Ref transitions are in simulation through the

pseudoretrenchment G×,G×∧P×,O×,C×;

(v) if the notion of refinement in question requires the use of appOp sets, then the

appOp sets of Univ are given by

appOpU (t, h) ≡ (∃v, j • K•(v, t) ∧ R•
Op(j, h) ∧ appOpT (v, j)). (68)

(2) Whenever there is

— a system Xtra (with variables t̃ , h̃ , ñ), with operation name set OpsX where

OpsX = OpsT ,

— a refinement from Ret to Xtra given by K ,̃R ,̃V ,̃ and

— a retrenchment from Ref to Xtra given by H ,̃Q ,̃N ,̃D ,̃

where:

— the composition of the refinement

K ,̃R ,̃V˜

with the pseudoretrenchment

H˜T,Q˜T,N˜T,D˜T

yields the pseudoretrenchment

G×,G×∧P×,O×,C×,

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 167

— each transition of Xtra is in simulation with a transition of Ret, and if OpX ∈
OpsFX , then it is also in simulation with a transition of Ref, and where in the

latter case any such pair of Ret and Ref transitions are in simulation through the

pseudoretrenchment

G×,G×∧P×,O×,C×,

then:

(i) There exist refinement data, say

K◦(t, t̃), {R◦
Op, V

◦
Op|Op ∈ OpsU},

from Univ to Xtra, through which every transition of Xtra is in simulation with

a transition of Univ.

(ii) There exist retrenchment data, say

H◦(t, t̃), {Q◦
Op, N

◦
Op, D

◦
Op|Op ∈ OpsU},

from Univ to Xtra, through which every OpX ∈ OpsFX transition of Xtra is in

simulation with a transition of Univ, and if

∀v • ∃u, w • ¬H(u, v) ∧ K(u, w)

also holds, then every other transition of Xtra is also in simulation with a

transition of Univ.

(iii) We have

K• o
9 K

◦ = K˜

R• o
9 R

◦ = R˜

V • o
9 V

◦ = V .̃

(iv) We have

H• o
9 H

◦ = H˜

and for OpX ∈ OpsFX ,

(H•∧Q•) o
9 (H◦∧Q◦) = (H˜∧Q)̃

N• o
9 N

◦ = N˜

D• o
9 D

◦ ⇐ D .̃

(v) There exist retrenchment data, say

HK◦(t, t̃), {QR◦
Op, NV ◦

Op, DV
◦
Op|Op ∈ OpsU},

from Univ to Xtra, through which every transition of Xtra is in simulation with

a transition of Univ.

(3) Whenever a system Univ* has properties (1) and (2) above of Univ, then Univ and

Univ* are inter-simulable.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 168

(4) There is a retrenchment from Abs to Univ with retrenchment data, say

G(u, t), {POp, OOp, COp|Op ∈ OpsAU},

given by the disjunctive fusion composition of two retrenchments (a) and (b), where:

(a) is the vertical composition of H,Q,N,D with K•,R•,V •;

(b) is the vertical composition of K,R,V with H•,Q•,N•,D•.

(5) If we assume

(dom(K∧R∧K ′∧V) � H∧Q∧H ′∧N)(u, v, i, j, u′, v′, o, p) ∧
(dom(H∧Q∧H ′∧N) � K∧R∧K ′∧V)(u, w, i, k, u′, w′, o, q) ∧
(dom(K∧R) � H∧Q)(i, j, u, v) ∧ (dom(H∧Q) � K∧R)(i, k, u, w) ⇒

(dom(K∧R∧K ′∧V) � H∧Q∧H ′∧N)(u, v, i, j, u′, v′, o, p) ∧
(dom(H∧Q∧H ′∧N) � K∧R∧K ′∧V)(u, w, i, k, u′, w′, o, q)

(69)

(dom(K∧R∧K ′∧V) � H∧Q∧D)(u, v, i, j, u′, v′, o, p) ∧
(dom(H∧Q∧D) � K∧R∧K ′∧V)(u, w, i, k, u′, w′, o, q) ∧
(dom(K∧R) � H∧Q)(i, j, u, v) ∧ (dom(H∧Q) � K∧R)(i, k, u, w) ⇒

(dom(K∧R∧K ′∧V) � H∧Q∧D)(u, v, i, j, u′, v′, o, p) ∧
(dom(H∧Q∧D) � K∧R∧K ′∧V)(u, w, i, k, u′, w′, o, q),

(70)

then there is a retrenchment from Univ to Xtra, with the data given in part (2).(v)†.

(6) Referring to the data given in (2).(v), if in addition to (69) and (70), we have

(∃t̃ , h̃ , ñ • stpOpX (t̃ , h̃ , t̃ ′, ñ)) ∧
(∃t′ • HK◦(t′, t̃ ′)) ∧
(∃t, t̃ , h, h̃ , n, ñ • DV ◦

Op(t
′, t̃ ′, n, ñ ; h, h̃ , t, t̃)) ⇒ HK◦(t′, t̃ ′),

(71)

then:

(i) the retrenchment of (5).(i) from Univ to Xtra, strengthens to a refinement with

refinement data, say

KK◦(t, t̃), {RR◦
Op, VV ◦

Op|Op ∈ OpsU};

(ii) if the notion of refinement in question requires the use of appOp sets, then the

appOp sets of Xtra must satisfy

appOpU (t, h) ∧ KK◦(t, t̃) ∧ RR◦
Op(h, h̃)

⇐⇒
KK◦(t, t̃) ∧ RR◦

Op(h, h̃) ∧ appOpX (t̃ , h̃).
(72)

(7) Whenever a system Univ* has properties (1) and (2) above of Univ, and in addition

the properties noted in (69)–(70), then Univ and Univ* are inter-retrenchable, and if

it also has the properties in (71), and if needed, (72), then they are also inter-refinable.

† Note that if the relations mentioned in (69) and (70) are functions (with Ret and Ref values as domain and

Abs values as range), then (69) and (70) are satisfied.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 169

Proof.

(1) We start by completing the details of Univ, the refinement K•,R•,V • and the retrench-

ment H•,Q•,N•,D•. Adapting the usual notational conventions in the obvious way for

Ret and Ref, the state space of Univ is t ∈ T = U × V × W (where U is the state space

of Abs, V is the state space of Ret and W is the state space of Ref). There are two

cases for the input and output spaces of Univ :

— If Op ∈ OpsFU = OpsAT , then

h ∈ HOp = IOp × JOp × KOp

n ∈ NOp = OOp × POp × QOp.

— If Op ∈ OpsU\FU , then

h ∈ HOp = JOp

n ∈ NOp = POp.

We start by giving the data for the refinement and retrenchment.

The refinement K•,R•,V • is given by the data:

K•(v, t) ≡ (t = (u, v, w) ∧ K(u, w)) (73)

R•
Op(j, h) ≡

{
(h = (i, j, k) ∧ ROp(i, k)) if Op ∈ OpsFU
(h = j) if Op ∈ OpsU\FU

(74)

V •
Op(p, n) ≡

{
(n = (o, p, q) ∧ VOp(o, q)) if Op ∈ OpsFU
(n = p) if Op ∈ OpsU\FU.

(75)

The retrenchment H•,Q•,N•,D• is given by the data:

H•(w, t) ≡ (t = (u, v, w) ∧ H(u, v)) (76)

Q•
Op(k, h, w, t) ≡ (h = (i, j, k) ∧ t = (u, v, w) ∧ QOp(i, j, u, v)) (77)

N•
Op(q, n;w′, t′, k, h, w, t) ≡ (t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧

h = (i, j, k) ∧ t = (u, v, w) ∧
NOp(o, p; u′, v′, i, j, u, v))

(78)

D•
Op(w

′, t′, q, n; k, h, w, t) ≡ (t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
h = (i, j, k) ∧ t = (u, v, w) ∧
DOp(u

′, v′, o, p; i, j, u, v)).

(79)

We need these relations to define the Univ system itself, so we will start by checking

part 1.(iii).

(iii) We first calculate G×,G×∧P×,O×,C× for Op ∈ OpsFU as the composition of

the pseudoretrenchment HT,QT,NT,DT with the refinement K,R,V . The fact that

the result is also equal to the composition of the refinement K•,R•,V • with the

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 170

pseudoretrenchment H•T,Q•T,N•T,D•T follows by inspection.

G×(v, w) ≡ HT o
9 K

= (∃u • H(u, v) ∧ K(u, w))

= K• o
9 H

•T .

(80)

G×∧P×
Op∧((G×′∧O×

Op)∨C×
Op)(v, w, j, k, v

′, w′, p, q)

≡ (HT∧QT
Op∧((HT ′∧NT

Op)∨DT
Op))

o
9 (K∧ROp∧K ′∧VOp)

= (∃u, i, u′, o • H(u, v) ∧ QOp(i, j, u, v) ∧
((H(u′, v′) ∧ NOp(o, p; u′, v′, i, j, u, v)) ∨
DOp(u

′, v′, o, p; i, j, u, v)) ∧
K(u, w) ∧ ROp(i, k) ∧ K(u′, w′) ∧ VOp(o, q))

= (K•∧R•
Op∧K•′∧V •

Op)
o
9

(
H•T∧Q•T

Op∧
((
H•T ′∧N•T

Op

)
∨D•T

Op

))
.

(81)

The Univ system itself is now given as follows.

Initialisation in Univ is given by

InitU(t′) ≡ (t′ = (u′, v′, w′) ∧
InitT (v′) ∧ K•(v′, t′) ∧
InitF (w′) ∧ H•(w′, t′)).

(82)

The operations of Univ are given by

stpOpU (t, h, t′, n) ≡⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
[stpOpT (v, j, v′, p) ∧ K•(v, t) ∧
R•
Op(j, h) ∧ K•(v′, t′) ∧ V •

Op(p, n)] ∧
[stpOpF (w, k, w′, q) ∧ H•(w, t) ∧
Q•

Op(k, h, w, t)∧
((H•(w′, t′) ∧
N•

Op(q, n;w′, t′, k, h, w, t)) ∨
D•

Op(w
′, t′, q, n; k, h, w, t))])

if Op ∈ OpsFX

(t = (u, v, w) ∧ h = j ∧
t′ = (u′, v′, w′) ∧ n = p∧
[stpOpT (v, j, v′, p) ∧
K•(v, t) ∧ R•

Op(j, h) ∧
K•(v′, t′) ∧ V •

Op(p, n)])

if Op ∈ OpsX\FX .

(83)

(i) We need to check that K•,R•,V • is a refinement.

For the initialisation PO, suppose we have InitU(t′). Then by (82), we have

InitT (v′) ∧ K•(v′, t′) for the v′ in t′, which is enough.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 171

For the operation PO, suppose Op ∈ OpsFU . Then, if we assume

K•(v, t) ∧ R•
Op(j, h) ∧ stpOpU (t, h, t′, n),

we can see that (83) furnishes us a stpOpT (v, j, v′, p) (with K•(v′, t′) ∧ V •
Op(p, n)

holding as required), which is what we need.

The argument is similar if Op ∈ OpsU\FU .

(ii) We need to check that H•,Q•,N•,D• is a retrenchment.

For the initialisation PO, suppose we have InitU(t′). Then by (82), we have

InitF (w′) ∧ H•(w′, t′)

for the w′ in t′, which is enough.

For the operation PO, if we assume

H•(w, t) ∧ Q•
Op(k, h, w, t) ∧ stpOpU (t, h, t′, n),

we can see that (83) furnishes us a stpOpF (w, k, w′, q) (with (H•′∧N•
Op)∨D•

Op holding

as required), which is what we need.

(iv) It is clear from the arguments above that each step t -(h, OpU, n)->>> t′ of Univ

is in simulation with (in the refinement sense) its constituent stpOpT transition,

and, provided Op ∈ OpsFU , it is in simulation with (in the retrenchment sense)

its constituent stpOpF transition (these stpOpT and stpOpF transitions are obviously

unique since the data for the H•,Q•,N•,D• retrenchment and the K•,R•,V • refinement

are functional from Univ to Ref and Ret, respectively). When Op ∈ OpsFU ,

the fact that these stpOpT and stpOpF transitions are in simulation through the

pseudoretrenchment G×,G×∧P×,O×,C× is evident since the data for the latter is

directly present in (83).

(v) Since K•T∧R•T
Op is a function (in general, a partial function) from T × HOp onto

V × JOp, we have

(K•∧R•
Op)

o
9(K

•T∧R•T
Op) = IdV×JOp .

Consequently, the definition of the appOp sets of Univ in (68) satisfies the condition

in (17) for the K•,R•,V • refinement, and consequently satisfies an appOp requirement

that has the form of either (11) or (12).

This completes the proof of part (1).

(2) (i) We start with the refinement data K◦,R◦,V ◦, which is given by

K◦(t, t̃) ≡ (∃v • K•(v, t) ∧ K (̃v, t̃)) (84)

R◦
Op(h, h̃) ≡ (∃j • R•

Op(j, h) ∧ R Õp(j, h̃)) (85)

V ◦
Op(n, ñ) ≡ (∃p • V •

Op(p, n) ∧ V Õp(p, ñ)). (86)

We must show that every transition of Xtra is in simulation with a transition of

Univ through (84)–(86). We consider two cases:

— Case Op ∈ OpsFX:

Let t̃ -(h̃ , OpX, ñ)->>> t̃ ′ be a step of Xtra, which, by assumption, is in sim-

ulation with some step of Ret, say v -(j, OpT , p)->>> v′, through K ,̃R ,̃V ,̃ and

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 172

is also in simulation with some step of Ref, say w -(k, OpF , q)->>> w′, through

H ,̃Q ,̃N ,̃D .̃ Again by assumption, these two steps are in simulation through

G×,G×∧P×,O×,C×. But this means that they also determine a step of Univ, say

t -(h, OpU, n)->>> t′, by (83), as seen above. This Univ step is in simulation with

the Ret and Ref steps through the K•,R•,V • refinement and the H•,Q•,N•,D•

retrenchment. Finally, composing the K•,R•,V • simulation with the K ,̃R ,̃V˜

simulation yields the required result.

— Case Op ∈ OpsX\FX:

Let t̃ -(h̃ , OpX, ñ)->>> t̃ ′ be a step of Xtra, which, by assumption, is in simulation

with some step of Ret, say v -(j, OpT , p)->>> v′, through K ,̃R ,̃V .̃ To get a

simulation with a Univ step, referring to the Op ∈ OpsU\FU case of (83),

it is sufficient to establish

K•∧R•
Op∧K•′∧V •

Op

for the Ret step. For this, it is enough to find any u, w, u′, w′ such that

K(u, w) and K(u′, w′) hold (whence we can get K•∧K•′ through (83)). Beyond

this, v -(j, OpT , p)->>> v′ gives us j, p (whence we can get R•
Op∧V •

Op through the

Op ∈ OpsX\FX cases of (74) and (75)). Composing the K•,R•,V • simulation with

the K ,̃R ,̃V˜ simulation now yields the result.

(ii) We start with the retrenchment data H◦,Q◦,N◦,D◦. This is the vertical composition

of the H ,̃Q ,̃N ,̃D˜ and H•T,Q•T,N•T,D•T data, suitably modified by the refinement

data K◦,R◦,V ◦ just above. It is given by

H◦(t, t̃) ≡ [(∃w • H•(w, t) ∧ H (̃w, t̃))]∨
[¬(∃w • H•(w, t)) ∧ ¬(∃w • H (̃w, t̃)) ∧

(∃v • K•(v, t) ∧ K (̃v, t̃))]

(87)

Q◦
Op(h, h̃ , t, t̃) ≡⎧⎪⎪⎨

⎪⎪⎩
(∃k, w • H•(w, t) ∧ H (̃w, t̃) ∧
Q•

Op(k, h, w, t) ∧ Q Õp(k, h̃ , w, t̃))
if Op ∈ OpsFX

(∃j • R•
Op(j, h) ∧ R Õp(j, h̃)) if Op ∈ OpsX\FX

(88)

N◦
Op(n, ñ ; t′, t̃ ′, h, h̃ , t, t̃) ≡⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(∃w, k, w′, q •
N•

Op(q, n;w′, t′, k, h, w, t) ∧
N Õp(q, ñ ;w′, t̃ ′, k, h̃ , w, t̃))

if Op ∈ OpsFX

(∃p • V •
Op(p, n) ∧ V Õp(p, ñ)) if Op ∈ OpsX\FX

(89)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 173

D◦
Op(t

′, t̃ ′, n, ñ ; h, h̃ , t, t̃) ≡⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∃w, k, w′, q •
{[H•(w′, t′) ∧

N•
Op(q, n;w′, t′, k, h, w, t) ∧

D Õp(w
′, t̃ ′, q, ñ ; k, h̃ , w, t̃)] ∨

[D•
Op(w

′, t′, q, n; k, h, w, t) ∧
H (̃w′, t̃ ′) ∧
N Õp(q, ñ ;w′, t̃ ′, k, h̃ , w, t̃)] ∨

[D•
Op(w

′, t′, q, n; k, h, w, t) ∧
D Õp(w

′, t̃ ′, q, ñ ; k, h̃ , w, t̃)]})

if Op ∈ OpsFX

false if Op ∈ OpsX\FX .

(90)

We must show that every step of Xtra is in simulation with a step of Univ through

(87)–(90). We consider the two cases separately:

— Case Op ∈ OpsFX:

Let t̃ -(h̃ , OpX, ñ)->>> t̃ ′ be a step of Xtra, which, by assumption, is in simulation

with a step of Ret, say v -(j, OpT , p)->>> v′, through K ,̃R ,̃V ,̃ and is also in sim-

ulation with a step of Ref, say w -(k, OpF , q)->>> w′, through H ,̃Q ,̃N ,̃D .̃ Again

by assumption, these two steps are in simulation through G×,G×∧P×,O×,C×,

so, as we saw above, they determine a step of Univ, say t -(h, OpU, n)->>> t′, by

(83). This Univ step is in simulation with the Ret and Ref steps through

the K•,R•,V • refinement and the H•,Q•,N•,D• retrenchment. Composing the

H•,Q•,N•,D• simulation with the H ,̃Q ,̃N ,̃D˜ simulation now yields a formula

of the shape

H•∧Q•
Op∧H˜∧Q Õp∧((H•′∧N•

Op)∨D•
Op)∧((H˜ ′∧N˜)∨D Õp)

which relates the Univ and Xtra steps. We now apply the distributive law to

the last two conjuncts to give

(H•′∧N•
Op∧H˜ ′∧N Õp)∨

(H•′∧N•
Op∧D Õp)∨(H˜ ′∧N Õp∧D•

Op)∨(D•
Op∧D Õp).

The last three disjuncts of this yield D◦
Op, the first disjunct gives H◦′∧N◦

Op

(utilising the first disjunct in (87) for H◦′) and the rest of the earlier formula

gives H◦∧Q◦
Op (again utilising the first disjunct in (87) for H◦). So we have

what we need.

— Case Op ∈ OpsX\FX:

Let t̃ -(h̃ , OpX, ñ)->>> t̃ ′ be a step of Xtra. We must now do two things:

(a) First we must find some suitable values t, h, t′, n such that they make a Univ

transition for the Op ∈ OpsX\FX case. For this it is enough (according to

(83)) to establish stpOpT (v, j, v′, p) for the v, j, v′, p in t, h, t′, n, and also that

K•∧R•
Op∧K•′∧V •

Op

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 174

holds for t, h, t′, n – the latter splits into four independent subproblems,

one each for K•, R•
Op, K

•′, V •
Op, since (83) does not otherwise constrict the

values in the Op ∈ OpsX\FX case.

(b) Then, for these same values t, h, t′, n, we must establish the simulation

relation,

H◦∧Q◦
Op∧H◦′∧N◦

Op

(since D◦
Op being false in the Op ∈ OpsX\FX case precludes establishing

the concession variant) – noting that, through (88)–(89), Q◦
Op and N◦

Op only

depend on inputs and outputs, respectively, in the Op ∈ OpsX\FX case,

again splits this into four independent subproblems, one each for H◦, Q◦
Op,

H◦′, N◦
Op.

By assumption, the step t̃ -(h̃ , OpX, ñ)->>> t̃ ′ of Xtra is in simulation with a

step of Ret, say v -(j, OpT , p)->>> v′, through K ,̃R ,̃V˜ (which gives us the first

thing we need for (83)). Noting that

R•
Op(j, h) ≡ (h = j)

V •
Op(p, n) ≡ (n = p),

together with R˜ and V˜ and (88)–(89), gives us R•
Op and V •

Op and Q◦
Op and N◦

Op,

just leaving us with K•, K•′, H◦, H◦′ to do. We consider K• and H◦, since the

argument for K•′ and H◦′ will be similar. For the Xtra step, we have K (̃v, t̃)

already. Now either H (̃w, t̃) holds for some w, or not:

– Suppose H (̃w, t̃) holds for some w:

Then H (̃w, t̃) and K (̃v, t̃) compose to give G×(v, w), so by (80), there is

a u such that both K(u, w) and H(u, v) hold. The latter is enough to give

H•(w, t), where t = (u, v, w). Composing H (̃w, t̃) and H•(w, t) gives the

desired H◦(t, t̃) through the first disjunct of (87). Since G×(v, w) also gives

K•(v, t) and H•(w, t), we have the desired K•(v, t) too, completing this case.

– Suppose H (̃w, t̃) does not hold for any w:

In this case, we have to establish the second disjunct of (87). This means

that as well as ¬(∃w • H (̃w, t̃)), which we assume, we have to prove

¬(∃w • H•(w, t)) ∧ (∃v • K•(v, t) ∧ K (̃v, t̃))

for suitable w and t. To do this, we use the additional assumption

∀v • ∃u, w • ¬H(u, v) ∧ K(u, w).

Since we know K (̃v, t̃), we use the assumption to choose u and w such that

¬H(u, v) and K(u, w) both hold. From this, setting t = (u, v, w), we deduce

first that ¬(∃w •H•(w, t)) holds from (76), and then that K•(v, t) holds from

(73). This discharges the second disjunct of (87) and completes this case.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 175

(iii) Since K◦ = K•T o
9 K ,̃ we have

K• o
9 K

◦ = K• o
9 K

•T o
9 K˜

= IdV
o
9 K˜

= K˜

(since K•T is a partial function).

The other results are similar.

(iv) Since

H◦ = [(H•T o
9H˜)∨((¬H•T o

9¬H˜)∧(K•T o
9K˜))],

we can derive that

H• o
9 H

◦ = H• o
9 [(H•T o

9H˜)∨((¬H•T o
9¬H˜)∧(K•T o

9K˜))]

= IdW
o
9 H˜

= H˜

(since H•T is a partial function, and H•... and ¬H•T... are disjoint). The derivation

of N• o
9N

◦ = N˜ is similar to that of the results in (2).(iii). We now consider D• o
9D

◦,

where D◦ is given by (90). The term D•T∧D ,̃ which occurs disjunctively in (90),

shows that D• o
9 D

◦ contains

D• o
9 D

•T o
9 D˜ = IdW×KOp×W×QOp

o
9 D˜

= D .̃

Since (90) also contains other disjuncts, we derive D• o
9 D

◦ ⇐ D .̃ Finally, by

assumption, H∧Q is a non-empty relation. This makes H•T∧Q•T a non-empty

(partial) function, which is onto W × KOp. Therefore, we can show

(H•∧Q•)o
9(H

◦∧Q◦) = (H˜∧Q˜)

in the same way as other similar results, such as N• o
9 N

◦ = N˜ and the ones in

(2).(iii)†.

(v) We start with the retrenchment data HK◦,QR◦,NV ◦,DV ◦, which is given by (91)–

(94). Note that, aside from the retrieve relation HK◦, which is disjunctive in

structure and simpler than just a combination of the retrieve relations (84) and

(87), the remaining data is a suitable conjunction of the data in (84)–(86) with the

data in (87)–(90). We have

HK◦(t, t̃) ≡ (t = (u, v, w) ∧
{[H•(w, t) ∧ H (̃w, t̃)] ∨ [K•(v, t) ∧ K (̃v, t̃)]})

(91)

† For other similar results, the non-emptiness of the partial function follows from the assumed non-emptiness

of the underlying relation through Assumption 1.1. However, for H∧Q, non-emptiness does not follow from

non-emptiness of H and Q individually.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 176

QR◦
Op(h, h̃ , t, t̃)

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k)∧
H•(w, t) ∧ H (̃w, t̃) ∧
Q•

Op(k, h, w, t) ∧
Q Õp(k, h̃ , w, t̃) ∧
K•(v, t) ∧ K (̃v, t̃) ∧
R•
Op(j, h) ∧ R Õp(j, h̃))

if Op ∈ OpsFX

(t = (u, v, w) ∧ h = j∧
K•(v, t) ∧ K (̃v, t̃) ∧
R•
Op(j, h) ∧ R Õp(j, h̃))

if Op ∈ OpsX\FX

(92)

NV ◦
Op(n, ñ ; t′, t̃ ′, h, h̃ , t, t̃)

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
N•

Op(q, n;w′, t′, k, h, w, t) ∧
N Õp(q, ñ ;w′, t̃ ′, k, h̃ , w, t̃) ∧
K•(v, t) ∧ R•

Op(j, h) ∧
K•(v′, t′) ∧ V •

Op(p, n) ∧
K (̃v, t̃) ∧ R Õp(j, h̃) ∧
K (̃v′, t̃ ′) ∧ V Õp(p, ñ))

if Op ∈ OpsFX

(n = p ∧ V •
Op(p, n) ∧ V Õp(p, ñ)) if Op ∈ OpsX\FX

(93)

DV ◦
Op(t

′, t̃ ′, n, ñ ; h, h̃ , t, t̃)

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
{[H•(w′, t′) ∧ N•

Op(q, n;w′, t′, k, h, w, t) ∧
D Õp(w

′, t̃ ′, q, ñ ; k, h̃ , w, t̃)] ∨
[D•

Op(w
′, t′, q, n; k, h, w, t) ∧

H (̃w′, t̃ ′) ∧
N Õp(q, ñ ;w′, t̃ ′, k, h̃ , w, t̃)] ∨

[D•
Op(w

′, t′, q, n; k, h, w, t) ∧
D Õp(w

′, t̃ ′, q, ñ ; k, h̃ , w, t̃)]} ∧
K•(v, t) ∧ R•

Op(j, h) ∧
K•(v′, t′) ∧ V •

Op(p, n) ∧
K (̃v, t̃) ∧ R Õp(j, h̃) ∧
K (̃v′, t̃ ′) ∧ V Õp(p, ñ))

if Op ∈ OpsFX

false if Op ∈ OpsX\FX .

(94)

In the terminology of Banach et al. (2008), and aside from the properties of the

retrieve relation already noted, the composition of (91)–(94) is a blend of

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 177

— on the one hand, conjunctive fusion composition (since the state and the I/O

spaces are (partly) the same); and,

— on the other hand, synchronous parallel composition (since the state and the

I/O spaces are (partly) different)

of the refinement data (84)–(86) and the retrenchment data (87)–(90).

With the retrenchment data in place, the argument is now largely a replay of the

proofs of (2).(i) and (2).(ii).

Starting with an Op ∈ OpsFX step of Xtra, we infer Ret and Ref steps from the

refinement and retrenchment from Ret and Ref to Xtra. These are in simulation

through G×,G×∧P×,O×,C× by assumption, and determine a step of Univ as before.

The conjunction of all the facts established along the way, through both Ret and

Ref, then establishes the simulation between the Univ and Xtra steps through

(91)–(94). The Op ∈ OpsX\FX case is a simplification of the analogous case in

(2).(ii) because of the simpler structure of the retrieve relation here – it is sufficient

to rely on the truth of K• and K ,̃ without having to worry about whether H•

and H˜ do or do not hold for particular values of w.

This completes the proof of part (2).

(3) Note that Univ itself satisfies the criteria required for Xtra. Therefore, if we have

a system Univ* with the properties (1) and (2) of Univ, then Univ* also satisfies

the criteria required for Xtra. Hence, we can construct two instances of Figure 5 as

follows:

(a) In the first, Univ is in its conventional place and Univ* replaces Xtra, and there

are refinement data K◦,R◦,V ◦ and retrenchment data H◦,Q◦,N◦,D◦ from Univ to

Univ*.

(b) In the second, Univ* replaces Univ, and Univ replaces Xtra, and there are

refinement data K∗,R∗,V ∗ and retrenchment data H∗,Q∗,N∗,D∗ from Univ* to

Univ.

So Univ and Univ* are inter-simulable by the arguments above.

(4) We just observe that disjunctive fusion composition of retrenchments, and the vertical

composition between retrenchments and refinements (both ways round) are sound

composition mechanisms. For the record, the composed retrenchment data is

G(u, t) ≡ (t = (u, v, w) ∧ {[H(u, v) ∧ K(u, w)] ∨ [K(u, w) ∧ H(u, v)]}) (95)

POp(i, h, u, t)

≡ (h = (i, j, k) ∧ t = (u, v, w) ∧
{[K(u, w) ∧ ROp(i, k) ∧ H(u, v) ∧ QOp(i, j, u, v)]∨

[K(u, w) ∧ ROp(i, k) ∧ H(u, v) ∧ QOp(i, j, u, v)]})

(96)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 178

OOp(o, n; u′, t′, i, h, u, t)

≡ (t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
{[H(u′, v′) ∧ K(u, w) ∧ ROp(i, k) ∧ K(u′, w′) ∧

VOp(o, q) ∧ NOp(o, p; u′, v′, i, j, u, v)] ∨
[H(u′, v′) ∧ K(u, w) ∧ ROp(i, k) ∧ K(u′, w′) ∧
VOp(o, q) ∧ NOp(o, p; u′, v′, i, j, u, v)] ∨

[K(u, w) ∧ ROp(i, k) ∧ K(u′, w′) ∧
VOp(o, q) ∧ NOp(o, p; u′, v′, i, j, u, v) ∧
NOp(o, p; u′v′, i, j, u, v) ∧ K(u, w) ∧
ROp(i, k) ∧ K(u′, w′) ∧ VOp(o, q)]})

(97)

COp(u
′, t′, o, n; i, h, u, t)

≡(t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
{[DOp(u

′, v′, o, p; i, j, u, v) ∧ K(u, w) ∧
ROp(i, k) ∧ K(u′, w′) ∧ VOp(o, q)] ∨

[K(u, w) ∧ ROp(i, k) ∧ K(u′, w′) ∧
VOp(o, q) ∧ DOp(u

′, v′, o, p; i, j, u, v)]}).

(98)

For the rest of the theorem, we will work under the additional assumptions given in the

statement of (5) and (6).

(5) We need to show that the retrenchment data in (91)–(94) supports an actual re-

trenchment from Univ to Xtra. So we must prove that the initialisation PO and the

retrenchment operation PO both hold with (91)–(94).

For the initialisation PO, we assume InitX(t̃ ′) and need to find a t′ such that

InitU(t′) ∧ HK◦(t′, t̃ ′)

holds. Since K ,̃R ,̃V˜ is a refinement, there is a v′ for which

InitT (v′) ∧ K (̃v′, t̃ ′)

holds. Also, since H ,̃Q ,̃N ,̃D˜ is a retrenchment, there is a w′ for which

InitF (w′) ∧ H (̃w′, t̃ ′)

holds. Since we have

K (̃v′, t̃ ′) ∧ H (̃w′, t̃ ′),

we also have G×(v′, w′) by assumption. So there is a u′ such that

H(u′, v′) ∧ K(u′, w′)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 179

holds by (80), so, for this u′, we have

K•(v′, t′) ∧ H•(w′, t′)

holds, where t′ = (u′, v′, w′). So we have InitU(t′) by (82). We have now established

K•(v′, t′) ∧ K (̃v′, t̃ ′) ∧ H•(w′, t′) ∧ H (̃w′, t̃ ′),

which, with t′ = (u′, v′, w′), gives both disjuncts of HK◦(t′, t̃ ′). So we are done.

For the operation PO, we consider the two cases separately:

— Case Op ∈ OpsFX:

We assume

HK◦(t, t̃) ∧ QR◦
Op(h, h̃ , t, t̃) ∧ stpOpX (t̃ , h̃ , t̃ ′, ñ).

We need a Univ step t -(h, OpU, n)->>> t′ such that

((HK◦(t′, t̃ ′) ∧ NV ◦
Op(n, ñ ; t′, t̃ ′, h, h̃ , t, t̃)) ∨

DV ◦
Op(t

′, t̃ ′, n, ñ ; h, h̃ , t, t̃))

holds. Suppose t = (u, v, w) and h = (i, j, k). Our assumption

HK◦(t, t̃) ∧ QR◦
Op(h, h̃ , t, t̃)

gives us

K (̃v, t̃) ∧ R Õp(j, h̃).

Since K ,̃R ,̃V˜ is a refinement, from stpOpX (t̃ , h̃ , t̃ ′, ñ), we can get a Ret step, say

v -(j, OpT , p)->>> v′, such that

K˜∧R Õp∧K˜ ′∧V Õp

holds. Also, since

HK◦(t, t̃) ∧ QR◦
Op(h, h̃ , t, t̃)

gives us

H (̃w, t̃) ∧ Q Õp(k, h̃ , w, t̃).

Since H ,̃Q ,̃N ,̃D˜ is a retrenchment, we get a Ref step, say w -(k, OpF , q)->>> w′, such

that

H˜∧Q Õp∧((H˜ ′∧N Õp)∨D Õp)

holds. Since

K˜∧R Õp∧K˜ ′∧V Õp

together with

H˜∧Q Õp∧((H˜ ′∧N Õp)∨D Õp)

leads to

G×,G×∧P×,O×,C×

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 180

as we saw above, which is witnessed by some Abs values u, i, u′, o, the two Ret and

Ref steps produce a Univ step, say t -(h, OpU, n)->>> t′, for which

HK◦∧QR◦
Op∧((HK◦′∧NV ◦

Op)∨DV ◦
Op)

holds, as in the proof of (2).(v), where we have

t = (u, v, w)

h = (i, j, k).

To establish the retrenchment, it is now enough to show that we can safely replace

u and i by the u and i we assumed to start with.

We now note that either

HK◦∧QR◦
Op∧HK◦′∧NV ◦

Op

or

HK◦∧QR◦
Op∧DV ◦

Op

holds. If the first of these holds, then, unravelling the assumed HK◦∧QR◦
Op for t, h,

and unravelling

HK◦∧QR◦
Op∧HK◦′∧NV ◦

Op

for t, h, t′, n, we see that we have the assumptions of (69). This allows us to replace

u, i, by u, i, in

HK◦∧QR◦
Op∧HK◦′∧NV ◦

Op

(and in the Univ step t -(h, OpU, n)->>> t′) as desired, completing the argument.

The argument for the HK◦∧QR◦
Op∧DV ◦

Op case is similar, but using (70) instead of

(69).

— Case Op ∈ OpsX\FX:

We assume

HK◦(t, t̃) ∧ QR◦
Op(h, h̃ , t, t̃) ∧ stpOpX (t̃ , h̃ , t̃ ′, ñ).

It will be enough to find a Univ step t -(h, OpU, n)->>> t′ such that

HK◦(t′, t̃ ′) ∧ NV ◦
Op(n, ñ ; t′, t̃ ′, h, h̃ , t, t̃)

holds. The assumption

HK◦(t, t̃) ∧ QR◦
Op(h, h̃ , t, t̃)

yields

K (̃v, t̃) ∧ R Õp(j, h̃)

for suitable v and j. Since K ,̃R ,̃V˜ is a refinement, from stpOpX (t̃ , h̃ , t̃ ′, ñ), we

can get a Ret step, say v -(j, OpT , p)->>> v′, such that

K˜∧R Õp∧K˜ ′∧V Õp

holds. If we now fix n = p for the Univ step, then noting that

V •
Op(p, n) ≡ (p = n),

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 181

and that V Õp(p, ñ) holds, we can deduce NV ◦
Op(. . .), since NV ◦

Op(. . .) is

V •
Op(p, n) ∧ V Õp(p, ñ).

We now have to find t′ to show that HK◦(t′, t̃ ′) holds and to show that t, h, t′, n

constitute a Univ step. For the retrieve relation, we already have K˜(v′, t̃ ′). So if

we choose u′, w′ such that K(u′, w′) holds, then by (73), K•(v′, t′) also holds, where

t′ = (u′, v′, w′), and this yields HK◦(t′, t̃ ′) through the second disjunct of (91).

Finally, to show that t, h, t′, n constitute a Univ step, we note that, by (83), we just

need

K•∧R•
Op∧K•′∧V •

Op.

But we have K•∧R•
Op from HK◦∧QR◦

Op, and have deduced K•′∧V •
Op, so we are

done.

(6) (i) We start with the refinement data KK◦, RR◦, VV ◦, which is given by (99)–(102):

KK◦(t, t̃) ≡ HK◦(t, t̃) ∨ ZZ◦(t, t̃) (99)

where

ZZ◦(t, t̃) ≡ (∃t̃ , h̃ , ñ • stpOpX (t̃ , h̃ , t̃ , ñ)) ∧
¬(∃t • HK◦(t, t̃)) ∧
(∃t, t̃ , h, h̃ , n, ñ • DV ◦

Op(t, t̃ , n, ñ ; h, h̃ , t, t̃))

(100)

RR◦(h, h̃) ≡ (∀t, t̃ • HK◦(t, t̃) ⇒ QR◦
Op(h, h̃ , t, t̃)) (101)

VV ◦(n, ñ) ≡ (∃t, t̃ , h, h̃ , t′, t̃ ′ •
NV ◦

Op(n, ñ ; t′, t̃ ′, h, h̃ , t, t̃) ∨
DV ◦

Op(t
′, t̃ ′, n, ñ ; h, h̃ , t, t̃)).

(102)

In order to prove the refinement, we begin with the initialisation PO, which

follows along much the same lines as the analogous PO for the retrenchment

HK◦,QR◦,NV ◦,DV ◦ given in part (5).

For the operation PO, we assume

KK◦(t, t̃) ∧ RR◦
Op(h, h̃) ∧ stpOpX (t̃ , h̃ , t̃ ′, ñ),

and need to prove there are values t′, n such that stpOpU (t, h, t′, n) and

KK◦′∧VV ◦
Op

hold. To begin, we note that by the assumptions of part (2), every step of Xtra

is in simulation with at least one step of Ret. Therefore, every before state of an

Xtra transition is related to some Univ state through HK◦, and, consequently,

no before state of an Xtra transition can be in the range of ZZ◦ because of the

middle conjunct of (100). Thus, from

KK◦(t, t̃) ∧ RR◦
Op(h, h̃),

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 182

we can deduce that

HK◦(t, t̃) ∧ QR◦
Op(h, h̃ , t, t̃) ∧ stpOpX (t̃ , h̃ , t̃ ′, ñ)

covers all the ways of making the operation PO hypothesis true. But this is the

hypothesis of the operation PO for the HK◦,QR◦,NV ◦,DV ◦ retrenchment, so we

can deduce

(HK◦′∧NV ◦
Op)∨DV ◦

Op.

We consider two cases:

— HK◦′∧NV ◦
Op holds:

Then so does KK◦′∧VV ◦
Op (since HK◦′ is a disjunct of KK◦′ and NV ◦

Op is a

disjunct of VV ◦
Op), and we are done.

— HK◦′∧NV ◦
Op does not hold:

Then we must have that

DV ◦
Op(t

′, t̃ ′, n, ñ ; h, h̃ , t, t̃)

holds instead. In that case, either t̃ ′ is in the range of HK◦ or it is not:

– If it is, we use (71) to deduce HK◦(t′, t̃ ′) (after which we get KK◦(t′, t̃ ′)

through (99)), and then use (102) to deduce VV ◦
Op(n, ñ), and we are done.

– Otherwise, t̃ ′ is not in the range of HK◦ and we use (100) to deduce

ZZ◦(t′, t̃ ′) (after which we get KK◦(t′, t̃ ′) through (99)), and then use

(102) to deduce VV ◦
Op(n, ñ), and again we are done.

(ii) We just note that the condition stated in (42) is just the requirement from (13), so

we are done.

(7) The proof is just a matter of replaying the arguments given for part (3), but using the

stronger relationships between Univ and Xtra afforded by the stronger assumptions

in force.

8.1. Remarks

Some of the following are similar to the corresponding remarks made earlier, so are only

stated briefly; new observations related to the postjoin construction are discussed in more

detail.

Remark 8.2. Observing that (given our formulation of refinement and retrenchment),

every refinement K,R,V yields a retrenchment K,R,V ,false, simply by reinterpreting the

input and output relations in the obvious way, and adding a trivial concession (see Banach

et al. (2007b) for a more extensive discussion), we can see that we could readily have

extended the retrenchment data H◦,Q◦,N◦,D◦ in (2).(ii) of the theorem to all operations

simply by reinterpreting the refinement data K◦,R◦,V ◦ from (2).(i) and adding a false

concession. However, while valid, this would not have been very interesting. Another way

of achieving the same thing would have been to consider the pseudoretrenchment data

H◦∨K◦,Q◦∨R◦,N◦∨V ◦,D◦

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 183

instead. This would have worked for the stated claim in (2).(ii) because that claim only

mentions the simulation relation (permitting the choice of the most convenient disjunct

from the enlarged relations for each case). The main reason this approach was not pursued

for (2).(ii) was that it would have spoiled the relative cleanness of the composition results

in (2).(iv).

The same approach to simulation would also have worked for the simulation relation

of the data in (2).(v), but we avoided it to avoid excessive clutter. However, the approach

would not have worked for the retrenchment claim in (5) since there we need to prove the

result for every way of satisfying the hypotheses, and the disjunctions introduce additional

cases, which are not provable without additional assumptions. However, the approach

based on overriding that we adopted avoids all these difficulties, though at the price of a

little more complexity.

Remark 8.3. As a corollary, we note that if the vertical composition of concessions in

(90) had satisfied the conditions of being compatibly tidy (in the terminology of Banach

and Jeske (2010)), then we could have strengthened the

D• o
9 D

◦ ⇐ D˜

implication in (2).(iv) to an equality since the other two disjuncts of D◦ would have been

absent. We again omitted the details to avoid excessive clutter.

Remark 8.4. In part (4) of the theorem, we highlighted disjunctive fusion composition,

since it is valid without restriction. The corresponding conjunctive composition is not as

generally applicable (it requires a ‘close to cosimulation’ criterion to hold), which is not

true in general under our hypotheses – see Banach et al. (2008) for details. The easiest way

to get the required criterion is to require that the Abs system is deterministic, that is, that

there is a unique after state and output for each before state and input. An alternative

involves the use of conditions like (69) and (70), but this time permitting the replacement

of after states and outputs rather than before states and inputs. We have omitted the

details.

Remark 8.5. As in earlier remarks, the composition of K∗,R∗,V ∗ with K◦,R◦,V ◦ need not

be the identity; still less the composition of H◦,Q◦,N◦,D◦ and H∗,Q∗,N∗,D∗.

Remark 8.6. It is tempting to think that† the construction of Univ should involve the free

use of the components of Ret and Ref alone (with Univ expected to play a more veiled

role, with its components typically existentially bound). The treatment in Jeske (2005)

was developed from this point of view, and shows just how arduous it is to obtain a

postjoin result from such a perspective. More seriously, that treatment required numerous

restrictions to hold, and was tied to a particular use of appOp sets, something that a

general account should strive to avoid if at all possible – all this certainly left the authors

† The translation is again ‘For a long time the authors thought’.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 184

retrenchment

retrenchment

H, Q, N, D

H•, Q•, N•, D•

retrenchment
H˜, Q˜, N˜, D˜

refinement
K˜, R˜, V˜

Univ

Conc

Xtra

refinement
K•, R•, V •

Ref

Ret

refinement
K, R, V

retrenchment data H˚, Q˚, N˚, D˚
refinement data K˚, R˚, V˚

retrenchment HK˚, QR˚, NV˚, DV˚
refinement KK˚, RR˚, VV˚

Fig. 6. The prejoin construction in detail – the pseudoretrenchment G×,G×∧P×,O×,C× (not shown)

connects Ret to Ref.

thinking that ‘there must be a better way’. The clean, unrestricted and general nature

of the construction of Theorem 8.1 confirms that the authors’ earlier beliefs about the

structure of the Univ system were less than ideal, and that a reappraisal of the whole

issue, undertaken, as here, with the wisdom of hindsight, was thoroughly justified.

9. The Prejoin Theorem

In this section, we consider the Prejoin Theorem in detail. The relevant part of Figure 2 is

elaborated in Figure 6. The given systems are Ret and Ref, together with a system Conc.

There is a retrenchment from Ret to Conc and a refinement from Ref to Conc, the data

for these being adapted from the usual notation (note that because of the geometrical

arrangement of the three systems, our previous notational conventions cannot be fully

maintained, so care should be taken to allow for the differences). The constructed system

is Univ, with a retrenchment from Univ to Ref and a refinement from Univ to Ret. The

universal nature of the relationship between Univ and the other systems can be expressed

by saying that whenever there is a system Xtra enjoying similar properties to Univ,

then Xtra is more abstract than Univ, which is witnessed by ‘in simulation’ relationships

between the transitions of Xtra and Univ that can be strengthened under relatively benign

conditions to a retrenchment – and still further to a refinement – from Xtra to Univ.

In contrast to our preceding results, which assumed arbitrary refinements and retrench-

ments in their hypotheses, for Theorem 9.1, we will need a mild additional assumption

about the hypothesised retrenchment. For this, we will revert to the notation of Section 3

and say that a retrenchment G,P ,O,C is accommodating if and only if

G(u, v) ∧ POp(i, j, u, v) ⇒
∃u′, v′, o, p • ((G(u′, v′)

∧ OOp(o, p; u′, v′, i, j, u, v))

∨ COp(u
′, v′, o, p; i, j, u, v)).

(103)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 185

Note that any retrenchment may be made accommodating by weakening the concession

sufficiently.

Theorem 9.1. Let Ret (with variables v, j, p, operation names OpsT) and Ref (with

variables w, k, q, operation names OpsF) and Conc (with variables u, i, o, operation names

OpsC) be three systems. Let there be a retrenchment from Ret to Conc with retrenchment

data

H, {QOp,NOp, DOp|Op ∈ OpsTC}
where OpsTC is the set of common names of related operations of Ret and Conc. Let

there be a refinement from Ref to Conc with refinement data

K, {ROp, VOp|Op ∈ OpsF = OpsC}

where OpsF is the set of operation names of both Ref and Conc. Suppose, for all Op,

that H∧QOp is a non-empty relation, and that the retrenchment is accommodating. Then:

(1) There is a system Univ (with variables t, h, n), with operation name set OpsU , where

OpsU = OpsT , such that:

(i) there is a refinement from Univ to Ret with refinement data, say

K•(t, v), {R•
Op, V

•
Op|Op ∈ OpsU = OpsT };

(ii) there is a retrenchment from Univ to Ref with retrenchment data, say

H•(t, w), {Q•
Op, N

•
Op, D

•
Op|Op ∈ OpsUF};

(iii) composing the retrenchment H,Q,N,D with the pseudrefinement KT,RT,VT gives

a pseudoretrenchment G×,G×∧P×,O×,C×, which is also given by composing the

pseudrefinement K•T,R•T,V •T with the retrenchment H•,Q•,N•,D•;

(iv) each transition of Univ is in simulation with a transition of Ret, or with a

transition of Ref, or both, and in the last case, any such pair of Ret and Ref

transitions are in simulation through the pseudoretrenchment G×,G×∧P×,O×,C×;

(v) if the notion of refinement in question requires the use of appOp sets, then the

appOp sets of Univ are given by

appOpU (t, h) ≡ (∃v, j • K•(t, v) ∧ R•
Op(h, j) ∧ appOpT (v, j)). (104)

(2) If

— we have a system Xtra (with variables t̃ , h̃ , ñ),

— with operation name set OpsX where OpsX = OpsT ,

— with a refinement from Xtra to Ret given by K ,̃R ,̃V ,̃

— with a retrenchment from Xtra to Ref given by H ,̃Q ,̃N ,̃D ,̃

— where the composition of the pseudorefinement K˜T,R˜T,V˜T with the retrench-

ment H ,̃Q ,̃N ,̃D˜ yields the pseudoretrenchment G×,G×∧P×,O×,C×,

— where each transition of Xtra is in simulation with a transition of Ret, with a

transition of Ref, or both, and where in the last case any such pair of Ret and Ref

transitions are in simulation through the pseudoretrenchment G×,G×∧P×,O×,C×,

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 186

then:

(i) There exist refinement data, say

K◦(t̃ , t), {R◦
Op, V

◦
Op|Op ∈ OpsU},

from Xtra to Univ, through which every transition of Xtra that is in simulation

with a transition of Ret is in simulation with a transition of Univ.

(ii) There exist retrenchment data, say

H◦(t̃ , t), {Q◦
Op, N

◦
Op, D

◦
Op|Op ∈ OpsU},

from Xtra to Univ, through which every transition of Xtra that is in simulation

with a transition of Ref is in simulation with a transition of Univ.

(iii) We have

K◦ o
9 K

• = K˜

R◦ o
9 R

• = R˜

V ◦ o
9 V

• = V .̃

(iv) We have

H◦ o
9 H

• = H˜

and for OpX ∈ OpsXF ,

(H◦∧Q◦) o
9 (H•∧Q•) = (H˜∧Q)̃

N◦ o
9 N

• = N˜

D◦ o
9 D

• ⇐ D .̃

(v) There exist retrenchment data, say

HK◦(t̃ , t), {QR◦
Op, NV ◦

Op, DV
◦
Op|Op ∈ OpsU},

from Xtra to Univ, through which every transition of Xtra that is in simulation

with a transition of Ret or in simulation with a transition of Ref is in simulation

with a transition of Univ.

(3) Whenever a system Univ* has properties (1) and (2) above of Univ, then Univ and

Univ* are inter-simulable.

(4) There is a retrenchment from to Univ to Conc with retrenchment data, say

G(t, u), {POp, OOp, COp|Op ∈ OpsUC},

given by the disjunctive fusion composition of two retrenchments (a) and (b), where:

(a) is the vertical composition of H•,Q•,N•,D• with K,R,V ;

(b) is the vertical composition of K•,R•,V • with H,Q,N,D.

(5) There is a retrenchment from Xtra to Univ with retrenchment data, say

HH◦(t̃ , t), {QQ◦
Op, NN◦

Op, DD
◦
Op|Op ∈ OpsU};

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 187

(6) Referring to the data given in (5), if

((∃t̃ , h̃ , ñ • stpOpX (t̃ , h̃ , t̃ ′, ñ)) ∧
(∃t̃ , t, h̃ , h, ñ , n • DD◦

Op(t̃
′, t′, ñ , n; h̃ , h, t̃ , t))) ⇒ HH◦(t̃ ′, t′),

(105)

then:

(i) the retrenchment of (5) from Xtra to Univ, strengthens to a refinement with

refinement data, say

KK◦(t̃ , t), {RR◦
Op, VV ◦

Op|Op ∈ OpsU};

(ii) if the notion of refinement in question requires the use of appOp sets, then the

appOp sets of Xtra need to satisfy

appOpU (t, h) ∧ KK◦(t̃ , t) ∧ RR◦
Op(h̃ , h)

⇐⇒
KK◦(t̃ , t) ∧ RR◦

Op(h̃ , h) ∧ appOpX (t̃ , h̃).
(106)

(7) If a system Univ* has properties (1) and (2) above of Univ, then Univ and Univ* are

inter-retrenchable, and if the property noted in (105) also holds, then they are also

inter-refinable.

Proof.

(1) We will begin by completing the details of the refinement K•,R•,V • and the retrenchment

H•,Q•,N•,D•. Adapting the usual conventions for Ret and Ref, the state space of Univ

is t ∈ T = U × V × W (where U is the state space of Conc, V is the state space of Ret

and W is the sate space of Ref). There are two cases for the input and output spaces

of Univ :

— If Op ∈ OpsUF = OpsTC , then

h ∈ HOp = IOp × JOp × KOp

n ∈ NOp = OOp × POp × QOp.

— If Op ∈ OpsU\UF , then

h ∈ HOp = JOp

n ∈ NOp = POp.

The refinement K•,R•,V • is given by the data

K•(t, v) ≡ (t = (u, v, w) ∧ K(w, u)) (107)

R•
Op(h, j) ≡

{
(h = (i, j, k) ∧ ROp(k, i)) if Op ∈ OpsUF

(h = j) if Op ∈ OpsU\UF

(108)

V •
Op(n, p) ≡

{
(n = (o, p, q) ∧ VOp(q, o)) if Op ∈ OpsUF

(n = p) if Op ∈ OpsU\UF .
(109)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 188

The retrenchment H•,Q•,N•,D• is given by the data

H•(t, w) ≡ (t = (u, v, w) ∧ H(u, v)) (110)

Q•
Op(h, k, t, w) ≡ (h = (i, j, k) ∧ t = (u, v, w) ∧ QOp(j, i, v, u)) (111)

N•
Op(n, q; t′, w′, h, k, t, w) ≡ (t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧

h = (i, j, k) ∧ t = (u, v, w) ∧
NOp(p, o; v′, u′, j, i, v, u))

(112)

D•
Op(t

′, w′, n, q; h, k, t, w) ≡ (t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
h = (i, j, k) ∧ t = (u, v, w) ∧
DOp(v

′, u′, p, o; j, i, v, u)).

(113)

Since we need these relations to define the Univ system itself, we will begin by checking

part (1).(iii) before going on to parts (i) and (ii).

(iii) We first calculate G×,G×∧P×,O×,C× for Op ∈ OpsUF as the composition of the

retrenchment H,Q,N,D with the pseudorefinement KT,RT,VT . The fact that the

result is also equal to the composition of the pseudorefinement K•T,R•T,V •T with

the retrenchment H•,Q•,N•,D• follows by inspection.

G×(v, w) ≡ H o
9 K

T

= (∃u • H(v, u) ∧ K(w, u))

= K•T o
9 H

•
(114)

G×∧P×
Op∧((G×′∧O×

Op)∨C×
Op)(v, w, j, k, v

′, w′, p, q)

≡ (H∧QOp∧((H ′∧NOp)∨DOp)) o
9 (KT∧RT

Op∧KT ′∧VT
Op)

= ∃u, i, u′, o • H(v, u) ∧ QOp(j, i, v, u) ∧
((H(v′, u′) ∧ NOp(p, o; v′, u′, j, i, v, u)) ∨

DOp(v
′, u′, p, o; j, i, v, u)) ∧

K(w, u) ∧ ROp(k, i) ∧ K(w′, u′) ∧ VOp(q, o)

= (K•T∧R•T
Op∧K•T ′∧V •T

Op) o
9 (H•∧Q•

Op∧((H•′∧N•
Op)∨D•

Op)).

(115)

The Univ system itself is now given as follows. Initialisation in Univ is given by

InitU(t′) ≡ (t′ = (u′, v′, w′) ∧
{[InitT (v′) ∧ K•(t′, v′)] ∨ [InitF (w′) ∧ H•(t′, w′)]}).

(116)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 189

The operations of Univ are given by

stpOpU (t, h, t′, n)

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
{[stpOpT (v, j, v′, p) ∧ K•(t, v) ∧

R•
Op(h, j) ∧ K•(t′, v′) ∧ V •

Op(n, p)] ∨
[stpOpF (w, k, w′, q) ∧ H•(t, w) ∧
Q•

Op(h, k, t, w) ∧
((H•(t′, w′) ∧ N•

Op(n, q; t′, w′, h, k, t, w)) ∨
D•

Op(t
′, w′, n, q; h, k, t, w))]})

if Op ∈ OpsUF

(t = (u, v, w) ∧ h = j ∧
t′ = (u′, v′, w′) ∧ n = p∧
[stpOpT (v, j, v′, p) ∧ K•(t, v) ∧
R•
Op(h, j) ∧ K•(t′, v′) ∧ V •

Op(n, p)])

if Op ∈ OpsU\UF .

(117)

(i) We need to check that K•,R•,V • is a refinement.

For the initialisation PO, suppose we have InitT (v′). We then just need to find

w′, u′ such that K(w′, u′) holds, and then we can set t′ = (u′, v′, w′), after which we

will have

InitT (v′) ∧ K•(t′, v′),

which gives

InitU(t′) ∧ K•(t′, v′),

thereby discharging the PO.

For the operation PO, we consider the case Op ∈ OpsUF , and assume

K•(t, v) ∧ R•
Op(h, j) ∧ stpOpT (v, j, v′, p).

Then we just need to find w′, u′ such that K(w′, u′) holds, and q, o such that

VOp(q, o) holds, and then we can set

t′ = (u′, v′, w′)

n = (o, p, q),

after which we will have enough for the first disjunct in the Op ∈ OpsUF case

of (117).

The argument for the Op ∈ OpsU\UF case is similar.

(ii) We need to check that H•,Q•,N•,D• is a retrenchment.

For the initialisation PO, suppose we have InitF (w′). Then we just need to find

v′, u′ such that H(v′, u′) holds, and then we can set

t′ = (u′, v′, w′),

after which we will have

InitF (w′) ∧ H•(t′, w′),

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 190

which gives

InitU(t′) ∧ H•(t′, w′),

discharging the PO. For the operation PO, we assume

H•(t, w) ∧ Q•
Op(h, k, t, w) ∧ stpOpF (w, k, w′, q).

Then H•∧Q•
Op gives us

H(v, u) ∧ QOp(j, i, v, u).

Since the retrenchment H,Q,N,D is accommodating, (103) implies that we can find

values v′, u′, p, o such that

(H(v′, u′) ∧ NOp(p, o; v′, u′, j, i, v, u)) ∨ DOp(v
′, u′, p, o; j, i, v, u)

holds, after which we can set

t′ = (u′, v′, w′)

n = (o, p, q),

and we will then have enough for the second disjunct in the Op ∈ OpsUF case of

(117).

(iv) It is clear from the arguments above that each step t -(h, OpU, n)->>> t′ of Univ is

either:

— in simulation with (in the refinement sense) its constituent stpOpT transition

if the first disjunct of the Op ∈ OpsUF case of (117) holds or we are in the

Op ∈ OpsU\UF case; or

— in simulation with (in the retrenchment sense) its constituent stpOpF transition

if the second disjunct of the Op ∈ OpsUF case of (117) holds.

If both disjuncts hold, then the Ret and Ref transitions are evidently in simulation

through the pseudoretrenchment G×,G×∧P×,O×,C× because of the values of u, i, u′, o

that are common to the two transitions.

(v) Since K•∧R•
Op is a (partial) function from T × HOp onto V × JOp, we have

(K•T∧R•T
Op) o

9 (K•∧R•
Op) = IdV×JOp .

Consequently, the definition of the appOp sets of Univ in (104) satisfies the

condition in (17) for the K•,R•,V • refinement, and consequently satisfies an appOp

requirement of either the form (11) or (12).

(2) (i) We start with the refinement data K◦,R◦,V ◦, which is given by

K◦(t̃ , t) ≡ (∃v • K•(t, v) ∧ K (̃t̃ , v)) (118)

R◦
Op(h̃ , h) ≡ (∃j • R•

Op(h, j) ∧ R Õp(h̃ , j)) (119)

V ◦
Op(ñ , n) ≡ (∃p • V •

Op(n, p) ∧ V Õp(ñ , p)). (120)

We must show that every transition of Xtra that is in simulation with a transition

of Ret is in simulation with a transition of Univ through (118)–(120). Suppose

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 191

we have an Xtra step, say t̃ -(h̃ , OpX, ñ)->>> t̃ ′, that is in simulation with some

step of Ret, say v -(j, OpT , p)->>> v′, through K ,̃R ,̃V .̃ Since K•,R•,V • is a refinement,

and K•∧R•
Op is onto V × JOp, the step v -(j, OpT , p)->>> v′ will be in simulation with

some step of Univ, say t -(h, OpU, n)->>> t′. Composing the K•,R•,V • simulation with

the K ,̃R ,̃V˜ simulation then yields the result.

(ii) We start with the retrenchment data H◦,Q◦,N◦,D◦. This is the vertical composition

of the H ,̃Q ,̃N ,̃D˜ and H•T,Q•T,N•T,D•T data, and is given by

H◦(t̃ , t) ≡ (∃w • H•(t, w) ∧ H (̃t̃ , w)) (121)

Q◦
Op(h̃ , h, t̃ , t) ≡ (∃k, w • H•(t, w) ∧ H (̃t̃ , w) ∧

Q•
Op(h, k, t, w) ∧

Q Õp(h̃ , k, t̃ , w))

(122)

N◦
Op(ñ , n; t̃ ′, t′, h̃ , h, t̃ , t) ≡ (∃w, k, w′, q•

N•
Op(n, q; t′, w′, h, k, t, w) ∧

N Õp(ñ , q; t̃ ′, w′, h̃ , k, t̃ , w))

(123)

D◦
Op(t̃

′, t′, ñ , n; h̃ , h, t̃ , t) ≡ (∃w, k, w′, q •
{[H•(t′, w′) ∧ N•

Op(n, q; t′, w′, h, k, t, w) ∧
D Õp(t̃

′, w′, ñ , q; h̃ , k, t̃ , w)] ∨
[D•

Op(t
′, w′, n, q; h, k, t, w) ∧ H (̃t̃ ′, w′) ∧

N Õp(ñ , q; t̃ ′, w′, h̃ , k, t̃ , w)] ∨
[D•

Op(t
′, w′, n, q; h, k, t, w) ∧

D Õp(t̃
′, w′, ñ , q; h̃ , k, t̃ , w)]}).

(124)

We must show that every transition of Xtra that is in simulation with a transition

of Ref is in simulation with a transition of Univ through (121)–(124). Suppose we

have an Xtra step, say t̃ -(h̃ , OpX, ñ)->>> t̃ ′, that is in simulation with some step

of Ref, say w -(k, OpF , q)->>> w′, through H ,̃Q ,̃N ,̃D .̃ Since, by assumption, H∧QOp

is a non-empty relation, H•∧Q•
Op is necessarily a non-empty (partial) function

onto W × KOp. Therefore, since H•,Q•,N•,D• is a retrenchment, the Ref transition

w -(k, OpF , q)->>> w′ will be in simulation with some Univ step, say t -(h, OpU, n)->>> t′.

Composing the H•,Q•,N•,D• simulation with the H ,̃Q ,̃N ,̃D˜ simulation now yields

the desired result through the distributive law applied to

((H˜ ′∧N˜)∨D˜) ∧ ((H•′∧N•)∨D•).

(iii) Since

K◦ = K˜ o
9 K

•T ,

we have

K◦ o
9 K

• = K˜ o
9 K

•T o
9 K

•

= K˜ o
9 IdV

= K˜

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 192

(since K• is a partial function).

The remaining results are similar.

(iv) Since

H◦ = H˜ o
9 H

•T ,

we have

H◦ o
9 H

• = H˜ o
9 H

•T o
9 H

•

= H˜ o
9 IdW

= H˜

(since H• is a partial function).

The derivation of N◦ o
9 N

• = N˜ is similar.

Now, consider D◦ o
9D

• where D◦ is given by (124). The term D˜∧D•T , which occurs

disjunctively in (124), shows that D◦ o
9 D

• contains

D˜ o
9 D

•T o
9 D

• = D˜ o
9 IdW×KOp×W×QOp

= D .̃

The other disjuncts in (124) lead to

D◦ o
9 D

• ⇐ D .̃

Finally, by assumption, H∧Q is a non-empty relation. This makes H•T∧Q•T a

non-empty (partial) function onto W×KOp, so we can show

(H◦∧Q◦) o
9 (H•∧Q•) = (H˜∧Q˜)

in the same way as the other similar results†.

(v) We begin with the retrenchment data HK◦,QR◦,NV ◦,DV ◦ given by (125)–(128).

Note that this is a kind of disjunction of the data in (118)–(120) with the data in

(121)–(124):

HK◦(t̃ , t) ≡ (t = (u, v, w) ∧
{[H•(t, w) ∧ H (̃t̃ , w)] ∨ [K•(t, v) ∧ K (̃t̃ , v)]})

(125)

QR◦
Op(h̃ , h, t̃ , t) ≡⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k) ∧
{[H•(t, w) ∧ H (̃t̃ , w) ∧ Q•

Op(h, k, t, w) ∧
Q Õp(h̃ , k, t̃ , w)] ∨

[K•(t, v) ∧ K (̃t̃ , v) ∧ R•
Op(h, j) ∧ R Õp(h̃ , j)]})

if Op ∈ OpsUF

(t = (u, v, w) ∧ h = j ∧
K•(t, v) ∧ K (̃t̃ , v) ∧ R•

Op(h, j) ∧ R Õp(h̃ , j))
if Op ∈ OpsU\UF

(126)

† For the other similar results, the non-emptiness of the partial function follows from the assumed non-

emptiness of the underlying relation using Assumption 1.1, but the non-emptiness for H∧Q does not follow

from non-emptiness of H and Q individually.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 193

NV ◦
Op(ñ , n; t̃ ′, t′, h̃ , h, t̃ , t) ≡⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
{[H•(t′, w′) ∧ H (̃t̃ ′, w′) ∧

N•
Op(n, q; t′, w′, h, k, t, w) ∧

N Õp(ñ , q; t̃ ′, w′, h̃ , k, t̃ , w)] ∨
[K•(t′, v′) ∧ K (̃t̃ ′, v′) ∧
V •
Op(n, p) ∧ V Õp(ñ , p)]})

if Op ∈ OpsUF

(n = p ∧ V •
Op(n, p) ∧ V Õp(ñ , p)) if Op ∈ OpsU\UF

(127)

DV ◦
Op(t̃

′, t′, ñ , n; h̃ , h, t̃ , t) ≡⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
{[H•(t′, w′) ∧ N•

Op(n, q; t′, w′, h, k, t, w) ∧
D Õp(t̃

′, w′, ñ , q; h̃ , k, t̃ , w)] ∨
[D•

Op(t
′, w′, n, q; h, k, t, w) ∧ H (̃t̃ ′, w′) ∧

N Õp(ñ , q; t̃ ′, w′, h̃ , k, t̃ , w)] ∨
[D•

Op(t
′, w′, n, q; h, k, t, w) ∧

D Õp(t̃
′, w′, ñ , q; h̃ , k, t̃ , w)]})

if Op ∈ OpsUF

false if Op ∈ OpsU\UF .

(128)

In the terminology of Banach et al. (2008), the composition of (125)–(128) is a

kind of blend of

— disjunctive fusion composition (since the state and I/O spaces are (partly) the

same), and

— synchronous parallel composition (since the state and I/O spaces are (partly)

different)

of the refinement data (118)–(120) and the retrenchment data (121)–(124).

With the retrenchment data in place, we can now adapt the argument of the proofs

of (2).(i) and (2).(ii). Let t̃ -(h̃ , OpX, ñ)->>> t̃ ′ be a step of Xtra. By assumption,

it is in simulation with a transition of Ret or with a transition of Ref. By

(2).(i) and (2).(ii), this extends to the step t̃ -(h̃ , OpX, ñ)->>> t̃ ′ being in simulation

with a transition of Univ through either the refinement data (118)–(120) or the

retrenchment data (121)–(124). In the former case, it is easy to see that K◦∧R◦
Op

implies HK◦∧QR◦
Op and that K◦′∧V ◦

Op also implies HK◦′∧NV ◦
Op, as in (2).(i). In

the latter case, it is easy to see that H◦∧Q◦
Op implies HK◦∧QR◦

Op and that

(H◦′∧N◦
Op)∨D◦

Op

also implies

(HK◦′∧NV ◦
Op)∨DV ◦

Op,

as in (2).(ii).

This completes the proof of part (2).

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 194

(3) Note that Univ itself satisfies the criteria required of Xtra. Therefore, if we have a

system Univ* with the properties (1) and (2) of Univ, then Univ* also satisfies the

criteria required for Xtra. Hence, we can construct two instances of Figure 6 as follows:

— In the first, Univ is in its conventional place and Univ* replaces Xtra, and there are

refinement data K◦,R◦,V ◦ and retrenchment data H◦,Q◦,N◦,D◦ from Univ* to Univ.

— In the second, Univ* replaces Univ, and Univ replaces Xtra, and there are refinement

data K*,R*,V* and retrenchment data H*,Q*,N*,D* from Univ to Univ*.

So Univ and Univ* are inter-simulable by the arguments above.

(4) For this we just observe that disjunctive fusion composition of retrenchments, and the

vertical composition between retrenchments and refinements (both ways round) are

sound composition mechanisms. For the record, the composed retrenchment data are

G(t, u) ≡ (t = (u, v, w) ∧
{[H(v, u) ∧ K(w, u)] ∨ [K(w, u) ∧ H(v, u)]})

(129)

POp(h, i, t, u) ≡ (h = (i, j, k) ∧ t = (u, v, w) ∧
{[K(w, u) ∧ ROp(k, i) ∧

H(v, u) ∧ QOp(j, i, v, u)] ∨
[K(w, u) ∧ ROp(k, i) ∧ H(v, u) ∧

QOp(j, i, v, u)]})

(130)

OOp(n, o; t′, u′, h, i, t, u) ≡ (t = (u, v, w) ∧ h = (i, j, k) ∧
t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
{[H(v′, u′) ∧ K(w, u) ∧ ROp(k, i) ∧

K(w′, u′) ∧ VOp(q, o) ∧
NOp(p, o; v′, u′, j, i, v, u)] ∨

[H(v′, u′) ∧ K(w, u) ∧ ROp(k, i) ∧
K(w′, u′) ∧ VOp(q, o) ∧
NOp(p, o; v′, u′, j, i, v, u)] ∨

[K(w, u) ∧ ROp(k, i) ∧ K(w′, u′) ∧
VOp(q, o) ∧ NOp(p, o; v′, u′, j, i, v, u) ∧
NOp(p, o; v′, u′, j, i, v, u) ∧ K(w, u) ∧
ROp(k, i) ∧ K(w′, u′) ∧ VOp(q, o)]})

(131)

COp(t
′, u′, n, o; h, i, t, u) ≡ (t = (u, v, w) ∧ h = (i, j, k) ∧

t′ = (u′, v′, w′) ∧ n = (o, p, q) ∧
{[DOp(v

′, u′, p, o; j, i, v, u) ∧ K(w, u) ∧
ROp(k, i) ∧ K(w′, u′) ∧ VOp(q, o)] ∨

[K(w, u) ∧ ROp(k, i) ∧ K(w′, u′) ∧
VOp(q, o) ∧ DOp(v

′, u′, p, o; j, i, v, u)]}).

(132)

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 195

(5) We begin with the retrenchment data HH◦,QQ◦,NN◦,DD◦, which is given by (133)–(136)

below. Note that the only difference between this and the earlier retrenchment data

HK◦,QR◦,NV ◦,DV ◦ in (125)–(128) is the replacement of the disjunction in the within

relation QR◦ by a conjunction in the within relation QQ◦.

HH◦(t̃ , t) ≡ HK◦(t̃ , t) (133)

QQ◦
Op(h̃ , h, t̃ , t) ≡⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(t = (u, v, w) ∧ h = (i, j, k) ∧
{[H•(t, w) ∧ H (̃t̃ , w) ∧

Q•
Op(h, k, t, w) ∧ Q Õp(h̃ , k, t̃ , w)] ∧

[K•(t, v) ∧ K (̃t̃ , v) ∧
R•
Op(h, j) ∧ R Õp(h̃ , j)]})

if Op ∈ OpsUF

(t = (u, v, w) ∧ h = j ∧
K•(t, v) ∧ K (̃t̃ , v) ∧
R•
Op(h, j) ∧ R Õp(h̃ , j))

if Op ∈ OpsU\UF

(134)

NN◦
Op(ñ , n; t̃ ′, t′, h̃ , h, t̃ , t) ≡ NV ◦

Op(ñ , n; t̃ ′, t′, h̃ , h, t̃ , t) (135)

DD◦
Op(t̃

′, t′, ñ , n; h̃ , h, t̃ , t) ≡ DV ◦
Op(t̃

′, t′, ñ , n; h̃ , h, t̃ , t). (136)

We begin with the initialisation. Suppose InitU(t′) in (116) and the

[InitT (v′) ∧ K•(t′, v′)]

disjunct of InitU(t′) holds. From InitT (v′), because K ,̃R ,̃V˜ is a refinement, we can

find a t̃ ′ such that

InitX(t̃ ′) ∧ K (̃t̃ ′, v′)

holds. Composing K˜ and K• gives the second disjunct of HH◦, so we have

InitX(t̃ ′) ∧ HH◦(t̃ ′, t′)

as required.

The argument is analogous if we alternatively suppose the H• disjunct of InitU(t′)

holds, and we are done.

For the operation PO, suppose we have

HH◦∧QQ◦
Op∧stpOpU .

It is evident that QQ◦ strengthens HH◦. We consider two cases:

— Suppose the stpOpT ∧K• disjunct of stpOpU is true (whether for the Op ∈ OpsUF or

the Op ∈ OpsU\UF case).

So we have HH◦∧QQ◦
Op factors uniquely through v, j, in Ret, and the Univ

step, say t -(h, OpU, n)->>> t′, projects through K•,R•,V • to its enclosed Ret step, say

v -(j, OpT , p)->>> v′. If we now extract K˜∧R Õp from our assumed HH◦∧QQ◦
Op, then,

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 196

with v -(j, OpT , p)->>> v′, we can apply the K ,̃R ,̃V˜ refinement operation PO to derive

a step of Xtra, say t̃ -(h̃ , OpX, ñ)->>> t̃ ′, for which

K˜ ′∧V Õp,

and thus

K•′∧K˜ ′∧V •
Op∧V Õp,

so

HH◦′∧NN◦
Op,

all hold. The last of these discharges our goal.

— Alternatively, suppose the stpOpF ∧H• disjunct of stpOpU is true (which can only be

for the Op ∈ OpsUF case).

We can use a similar argument in this case, except that the unique factorisation is

through w, k, in Ref, we have a Ref step w -(k, OpF , q)->>> w′, we use the H ,̃Q ,̃N ,̃D˜

retrenchment, and we derive an Xtra step t̃ -(h̃ , OpU, ñ)->>> t̃ ′, for which

((H˜ ′∧N Õp)∨D Õp),

and thus

((H˜ ′∧N Õp)∨D Õp)∧((H•′∧N•
Op)∨D•

Op)

hold. We can then rearrange the last of these to give

(HH◦′∧NN◦
Op)∨DD◦

Op,

which discharges our goal.

(6) We work under the additional assumption stated and start with the refinement data

KK◦,RR◦,VV ◦ given by

KK◦(t̃ , t) ≡ HH◦(t̃ , t) (137)

RR◦
Op(h̃ , h) ≡ (∀t̃ , t • HK◦(t̃ , t) ⇒ QQ◦

Op(h̃ , h, t̃ , t)) (138)

VV ◦
Op(ñ , n) ≡ (∃t̃ ′, t′, h̃ , h, t̃ , t •

NN◦
Op(ñ , n; t̃ ′, t′, h̃ , h, t̃ , t) ∨

DD◦
Op(t̃

′, t′, ñ , n; h̃ , h, t̃ , t)).

(139)

(i) To prove the refinement, we start with the initialisation PO. This goes in just the

same way as the analogous PO for the retrenchment HH◦,QQ◦,NN◦,DD◦ in part

(5).

For the operation PO, we assume

KK◦(t̃ , t) ∧ RR◦
Op(h̃ , h) ∧ stpOpU (t, h, t′, n),

and must prove there are values t̃ ′, ñ such that stpOpX (t̃ , h̃ , t̃ ′, ñ) and

KK◦′∧VV ◦
Op

hold.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 197

Consider KK◦∧RR◦
Op. This implies HH◦∧QQ◦

Op. With stpOpU (t, h, t′, n), we have the

hypothesis of the operation PO of the HH◦,QQ◦,NN◦,DD◦ retrenchment. Therefore,

we can deduce

(HH◦′∧NN◦
Op)∨DD◦

Op.

We consider cases:

— If HH◦′∧NN◦
Op holds, then so does

KK◦′∧VV ◦
Op

since

HH◦′ = KK◦′

and NN◦
Op is a disjunct of VV ◦

Op, and we are done.

— If HH◦′∧NN◦
Op does not hold, we must have

DD◦
Op(t̃

′, t′, ñ , n; h̃ , h, t̃ , t)

instead. In that case, (105) allows us to deduce HH◦(t̃ ′, t′) (which gives

KK◦(t̃ ′, t′)), and then we use (139) to deduce VV ◦
Op(ñ , n), and we are done.

(ii) Note that the condition stated in (104) is just the requirement from (13), so we

are done.

(7) The proof of this part is just a matter of replaying the arguments of part (3) using the

stronger relationships between Univ and Xtra afforded by the stronger assumptions

in force.

9.1. Remarks

Remark 9.2. In part (4) of the theorem we used disjunctive fusion composition, as in the

Postjoin Theorem since it is valid without restriction. Again as in the Postjoin Theorem, the

corresponding conjunctive composition requires a ‘close to cosimulation’ criterion to hold.

Remark 9.3. Note the close structural similarity between HH◦ and QQ◦
Op in (133)–(134)

and HK◦ and QR◦
Op in (91)–(92) of the Postjoin Theorem. The tempting alternative of

making QQ◦
Op disjunctive as in (134) generates, through the distributive law, a plethora of

pathological and exceptional cases in the analysis of

HH◦∧QQ◦
Op∧stpOpU

since the terms containing K•, say in each of the contributing HH◦, QQ◦
Op, stpOpU , are

different – similar observations obviously apply to H•. However, hedging against the

shortcomings of all of these possibilities is not elegant, succinct or useful, particularly in

view of the remarks regarding the Prejoin Theorem made in the next section.

Remark 9.4. As in earlier remarks, the composition of K∗,R∗,V ∗ with K◦,R◦,V ◦ need not

be the identity; still less need the composition of H◦,Q◦,N◦,D◦ and H∗,Q∗,N∗,D∗ be.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 198

() ()vs.

A

B

C

D

E

F

A

B

C

D

E

F

CE GG

(a) (b)

Fig. 7. Different association orders for the lifting construction.

10. Associativity, general tower constructions, and system engineering

If we reinterpret the ‘diagonal factorising’ lifting and lowering constructions as square

completions in their own right (which is what results when we view the composition of

a refinement and retrenchment round an ‘L’ shape as a retrenchment – see Figure 1),

we now have a full set of square completion results available. (Equally, we can view

the postjoin and prejoin constructions as ‘co-diagonal factorising’ constructions that pull

apart the pseudoretrenchment across the co-diagonal, and we can thus say that we have

a full suite of those too.)

From an applications perspective, the lifting and postjoin constructions are unques-

tionably more significant than the other square completions. This is because they deal

with their constituent retrenchments in a ‘forwards’ manner – the others, the lowering and

prejoin constructions, work, in essence, with converse retrenchments. Using a converse

retrenchment during system construction amounts to a form of ‘undevelopment’ since the

retrenchment relationship was deliberately designed to be used during development in the

forwards direction (see the discussion in Banach et al. (2007b, Section 4.1) on this point).

As a result, we would expect that were the results of the current paper to be mechanised,

the focus would be on the lifting and postjoin constructions, since these would most

obviously repay the investment of effort needed.

One notable aspect of our work is that everything has been reduced to the composition

of (collections of) relations. Composing relations is associative, so we can expect that

our constructions themselves will compose associatively – up to the appropriate notion

of equivalence. We can illustrate this on a specific construction. Consider the lifting

construction of Figure 3. The state and I/O spaces of this construction are just cartesian

products made from the abstract and concrete constituent spaces. Likewise, the transitions

in (44) are made up out of pairs of abstract and concrete constituent transitions. Consider

Figure 7, which illustrates applying the construction using two different association orders.

We will focus first on Figure 7.(a), which shows the leftmost A-to-B retrenchment lifted

to C, which is followed by the middle lifting, which lifts the C -to-D retrenchment to E.

System E gives the result of the parenthesised liftings in Figure 7.(a). The construction

can be repeated to include the third piece of Figure 7.(a), finally giving system G. A little

thought shows that the state and I/O spaces of the result will be the cartesian products

of the constituents, bracketed leftmost-innermost. Similar remarks apply to the core part

of the transition relation, which will contain all the step relations from all the constituent

systems, with their logical definitions bracketed in an analogous leftmost-innermost way.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 199

Fig. 8. Illustrating the lifting and lowering constructions – vertical lines are refinements and

horizontal lines are retrenchments.

We will now turn to Figure 7.(b). Inside the parentheses, we have a combined lifting,

as above, consisting of the lifting of the C -to-D retrenchment to E, followed by the lifting

of the E -to-F retrenchment to give G. System G coincides with the system constructed

by lifting the A-to-B retrenchment to give C, and identifying C with the starting system

of the parenthesised lifting just described. Thus, when the leftmost lifting is combined

with the retrenchment constructed in the parentheses, we get another result for the overall

construction. However, a moment’s thought shows that this turns out to be the same as

the previous case, but bracketed rightmost-innermost, for both the state and I/O spaces

and the core part of the transition relation. These rebracketings amount to set theoretic

isomorphism, which is a much stronger notion of equivalence than either inter-refinability

or the even weaker equivalence notions we encountered above. Similar remarks apply to

the other constructions, to vertical as well as horizontal association and to combinations

of constructions of various kinds. However, an exhaustive treatment of all the cases would

be truly exhausting.

The good behaviour just noted allows us to envision a system development process built

out of refinements and retrenchments aided by the constructions made available to us in

the current paper: ‘system development via theorem’. Figure 8 shows a schematic example.

The development starts at the top left-hand corner with the most abstract model. Two

refinement stages follow, after which more detailed requirement considerations necessitate

a sideways jump, through a retrenchment, onto a lower level refinement strand. The square

completion constructions, here lifting, permit the new low-level detail to be exhibited at

a level of abstraction comparable with the initial model. This might be required, for

example, in order to check abstract formulations of the requirements properties that the

low-level system model modifications described by the retrenchment were intended to

address. There then follows another refinement stage, followed by another retrenchment

stage and then another retrenchment stage – the two separate retrenchments permitting

piecemeal validation of the issues they were introduced to address. In the same manner,

the process concludes with a further refinement, retrenchment, refinement and a final

retrenchment.

Now suppose the user environment changes, and the previously developed system is

no longer adequate. Suppose the requirements addressed up to the end of the third

retrenchment still hold good, but that the remainder of the development needs to be

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 200

(a) (b)

Fig. 9. Illustrating the postjoin and prejoin constructions – the vertical lines are refinements and

the horizontal lines are retrenchments.

modified. Figure 9 shows what might happen next. The retained part of the original

development is in Figure 9.(a). Its right vertical side, a refinement path from most abstract

level down to where the thick development path reaches the edge, gives the interface from

the retained part of the original development to the new activity. This, reproduced as the

heavy dashed vertical line in Figure 9.(b), is the starting point for the new development.

If we suppose the new requirements have been described at the most abstract level,

there will be a retrenchment, shown by the heavy dashed horizontal line in Figure 9.(b),

from the starting abstract model to a modified abstract model. Assuming the three earlier

refinements have been composed into one with the help of our square completion results

(giving the heavy dashed vertical line in Figure 9.(b)), an application of the postjoin

construction then embeds the new requirements into the current development level. The

development can subsequently be completed through two further stages of refinement and

a final retrenchment.

11. Conclusions

We have introduced retrenchment and some context for its applications (including

applications of the theory treated in detail in the current paper). We have motivated the

need for square completion constructions in the context of retrenchment and refinement

interworking, and then formulated and proved the theorems relating to the four relevant

completions. These were designed with simplicity and composability in mind, and we drew

extensively, and with the experience of hindsight, on the theorems reported in Jeske (2005).

The accompanying remarks to our four main theorems indicate that small variations on

the results given are perfectly feasible. We also outlined how such constructions could be

used in a large-scale formal development process to allow greater flexibility in dealing

with requirements issues than is possible with the use of refinement alone.

In all of this, we pursued a resolutely one-to-one operation correspondence strategy.

That is to say, a single abstract step always corresponds to a single concrete step. However,

this is too restrictive for many practical applications. A ‘quick fix’ involves treating paths

through the transition system as the individual steps of an associated system. The simple

way in which we have formulated our systems and our relationships between systems

guarantees that this approach will go through without any problems, given the usual

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

Retrenchment and refinement interworking:the tower theorems 201

care and attention to ‘plumbing’ considerations. Of course, more detailed treatments of

such ‘coarse-grained versus fine-grained’ formulations can uncover issues going beyond

simple path-oriented reuse of the one-to-one results, but such issues remain as work for

the future, and will be addressed in appropriate publications.

In the period since the publication of Jeske (2005), the importance of these types of

result has only increased. Being able to place the retrenchment steps of some development

inside a development methodology in a way that cleanly separates them from the

more conventional refinement steps adds great clarity to the development process as

it distinguishes those steps with the potential to preserve system properties in a strong

manner from those steps where this capacity is curtailed. Experience has shown that in

the vast majority of practical cases the integration of retrenchment and refinement could

be done by hand relatively straightforwardly (some of these were reviewed in Section 2),

so one view of the challenge tackled in the current paper is that it is a search for an

abstract formulation of the integration phenomenon that reflects the simplicity observed

in practice. Given the experience of Jeske (2005), this was not a trivial undertaking, but

one that we believe has been accomplished successfully in the current paper.

References

Badeau, F. and Amelot, A. (2005) Using B as a High Level Programming Language in an Industrial

Project: Riossy VAL. In: Treharne, H., King, S., Henson, M. and Schneider, S. (eds.) Proceedings

ZB 2005: Formal Specification and Development in Z and B. Springer-Verlag Lecture Notes in

Computer Science 3455 334–354.

Banach, R. (2009) Model Based Refinement and the Design of Retrenchments. Unpublished paper.

Banach, R. (2011) Retrenchment for Event-B: UseCase-wise Development and Rodin Integration.

Formal Aspects of Computing 23 113–131.

Banach, R. and Jeske, C. (2010) Stronger Compositions for Retrenchments. Journal of Logic and

Algebraic Programming 79 215–232.

Banach, R., Jeske, C. and Poppleton, M. (2008) Composition Mechanisms for Retrenchment. Journal

of Logic and Algebraic Programming 75 209–229.

Banach, R., Jeske, C., Poppleton, M. and Stepney, S. (2005) Retrenching the Purse: Finite Sequence

Numbers, and the Tower Pattern. In: Fitzgerald, J., Hayes, I. J. and Tarlecki, A. (eds.) FM 2005:

Formal Methods. Proceedings International Symposium of Formal Methods Europe. Springer-

Verlag Lecture Notes in Computer Science 3582 382–398.

Banach, R., Jeske, C., Poppleton, M. and Stepney, S. (2006a) Retrenching the Purse: Finite

Exception Logs, and Validating the Small. In: Hinchey, M. (ed.) 30th Annual IEEE/NASA

Software Engineering Workshop, 2006 – SEW ’06. 234–245.

Banach, R., Jeske, C., Poppleton, M. and Stepney, S. (2006b) Retrenching the Purse: Hashing Injective

CLEAR Codes, and Security Properties. In: Margaria, T. and Steffen, B. (eds.) Proceedings

ISoLA 2006: Second IEEE International Symposium on Leveraging Applications of Formal Methods,

Verification and Validation 82–90.

Banach, R., Jeske, C., Poppleton, M. and Stepney, S. (2007a) Retrenching the Purse: The Balance

Enquiry Quandary, and Generalised and (1,1) Forward Refinements. Fundamenta Informaticae 77

29–69.

Banach, R., Poppleton, M., Jeske, C. and Stepney, S. (2007b) Engineering and Theoretical

Underpinnings of Retrenchment. Science of Computer Programming 67 301–329.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

R. Banach and C. Jeske 202

Banach, R. and Schellhorn, G. (2010) Atomic Actions and their Refinements to Isolated Protocols.

Formal Aspects of Computing 22 33–61.

Banach, R., Zhu, H., Su, W. and Huang, R. (2014) Continuous KAOS, ASM, and Formal Control

System Design Across the Continuous/Discrete Modeling Interface: A Simple Train Stopping

Application. Formal Aspects of Computing 26 319–366.

Behm, P., Benoit, P., Faivre, A. and Meynadier, J.-M. (1999) Météor: A Successful Application of B

in a Large Project. In: Wing, J., Woodcock, J. and Davies, J. (eds.) Proceedings: World Congress

on Formal Methods in the Development of Computing Systems – Volume I. Springer-Verlag

Lecture Notes in Computer Science 1708 369–387.

Behm, P., Benoit, P., Faivre, A. and Meynadier, J.-M. (2000) Météor: An Industrial Success in

Formal Development. In: Bowen, J. P., Dunne, S., Galloway, A. and King, S. (eds.) ZB 2000:

Formal Specification and Development in Z and B. Proceedings First International Conference

of B and Z Users. Springer-Verlag Lecture Notes in Computer Science 1878 374–393.

de Roever, W.-P. and Engelhardt, K. (1998) Data Refinement: Model-Oriented Proof Methods and

their Comparison, Cambridge University Press.

Dijkstra, E. (1972) Notes on Structured Programming. In: Dahl, O.-J., Dijkstra, E. and Hoare, C.

(eds.) Structured Programming, Academic Press.

Hoare, C. (1972) Proofs of Correctness of Data Representation. Acta Informatica 1 271–281.

Jeffords, R., Heitmeyer, C., Archer, M. and Leonard, E. (2009) A Formal Method for Developing

Provably Correct Fault-Tolerant Systems Using Partial Refinement and Composition. In:

Cavalcanti, A. and Dams, D. R. (eds.) FM 2009: Formal Methods – Proceedings Second World

Congress. Springer-Verlag Lecture Notes in Computer Science 5850 173–189.

Jeske, C. (2005) Algebraic Theory of Retrenchment and Refinement, Ph.D. thesis, School of Computer

Science, University of Manchester.

Jones, C., O’Hearne, P. and Woodcock, J. (2006) Verified Software: A Grand Challenge. IEEE

Computer 39 93–95.

Jones, C. and Woodcock, J. (2008) Special Issue on the Mondex Verification. Formal Aspects of

Computing 20 1–139.

Stepney, S., Cooper, D. and Woodcock, J. (1998) More Powerful Z Data Refinement: Pushing the

State of the Art in Industrial Refinement. In: Bowen, J. P., Fett, A. and Hinchey, M. G. Proceedings

ZUM 98: The Z Formal Specification Notation. Proceedings 11th International Conference of Z

Users. Springer-Verlag Lecture Notes in Computer Science 1493 284–307.

Stepney, S., Cooper, D. and Woodcock, J. (2000) An Electronic Purse: Specification, Refinement

and Proof. Technical Report PRG-126, Oxford University Computing Laboratory.

Wirth, N. (1971) Program Development by Stepwise Refinement. Communications of the ACM 14

221–227.

Woodcock, J. (2006) First Steps in the Verified Software Grand Challenge. IEEE Computer 39

57–64.

Woodcock, J. and Banach, R. (2007) The Verification Grand Challenge. Journal of Universal

Computer Science 13 661–668.

https://doi.org/10.1017/S0960129514000061 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000061

