A NOTE ON GENERATING SYSTEMS COMPOSED OF BINARY AND TERNARY RANDOM VARIABLES

HENRY BLOCK

Department of Statistics University of Pittsburgh Pittsburgh, Pennsylvania E-mail: hwb@stat.pitt.edu

Mainak Mazumdar

Department of Industrial Engineering University of Pittsburgh Pittsburgh, Pennsylvania E-mail:mmazumd@engr.pitt.edu

Sheldon M. Ross

Epstein Department of Industrial and Systems Engineering University of Southern California Los Angeles, California 90089-0193 E-mail: smross@usc.edu

We present some tips for generating multiple sequences of two- and three-valued random variables.

1. INTRODUCTION

Suppose X_j , j = 1, ..., n, are independent Bernoulli random variables with respective means p_j , j = 1, ..., n, and that we are interested in using simulation to estimate $E[h(X_1, ..., X_n)]$ by generating *m* independent values of *h*. The usual simulation approach is to

© 2005 Cambridge University Press 0269-9648/05 \$16.00

generate $X_{1,1}, X_{1,2}, \dots, X_{1,n}$ and evaluate $h(X_{1,1}, X_{1,2}, \dots, X_{1,n})$, generate $X_{2,1}, X_{2,2}, \dots, X_{2,n}$ and evaluate $h(X_{2,1}, X_{2,2}, \dots, X_{2,n})$, generate $X_{3,1}, X_{3,2}, \dots, X_{3,n}$ and evaluate $h(X_{3,1}, X_{3,2}, \dots, X_{3,n})$,

and so on (where $X_{i,j}$ is Bernoulli with parameter p_i).

However, a better approach is to first generate the sequence of values $X_{i,1}$, i = 1, ..., m, then the sequence of values $X_{i,2}$, i = 1, ..., m, and so on. This is true because we can generate a sequence of independent and identically distributed (i.i.d.) Bernoulli random variables by generating the times at which the least likely value (0 or 1) occurs; that is, suppose we want to generate $Y_1, ..., Y_m$, independent Bernoulli random variables with mean p. Let $a = \min(p, 1-p)$ and let v equal 1 if a = p and let v equal 0 otherwise. Now, imagining that the random variables $Y_1, ..., Y_m$ are the results of m successive trials, we can generate the trial numbers at which we obtain the value v by generating independent geometric random variables having parameter a. To generate such a geometric random variable G, generate a random number U and set

$$G = \min(k: U > (1-a)^k) = [\ln(U)/\ln(1-a)] + 1,$$

where [x] is the largest integer less than or equal to x. Continue to generate such geometrics until their sum is at least m. Suppose G_1, \ldots, G_r are generated. If $\sum_{i=1}^r G_i = m$, then trial numbers $\sum_{i=1}^j G_i, j = 1, \ldots, r$ result in outcome v and the others in outcome 1 - v; if $\sum_{i=1}^r G_i > m$, then trial numbers $\sum_{i=1}^j G_i, j = 1, \ldots, r - 1$, result in outcome v and the others in outcome 1 - v.

With *R* equal to the number of geometrics, we need generate

$$P\{R = r\} = P\left\{\sum_{i=1}^{r-1} G_i < m \le \sum_{i=1}^r G_i\right\}$$
$$= P\left\{\sum_{i=1}^{r-1} G_i \le m - 1 < \sum_{i=1}^r G_i\right\}$$
$$= P\{N(m-1) = r - 1\},$$

where N(k) is the number of renewals by time k of the Bernoulli renewal process whose interarrival times are the G_i . Consequently,

$$E[R] = 1 + \sum_{r=1}^{\infty} (r-1)P\{R = r\}$$

= 1 + $\sum_{r=1}^{\infty} (r-1)P\{N(m-1) = r-1\}$
= 1 + $E[N(m-1)]$
= 1 + $(m-1)a$;

that is, the expected number of geometrics that are needed to generate the results of the *m* trials is (m - 1)a + 1. (Intuitively, the preceding is true because we generate all of the first m - 1 trial numbers that result in successes, as well as the result of trial *m*.)

Remark: One downside of our suggestion to generate the Bernoulli array in a vertical rather than a horizontal fashion is the additional memory requirements. (If generated in a horizontal fashion, then once a row is generated and *h* evaluated the Bernoulli row data can be discarded.) However, a variant of our idea can still be utilized even if one wants to generate the complete row vector. For instance, suppose we want to generate X_1, \ldots, X_n , where X_i is Bernoulli with parameter p_i . Let $a_i = \min(p_i, 1 - p_i)$ and let v_i equal 1 if $a_i = p_i$ and v_i equal 0 otherwise. Start by generating the first X_i , $i = 1, \ldots, n$, that results in its probability a_i value; that is, generate a random number U. If $U \le \prod_{i=1}^{n} (1 - a_i)$, set

$$X_j = 1 - v_j, \qquad j = 1, \dots, n,$$

and stop. Otherwise, let

$$F = \min\left(k: U > \prod_{i=1}^{k} (1 - a_i)\right)$$

and set

$$X_j = 1 - v_j, \qquad j = 1, \dots, F - 1, \qquad X_F = v_F.$$

If F = n, stop; if F < n, use the same procedure to generate the values of X_{F+1}, \ldots, X_n .

Remark: The results reported in [1] were what motivated us to consider more efficient ways to generate the data needed to estimate $E[h(X_1, ..., X_n)]$.

2. THE BINOMIAL APPROACH

Presented is a competing approach when you want *m* i.i.d. Bernoulli random variables having parameter *p*. Generate *N*, a binomial (m, p) random variable; *N* will equal the number of the random variables equal to 1. Now, let $M = \min(N, m - N)$ and generate the first *M* positions of a random permutation of $1, \ldots, m$ (this requires *M* random numbers and is easily done; see [2]). If M = N, these are the trial numbers whose value is 1; if $M \neq N$, these are the trial numbers whose value is 2 reo. This method requires, on average, 1 + E[M] < 1 + ma random numbers, where $a = \min(p, 1 - p)$ and where the 1 refers to the generation of the binomial. The binomial method has the advantage over the geometric in that it is easier to generate the first *r* positions of a random permutation than it is to generate *r* geometric random variables. On the other hand, it requires generating a binomial random variable (which can be efficiently done by the use of the inverse transform method starting at [mp] and going either up or down (see [2])).

We now obtain an approximation to E[M].

LEMMA 1: Let Z be a standard normal random variable with distribution function Φ . Then

$$E[|Z-c|] = |c|(2\Phi(|c|) - 1) + \sqrt{2/\pi} e^{-c^2/2}.$$

PROOF: For c > 0,

$$E[|Z-c|] = \int_{-\infty}^{c} (c-x)\Phi'(x) \, dx + \int_{c}^{\infty} (x-c)\Phi'(x) \, dx$$
$$= c\Phi(c) - \int_{-\infty}^{0} x\Phi'(x) \, dx - \int_{0}^{c} x\Phi'(x) \, dx + \int_{c}^{\infty} (x-c)\Phi'(x) \, dx$$
$$= c\Phi(c) + \frac{e^{-c^{2}/2}}{\sqrt{2\pi}} + \frac{e^{-c^{2}/2}}{\sqrt{2\pi}} - c[1-\Phi(c)].$$

The argument for c < 0 is similar.

PROPOSITION 1: If N is a binomial random variable with parameters m and p, then for m large,

$$E[\min(N, m-N)] \approx m/2 - \sqrt{mp(1-p)} \left[|c|(2\Phi(|c|) - 1) + \sqrt{2/\pi} e^{-c^2/2} \right],$$

where

$$c = \frac{m/2 - mp}{\sqrt{mp(1-p)}}.$$

PROOF:

$$E[\min(N, m - N)] = m/2 + E[\min(N - m/2, m/2 - N)]$$

= m/2 - E[|N - m/2|]
= m/2 - \sqrt{mp(1 - p)}E[\begin{bmatrix} N - mp & - \frac{m/2 - mp}{\sqrt{mp(1 - p)}} & - \frac{m/2 - mp}{\sqrt{mp(1 - p)}} \begin{bmatrix} m/2 - \sqrt{mp(1 - p)}E[|Z - c|], & - \frac{m}{2} + \frac

where Z is a standard normal. The proof now follows from Lemma 1.

3. GENERATING A SEQUENCE OF THREE-VALUED RANDOM VARIABLES

Suppose that we want to generate the results from *m* independent trials when each trial has three possible outcomes, with probabilities P_1 , P_2 , and P_3 . Suppose that $P_{i_1} \leq P_{i_2} \leq P_{i_3}$. Two ways to generate the trial results are as follows:

1. Generate the trials that result in outcome i_1 by successively generating geometrics with parameter P_{i_1} as in the previous section. Suppose this results in trials j_1, \ldots, j_r having value i_1 . Then determine which of the other m - r trials result in outcome i_2 by generating geometrics with parameter $P_{i_2}/(1 - P_{i_1})$. For instance, suppose we want 10 trials, where $P_1 = 0.2$, $P_2 = 0.3$,

and $P_3 = 0.5$. If the generated geometrics with parameter 0.2 are 4, 5, and 3 (we stopped when the sum of these geometrics was at least 10) and the generated geometrics with parameter 3/8 are 1, 3, and 4 (we stopped when the sum of these geometrics was at least 8), then the trial outcomes are

2. A second approach is to generate a binomial random variable N_{i_1} with parameters *m* and P_{i_1} , and then generate a binomial random variable N_{i_2} with parameters $m - N_{i_1}$, $P_{i_2}/(1 - P_{i_1})$. Let $N_{i_3} = m - N_{i_1} - N_{i_2}$. If $N_{i_r} \le N_{i_s} \le N_{i_s}$, generate the first $N_{i_r} + N_{i_s}$ positions of a random permutation of $1, \ldots, m$. The trial numbers resulting in outcome i_r are the first N_{i_r} values of this permutation, the trial numbers resulting in outcome i_s are the following N_{i_s} values of this permutation, and the other trials result in outcome i_t .

Acknowledgments

This work was supported by National Science Foundation grants (DMS-0072207 to H. B., ECS-00245355 to M. M., and DMI-9901053 with the University of California to S. M. R.).

References

- Mazumdar, M., Coit, D.W., & McBride, K. (1999). A highly efficient Monte Carlo method for assessment of system reliability based on a Markov model. *American Journal of Mathematical and Management Sciences* 19: 115–133.
- 2. Ross, S.M. (2002). Simulation, 3rd ed. San Diego, CA: Academic Press.