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the Fuč́ık spectrum of the Laplacian and
a superlinear Sturm–Liouville equation

Eugenio Massa
Dipartimento di Matematica, Università degli Studi,
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In the first part of this paper, a variational characterization of parts of the Fuč́ık
spectrum for the Laplacian in a bounded domain Ω is given. The proof uses a linking
theorem on sets obtained through a suitable deformation of subspaces of H1(Ω). In
the second part, a nonlinear Sturm–Liouville equation with Neumann boundary
conditions on an interval is considered, where the nonlinearity intersects all but a
finite number of eigenvalues. It is proved that, under certain conditions, this equation
is solvable for arbitrary forcing terms. The proof uses a comparison of the minimax
levels of the functional associated to this equation with suitable values related to the
Fuč́ık spectrum.

1. Introduction

The purpose of this paper is twofold. First, we consider the so-called Fuč́ık problem
for the Laplacian, both with Dirichlet and Neumann boundary conditions,

−∆u = λ+u+ − λ−u− in Ω,

∂u

∂n
= 0 or u = 0 in ∂Ω,


 (1.1)

where Ω is a bounded domain in R
n and u±(x) = max{0,±u(x)}.

The notion of Fuč́ık spectrum was introduced in [4,9]; it is defined as the set Σ ⊆
R

2 of points (λ+, λ−) for which there exists a non-trivial solution of problem (1.1).
To know the Fuč́ık spectrum is important in many applications; for example, in

the study of problems with ‘jumping nonlinearities’, that is, nonlinearities which
are asymptotically linear at both +∞ and −∞, but with different slopes. If the
slopes correspond to a point (λ+, λ−) that is not in the Fuč́ık spectrum, then it
is possible to guarantee a priori estimates for the solutions and the Palais–Smale
(PS) condition for the associated functional. Moreover, if the point (λ+, λ−) may
be connected by a curve that does not intersect the Fuč́ık spectrum to a point of
the line {λ+ = λ−} (not belonging to the Fuč́ık spectrum), then it is possible to
prove existence of solutions.

If one has also a variational characterization of this spectrum, then other inter-
esting results can be obtained (cf. [2,3,5,7]). However, these papers deal only with
the first non-trivial curve of the Fuč́ık spectrum or with the periodic case on an
interval.
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In the following, we will call H the space H1(Ω) when considering the Neu-
mann problem and H1

0 (Ω) when considering the Dirichlet problem. We will denote
by 0 � λ1 < λ2 � λ3 � · · · � λk � · · · the eigenvalues of −∆ in H and by φk,
k = 1, 2, . . . , the corresponding eigenfunctions, which will be taken orthogonal
and normalized with ‖φk‖L2 = 1.

First we give a variational characterization of parts of the Fuč́ık spectrum for
problem (1.1). In particular, we prove the following.

Theorem 1.1. Suppose that the point (α+, α−) ∈ R
2 with α+ � α− is Σ-connected

to the diagonal between λk and λk+1 in the sense of definition 2.1. Then we can
find and characterize one intersection of the Fuč́ık spectrum with the half-line

{(α+ + t, α− + rt), t > 0},
for each value of r ∈ (0, 1].

The cases α+ � α− and r ∈ [1,+∞) can be done in a similar way.
The second main theme of the paper is the following Sturm–Liouville equation

with Neumann boundary conditions,

−u′′ = λu+ g(x, u) + h(x) in (0, 1),
u′(0) = u′(1) = 0,

}
(1.2)

where g ∈ C0([0, 1] × R), with

lim
s→−∞

g(x, s)
s

= 0, lim
s→+∞

g(x, s)
s

= +∞ (H1)

uniformly with respect to x ∈ [0, 1], and h ∈ L2(0, 1).
We will compare it to the Fuč́ık problem

−u′′ = λ+u+ − λ−u− in (0, 1),
u′(0) = u′(1) = 0,

}
(1.3)

and, taking advantage of the fact that, in the one-dimensional case, the Fuč́ık spec-
trum may be exactly calculated, we will prove existence results for problem (1.2).
The proof uses the variational characterization above to make a comparison of these
minimax levels with those of the functional associated to problem (1.2) in order to
prove the existence of a linking structure for this last functional.

Some hypotheses on the growth at infinity of the nonlinearity g will be needed
to obtain the PS condition for the functional associated to problem (1.2). Defining

G(x, s) =
∫ s

0
g(x, ξ) dξ,

we ask

∃θ ∈ (0, 1
2 ), s0 > 0 such that 0 < G(x, s) � θsg(x, s) ∀s > s0, (H2)

∃s1 > 0, C0 > 0 such that G(x, s) � 1
2sg(x, s) + C0 ∀s < −s1. (H3)

https://doi.org/10.1017/S0308210500003346 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500003346
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For certain ‘resonant’ values of λ, the following hypothesis will be needed:

∃ρ0 > 0, M0 ∈ R such that G(x, s) + h(x)s � M0 a.e. x ∈ [0, 1] ∀s < −ρ0.
(HR)

The exact statement of the results is as follows.

Theorem 1.2. Under hypotheses (H1), (H2) and (H3), if λ ∈ ( 1
4λk,

1
4λk+1) for

some k � 1, there exists a solution of problem (1.2) for all h ∈ L2(0, 1).

Theorem 1.3. Under hypotheses (H1), (H2), (H3) and (HR), if λ = 1
4λk+1 for

some k � 1 and h ∈ L2(0, 1), there exists a solution of problem (1.2).

Remark 1.4. Hypotheses (H1)–(H3) are satisfied, for example, by the function
g(x, s) = es. In this case, in order to also satisfy (HR), we need h(x) � 0 a.e.

Another example of a nonlinearity that also satisfies (HR) and where there is
some more freedom on h is when g behaves at −∞ as |s|δ with δ ∈ (0, 1). Then h
may be chosen arbitrarily in L∞(0, 1).

1.1. Related results

Theorem 1.2 extends the result obtained in [6], where the existence is proved for
λ ∈ (0, 1

4π
2), that is, the case k = 1 of theorem 1.2.

Results similar to [6] (with slightly different hypotheses) can be found in [18].
Perera in [13] proved the existence of a solution for λ ∈ ( 1

4π
2, λ∗), where λ∗ is

some value in ( 1
4π

2, 1
2π

2), and so theorem 1.2 extends this result as well.
We also mention that, for periodic boundary conditions, the equivalent of theo-

rem 1.2 is proved in [7].
Theorem 1.3 deals with some kind of resonance (as will be clear from the proofs in

the following). The case λ = 1
4λ2 was already discussed in [13], where the existence

is proved under different hypotheses, while the case λ = 1
4λ1 (that is, λ = 0) is

treated in [6].
For what concerns the variational characterization of the Fuč́ık spectrum, we

cite [3,5], where the second curve in any spatial dimension is characterized (in two
different ways), and [7], where the whole spectrum for periodic boundary conditions
on an interval is characterized.

In the construction of the characterization of the Fuč́ık spectrum, we will use a
technique derived from one used in [8], which will be discussed in § 2.1.

For further references on problem (1.2), see [6].

1.2. The Fuč́ık spectrum

The notion of the Fuč́ık spectrum was introduced in [4, 9]. It is defined as the
set Σ ⊆ R

2 of points (λ+, λ−) for which there exists a non-trivial solution of
problem (1.1).

In the case of problem (1.3), the spectrum can be completely calculated, with
the corresponding non-trivial solutions. It is composed of curves (which we denote
by Σk) in R

2 arising from each point (λk, λk),

Σ1 : {λ+ = λ1} ∪ {λ− = λ1},

Σk :
(k − 1)π
2
√
λ+

+
(k − 1)π
2
√
λ− = 1, k = 2, 3, . . .


 (1.4)
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Note that each curve with k � 2 is monotone decreasing, has asymptotes at
λ± = 1

4λk and lies completely in the quadrant λ± > 1
4λk.

In the case of higher dimensions, less is known: Σ is always a closed set; the lines
{λ+ = λ1} and {λ− = λ1} belong to Σ; Σ does not contain any other point with
λ+ < λ1 or λ− < λ1. Moreover, we know (see, for example, [10,11,16]) that, in each
square (λk−1, λk+m+1)2 where λk−1 < λk = · · · = λk+m < λk+m+1, from the point
(λk, λk) arises a continuum composed of a lower and an upper curve, both decreasing
(may be coincident); other points in Σ ∩ (λk−1, λk+m+1)2 can only lie between the
two curves (and hence, in the open squares (λk−1, λk)2 and (λk+m, λk+m+1)2, there
are never points of Σ). Something more can be said about the lower part of the
continuum arising from (λ2, λ2) (see [5]).

In [1], it is proved, under a non-degeneracy condition (which was first introduced
in [12, 14]), that the whole spectrum is composed by curves arising from a point
(λk, λk), never intersecting and going to infinity. This non-degeneracy condition is
discussed in [14], where it is proved that it holds for ‘almost all’ (in a suitable sense)
domains. However, in the general case, it does not seem possible to arrive at the
same conclusion.

For more references concerning the Fuč́ık spectrum, see [17].

1.3. Idea and plan of the paper

If we consider a point a ∈ (λk, λk+1) and the functional Ja : H → R,

Ja(u) =
∫

Ω

|∇u|2 − a

∫
Ω

u2, (1.5)

we have a natural splitting H = V ⊕W , where V = span{φ1, . . . , φk}.
Taking ∂Bk

L2 to be the boundary of the unit ball in the L2-norm in V , one knows
that there exists µ > 0 such that

Ja(u) � −µ < 0 for all u ∈ ∂Bk
L2 , (1.6)

Ja(u) � µ‖u‖2
H � 0 for all u ∈ W, (1.7)

and that the two sets link (for a definition of linking, see, for example, [15]).
The existence of this structure allows us to characterize the eigenvalue λk+1 as

λk+1 = a+ inf
γ∈Γ

sup
u∈γ(Bk)

Ja(u), (1.8)

where the family Γ is defined as

Γ = {γ ∈ C0(Bk; ∂BL2) such that γ|∂Bk is a homeomorphism onto ∂Bk
L2}. (1.9)

Here, BL2 denotes the unit ball in the L2-norm in H and

Bk =
{
(x1 . . . , xk) ∈ R

k such that
k∑

i=1

x2
i � 1

}
.

In this paper, we will build suitable sets to play the same role for the functional

Jα(u) =
∫

Ω

|∇u|2 − α+
∫

Ω

(u+)2 − α−
∫

Ω

(u−)2 (1.10)

in order to characterize a point in the Fuč́ık spectrum.
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These sets will be obtained in § 2.1 as a deformation of the sets in (1.6) and (1.7),
using a technique similar to the one described in [8].

Then the variational characterization will be carried out in § 2.2.
In § 3.1, a comparison of the obtained minimax levels with those of the functional

associated to problem (1.2) will allow us to prove the existence of a linking structure
for this last functional, and then to prove theorems 1.2 and 1.3.

Finally, in § 4, we give the complete proof of the PS condition for the functional
associated to problem (1.2).

2. Variational characterization of the Fuč́ık spectrum

2.1. Construction of the linking structure

Consider first the Dirichlet problem (thus, here, H will denote H1
0 and we consider

the norm ‖u‖2
H =

∫
Ω

|∇u|2). Take a point (α+, α−), Σ-connected to the diagonal
between λk and λk+1, in the sense of the following definition.

Definition 2.1. A point (α+, α−) /∈ Σ is Σ-connected to the diagonal between
λk and λk+1 if ∃a ∈ (λk, λk+1) and a C1 function α : [0, 1] → R

2 such that the
following hold.

(a) α(0) = (a, a), α(1) = (α+, α−).

(b) α([0, 1]) ∩Σ = ∅.
Remark 2.2. Since Σ is closed and α([0, 1]) is compact, this implies that the fol-
lowing property holds.

(b′) ∃d > 0 such that ξα([0, 1]) ∩Σ = ∅ for all ξ ∈ [1 − d, 1 + d].

This property will be used in the following proofs.

Now consider

Jα(t)(u) =
∫

Ω

|∇u|2 − α+(t)
∫

Ω

(u+)2 − α−(t)
∫

Ω

(u−)2, (2.1)

where α(t) = (α+(t), α−(t)). Then, splitting as before H = V ⊕W , we have

Jα(0)(u) � −µ‖u‖2
H for all u ∈ V, (2.2)

Jα(0)(u) � µ‖u‖2
H for all u ∈ W, (2.3)

for some µ > 0.

Lemma 2.3 (from lemma 2.3 of [8]). If (α+, α−) is as in definition 2.1, we can find
η ∈ (0, µ) and δη > 0 such that, ∀t ∈ [0, 1], u ∈ H with ‖u‖H = 1,

if Jα(t)(u) ∈ [−η, η], then ‖∇uJα(t)(u)‖2
H − 〈∇uJα(t)(u), u〉2H � δη.

Proof. Following [8], take η = min(d/(3(d+ 1)), µ), and suppose, by contradiction,
the existence of a sequence tn ⊆ [0, 1] and un ∈ H, ‖un‖H = 1 such that

−η � Jα(tn)(un) � η and ‖∇uJα(tn)(un)‖2
H − 〈∇uJα(tn)(un), un〉2H → 0 (2.4)

as n → +∞.
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Define
jn = 〈∇uJα(tn)(un), un〉H = 2Jα(tn)(un) ∈ [−2η, 2η].

From Pythagoras’ theorem, deduce that

‖∇uJα(tn)(un)‖2
H − 〈∇uJα(tn)(un), un〉2H = ‖∇uJα(tn)(un) − jnun‖2

H . (2.5)

Then, evaluating the norm and considering the points in H as operators on H, one
concludes that

(1 − jn)
∫

Ω

∇un∇vn − α+(tn)
∫

Ω

u+
n vn + α−(tn)

∫
Ω

u−
n vn → 0 (2.6)

for any bounded sequence vn ⊆ H.
Up to a subsequence, we may say that jn → j ∈ [−2η, 2η], tn → t0 ∈ [0, 1] and

un ⇀ u ∈ H (strongly in L2). Taking the limit of (2.6) with vn = un gives

1 − j = α+(t0)
∫

Ω

(u+)2 + α−(t0)
∫

Ω

(u−)2, (2.7)

where j � 2η < 1, and then u is not trivial.
From equation (2.6) with arbitrary test function, and using the weak convergence

of un, we get that u is a solution of the Fuč́ık problem with coefficients(
α+(t0)
1 − j

,
α−(t0)
1 − j

)
,

but the choice of η and remark 2.2 imply that this is not possible, since

1
1 − j

∈ [1 − d, 1 + d] ∀j ∈ [−2η, 2η].

Then, as in [8], define a continuous flow σt(u) : [0, 1] ×H → H,

d
dt
σt(u) = MFt(σt(u)),

σ0(u) = u,


 (2.8)

where the following conditions hold.

(1) M is a suitable positive constant, defined as M = 2KS2/δη, with

(i) K = sup
t∈[0,1]

(|α+(t)′| + |α−(t)′|);

(ii) S = λ
−1/2
1 = sup

u∈H

‖u‖L2

‖u‖H
.

(2) Ft : H → H is defined such that it is locally Lipschitz and

Ft(u) =




∇uJα(t)(u) if
Jα(t)(u)
‖u‖2

H

� 1
2η,

−∇uJα(t)(u) if
Jα(t)(u)
‖u‖2

H

� − 1
2η.

(2.9)
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Then σt(u) has the following properties.

(1) σt(0) = 0 and σt(u) �= 0 ∀u �= 0.

(2) σt : H → H is a homeomorphism ∀t.
Moreover, the following result holds.

Lemma 2.4 (from lemma 2.6 of [8]). Defining

Θt(u) =
Jα(t)(σt(u))
‖σt(u)‖2

H

and fixing u, we have that Θt(u) is increasing (respectively, decreasing) in the vari-
able t in any interval [t1, t2] such that

1
2η � Θt(u) � η ∀t ∈ [t1, t2]

(respectively, −η � Θt(u) � − 1
2η ∀t ∈ [t1, t2]).

Proof. Consider first the case 1
2η � Θt(u) � η. Then the flow is defined by

d
dt
σt(u) = M∇uJα(t)(σt(u)) (2.10)

for all t ∈ [t1, t2].
Then we have (we will omit the dependence from u in the notation)

dΘt

dt
=

1
‖σt‖2

H

[
∂Jα(t)(σt)

∂t
+

〈
∇uJα(t)(σt),

d
dt
σt

〉
H

]
+ Jα(t)(σt)

d
dt

(
1

‖σt‖2
H

)

=
1

‖σt‖2
H

[
−α+(t)′

∫
Ω

(σ+
t )2 − α−(t)′

∫
Ω

(σ−
t )2

+ 〈∇uJα(t)(σt),M∇uJα(t)(σt)〉H

]

+ 1
2 〈∇uJα(t)(σt), σt〉H

(
− 2

‖σt‖4
H

〈
σt,

d
dt
σt

〉
H

)

� −KS2 +M

(‖∇uJα(t)(σt)‖2
H

‖σt‖2
H

− 〈∇uJα(t)(σt), σt〉2H
‖σt‖4

H

)
� −KS2 +Mδη.

By the choice made above, M > KS2/δη and then the proof of the first part is
complete.

For the case −η � Θt(u) � − 1
2η, the proof follows the same ideas.

Finally, denote σ1(u) with τα,η(u) (to indicate its dependence on α and η) to
obtain the following result.

Lemma 2.5 (from equation (2.9) and lemma 2.7 of [8]). We have

Jα(τα,η(u)) � −η‖τα,η(u)‖2
H for all u ∈ V, (2.11)

Jα(τα,η(u)) � η‖τα,η(u)‖2
H for all u ∈ W (2.12)
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and, ∀R > 0, τα,η(W ) links with Rτα,η(∂Bk
V ), where Bk

V is the unit ball, in the
H-norm, of V .

Proof. Equations (2.11) and (2.12) follow easily from lemma 2.4.
For the linking property, we need to prove that

∀γ ∈ Γ = {γ ∈ C0(Rτα,η(Bk
V );H) and such that γ(u) = u for u ∈ Rτα,η(∂Bk

V )},
there exists a point ū ∈ γ(Rτα,η(Bk

V )) ∩ τα,η(W ).
We start by proving that

ξτα,η(u) �= τα,η(v) (2.13)

for any u ∈ ∂Bk
V , v ∈ W and ξ > 0. Actually, if it were not so, from equations (2.11)

and (2.12), we would get

η‖τα,η(v)‖2
H � Jα(τα,η(v)) = Jα(ξτα,η(u)) = ξ2Jα(τα,η(u)) � −ηξ2‖τα,η(u)‖2

H ,

which implies (using also the uniqueness of the Cauchy problem) that u = v = 0; a
contradiction, since u ∈ ∂Bk

V .
Now define P to be the orthogonal projection of H onto V and consider the map

Ht = P ◦ τ−1
α,η ◦ (1 + (R − 1)t)τα,η.

Property (2.13) implies that Ht �= 0 on ∂Bk
V for any t ∈ [0, 1], and then

deg(H1, B
k
V , 0) = deg(H0, B

k
V , 0) = deg(Id, Bk

V , 0) = 1.

Now, for any γ ∈ Γ ,

deg(P ◦ τ−1
α,η ◦ γ ◦Rτα,η, B

k
V , 0) = 1,

since, on ∂Bk
V , the function is exactly H1, and then there is a point p ∈ Bk

V such
that γ(Rτα,η(p)) ∈ τα,η(W ).

For the Neumann problem, as shown in the proof of theorem 3.4 of [8] for the
periodic case, one can get the same conclusions, working with the operator −∆u+u
to avoid the problems arising since the first eigenvalue is 0.

Finally, we prove one more property that we will need later.

Lemma 2.6. If u ∈ V or u ∈ W and ξ > 0, then τα,η(ξu) = ξτα,η(u).

Proof. From lemmas 2.4 and 2.5 and equations (2.8) and (2.9), we have that, in
these two cases, the equation just contains the gradient of Jα(t).

If we take u ∈ V , then the flow is defined by

d
dt
σt(u) = −M∇uJα(t)(σt(u)),

σ0(u) = u ∈ V.


 (2.14)

Consider then the change of variable σ = kπ with k > 0. Equation (2.14) becomes

k
d
dt
πt(u) = −M∇uJα(t)(kπt(u)),

kπ0(u) = u ∈ V,


 (2.15)
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and, considering the linear positive homogeneity of ∇uJα(t), it can be simplified to
obtain

d
dt
πt(u) = −M∇uJα(t)(πt(u)),

π0(u) =
u

k
∈ V,


 (2.16)

which is the same equation as (2.14), with a different initial condition. Then

σt(u) = kπt(u) = kσt

(
u

k

)
.

The case u ∈ W is treated in the same way.

2.2. Construction of the variational characterization

Now we use the results of § 2.1 to obtain a variational characterization of some
parts of the Fuč́ık spectrum (problem (1.1)).

The result is the one stated in theorem 1.1.
Note that, in the one-dimensional case, since the spectrum is known, (α+, α−)

may be taken anywhere between the continuous curves arising from a point (λk, λk)
and the ones arising from (λk+1, λk+1). In the multi-dimensional case, one has to
be more careful, but Σ-connection may be assured at least for (α+, α−) in the
square (λk−1, λk+m+1)2 (being λk−1 < λk = · · · = λk+m < λk+m+1) when it is not
between (or on) the lower and the upper curve arising from (λk, λk).

We will now imitate the characterization of λk+1 described in (1.8).
We fix a point (α+, α−), Σ-connected to the diagonal between λk and λk+1 and

with α+ � α−. Then we apply the results of § 2.1, obtaining the deformation τα,η,
and choose r ∈ (0, 1]. We split again H = V ⊕ W with V = span{φ1, . . . , φk} and
we consider the following.

(i) The set

Qr =
{
u ∈ H such that

∫
Ω

(u+)2 + r(u−)2 = 1
}
. (2.17)

(ii) The radial projection on Qr of the set obtained in § 2.1 by the deformation
of ∂Bk

V , that is,
Lα,r = P r(τα,η(∂Bk

V )), (2.18)

where
P r : u → u√∫

Ω
(u+)2 + r

∫
Ω
(u−)2

.

(iii) The class of maps

Γα,r = {γ ∈ C0(Bk;Qr) such that γ|∂Bk is a homeomorphism onto Lα,r},
(2.19)

where

Bk =
{
(x1 . . . , xk) ∈ R

k such that
k∑

i=1

x2
i � 1

}
.
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(iv) The functional

Jα(u) =
∫

Ω

(∇u)2 − α+
∫

Ω

(u+)2 − α−
∫

Ω

(u−)2. (2.20)

The idea now is to consider

dα,r = inf
γ∈Γα,r

sup
u∈γ(Bk)

Jα(u) (2.21)

and to prove that this leads to a non-trivial solution of the Fuč́ık problem (1.1),
that is, to a point in Σ.

We first prove that the above definitions are well posed and derive some properties
of the defined sets.

Lemma 2.7. For u ∈ Qr, we have that 1 �
∫

Ω
u2 � 1/r.

Proof. We have

1 =
∫

Ω

(u+)2 + r(u−)2

�
∫

Ω

(u+)2 + (u−)2 =
∫

Ω

u2

�
∫

Ω
(u+)2 + r(u−)2

r
=

1
r
.

Lemma 2.8.

(i) The set Lα,r is homeomorphic to ∂Bk.

(ii) Lα,r ⊆ τα,η(V ).

Proof. (i) Since ∂Bk
V is homeomorphic to ∂Bk and τα,η is a homeomorphism, we

just need to prove that P r is a homeomorphism when restricted to τα,η(∂Bk
V ).

τα,η on ∂Bk
V has the property (see lemma 2.6) that τα,η(ξu) = ξτα,η(u) ∀ξ > 0.

Then P r is one to one on τα,η(∂Bk
V ) and so can be inverted.

Finally, P r is continuous together with its inverse because, since ∂Bk
V is a compact

set that does not contain the origin,
∫

Ω
(u+)2 + r

∫
Ω
(u−)2 is continuous, bounded

and bounded away from zero on it.
(ii) The second point is a trivial consequence of lemma 2.6.

Lemma 2.9. τα,η(W ) links with Lα,r.

Proof. From lemma 2.5, τα,η(W ) links with τα,η(∂Bk
V ).

Then the claim could be false only if, for some u ∈ Lα,r, ξ > 0 and v ∈ τα,η(W ),
we had ξu = v. But, by the homogeneity property of τα,η in V and W (lemma 2.6),
this would imply ξ(τα,η)−1(u) = (τα,η)−1(v), and then u = v = 0, which is impos-
sible since u ∈ P r(τα,η(∂Bk

V )).

In the next three lemmas we verify the conditions for the ‘linking theorem’ which
will be used to prove the criticality of dα,r.
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Lemma 2.10. The functional Jα(u) constrained to Qr satisfies the PS condition.

Proof. Consider the sequences {un} ⊆ Qr, {βn} ⊆ R (Lagrange multipliers) and
εn → 0+ such that ∣∣∣∣

∫
Ω

(∇un)2 − α+
∫

Ω

(u+
n )2 − α−

∫
Ω

(u−
n )2

∣∣∣∣ � C (2.22)∣∣∣∣
∫

Ω

∇un∇v − α+
∫

Ω

(u+
n )v + α−

∫
Ω

(u−
n )v + βn

(∫
Ω

u+
n v − ru−

n v

)∣∣∣∣ � εn‖v‖H

∀v ∈ H.
(2.23)

Since {un} ⊆ Qr, it is a bounded sequence in L2, and then equation (2.22) implies
that it is also a bounded sequence in H. Then there is a subsequence converging
weakly in H and strongly in L2 to some u.

The L2 convergence implies that u ∈ Qr.
Taking v = un, we get that

βn +
(∫

Ω

(∇un)2 − α+
∫

Ω

(u+
n )2 − α−

∫
Ω

(u−
n )2

)
→ 0. (2.24)

Then, with v = un − u, we have∫
Ω

∇un∇(un − u) − α+
∫

Ω

(u+
n )(un − u) + α−

∫
Ω

(u−
n )(un − u)

−
(∫

Ω

(∇un)2 − α+
∫

Ω

(u+
n )2 − α−

∫
Ω

(u−
n )2

)(∫
Ω

(u+
n − ru−

n )(un − u)
)

→ 0,

where all terms except the first go to zero. Then we conclude that ‖∇un‖L2 →
‖∇u‖L2 , and then un → u strongly in H.

Lemma 2.11. We have supu∈γ(∂Bk) Jα(u) � 0 ∀γ ∈ Γα,r.

Proof. By lemma 2.5, since γ(∂Bk) = Lα,r ⊆ τα,η(V ), then Jα(u) � −η‖u‖2
H < 0.

Lemma 2.12. We have +∞ > supu∈γ(Bk) Jα(u) � η > 0 for each γ ∈ Γα,r.

Proof. By lemma 2.9, there is always a point u ∈ γ(Bk) ∩ τα,η(W ) and, by lemma
2.5, we have, in that point, that Jα(u) � η‖u‖2

H . Considering lemma 2.7 and the
fact that u ∈ Qr, this becomes � η.

Finally, it is less than +∞, since each γ(Bk) is a compact set.

At this point, we can state the following standard ‘linking theorem’ (see, for
example, [15]).

Proposition 2.13. The level dα,r � η > 0 is a critical value for Jα(u) constrained
to Qr.

The importance of the criticality of the level dα,r is clarified in the following
proposition.
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Proposition 2.14. The critical points associated to the critical value dα,r are non-
trivial solutions of the Fuč́ık problem (1.1) with coefficients (λ+, λ−), where

λ+ − α+ = dα,r and λ− − α− = rdα,r.

Proof. Criticality of u implies that there exists a Lagrange multiplier β ∈ R such
that∫

Ω

∇u∇v−α+
∫

Ω

(u+)v+α−
∫

Ω

(u−)v+β

(∫
Ω

u+v−ru−v
)

= 0 ∀v ∈ H, (2.25)

but testing against u, we get β = −dα,r, and so u solves

−∆u = α+u+−α−u−+dα,ru
+−dα,rru

− = (α++dα,r)u+−(α−+rdα,r)u− (2.26)

in Ω, with the considered boundary conditions.
Finally, u is not trivial, since it is in Qr.

Propositions 2.13 and 2.14 imply that the point (α+ + dα,r, α
− + rdα,r) belongs

to the half-line {(α+ + t, α− + rt), t > 0} (since dα,r > 0) and also to the Fuč́ık
spectrum. Thus theorem 1.1 is proved.

Remark 2.15. We did not prove that this solution corresponds to the first inter-
section (that is, the one with smallest t) of the half-line with Σ.

Thus, even in the one-dimensional case (that is, when the spectrum is known),
we cannot assert that the point belongs to the continuum arising from (λk+1, λk+1).
What we can say (since dα,r > 0) is just that it belongs to the continuum arising
from (λh, λh) for some h � k + 1.

3. The superlinear problem

3.1. Proof of theorem 1.2

Consider now the superlinear problem (1.2). The idea here is to prove the existence
of a non-constrained critical point of the functional

F (u) = 1
2

∫ 1

0
(u′)2 − λ

2

∫ 1

0
u2 −

∫ 1

0
G(x, u) −

∫ 1

0
hu, (3.1)

which corresponds to a solution of the problem.
We will follow a strategy inspired by [7].
Note that H1(0, 1) ⊆ C0([0, 1]), with compact inclusion, and recall that, in this

case, the asymptotes of each Σk with k � 2 are at λ− = 1
4λk and that Σk lies

entirely in {λ− > 1
4λk}.

This structure of Σ implies that, for fixed λ ∈ ( 1
4λk,

1
4λk+1), k � 1, it is always

possible to find the following.

(i) A point (α+, α−), Σ-connected to the diagonal between λk and λk+1 and such
that α− < λ,

(ii) A δ > 0 such that α− < λ− δ and λ+ δ < 1
4λk+1.
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Now, using the notation of § 2.2, we define, for R > 0, the family of maps

ΓR
α,r̄ = {γ∗ ∈ C0(Bk;H) such that γ∗|∂Bk is a homeomorphism onto RLα,r̄}.

(3.2)
We want to prove that, for a suitable R > 0, the level

f = inf
γ∗∈Γ R

α,r̄

sup
u∈γ∗(Bk)

F (u) (3.3)

is a critical value for the functional F .

Remark 3.1. In the definition of ΓR
α,r̄, the choice of r̄ ∈ (0, 1] has no importance;

it can be chosen arbitrarily.

Using the fact that h ∈ L2 and hypothesis (H1), we can find constants C1, C2
and C3 as follows.

(i) C1(δ, h) such that ∣∣∣∣
∫ 1

0
hu

∣∣∣∣ � 1
4δ‖u‖2

L2 + C1(δ, h). (3.4)

(ii) C2(δ, g) such that ∣∣∣∣
∫ 1

0
G(x,−u−)

∣∣∣∣ � 1
4δ‖u‖2

L2 + C2(δ, g). (3.5)

(iii) C3(M, g) such that∫ 1

0
G(x, u+) � 1

2M‖u+‖2
L2 − C3(M, g) (3.6)

for any M .

To find a generalized mountain-pass structure, we first need the following result.

Lemma 3.2. ∀C ∈ R, we can find R > 0 such that

sup
u∈γ∗(∂Bk)

F (u) < C ∀γ∗ ∈ ΓR
α,r̄. (3.7)

Proof. We evaluate, for u ∈ Lα,r̄ and ρ > 0,

F (ρu)
ρ2 = 1

2

∫ 1

0
(u′)2 − 1

2λ

∫ 1

0
u2 −

∫ 1
0 G(x, ρu)

ρ2 −
∫ 1
0 hρu

ρ2

� 1
2

∫ 1

0
(u′)2 − 1

2λ

∫ 1

0
u2 +

| ∫ 1
0 G(x,−ρu−)|

ρ2 −
∫ 1
0 G(x, ρu+)

ρ2 +
| ∫ 1

0 hρu|
ρ2

� 1
2

∫ 1

0
(u′)2 − 1

2λ

∫ 1

0
u2 +

(
1
4δ

∫ 1

0
u2 +

C2(δ, g)
ρ2

)

−
(

1
2M

∫ 1

0
(u+)2 − C3(M, g)

ρ2

)
+

(
1
4δ

∫ 1

0
u2 +

C1(δ, h)
ρ2

)
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� 1
2

∫ 1

0
(u′)2 − 1

2 (λ− δ)
∫ 1

0
u2

− 1
2M

∫ 1

0
(u+)2 +

C1(δ, h) + C2(δ, g) + C3(M, g)
ρ2

= 1
2Jα(u) − 1

2 (λ− δ +M − α+)
∫ 1

0
(u+)2

− 1
2 (λ− δ − α−)

∫ 1

0
(u−)2 +

C1 + C2 + C3(M, g)
ρ2 .

Now, if we fix M = α+ − α− and consider that Jα(u) � 0 and
∫ 1
0 u2 � 1 on Lα,r̄,

we get
F (ρu)
ρ2 � − 1

2 (λ− δ − α−) +
C̃(δ, α, g, h)

ρ2 , (3.8)

where the first part is negative by the choice made for δ and then we can find the
required R, namely,

R >

√
2(C̃(δ, α, g, h) − C)

λ− δ − α− .

We need also the following result.

Lemma 3.3. We have

sup
u∈γ∗(Bk)

F (u) � −C1(δ, h) − C2(δ, g) − 1 ∀γ∗ ∈ ΓR
α,r̄. (3.9)

Proof. Fix a γ∗ ∈ ΓR
α,r̄.

Since γ∗(Bk) is a compact set in a space of continuous functions, we can find

b(γ∗) = max{|u(x)| : x ∈ [0, 1], u ∈ γ∗(Bk)}, (3.10)

and then there exists µγ∗ > 0 such that

1
2µγ∗s2 � G(x, s) − 1 for all s ∈ [0, b(γ∗)]. (3.11)

Then∫ 1

0
G(x, u) +

∫ 1

0
hu

� 1
4δ

∫ 1

0
u2 + C1(δ, h) + 1

4δ

∫ 1

0
u2 + C2(δ, g) + 1

2µγ∗

∫ 1

0
(u+)2 +

∫ 1

0
1, (3.12)

and so

sup
u∈γ∗(Bk)

F (u) � 1
2

sup
u∈γ∗(Bk)

(∫ 1

0
(u′)2 − (λ+ δ)

∫ 1

0
u2 − µγ∗

∫ 1

0
(u+)2

)

− C1(δ, h) − C2(δ, g) − 1. (3.13)
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Now, if 0 ∈ γ∗(Bk), the sup on the right-hand side is clearly non-negative.
Otherwise, we can rearrange the terms in the sup on the right-hand side, adding

and subtracting α+
∫ 1
0 (u+)2 + α− ∫ 1

0 (u−)2, defining

rγ∗ =
λ+ δ − α−

λ+ δ + µγ∗ − α+

and collecting
∫ 1
0 (u+)2 + rγ∗

∫ 1
0 (u−)2 > 0. We thus obtain

sup
u∈γ∗(Bk)

[(
Jα(u)∫ 1

0 (u+)2 + rγ∗
∫ 1
0 (u−)2

− (λ+ δ + µγ∗ − α+)
)

×
(∫ 1

0
(u+)2 + rγ∗

∫ 1

0
(u−)2

)]
. (3.14)

Now, if the sup of the first part is non-negative, then so is all the sup.
But

sup
u∈γ∗(Bk)

Jα(u)∫ 1
0 (u+)2 + rγ∗

∫ 1
0 (u−)2

is equivalent to supu∈γ(Bk) Jα(u) for some γ ∈ Γα,rγ∗ (cf. (2.19) and (3.2), consid-
ering the definition 2.18). Then it is not lower than the value dα,rγ∗ obtained in
proposition 2.13. This means that, by proposition 2.14 and remark 2.15,

sup
u∈γ(Bk)

Jα(u) � λ+
γ∗ − α+, (3.15)

where (λ+
γ∗ , λ−

γ∗) ∈ Σh with h � k + 1 and (λ−
γ∗ − α−)/(λ+

γ∗ − α+) = rγ∗ .
There remains the calculation

(λ+
γ∗ − α+) − (λ+ δ + µγ∗ − α+) =

(λ−
γ∗ − α−) − (λ+ δ − α−)

rγ∗
=

λ−
γ∗ − (λ+ δ)

rγ∗
,

(3.16)
which is positive for the choice made for δ, since the curves Σh, with h � k + 1,
have all points with λ− > 1

4λk+1.
To conclude, note that, in this way, we eliminated the dependence from γ∗ (and

from the values that depended upon it, rγ∗ , λ+
γ∗ and λ−

γ∗) in the estimates, and
hence the lemma is proved.

The PS condition for F was proved (using hypothesis (H2)) in [6] for λ ∈ (0, 1
4π

2),
and in [7] (also using (H3)) for any λ > 0, in the case of periodic boundary condi-
tions, but the proof can be extended to the Neumann case. The complete proof is
given, for the sake of completeness, in § 4.

Using lemma 3.2 with C < −C1(δ, h) − C2(δ, g) − 1, lemma 3.3 and the PS
condition, we have the conditions necessary to apply a linking theorem that proves
the criticality of the level f defined in equation (3.3). Thus theorem 1.2 is proved.

3.2. Proof of theorem 1.3

For the values λ = 1
4λk+1, one has a kind of resonance that creates difficulties

for some of the estimates. Actually, the proof of lemma 3.2 can be done in the same
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way, choosing δ > 0 such that α− < λ− δ. But, for lemma 3.3, we cannot conclude
with the same estimates, since no choice of δ > 0 would allow us to infer that the
expression in (3.16) is not negative.

Thus, in this case, we need to also impose the hypothesis (HR), and we proceed
using the following estimates:∫

u<−ρ0

G(x, u) + hu � M0

∫ 1

0
1,

∫
u∈[−ρ0,0]

G(x, u) + hu � sup
u∈[−ρ0,0],x∈[0,1]

G(x, u)
∫ 1

0
1 + ρ0

∫ 1

0
|h| = C4(h, g),

∫
u>0

G(x, u) + hu � 1
2µγ∗

∫ 1

0
(u+)2 +

∫ 1

0
1 + 1

2

∫ 1

0
(u+)2 + 1

2

∫ 1

0
h2.

Then we get, in place of (3.12), that∫ 1

0
G(x, u) +

∫ 1

0
hu � 1

2 (µγ∗ + 1)
∫ 1

0
(u+)2 +M0 + C4(h, g) + 1 + 1

2

∫ 1

0
h2,

and we can estimate the sup, as in (3.13), as

sup
u∈γ∗(Bk)

F (u) � 1
2

sup
u∈γ∗(Bk)

(∫ 1

0
(u′)2 − λ

∫ 1

0
u2 − (µγ∗ + 1)

∫ 1

0
(u+)2

)

−M0 − 1 − 1
2

∫ 1

0
h2 − C4(h, g). (3.17)

We make the same calculations as we did before, but now with

rγ∗ =
λ− α−

λ+ µγ∗ + 1 − α+ ,

to conclude that there is a point (λ+
γ∗ , λ−

γ∗) ∈ Σh, with

h � k + 1 and
λ−

γ∗ − α−

λ+
γ∗ − α+

= rγ∗ ,

such that the sup is not negative if the following expression is not negative too:

(λ+
γ∗ − α+) − (λ+ µγ∗ + 1 − α+) =

(λ−
γ∗ − α−) − (λ− α−)

rγ∗
=

λ−
γ∗ − λ

rγ∗
. (3.18)

But this is actually positive, since all points in Σh with h � k + 1 have λ− > λ.

4. Proof of the PS condition

Proposition 4.1. Under hypotheses (H1), (H2) and (H3), the functional (3.1)
satisfies the PS condition for any λ > 0.

First note that, from hypothesis (H1), we can always construct the following
estimates: for any ε > 0, s̄ ∈ R and M ∈ R, there exist CM , Cε ∈ R (also
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depending, of course, on s̄) such that

g(x, s) � Ms− CM for s > s̄, (4.1)
|g(x, s)| � ε(−s) + Cε for s � s̄. (4.2)

Let {un} ⊆ H1(0, 1) be a PS sequence, i.e. there exist T > 0 and εn → 0+ such
that

|F (un)| =
∣∣∣∣12

∫ 1

0
|u′

n|2 − 1
2λ

∫ 1

0
u2

n −
∫ 1

0
G(x, un) −

∫ 1

0
hun

∣∣∣∣ � T, (4.3)

|〈F ′(un), v〉| =
∣∣∣∣
∫ 1

0
u′

nv
′ − λ

∫ 1

0
unv −

∫ 1

0
g(x, un)v −

∫ 1

0
hv

∣∣∣∣ � εn‖v‖H1

∀v ∈ H1.
(4.4)

Step 1. Suppose un is not bounded. Then we can assume that ‖un‖H1 � 1,
‖un‖H1 → +∞ and define zn = un/‖un‖H1 , so that zn is a bounded sequence
in H1 and we can select a subsequence such that zn → z0 weakly in H1 and
strongly in L2(0, 1) and C0[0, 1].

Step 2. We claim that z0 � 0.

Proof of the claim. Consider |〈F ′(un), z+
0 〉/‖un‖H1 |,∣∣∣∣

∫ 1

0
z′
n(z

+
0 )′ − λ

∫ 1

0
znz

+
0 −

∫ 1

0

g(x, un)z+
0

‖un‖H1
−

∫ 1

0

hz+
0

‖un‖H1

∣∣∣∣ � εn‖z+
0 ‖H1

‖un‖H1
, (4.5)

from which∫ 1

0

g(x, un)z+
0

‖un‖H1
�

∣∣∣∣
∫ 1

0
z′
n(z

+
0 )′

∣∣∣∣ + λ

∣∣∣∣
∫ 1

0
znz

+
0

∣∣∣∣ +
∣∣∣∣
∫ 1

0

hz+
0

‖un‖H1

∣∣∣∣ + εn‖z+
0 ‖H1

‖un‖H1
. (4.6)

Now, for any x̄ such that z+
0 (x̄) > 0, we have that un(x̄) > 0 for n large enough.

We can then use estimate (4.1) to obtain

g(x̄, un)
‖un‖H1

� Mzn(x̄) − CM

‖un‖H1
. (4.7)

Taking lim inf, we get

lim inf
n→+∞

g(x̄, un)
‖un‖H1

� Mz0(x̄) (4.8)

for any choice of M , and then

lim
n→+∞

g(x̄, un)
‖un‖H1

= +∞. (4.9)

Joining equations (4.1) and (4.2) with s̄ = 0 and divided by ‖un‖H1 , we get

g(x, un)
‖un‖H1

�



Mzn − CM

‖un‖H1
if zn > 0,

−ε(−zn) − Cε

‖un‖H1
if zn � 0,
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and so
g(x, un)
‖un‖H1

� −ε|zn| − CM,ε

‖un‖H1
. (4.10)

Since zn is uniformly bounded (by its C0 convergence) and ‖un‖H1 � 1, this implies
that the functions g(x, un)/‖un‖H1 are bounded below uniformly, so that we can
use Fatou’s lemma and get, from (4.6) (supposing z+

0 �≡ 0),

+∞ =
∫ 1

0
lim

n→+∞
g(x, un)z+

0

‖un‖H1

� lim inf
n→+∞

∫ 1

0

g(x, un)z+
0

‖un‖H1

� lim inf
n→+∞

(∣∣∣∣
∫ 1

0
z′
n(z

+
0 )′

∣∣∣∣ + λ

∣∣∣∣
∫ 1

0
znz

+
0

∣∣∣∣ +
∣∣∣∣
∫ 1

0

hz+
0

‖un‖H1

∣∣∣∣ + εn‖z+
0 ‖H1

‖un‖H1

)
. (4.11)

The right-hand side can be estimated, since the first two terms are bounded by
(1 + λ)‖zn‖H1‖z+

0 ‖H1 � 1 + λ and the last two clearly go to zero. Then equa-
tion (4.11) gives rise to a contradiction unless z0 � 0.

Step 3. We claim that, using hypotheses (H2) and (H3), we obtain a constant A
such that ∫

un>s0

g(x, un)un � A‖un‖H1 , (4.12)

at least for n big enough.

Proof of the claim. Consider first |2F (un) − 〈F ′(un), un〉|,∣∣∣∣
∫ 1

0
−2G(x, un) + g(x, un)un + (1 − 2)

∫ 1

0
hun

∣∣∣∣ � 2T + εn‖un‖H1 , (4.13)

from which∫
un>s0

g(x, un)un − 2G(x, un)

�
∫

un�s0

2G(x, un) − g(x, un)un +
∣∣∣∣
∫ 1

0
hun

∣∣∣∣ + 2T + εn‖un‖H1 . (4.14)

The right-hand side may be estimated as follows.

(i) We have∫
−s1�un�s0

2G(x, un) − g(x, un)un � sup
x∈[0,1],s∈[−s1,s0]

(2G(x, s) − g(x, s)s).

(4.15)

(ii) Using hypothesis (H3),∫
un�−s1

2G(x, un) − g(x, un)un � 2C0. (4.16)
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(iii) We have ∣∣∣∣
∫ 1

0
hun

∣∣∣∣ � ‖h‖L2‖un‖L2 � ‖h‖L2‖un‖H1 .

For the left-hand side, we use hypothesis (H2) to obtain

(1 − 2θ)
∫

un>s0

g(x, un)un �
∫

un>s0

g(x, un)un − 2G(x, un), (4.17)

and then, since (1 − 2θ) > 0, joining all estimates (4.14)–(4.17), we get∫
un>s0

g(x, un)un � 1
2A‖un‖H1 + 1

2A � A‖un‖H1 (4.18)

for some constant A.

Step 4. We claim that ∫ 1

0

|g(x, un)|
‖un‖H1

→ 0. (4.19)

Proof of the claim. Fix ε > 0 and k such that A/k � ε and k > s0.
Estimate (4.2) shows that∫

un�k

|g(x, un)|
‖un‖H1

�
∫ 1

0

ε|un| + Cε

‖un‖H1
� εC

‖un‖L2

‖un‖H1
+

Cε

‖un‖H1
, (4.20)

from which there exists n̄ such that∫
un�k

|g(x, un)|
‖un‖H1

� (C + 1)ε for n > n̄. (4.21)

Since k > s0, using estimate (4.12), we have∫
un>k

g(x, un)
‖un‖H1

�
∫

un>k

g(x, un)
‖un‖H1

un

k
�

∫
un>s0

g(x, un)
‖un‖H1

un

k
� A

k
� ε. (4.22)

Then we conclude that, for n > n̄,∫ 1

0

|g(x, un)|
‖un‖H1

� (2 + C)ε. (4.23)

By the arbitrariness of ε, the claim is proved.

Step 5. We claim that λ > 0 implies z0 = 0.

Proof of the claim. For any v ∈ H1, we consider |〈F ′(un), v〉/‖un‖H1 |,∣∣∣∣
∫ 1

0
z′
nv

′ − λ

∫ 1

0
znv −

∫ 1

0

g(x, un)v
‖un‖H1

−
∫ 1

0

hv

‖un‖H1

∣∣∣∣ � εn‖v‖H1

‖un‖H1
, (4.24)

from which∣∣∣∣
∫ 1

0
z′
nv

′ − λ

∫ 1

0
znv

∣∣∣∣ �
∫ 1

0

|g(x, un)|
‖un‖H1

|v| +
∣∣∣∣
∫ 1

0

hv

‖un‖H1

∣∣∣∣ + εn‖v‖H1

‖un‖H1
. (4.25)
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But now the right-hand side goes to zero by equation (4.19), and then we get, taking
the limit and using the weak convergence of zn, that∫ 1

0
z′
0v

′ − λ

∫ 1

0
z0v = 0 for any v ∈ H1. (4.26)

Since all eigenfunctions of the Neumann problem with λ > 0 change sign (while
z0 � 0), this implies that z0 = 0.

Step 6. We claim that un is bounded.

Proof of the claim. Consider |〈F ′(un), zn〉/‖un‖H1 |,∣∣∣∣
∫ 1

0
(z′

n)
2 − λ

∫ 1

0
z2
n −

∫ 1

0

g(x, un)zn

‖un‖H1
−

∫ 1

0

hzn

‖un‖H1

∣∣∣∣ � εn‖zn‖H1

‖un‖H1
, (4.27)

from which∫ 1

0
(z′

n)
2 � λ

∫ 1

0
z2
n +

∫ 1

0

|g(x, un)||zn|
‖un‖H1

+
∫ 1

0

hzn

‖un‖H1
+
εn‖zn‖H1

‖un‖H1
. (4.28)

Now, using (4.19) and the fact that zn → 0 in L2, equation (4.28) becomes∫ 1

0
(z′

n)
2 → 0, (4.29)

which gives a contradiction, since we would get

1 =
∫ 1

0
(z′

n)
2 +

∫ 1

0
z2
n → 0.

Step 7. The PS condition follows now with standard calculations from the bound-
edness of un.
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