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A new stopping problem and the critical exercise price of American fractional lookback
option are developed in the case where the stock price follows a special mixed jump diffu-
sion fractional Brownian motion. By using Itô formula and Wick-Itô-Skorohod integral a
new market pricing model is built, and the fundamental solutions of stochastic parabolic
partial differential equations are deduced under the condition of Merton assumptions. With
an optimal stopping problem and the exercise boundary, the explicit integral representa-
tion of early exercise premium and the critical exercise price are also derived. Numerical
simulation illustrates the asymptotic behavior of this critical boundary.
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1. INTRODUCTION

As is known that lookback options are path-dependent options whose payoff depends on the
maximum or the minimum of the underlying asset price attained over a lookback period.
An American lookback call (put) option allows it to be exercised at any time prior to expiry
and gives the holder the right to buy (sell) at the historical minimum (maximum) of the
underlying asset price on exercising the option. A more general and less expensive variant
called fractional or partial lookback option, where the strike is fixed at some fraction over (for
a call) or below (for a put) the extreme value. Specifically, the payoffs for European lookback
call and put with fractional floating strikes and maturity date T are given, respectively, by
(ST − amT )+ and (bMT − ST )+, where a and b are positive constants, allowing flexible
adjustment of option premiums. In this paper, we consider a new stopping problem and
the critical exercise price of American fractional lookback option under the environment of
mixed jump-diffusion fractional Brownian motion(MJD-fBm).

The mixed fractional Brownian motion(mfBm) is a family of Gaussian processes, which
is a linear combination of Brownian motion and fractional Brownian motion(fBm). As the
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fact that Black–Scholes model [22] is inadequate to describe the asset returns and the
behavior of the option markets. [6] proposed a jump-diffusion process with Poisson jump
to match the abnormal fluctuation of stock price. Several authors [1,2,4,5,19,26,34] also
considered the problem of pricing options under a jump-diffusion environment in a larger
setting. Actually, various empirical studies on the statistical properties of log-returns show
that the log-returns are not necessarily independent and also not Gaussian [7,8,13]. One
way to a more realistic modeling is to change the geometric Brownian motion to a geo-
metric fBm: the dependence of the log-return increments can now be modeled with the
Hurst parameter of the fBm. It can be said that the properties of financial return series are
non-normal, non-independent and nonlinear, self-similar, with heavy-tails, in both auto-
correlations and cross-correlations, and volatility clustering [7,10,11,17,24,35]. Since fBm
has two substantial features such as self-similarity and long-range dependence, thus using it
is more applicable to capture behavior from a financial asset [35]. Some scholars proposed
a mfBm version of a option pricing Merton model [23,29]. [29] assume that the value of
the firm obeys to a geometric mfBm, the result shows that the mixed-fractional model to
simulate credit risk pricing is a reasonable one. [7,8] derived a European call pricing option
on an asset driven by a linear combination of a Brownian motion and an independent fBm.
Cheridito had proved that, for H ∈ (3/4, 1), the mfBm was equivalent to Brownian motion
and hence it was arbitrage-free. The case even for the fBm with arbitrary Hurst param-
eter and Wick products of the fractional Black–Scholes model have been proposed as an
improvement of the classical Black-Scholes model [3,17,32]. In virtue of the fBm is neither
a Markov process nor a semi-martingale, we cannot apply the common stochastic calcu-
lus to analyze it. Fortunately, Hu et al. [17] employed the Wick product rather than the
pathwise product to define a fractional stochastic integral whose mean is indeed zero. This
property was very convenient for both theoretical developments and practical applications.
Further, in [32], it was stated that if one uses the Wick-Itô-Skorohod integral, then can
obtain an arbitrage-free model, while Wick integration leads to no-arbitrage, the definition
of the corresponding self-financing trading strategies is quite restrictive. Therefore, the
fractional market based on Wick integrals is considered which is a beautiful mathematical
construction but with restricted applicability in finance. In recent years, many researchers
investigate the mfBm (see [16,28,35]) derived explicit pricing formulas for European cur-
rency options when the valuation models were governed by mfBm. However, continuous
assumptions on the dynamics of assets ignore sudden shocks to asset returns due to the
arrival of important information, since the financial crisis and significant business always
result in sudden changes in firm values, which cannot be captured by continuous sample
paths. To get around this problem and to take into account the long memory property, it is
reasonable to use the mfBm with jumps model to capture fluctuations of the financial asset
(see [27,30,31,33,36]).

Further, to capture jumps or discontinuous, fluctuations problem or take into account of
long memory property, we present here a new stopping problem and the exercise boundary
to solve the American fractional lookback option pricing problem in a MJD-fBm environ-
ment. It is different from the Shokrollahi’s and Rao’s model, we establish MJD-fBm model
which is a linear combination of Brownian motion, fBm, and Poisson process. By using Itô
formula and fractional Wick-Itô-Skorohod integral a new market pricing model is built, and
the fundamental solutions of stochastic parabolic partial differential equations are deduced
under the condition of Merton assumptions. With an optimal stopping problem and the
exercise boundary, the explicit integral representation of early exercise premium and the
critical exercise price is also derived. Based on some researches of lookback options pric-
ing and early exercise premium in the literature [12,14,15,18,20,21,25], to achieve quick
and accurate pricing for practical purposes, this paper adopts the critical exercise price
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to valuing American fractional lookback options, and numerical simulation illustrate some
notable features of American fractional lookback options.

The remainder of this paper is structured as follows. In Section 2, we present some
basic lemmas and preliminary results of our special mixed jump-diffusion pricing model
and Wick-Itô-Skorohod integral which will be used throughout this paper. In Section 3, we
turn to the exercise boundary formulation of special optimal stopping problem described,
and the critical exercise price is given by a Volterra integral equation. In Section 4, the
asymptotic behaviors of the critical exercise prices are presented, some simulation results
and notable features are also provided. The paper is ended with conclusive remarks in the
last section.

2. A SPECIAL MIXED JUMP-DIFFUSION MODEL

In this section, we construct mixed Poisson jump-diffusion processes as a suitable alternative
to fBm.

Definition 2.1 [7,28,35]: A mfBm of parameters α, β, and H is a linear combination of
Brownian motion and fBm, defined on the probability space (Ω, F, P) for any t ∈ R

+ by:

MH
t = αBt + βBH

t , (1)

where Bt is a Brownian motion, BH
t is an independent fBm with H ∈ (0, 1), α, β are two

real constants such that (α, β) �= (0, 0).

Now we list some properties in [23] by the following proposition.

Proposition 2.1: The mfBm MH
t satisfies the following properties:

(i) MH
t is a centered Gaussian process and not a Markovian one for all H ∈ (0, 1)\1/2;

(ii) MH
0 = 0 P−almost surely;

(iii) the covariation function of MH
t (α, β) and MH

s (a, b) for any t, s ∈ R
+ is given by

Cov(MH
t ,M

H
s ) = α2(t ∧ s) +

β2

2
(t2H + s2H − |t− s|2H),

where ∧ denotes the minimum of two numbers;
(iv) the increments of MH

t (α, β) are stationary and mixed-self-similar for any h > 0

MH
ht(α, β) � MH

t (αh1/2, βhH),

where � means “to have the same law”;
(v) the increments of MH

t are positively correlated if 1/2 < H < 1, uncorrelated if H =
1/2 and negatively correlated if 0 < H < 1/2;

(vi) the increments of MH
t are long-range dependent if, and only if H > 1/2;

(vii) for all t ∈ R
+, we have

E[(MH
t (α, β))n] =

⎧⎨⎩0, n = 2l + 1
(2l)!
2ll!

(α2t+ β2t2H)l, n = 2 l.
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Proof: These properties are easily obtained based on [7,23]. �

Now, let (Ω, F, P) be a probability space such that Bt is a Brownian motion with respect
to P and BH

t is an independent fBm with respect to P. Some results presented that is needed
for the following Lemma (see [7,28,35]). We assume hereafter that the index H > 3/4 which
ensures that the probability measure generated by the process MH

t is equivalent to the
Wiener measure.

Lemma 2.1: For every 0 < t < T and σ ∈ C we have

Ẽt[eσ(BT +BH
T )] = eσ(BT +BH

T )+1/2(T−t)σ2+1/2σ2(T 2H−t2H),

where Ẽt denotes the quasi-conditional expectation with respect to the risk-neutral measure.

Lemma 2.2: Let f be a measurable function such that Ẽt[f(BT , B
H
T )] <∞. Then for every

0 < t ≤ T and σ ∈ C,

Ẽt

[
f
(
σBT + σBH

T

)]
=
∫

R

1√
2π[σ2(T − t+ T 2H − t2H)]

× exp
[
− (x− σBt − σBH

t )2

2σ2(T − t+ T 2H − t2H)

]
· f(x)dx.

Lemma 2.3: Let A ∈ B(R), f(x) = 1A(x). Then

Ẽt[1A(σBT + σBH
T )] =

∫
R

1√
2π[σ2(T − t+ T 2H − t2H)]

× exp
[
− (x− σBt − σBH

t )2

2σ2(T − t+ T 2H − t2H)

]
1A(x)dx.

Let σ1, σ2 ∈ R. Consider the process

Z
∗
t = σ1(BH

t )∗ + σ2B
∗
t = σ1B

H
t + σ2

1B
2H
t + σ2Bt + σ2

2t, 0 ≤ t ≤ T ;

where σ1 and σ2 are two real constants such that (σ1, σ2) �= (0, 0). From fractional
Girsanov’s theorem ([24], Lemma 1.7), there exists a measure P

∗, such that Z
∗
t is a new

mfBm. We denote E∗
t [·] the quasi-conditional expectation with respect to P

∗ as following

E∗
t [eσ1(B

H
T )∗+σ2B∗

T ] = eσ2(BT +BH
T )+1/2σ2

2(T−t)+1/2σ2
1(T 2H−t2H). (2)

Lemma 2.4: Let f be a measurable function such that Ẽt[f(σ1B
H
T + σ2BT )] <∞. Let Xt =

exp(−σ1B
H
t − σ2

1/2t
2H − σ2Bt − σ2

2/2t). Then for every t ≤ T , we have

Ẽ∗
t [f(σ1B

H
T + σ2BT )] =

1
Xt
Ẽt[f(σ1B

H
T + σ2BT )XT ]. (3)

Lemma 2.5: The price at every t ∈ [0, T ] of a bounded FH
T −measurable claim F ∈ L2 is

given by
Ft = e−r(T−t)Ẽt[F ],

where r represents the constant riskless interest rate.

The proof of Lemma 2.1–2.5 can be seen [7,28,35].
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2.1. MJD-fBm Pricing Model

Consider a continuous-time financial market in [0, T ]. It can be described by a filtered
complete probability space {Ω, F, Ft, P}. {Ft}0≤t≤T ≡ F is a natural σ−filtration generated
by a standard Brownian motion Bt, fBm BH

t , and a Poisson process Pt. Here Pt is an
(Ft, P)-Poisson jump process with intensity λ, independent of Bt and BH

t . jt is jump percent
at time t and i.i.d.; jt satisfy Merton assumptions ln(1 + jt) ∼ N[ln(1 + μj) − 1/2σ2

j , σ
2
j ],

where μj is the unconditional expectation of jt, and σ2
j is the variance of ln(1 + jt). Notice

that the unconditional expectation μj is deterministic and can be calculated, jt is a bounded
functions of t, so we assume that σ3 = ln(1 + μj) is a constant. Then we can denote the
process

Z ∗
t = σ1(BH

t )∗ + σ2B
∗
t + σ3P

∗
t = σ1B

H
t + σ2

1B
2H
t + σ2Bt + σ2

2t+ σ3Pt + σ2
3t, 0 ≤ t ≤ T ;

where (σ1, σ2, σ3) �= (0, 0, 0). By fractional Girsanov’s theorem ([24], Lemma 1.7), there
exists a measure P∗, such that Z ∗

t is a new mfBm. And the quasi-conditional expectation
with respect to P∗ can be denoted as following

E∗
t [eσ1(B

H
T )∗+σ2B∗

T +σ3P∗
T ] = eσ2(PT +BT +BH

T )+1/2σ2
3(T−t)+1/2σ2

2(T−t)+1/2σ2
1(T 2H−t2H).

Let f be a measurable function and satisfying Ẽt[f(σ1B
H
T + σ2BT + σ3PT )] <∞, let Xt =

exp(−σ1B
H
t − σ2

1/2t
2H − σ2Bt − σ2

2
2 t− σ3Pt − σ2

3/2t), for every t ≤ T , by Lemma 2.4, we
have

Ẽ∗
t [f(σ1B

H
T + σ2BT + σ3PT )] =

1
Xt
Ẽt[f(σ1B

H
T + σ2BT + σ3PT )XT ].

Lemma 2.6: Suppose Vt = V (St, t) is a binary differential function if stochastic process St

suitable for the following equation

dSt = μStdt+ σ1StdBH
t + σ2StdBt + σ3StdPt, (4)

then

dVt =
[
∂V

∂t
+ μSt

∂V

∂S
+
(
Hσ2

1S
2
t t

2H−1 +
1
2
σ2

2S
2
t +

1
2
λσ2

3S
2
t

)
∂2V

∂S2

]
dt

+ σ1St
∂V

∂S
dBH

t + σ2St
∂V

∂S
dBt + σ3St

∂V

∂S
dPt + λE[V (S(1 + jt), t) − V (S, t)]dt,

where σ3St∂V /∂SdPt is the change volume of Poisson-jump process within dt for ∂V /∂S,
λE[V (S(1 + jt), t) − V (S, t)]dt is the change volume of Poisson-jump process within dt,
and E is the expectation operator of V .

Proof: See the Appendix A. �

2.2. Wick-Itô-Skorohod Integral and Mixed Jump-Diffusion Fractional Stochastic
Differential Equation

Definition 2.2.1 ([3]): For Y : R → (δ)∗ is a given function such that Yt 
BH
t is dt-

integrable in (δ)∗. Then the Wick-Itô-Skorohod integral of Yt with respect to BH
t by∫

R

YtdBH
t :=

∫
R

Yt 
WH
t dt,

where 
 is the Wick product and WH
t is the fractional Gaussian noise.
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Lemma 2.2.1 (Fractional Girsanov formula I)[3]: Let ψ ∈ Lp(PH), for some p > 1 and let
γ ∈ L2

φ(R) ∩ C(R) ⊂ δ′(R). Let γ̃ be defined by γ̃ =
∫

R
φ(t, s)γ(s)ds. Then the map ω →

ψ(ω + γ̃) belongs to Lρ(PH), for all ρ < p and∫
δ′(R)

ψ(ω + γ̃)dP
H(ω) =

∫
δ′(R)

ψ(ω) · exp�(〈ω, γ〉)dP
H(ω).

where equip δ(R) with the inner product

〈ω, γ〉H :=
∫

R

∫
R

ω(s)γ(t)φ(s, t)dsdt, ω, γ ∈ δ(R),

and
φ(s, t) = φH(s, t) = H(2H − 1)|s− t|2H−2, s, t ∈ R.

Lemma 2.2.1* (Fractional Girsanov formula II)[3]: Let T > 0, and let γ be a continuous
function with supp γ ⊂ [0, T ]. Let K be a function with supp K ⊂ [0, T ] and such that

〈K, f〉H = 〈γ, f〉L2(R), for all f ∈ δ(R), supp f ⊂ [0, T ],

that is, ∫
R

K(s)φ(s, t)ds = γ(t), 0 ≤ t ≤ T.

On the σ−algebra FH
T generated by {BH

s : 0 ≤ t ≤ T}, define a probability measure P
H,γ by

dP
H,γ

dPH
= exp�(−〈ω,K〉),

then B̂H(t) = BH
t +
∫ t

0
γsds, 0 ≤ t ≤ T is a fBm under P

H,γ .

Lemma 2.2.2 (Wick products on different white noise spaces) [3]: Let P = P
H , Q = P

H,γ ,
and B̂H(t) = BH

t +
∫ t

0
γsds. Let the Wick products corresponding to P and Q be denoted by


P and 
Q, respectively. Then
F 
P G = F 
Q G,

for all F, G ∈ (δ)∗H .

The proof of Lemma 2.2.1–2.2.2 can be seen [3].
Suppose the price of the risky asset St and interest rate rt satisfy the following equation{

dSt = rtStdt,

S0 = 1.

By Definition 2.2.1–Lemma 2.2.2, we can consider the mixed jump-diffusion fractional
stochastic differential equation{

dSt = St 
 [(r − q − λσ3)dt+ σ1dBH
t + σ2dBt + σ3dPt],

St = S.

where r is the instantaneous expected return, q ≥ 0 is the continuous dividend rate, σ1 and
σ2 are the same as Lemma 2.3, σ3 is the unconditional expectation of jt. Assume that BH

t ,
Bt and Pt are independent.

https://doi.org/10.1017/S0269964818000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000311


A NEW STOPPING PROBLEM AND THE CRITICAL EXERCISE 33

Suppose J is the path-dependent variable, for lookback put option on the maturity T ,
the stock price St satisfies St ≤ Jt = max0≤t≤T St; for lookback call option on the maturity
T , the stock price St satisfies St ≥ Jt = min0≤t≤T St. Thus, the lookback put option value
V (St, Jt, t) is the function of S, J , and t. Then we construct a riskless portfolio Π = V −
∇ 
 S, choose the appropriate variable ∇ makes the investment portfolio Π in the interval
(t, t+ dt) on risk-free. Then dΠ = r(V −∇ 
 S)dt, according to the Itô formula we have

dΠ = dV −∇ 
 dS −∇q 
 Sdt

=
∂V

∂t
dt+

∂V

∂J
dJ +

1
2
λσ2

3S
2 ∂

2V

∂S2
dt+

∂V

∂S
dS +Hσ2

1S
2t2H−1 ∂

2V

∂S2
dt

+
1
2
σ2

2S
2 ∂

2V

∂S2
dt+ σ3

∂V

∂S
dPt −∇ 
 dS −∇q 
 Sdt

=
[
∂V

∂t
+
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂

2V

∂S2
−∇q 
 S

]
dt+

∂V

∂J
dJ + σ3

∂V

∂S
dPt

+
(
∂V

∂S
−∇
)

 dS.

Note that Jt is nondifferentiable about t, by Jn(t) = [1t
∫ t

0
(Sτ )ndτ ]1/n, such that approxi-

mate amount Jn(t) is differentiable about t and satisfy

nJn−1
n (t)

dJn

dt
=
Sn

t − Jn
n (t)

t
.

Hence St is continuous function with t, we have limn→∞ Jn(t) = max0≤t≤T St = Jt, and

dΠ =
[
∂V

∂t
+
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂

2V

∂S2
−∇q 
 S

]
dt+

∂V

∂J
dJ

+ σ3
∂V

∂S
dPt +

(
∂V

∂S
−∇
)

 dS

=
[
∂V

∂t
+
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂

2V

∂S2
+
∂V

∂Jn

dJn

dt
−∇q 
 S

]
dt

+ σ3
∂V

∂S
dPt +

(
∂V

∂S
−∇
)

 dS.

By ∇ = ∂V
∂S , then

∂V

∂t
+
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂

2V

∂S2
+

(S/Jn)n−1S − Jn

nt

∂V

∂Jn

+ (r − q − λσ3)S
∂V

∂S
+ λE[V (S(1 + jt), t) − V (S, t)] − (r + λ)V = 0,

where S ≤ Jn and E is the expectation operator of V .
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For fixed (J, t), when n→ ∞, then (S/Jn)n−1S − Jn/nt→ 0, since we obtain the
general equations of lookback option under the environment of MJD-fBm as follows:

∂V

∂t
+
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂

2V

∂S2
+ (r − q − λσ3)S

∂V

∂S

+ λE[V (S(1 + jt), t) − V (S, t)] − (r + λ)V = 0, (5)

V (S, J, t) = J − S, (6)

where 0 ≤ S ≤ J <∞, 0 ≤ t ≤ T , and the terminal condition is given by

∂V

∂J

∣∣∣
S=J

= 0. (7)

3. THE OPTIMAL STOPPING PROBLEM

In this section, we turn to the exercise boundary formulation of special optimal stopping
problem described, and the critical exercise price is given by a Volterra integral equation.

3.1. Fundamental Solution Derivation of the General Equations

Define G(S, t; ξ, T ) is the fundamental solution of the following solution problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂V

∂t
+
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂

2V

∂S2
+ (r − q − λσ3)S

∂V

∂S
+ λE[V (S(1 + jt), t)

− V (S, t)] − (r + λ)V = 0, (8)

V (S, T ) = δ(S − ξ), (9)

where 0 < S <∞, 0 < ξ <∞, 0 < t < T , δ(x) is Dirac function.

Lemma 3.1.1 (see [24],Theorem 4.3): The price of a derivative on the stock price with a
bounded payoff f(St) is given by D(t, St), where D(t, S) is the solution of the PDE:⎧⎨⎩

∂D

∂t
+Hσ2S2t2H−1 ∂

2D

∂S2
+ rS

∂D

∂S
− rD = 0,

D(S, T ) = f(S).

Lemma 3.1.2: The solution of equations (8) and (9) is

G(S, t; ξ, T ) =
∞∑

n=0

{
λn(T − t)n exp[−λ(T − t)]

n!
En

}

· exp[−r(T − t)]
ξ
√

2π[2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)]

· exp

{
− 1

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

·
[

ln
S
∏n

i=1(1 + jti
)

ξ
+ (r − q − λσ3)(T − t) − σ2

1(T 2H − t2H)

− 1
2
(σ2

2 + λσ2
3)(T − t)

]2}
,
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where En denotes the expectation operator over the distribution of
∏n

i=1(1 + jti
).

Proof: See the Appendix B. �

Theorem 3.1.3: The fundamental solution G(S, t; ξ, T ) consider to be the function of ξ
and η, and G(S, t; ξ, T ) satisfies the adjoint equation of (8) and (9). If we note

G(S, t; ξ, η) = v(ξ, η),

then v(ξ, η) satisfy

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∂v
∂t

−
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂

2v

∂S2
− (r − q − λσ3)S

∂v

∂S

− λE[v(S(1 + jt), t) − v(S, t)] − (r + λ)v = 0, (10)

v(ξ, η) = δ(ξ − S), (11)

where 0 < S <∞, 0 < ξ <∞, t < η.

Proof: See the Appendix C. �

Corollary 3.1.4: By Lemma 3.1.1, 3.1.2 and 3.1.3, if we note G∗(ξ, η;S, t) is the
fundamental solution of (10) and (11), then

G(S, t; ξ, η) = G∗(ξ, η;S, t).

3.2. Optimal Stopping Problem of American Lookback Option

Conze A and Viswanathan [9] introduced a fractional or partial lookback option, where the
strike is fixed at some fraction over (for a call) or below (for a put) the extreme value.
Specifically, the payoffs for European lookback call and put with fractional floating strikes
and maturity date T are given, respectively, by (ST − amT )+ and (bMT − ST )+, where a
and b are positive constants, allowing flexible adjustment of option premiums. To reduce
option premiums, we assume that a ≥ 1 and 0 < b ≤ 1. Given a finite time horizon T > 0,
let C = C(t, S, m) be the value of the American fractional lookback call option at time
t ∈ [0, T ]. Note that the values of American and European call options are equal if the
underlying asset pays no dividends. In the absence of arbitrage opportunities, the value
C(t, S, m) is a solution of an optimal stopping problem

C(t, S,m) = sup
Tt∈[t,T ]

E[exp{−r(Tt − t)}(STt
− amTt

)+|St = S,mt = m], (12)

where Tt is a stopping time of the filtration F and the conditional expectation is calculated
under the risk-neutral probability measure P. The random variable T ∗

t ∈ [t, T ] is called an
optimal stopping time if it gives the supremum value of the right-hand side of (12). It is
clear from (12) that C is nondecreasing in S and nonincreasing in t, m, and a. Solving the
optimal stopping problem (12) is equivalent to finding the points (t, St, mt) for which early
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exercise before maturity is optimal. Let

D = {(t, S,m) ∈ [0, T ] × [m,∞) × R+}

be the whole domain, and let E and C denote the exercise region and continuation region,
respectively. In terms of the value function C(t, S, m), the exercise region E is defined by

E = {(t, S,m)|C(t, S,m) = (S − am)+},

for which the optimal stopping time T ∗
t satisfies

T ∗
t = inf{η ∈ [t, T ]|(η, Sη,mη) ∈ E}.

The continuation region C is the complement of S in D, such as

C = {(t, S,m)|C(t, S,m) > (S − am)+}.

The boundary that separates S from C is referred to as the early exercise boundary, which
is defined by

S̄(t,m) = sup{S ≥ m|(t, S,m) ∈ C}, t ∈ [0, T ].

At the early exercise boundary [S̄(t, m)]t∈[0,T ], the American fractional lookback call option
would be optimally exercised. In terms of S(t, m), the continuation region C can be
represented as

C = {(t, S,m);m ≤ S < S̄(t,m)}.
Let V (S, J, t) be the lookback option price at time t with stock price S and path-

dependent variable J . Using argument similar to Section 2.2, it can be shown that the
American fractional lookback option price solves the following stochastic partial differential
equations:

0 =
∂V

∂t
+
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂

2V

∂S2
+ (r − q − λσ3)S

∂V

∂S
− (r + λ)V

+

{
λE[V (S(1 + jt),min{J, S(1 + jt)}, t)], for lookback call option,
λE[V (S(1 + jt),max{J, S(1 + jt)}, t)], for lookback put option,

(13)

V (S, J, t) = J − S, (14)

where 0 ≤ t ≤ T , and satisfy an order continuous differentiable on domain

Σ =

{ {(S, J) : 0 < J ≤ S <∞}, for lookback call option,

{(S, J) : 0 < S ≤ J <∞}, for lookback put option,
(15)

the terminal condition is given by

∂V

∂J

∣∣∣∣
S=J

= 0. (16)

We define the differential operator Lt,S by

Lt,S =
∂

∂t
+
(
Hσ2

1t
2H−1 +

1
2
σ2

2 +
1
2
λσ2

3

)
S2 ∂2

∂S2
+ (r − q − λσ3)S

∂

∂S
− (r + λ).
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Then the free boundary problem can be written in a linear complementary form as⎧⎪⎨⎪⎩
[Lt,SC(t, S,m)] · [C(t, S,m) − (S − am)+] = 0,
Lt,SC(t, S,m) ≤ 0,
C(t, S,m) − (S − am)+ ≥ 0

together with auxiliary conditions

C(T, S,m) − (S − am)+ = 0 and lim
S↓m

∂C
∂m

= 0.

For the free boundary [S̄(t, m)]t∈[0,T ], this problem is equivalent to solving the Black–
Scholes–Merton partial differential equations

Lt,SC(t, S,m) = 0, m ≤ S < S̄(t,m), (17)

together with the boundary conditions⎧⎪⎨⎪⎩
lim
S↑S̄

C(t, S,m) = S̄(t,m) − am,

lim
S↑S̄

∂C
∂S

= 1, and lim
S↓m

∂C
∂m

= 0.
(18)

and the terminal condition
C(T, S,m) = (S − am)+. (19)

In the same way as in the call case, by (12)–(19), we can formulate the put case: Let P =
P(t, S, m) be the value of the American fractional lookback call option at time t ∈ [0, T ].
The value P(t, S, M) is a solution of an optimal stopping problem

P(t, S,M) = sup
Tt∈[t,T ]

E[exp{−r(Tt − t)}(bMTt
− STt

)+|St = S,Mt = M], (20)

And P(t, S, M) satisfies the same PDE as (17), then

Lt,SP(t, S,M) = 0, S(t,M) < S ≤ M, (21)

where [S(t, M)]t∈[0,T ] is the early exercise boundary for put. The boundary conditions for
put are ⎧⎪⎨⎪⎩

lim
S↓S

P(t, S,M) = bM − S(t,M),

lim
S↓S

∂P
∂S

= −1, and lim
S↑M

∂P
∂M

= 0.
(22)

and the terminal condition is given by

P(T, S,M) = (bM − S)+. (23)

3.3. The Critical Exercise Price

It is well known that the value of an American fractional option can be represented as the
sum of the value of the corresponding European option and the early exercise premium.
For American fractional lookback options, Lai and Lim [20] proved that the value has such
a decomposition and that the premium has an integral representation. Applying the same
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solution method as in Theorem 3.1.3 to the PDE (23) for P(t, S, M), we can obtain the
critical exercise price under our MJD-fBm environment, which is shown in the following
theorem.

Theorem 3.2.1: Let V (t, S, M) is American fractional lookback put option, then

V (t, S,M) = VE(t, S,M) + e(t, S,M), (24)

where VE(t, S, M) is the price of the hedging portfolio of the equivalent European option,
and

VE(t, S,M) =
∞∑

n=0

{
λn(T − t)n exp[−λ(T − t)]

n!
En

}

·
[
bM exp{−r(T − t)}N(−d̂2) − S

n∏
i=1

(1 + jti
)

exp{−(q + λσ3)(T − t)}N(−d̂1)

]
,

(25)

where En denotes the expectation operator over the distribution of
∏n

i=1(1 + jti
), M is con-

tractual strike price, b is positive constants, N(·) is the cumulative normal distribution
function and

d̂1 =
[
ln
S
∏n

i=1(1 + jti
)

ξ
+ (r − q − λσ3)(T − t) + σ2

1(T 2H − t2H) +
1
2
(σ2

2 + λσ2
3) · (T − t)

]
· (
√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t))−1, (26)

d̂2 = d̂1 −
√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t), (27)

e(t, S, M) is early exercise premium, and its explicit integral can be represented by

e(t, S,M) =
∫ T

t

dη
∫ Sη

0

[bMr − (q + λσ3)ξ] · G(S, t; ξ, η)dξ. (28)

Proof: See the Appendix D. �

Remark 1: If the critical exercise price is given by S = St, then pricing of American
fractional lookback Options can be represented as (24)–(28).

Remark 2: This result shows that American fractional lookback options is equal to the
option of a hedging portfolio: a risk premium associated with the European values plus the
early-exercise premium. Using the similar techniques, the critical exercise price can be given
by the following Corollary.

https://doi.org/10.1017/S0269964818000311 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964818000311


A NEW STOPPING PROBLEM AND THE CRITICAL EXERCISE 39

Corollary 3.2.2: The critical exercise price of American fractional lookback put options
is defined by S = St, 0 ≤ t < T , then S = St satisfy the following Volterra integral equation

St = bM + S exp{−(q + λσ3)(T − t)}

· N

{
−
[
− ln

S
∏n

i=1(1 + jti
)

bM
+ (r − q − λσ3)(T − t) + σ2

1(T 2H − t2H)

+
1
2
(σ2

2 + λσ2
3)(T − t)

]
·
[√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

]−1}

− bM exp{−r(T − t)}
∞∑

n=0

{
λn(T − t)n exp[−λ(T − t)]

n!
En

}

· N

{
−
[
− ln

S
∏n

i=1(1 + jti
)

bM
+ (r − q − λσ3)(T − t) − σ2

1(T 2H − t2H)

− 1
2
(σ2

2 + λσ2
3)(T − t)

]
·
[√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

]−1}

− bMr

∫ T

t

exp{−r(η − t)}
∞∑

n=0

{
λn(η − t)n exp[−λ(η − t)]

n!
En

}

·
{

1 − N

[(
ln
S
∏n

i=1(1 + jti
)

Sη
+ (r − q − λσ3)(η − t) − σ2

1(η2H − t2H)

− 1
2
(σ2

2 + λσ2
3)(η − t)

)
· (
√

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t))−1

]}
dη

+ (q + λσ3)S
∫ T

t

exp{−(q + λσ3)(η − t)}
∞∑

n=0

{
λn(η − t)n exp[−λ(−t)]

n!
En

}

·
{

1 − N

[(
ln
S
∏n

i=1(1 + jti
)

Sη
+ (r − q − λσ3)(η − t) + σ2

1(η2H − t2H)

+
1
2
(σ2

2 + λσ2
3)(η − t)

)
·
(√

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t)

)−1
]}

dη,

(29)

where N(·) is the cumulative normal distribution function and Sη ≥ M > 0, 0 < η ≤ T .

Proof: See the Appendix E. �

In practice, it is very difficult to calculate nonlinear integral in (29), we only show that
this assumption holds in Volterra integral equation for the critical exercise price, by the
relation (29) and Theorem 3.2.1, asymptotic expression of the critical exercise price S = St

is obtained near the maturity t = T . Comparing with Theorem 3.2.1 and Corollary 3.2.2,
the critical exercise price and Volterra integral equation of American fractional lookback
call option are obvious as follows.
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Corollary 3.2.3: Let V ∗(t, S, m) is American fractional lookback call option, then

V ∗(t, S,m) = V ∗
E(t, S,m) + e∗(t, S,m),

where V ∗
E(t, S, m) is price of the hedging portfolio of the equivalent European option, and

V ∗
E(t, S,m) =

∞∑
n=0

{
λn(T − t)n exp[−λ(T − t)]

n!
En

}

·
[
S

n∏
i=1

(1 + jti
) exp{−(q + λσ3)(T − t)}N(−d̂1) − am

× exp{−r(T − t)}N(−d̂2)

]
,

where En denotes the expectation operator over the distribution of
∏n

i=1(1 + jti
), am is

contractual strike price, N(·) is the cumulative normal distribution function and

d̂1 =

[
ln
S
∏n

i=1(1 + jti
)

ξ
+ (r − q − λσ3)(T − t) + σ2

1(T 2H − t2H) +
1
2
(σ2

2 + λσ2
3) · (T − t)

]

×
(√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

)−1

,

d̂2 = d̂1 −
√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t),

e∗(t, S, m) is early exercise premium, and its explicit integral can be represented by

e∗(t, S,m) =
∫ T

t

dη
∫ Sη

0

[(q + λσ3)ξ − amr] · G(S, t; ξ, η)dξ.

4. ASYMPTOTIC RESULTS

In the whole domain D = {(t, S, M) ∈ [0, T ] × [M, ∞) × R+} of the American fractional
floating strike lookback put option model, the American put is alive when S < M and
becomes dead when S > M. The boundary which divides the continuation region (option
remains alive) and the stopping region (option becomes dead) is time-dependent, that is, S
is a function of t. Similar to the usual argument for American floating strike lookback put
options that the critical exercise price should be denoted as

S(t,M) =
St(t, S,M)

M
.

As deduced from (29), at a given time t, the optimal exercise boundary St(t, S, M) increases
linearly with M. Since both S(t, M) and M are increasing function of time t, and so
St(t, S, M) increases as time is approaching expiration.

Similarly, the critical exercise price for the American fractional floating strike lookback
call option should be denoted as

S(t,m) =
St(t, S,m)

m
,

where S(t, m) is a monotonically decreasing function of time t. The plots of S(t, M)
and S(t, m) against time t with varying interest rate are shown in Figure 1, where
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Figure 1. Plot of S and S against time t for American fractional lookback options with
q.

Figure 2. The critical exercise prices of the floating strike lookback put option.

m = M = 100, T = 1, r = 0.05, q = 0.02, 0.04, 0.06, σ1 = 0.2, σ2 = 0.3, σ3 = 0.071, λ =
2.68, a = 1.2 and b = 0.8. Since the lower value of interest rate leads to the loss of the
time value of the floating strike price to be smaller when the American fractional floating
strike lookback call option is exercised prematurely, then the critical exercise price decreases
when the interest rate assumes lower value. The similar phenomenon was also appeared in
[20,37].

The asymptotic behaviors at times close to maturity of the critical exercise prices for the
American fractional floating strike lookback put and call options are respectively given by

lim
t→T−

St(t, S,M) =
1
a

min
(

r

q + λσ3
, 1
)

lim
t→T−

Mt

and

lim
t→T−

St(t, S,m) =
1
b

max
(

r

q + λσ3
, 1
)

lim
t→T−

mt.
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Figure 3. Critical exercise price surfaces generated with MJD-fBm.

Hence the strike prices of the American fractional lookback put and call options are set to
be M

T
0 and mT

0 , respectively. The usual argument and proof of analysis of limiting behaviors
can be applied in a similar manner like literature [18,20,37].

In what follows, the critical exercise prices for the American fractional floating strike
lookback put options be displayed by using MJD-fBm for different parameters. We consider
the critical exercise prices of our MJD-fBm for various Hurst parameters H and then investi-
gate the critical exercise prices for different jump parameters. Figure 2 shows critical exercise
prices of the American fractional floating strike lookback put option against its parameters,
H, λ, μj , σj . The default parameters are r = 0.0250, q = 0.0320, σ1 = 0.1073, K = 100,
H = 0.76, J = 0.35, t = 0, T = 2(Year), λ = 7.88, μj = −0.0721 σj = 0.19, σ2 = 0.0215 and
σ3 = 0.07202. Figure 2 shows that critical exercise prices is a decreasing function of H, λ,
μj and σj . We observed from these figures, that critical exercise price is monotonically
decreasing with various Hurst parameters H and the parameters σj . It is a convex function
of Hurst parameters H and the parameters σj . When the jump intensity λ becomes larger,
the critical exercise price of lookback option decreases faster, this phenomenon is consistent
with empirical evidence.

We compare theoretical exercise prices of some assumptive options among the follow-
ing models: the pure mixed fBm (hereafter pmfBm), the jump-diffusion Brownian motion
(hereafter jdBm), and our MJD-fBm. This exercise consists of some simulations of different
pricing models with some chosen parameters that will be not based on empirical data. Using
an iterative search procedure like the binomial tree methods, we can easily find the exercise
prices for every option critical exercise price and plot an exercise prices surface. In Figure 3,
we plot the critical exercise price surfaces generated with our MJD-fBm. The chosen param-
eters are r = 0.0250, q = 0.0320, σ1 = 0.1073, K = 100, H = 0.76, J = 0.35, t = 0, T =
0.5(Year), λ = 10.22, μj = −0.0721 σj = 0.19, σ2 = 0.0215 and σ3 = 0.07202. We compare
the two exercise prices derived from the pmfBm and jdBm models for out-of-the-money. The
simulation parameters are selected as: r = 0.0250, q = 0.0320, σ1 = 0.1073, K ∈ [80, 140],
H = 0.76, J = 0.8, t = 0.1, T ∈ [0, 3.5](Year), λ = 2.3, μj = 0.0721 σj = 0.19, σ2 = 0.0215
and σ3 = 0.07202. For the critical exercise price surfaces generated with pmfBm and jdBm
models in Figure 4 and Figure 5, respectively. From these figures it is concluded that the
MJD-fBm model be better fitted to the smile curve than pmfBm and jdBm models. As
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Figure 4. Critical exercise price surfaces generated with pmfBm.

Figure 5. Critical exercise price surfaces generated with jdBm.

can be seen, the model indicates that the critical exercise price varies with rt and matu-
rity, which attempts to explain the curious price movement of a stock (or index) that is
sometimes observed during the first few days and last few days leading up to an option’s
expiration date. The negative correlation between the critical exercise price and rt of Euro-
pean lookback fixed strike put option is particularly large and is consistent across all sample
periods. The critical exercise prices is also negatively and almost perfectively correlated with
the maturity(days). This indicates that the non-positive skewness of returns becomes more
negative as market volatility rises. Consequently, the critical exercise prices also could serve
as an accurate indicator for investor fear. Therefore, we can see that our MJD-fBm model
seems reasonable.
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5. CONCLUSION

In this paper, we compound the Brownian motion, fBm, and Poisson process by fractional
Wick-Itô-Skorohod integral. With an optimal stopping problem and the exercise boundary,
the explicit integral representation of early exercise premium and the critical exercise price
are estimated by the fundamental solutions of Volterra integral equation. The fundamental
solution of stochastic partial differential equations plays an important role in numerical
inversion for the put and call case. By solving the free boundary problem and the Black–
Scholes–Merton partial differential equations, we characterized asymptotic behaviors of the
early exercise boundaries at a time to close to expiration and at infinite time to expiration.
We also present and discuss numerical simulations of the critical exercise price.

In the numerical simulations, we further examine the critical exercise prices of our
MJD-fBm under various parameters assumptions. We find that critical exercise prices is
a decreasing function of H, λ, μj and σj , and the critical exercise price is monotonically
decreasing with various Hurst parameters H and the parameters σj . It is a convex function
of Hurst parameters H and the parameters σj . We compared with the pure mixed fBm, the
jump-diffusion Brownian motion and our MJD-fBm, we find that the MJD-fBm model be
better fitted to the smile curve than pmfBm and jdBm models. Our model indicates that
the critical exercise price varies with rt and maturity, which attempts to explain the curious
price movement of a stock (or index) that is sometimes observed during the first few days
and last few days leading up to an option’s expiration date. The negative correlation between
critical exercise price and rt of European lookback fixed strike put option is particularly large
and is consistent across all sample periods. The critical exercise price is also negatively and
almost perfectively correlated with the maturity(days). These results have some reference
significance to pricing other European options and exotic options.
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APPENDIX A. PROOF OF LEMMA 2.6

Let dPt admits two-point distribution as following:

dPt =

{
P{jt = ω1} = p, jumps cannot occur,

P{jt = ω2} = 1 − p, jumps can occur.

Moreover, during the time interval [t, t + dt], we can write the probability of jumps cannot
occur as Prob(ω1) = 1 − λdt, the probability of jumps can occur as Prob(ω2) = λdt. In the case
jt > 0, St+ > St describes stock price St has upward jump at time t. In the case jt < 0, while
St+ < St describes stock price St has downward jump at time t. Hence jt > −1 can ensure the
stock price is positive, such that St+ = St(1 + jt) > 0.

Let Πt = Vt −∇tSt is a riskless portfolio and ∇t is stock shares at time t. In complete financial
markets, there are no risk-free arbitrage opportunities. Then

E(dΠt) = rΠtdt.

No matter the jumps occur or not, by Merton assumptions ln(1 + jt) ∼ N[ln(1 + μj) −
1/2σ2

j , σ2
j ] and model (4), the variance σ2

j exist surely. Because either P (X = x) > 0 for all x > 0
or P (X = x) = 0 for all x > 0. In the first case, every positive point can be hit continuously in X

and this phenomena is called creep[2.4]. In the second case, only jumps can occur (almost surely).
In time interval [t, t + dt], the pricing satisfy the following hypothesis:

i) If jumps cannot occur, for the events ω1, by Vt = V (St, t) second order differentiable, hence
we can use Itô formula, then

dΠt(ω1) = dVt −∇tdSt

=

[
∂V

∂t
+ (Hσ2

1t2H−1 +
1

2
σ2
2 +

1

2
λσ2

3)S2 ∂2V

∂S2

]
(St,t)

dt +

(
∂V

∂S
−∇
)

(St,t)

dSt.

ii) If jumps can occur, for the events ω2, we have

dΠt(ω2) = V (St+) − V (St, t) −∇t(St+ − St) = V [(1 + jt)St, t] − V (St, t) −∇tjtSt.

Then

E(dΠt) = rΠtdt = (1 − λdt)[dΠt(ω1)] + λdt[dΠt(ω2)]

= (1 − λdt)

{[
∂V

∂t
+ (Hσ2

1t2H−1 +
1

2
σ2
2 +

1

2
λσ2

3)S2 ∂2V

∂S2

]
(St,t)

dt

+

(
∂V

∂S
−∇
)

(St,t)

dSt

}
+ λdt{V [(1 + jt)St, t] − V (St, t) −∇tjtSt}.

Let ∇t = ∂V /∂S|(St,t), take expectations for jt on both side of the above equation, and cancel

items of dt2, then we have a parabolic partial differential equation as following

∂V

∂t
+

(
Hσ2

1t2H−1 +
1

2
σ2
2 +

1

2
λσ2

3

)
S2 ∂2V

∂S2
+ (r − λσ3)S

∂V

∂S

+ λE[V (S(1 + jt), t) − V (S, t)] − (r + λ)V = 0,

then under the environment of MJD-fBm, lookback option pricing model can be expressed as a
parabolic integral equation which containing expectation.
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Notice that Vt = V (St, t) is a binary differential function, since we can use Taylor expansion
as follows

dVt =
∂V

∂t
dt +

∂V

∂S
dSt +

1

2

∂2V

∂S2
(dSt)

2 + o(dtdSt), (A.1)

by approximate that

(dBH
t )2 ≈ Var(dBH

t ) = E(dBH
t )2 = dt2H = 2Ht2H−1dt, (dBt)

2 = dt,

and

(dPt, dPt) = d〈P, P 〉(t) = (dPt)
2 = λdt,

we have

(dSt)
2 = [μStdt + σ1StdBH

t + σ2StdBt + σ3StdPt]
2

= μ2S2
t (dt)2 + σ2

1S2
t (dBH

t )2 + σ2
2S2

t (dBt)
2 + σ2

3S2
t (dPt)

2 + 2[μStσ1StdBH
t dt

+ μStσ2StdBtdt + μStσ3StdtdPt + σ1Stσ2StdBH
t dBt

+ σ1Stσ3StdBH
t dPt + σ2Stσ3StdBtdPt]

= 2Hσ2
1S2

t t2H−1dt + σ2
2S2

t dt + λσ2
3S2

t dt + o(dtdStdPt). (A.2)

Substituting (4) and (A.2) into (A.1), then

dVt =
∂V

∂t
dt +

∂V

∂S
[μStdt + σ1StdBH

t + σ2StdBt + σ3StdPt]

+
1

2

∂2V

∂S2
[2Hσ2

1S2
t t2H−1dt + σ2

2S2
t dt + λσ2

3S2
t dt]

=

[
∂V

∂t
+ μSt

∂V

∂S
+

(
Hσ2

1S2
t t2H−1 +

1

2
σ2
2S2

t +
1

2
λσ2

3S2
t

)
∂2V

∂S2

]
dt + σ1St

∂V

∂S
dBH

t

+ σ2St
∂V

∂S
dBt + σ3St

∂V

∂S
dPt + λE[V (S(1 + jt), t) − V (S, t)]dt.

APPENDIX B. PROOF OF LEMMA 3.1.2

Let x = ln
S
∏n

i=1(1 + jti)

ξ
∈ R, W = V · exp {−r(T − t)}, then solution problem of (10) and (11)

is equivalent to the following solution problem

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂W

∂t
− (Hσ2

1t2H−1 +
1

2
σ2
2 +

1

2
λσ2

3)
∂2W

∂x2
− [(r − q − λσ3)

−(Hσ2
1t2H−1 +

1

2
σ2
2 +

1

2
λσ2

3)] · ∂W

∂x
− (r + λ)W = 0, (B.1)

W(x, T ) =
exp{−r(T − t)}

ξ
δ(x), (B.2)
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Let W = V · exp {α(T, t) + β(T, t)x}, where

α(T, t) = −r(T − t) − [(r − q − λσ3)(T − t) − σ2
1(T 2H − t2H) − 1

2 (σ2
2 + λσ2

3)(T − t)]2

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

, (B.3)

β(T, t) =

∑∞
n=0 P{jt = n}En

ξ
√

2π[2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)]

=

∑∞
n=0{λn(T − t)n exp[−λ(T − t)](n!)−1En}

ξ
√

2π[2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)]

, (B.4)

here Poisson distribution with intensity λ(T − t). Then by (B.1) and (B.2) we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂V

∂t
−
(

Hσ2
1t2H−1 +

1

2
σ2
2 +

1

2
λσ2

3

)
∂2V

∂x2

−
[
(r − q − λσ3) −

(
Hσ2

1t2H−1 +
1

2
σ2
2 +

1

2
λσ2

3

)]
· ∂V

∂x
− (r + λ)V = 0, (B.5)

V(x, 0) =
exp(−βx)

ξ
δ(x) =

1

ξ
δ(x). (B.6)

The solution of stochastic parabolic partial differential equations B.5 and B.6 can be written as

V(x, ξ; t, T ) =
1

ξ
√

2π[2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)]

· exp

{
− x2

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

}
.

(B.7)

Combine B.7 with B.3 and B.4 we have

W(x, ξ; t, T ) =

∑∞
n=0{λn(T − t)n exp[−λ(T − t)](n!)−1En}

ξ
√

2π[2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)]

· exp

{
[−r(T − t)] − 1

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

× [x + (r − q − λσ3)(T − t) − σ2
1(T 2H − t2H) − 1

2
(σ2

2 + λσ2
3)(T − t)]2

}
. (B.8)

Substitute original variables (S, t) in B.8, we obtain

G(S, t; ξ, T ) =
∞∑

n=0

{
λn(T − t)n exp[−λ(T − t)]

n!
En

}

· exp[−r(T − t)]

ξ
√

2π[2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)]

· exp

{
− 1

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

[
ln

S
∏n

i=1(1 + jti)

ξ

· + (r − q − λσ3)(T − t) − σ2
1(T 2H − t2H)

1

2
(σ2

2 + λσ2
3)(T − t)

]2}
.
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APPENDIX C. PROOF OF THEOREM 3.1.3

For any ε > 0, considering integral as follows

0 =

∫ ∞

0
dx

∫ η−ε

t+ε
[G∗(x, y; S, t) · G(x, y; ξ, η) − G(x, y; ξ, η) · G∗(x, y; S, t)]dy

=

∫ ∞

0
dx

∫ η−ε

t+ε

{
∂(G∗G)

∂y
+

(
Hσ2

1t2H−1 +
1

2
σ2
2 +

1

2
λσ2

3

)
∂

∂x

(
x2G∗ ∂G

∂x

)
+ λE[v(S(1 + jt), t) − v(S, t)] −

(
Hσ2

1t2H−1 +
1

2
σ2
2 +

1

2
λσ2

3

)
∂

∂x

[
G

∂

∂x
(x2G∗)

]
+ (r − q − λσ3)

∂

∂x
(xGG∗) − λE[v(S(1 + jt), t) − v(S, t)]

}
dy.

When x → 0, ∞, we have

x2G∗ ∂G

∂x
→ 0, G

∂

∂x
(x2G∗) → 0, xGG∗ → 0,

since ∫ ∞

0
G∗(x, η − ε; S, t) · G(x, η − ε; ξ, η)dx =

∫ ∞

0
G∗(x, t + ε; S, t) · G(x, t + ε; ξ, η)dx.

Let ε → 0, by conditions (9) and (11) we get

∫ ∞

0
G∗(x, η; S, t) · δ(x − ξ)dx =

∫ ∞

0
δ(x − S) · G(x, t; η, ξ)dx.

Then

G(S, t; ξ, η) = G∗(ξ, η; S, t).

APPENDIX D. PROOF OF THEOREM 3.2.1

Suppose V (t, S, M) satisfies an order continuous differentiable on domain Σ: Σ = {0 ≤ S ≤ M <
∞, 0 ≤ t < T}, and V (t, S, M) exist piecewise continuous of the second order derivative, then

−LV (t, S, M) =

{
0, (t, S, M) ∈ Σ1,

bMr − (q + λσ3)S, (t, S, M) ∈ Σ2,
(D.1)

where L is the Black-Scholes operator.
Multiplying both sides of the equation (D.1) to G∗(ξ, η; S, t) and quadrature on domain

{0 ≤ ξ ≤ M < ∞, t + ε ≤ η ≤ T}, For Σ2 = {0 ≤ ξ ≤ M ≤ Sη, 0 ≤ η < T}, and Sη is continuous
monotonous of the asset price, then

∫ T

t+ε
dη

∫ Sη

0
[bMr − (q + λσ3)ξ] · G∗(ξ, η; S, t)dξ

= −
∫ T

t+ε
dη

∫ ∞

0
G∗(ξ, η; S, t)LV dξ
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= −
∫ T

t+ε
dη

∫ ∞

0
[G∗(ξ, η; S, t)LV (η, ξ, M) − V (η, ξ, M)L∗G∗(ξ, η; S, t)]dξ

= −
∫ T

t+ε
dη

∫ ∞

0

{
∂(G∗V )

∂η
+

(
Hσ2

1t2H−1 +
1

2
σ2
2 +

1

2
λσ2

3

)
∂

∂ξ

(
ξ2G∗ ∂V

∂ξ

)

+ λE[V (t, S(1 + jt), M) − V (t, S, M)] −
(

Hσ2
1t2H−1 +

1

2
σ2
2 +

1

2
λσ2

3

)
∂

∂ξ

×
[
V

∂

∂ξ
· (ξ2G∗)

]
+ (r − q − λσ3)

∂

∂ξ
(ξV G∗) − λE[V (t, S(1 + jt), M) − V (t, S, M)]

}
dξ,

where L∗ is the adjoint Black–Scholes operator, and when ξ → 0, ∞, we have

ξ2G∗ ∂V

∂ξ
→ 0, V

∂

∂ξ
(ξ2G∗) → 0, ξV G∗ → 0,

hence ∫ ∞

0
G∗(ξ, t + ε; S, t)V (t + ε, ξ, M)dξ

=

∫ ∞

0
G∗(ξ, T ; S, t)V (T, ξ, M)dξ +

∫ T

t+ε
dη

∫ Sη

0
[bMr − (q + λσ3)ξ]G

∗(ξ, η; S, t)dξ.

Let ε → 0, by (11) and Corollary 3.1.4, we obtain

V (t, S, M) =

∫ ∞

0
G(S, t; ξ, T )(bM − ξ)+dξ +

∫ T

t
dη

∫ Sη

0
[bMr − (q + λσ3)ξ]G(S, t; ξ, η)dξ

= VE(t, S, M) + e(t, S, M).

Then the prove is finished.

APPENDIX E. PROOF OF COROLLARY 3.2.2

By (28) and (B.6), e(S, t) can be represented by

e(t, S, M) =

∫ T

t
dη

∫ Sη

0
[bMr − (q + λσ3)ξ] ·

∞∑
n=0

{
λn(T − t)n exp[−λ(T − t)]

n!
En

}

· exp{−r(T − t)}
ξ
√

2π[2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)]

· exp

{
− 1

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

·
[

ln
S
∏n

i=1(1 + jti)

ξ
+ (r − q − λσ3)(T − t) − σ2

1(T 2H − t2H)

− 1

2
(σ2

2 + λσ2
3)(T − t)

]2}
dξ. (E.1)
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Let

x∗ =
1√

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t)

·
[

ln
S
∏n

i=1(1 + jti)

ξ
+ (r − q − λσ3)(η − t) − σ2

1(η2H − t2H) − 1

2
(σ2

2 + λσ2
3)(η − t)

]
,

dx∗ = − dξ

ξ
√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

,

then

e(t, S, M)

=
bMr√

2π

∫ T

t
exp{−r(η − t)}

∞∑
n=0

{
λn(η − t)n exp[−λ(η − t)]

n!
En

}
dη

·
∫ ∞

ln
S
∏n

i=1(1+jti
)

Sη
+(r−q−λσ3)(η−t)−σ2

1(η2H−t2H )− 1
2 (σ2

2+λσ2
3)(η−t)√

2σ2
1(η2H−t2H )+σ2

2(η−t)+λσ2
3(η−t)

exp{−x2}dx

− (q + λσ3)S√
2π

∫ T

t
exp{−(q + λσ3)(η − t)}

∞∑
n=0

{
λn(η − t)n exp[−λ(η − t)]

n!
En

}
dη

·
∫ ∞

ln
S
∏n

i=1(1+jti
)

Sη
+(r−q−λσ3)(η−t)−σ2

1(η2H−t2H )− 1
2 (σ2

2+λσ2
3)(η−t)√

2σ2
1(η2H−t2H )+σ2

2(η−t)+λσ2
3(η−t)

× exp

{
−x2

2
+ [
√

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t)]x

}
dx

= bMr

∫ T

t
exp{−r(η − t)}

∞∑
n=0

{
λn(η − t)n exp[−λ(η − t)]

n!
En

}

·
{
1−N

[
ln

S
∏n

i=1(1+jti
)

Sη
+ (r− q−λσ3)(η − t)−σ2

1(η2H − t2H) − 1
2 (σ2

2 + λσ2
3)(η − t)

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t)

]}
dη

− (q + λσ3)S

∫ T

t
exp{−(q + λσ3)(η − t)}

∞∑
n=0

{
λn(η − t)n exp[−λ(η − t)]

n!
En

}
dη

·
∫ ∞

ln
S
∏n

i=1(1+jti
)

Sη
+(r−q−λσ3)(η−t)−σ2

1(η2H−t2H )− 1
2 (σ2

2+λσ2
3)(η−t)√

2σ2
1(η2H−t2H )+σ2

2(η−t)+λσ2
3(η−t)

× exp

{
− 1

2
·
(

x +
√

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t)

)2

+ (r − q − λσ3)(η − t) + σ2
1(η2H − t2H) +

1

2
(σ2

2 + λσ2
3)(η − t)

}
dx

= bMr

∫ T

t
exp{−r(η − t)}

∞∑
n=0

{
λn(η − t)n exp[−λ(η − t)]

n!
En

}

·
⎧⎨⎩1 − N

⎡⎣ ln
S
∏n

i=1(1+jti
)

Sη
+ (r− q−λσ3)(η− t) − σ2

1(η2H − t2H) − 1
2 (σ2

2 + λσ2
3)(η− t)

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t)

⎤⎦⎫⎬⎭ dη
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− (q + λσ3)S

∫ T

t
exp{−(q + λσ3)(η − t)}

∞∑
n=0

{
λn(η − t)n exp[−λ(η − t)]

n!
En

}

·
⎧⎨⎩1−N

⎡⎣ln S
∏n

i=1(1+jti
)

Sη
+ (r− q−λσ3)(η− t) + σ2

1(η2H − t2H) + 1
2 (σ2

2 + λσ2
3)(η− t)

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t)

⎤⎦⎫⎬⎭ dη.

(E.2)

Substituting (E.2) into (24), we have

V (t, St, M) = bM − St,

then we obtain

bM − St = VE(t, St, M) + e(t, St, M),

such that

St = bM + S exp{−(q + λσ3)(T − t)}

· N

{
−
[
− ln

S
∏n

i=1(1 + jti)

bM
+ (r − q − λσ3)(T − t) + σ2

1(T 2H − t2H)

+
1

2
(σ2

2 + σ2
3)(T − t)

]
·
[√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

]−1}

− bM exp{−r(T − t)}
∞∑

n=0

{
λn(T − t)n exp[−λ(T − t)]

n!
En

}

· N

{
−
[
− ln

S
∏n

i=1(1 + jti)

bM
+ (r − q − λσ3)(T − t) − σ2

1(T 2H − t2H)

− 1

2
(σ2

2 + λσ2
3)(T − t)

]
·
[√

2σ2
1(T 2H − t2H) + σ2

2(T − t) + λσ2
3(T − t)

]−1
}

− bMr

∫ T

t
exp{−r(η − t)}

∞∑
n=0

{
λn(T − t)n exp[−λ(T − t)]

n!
En

}

·
{

1 − N

[(
ln

S
∏n

i=1(1 + jti)

Sη
+ (r − q − λσ3)(η − t) − σ2

1(η2H − t2H)

− 1

2
(σ2

2 + λσ2
3)(η − t)

)
·
(√

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t)

)−1
]}

dη

+ (q + λσ3)S

∫ T

t
exp{−(q + λσ3)(η − t)}

∞∑
n=0

{λn(T − t)n exp[−λ(T − t)]

n!
En}

·
{

1 − N

[(
ln

S
∏n

i=1(1 + jti)

Sη
+ (r − q − λσ3)(η − t) + σ2

1(η2H − t2H)

+
1

2
(σ2

2 + λσ2
3)(η − t)

)
· (
√

2σ2
1(η2H − t2H) + σ2

2(η − t) + λσ2
3(η − t))−1

]}
dη.
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