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SUMMARY
This paper presents a wheel–terrain interaction model, which
enables efficient modeling of wheeled locomotion in soft
soil and numerical simulations of off-road mobile robots.
This modular model is derived based on wheel kinematics
and terramechanics and the main focus is on describing the
stress distributions along the wheel–terrain interface and the
reaction forces exerted on the wheel by the soil. When
the wheels are steered, the shear stresses underneath the
wheel were modeled based on isotropic assumptions. The
forces and torques contributed by the bulldozing effect of
the side surfaces is also considered in the proposed model.
Furthermore, the influence of grousers, commonly used on
smaller mobile robots, was modeled by (1) averaging the
normal pressures contributed by the grousers and the wheel
concave portion, and (2) assuming that the shear phenomenon
takes places along the grouser tips. By integrating the model
with multibody system code for vehicle dynamics, simulation
studies of various off-road conditions in three-dimensional
environments can be conducted. The model was verified by
using field experiment data, both for a single-wheel vehicle
and a whole vehicle.

KEYWORDS: Wheel–terrain interaction; Wheel–soil inter-
face; Terramechanics; Off-road mobile robots; Multibody
system.

1. Introduction
Wheeled mobile robots and unmanned ground vehicles
(UGVs) have many applications, including reconnaissance,
surveillance, rescue, and planetary exploration. These
applications often require the robots to travel on unstructured,
rugged terrain to conduct tasks, such as surveillance or
transporting material.1 The mobility and trafficability of
the robots in these off-road environments are crucial to the
mission success, with a common failure mode being the robot
trapped in soft soil. Another key mission factor is power
consumption, which has become particularly relevant for
applications with limited energy sources.2 Thus, to achieve a
successful mission and improve the overall robot mobility
and power performance, efficient modeling of wheeled
locomotion and propulsion load is required,3 in which the
wheel–terrain interaction plays an important role.
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In the mid-20th-century, Bekker systematically studied
the principles of off-road vehicle–terrain interaction4,5 and
laid the foundation for “terramechanics,” which was later
extended by Wong6,7 to form an important element of
off-road vehicle dynamics. In ref. [8], Wong proposed an
analytical model to predict the performance of a driven rigid
wheel on soft soil in a straight-line motion scenario. For
the steering performance, a general theory for skid-steering
tracked vehicles on flat firm ground9 was proposed although
the wheeled vehicles were not covered. One contribution
of this tracked vehicle model is the identification of shear
deformations and stress distributions along the track–soil
interface during steady-turning maneuvers.

Inspired by Wong’s work, Tran proposed a two-
dimensional (2D) dynamic model of the vehicle–terrain
interaction for a skid-steering wheeled UGV on a flat
surface.10,11 In the model, an integrated approach was utilized
by expressing the soil deformations and reaction forces into
the vehicle coordinate frame directly.10 Model flexibility is
an issue of this integrated approach since extensive work is
required to fit this model into other vehicle configurations.
Also, specific vehicle dynamic equations must be derived,
which can be very complex for mobile robots, such as
the Mars exploration rovers, with steering mechanisms or
suspensions.

In refs. [12, 13], a terramechanics-based analytical model
for the steering maneuvers of planetary exploration rovers
on loose soil was developed. The model, which is termed
“all-wheel dynamics model,” used a separate approach and
can be divided into two submodels: the “wheel–soil contact
model,” by which the contact forces on the wheel can be
obtained; and the ‘wheel-and-vehicle model’, in which the
forward dynamics was solved by the Open Dynamics Engine
(ODE) and a multibody system (MBS) dynamics solver.
Modeling of the wheel–soil interaction during a turning
maneuver was achieved by linear motion approximation
at different slip angles. The shear stress along the wheel–
terrain interface was assumed to be anisotropic by assigning
different values to the shear moduli along the longitudinal
and the lateral directions.13 This method leads to two
underlying problems: (1) the direction of the shear stress
is not strictly opposite to the shear velocity under most
circumstances by using the anisotropic assumption; and (2)
it is uncertain, however, that the longitudinal and lateral
shear moduli can be experimentally measured. In addition,
the influence of lugs/grousers, an important factor affecting
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Table I. Comparison between WTIM and other wheel/track/vehicle–terrain interaction models.

Bulldozing
Package Model Method for the steering effect Model the Numerical

Model (ref.) Wheel type form dimension maneuver included? grousers? integration

Wong’s wheel model8 Rigid wheel Equations 1D Not applicable (n/a) n/a No 1D
Wong’s track model9 Track Equations 2D Isotropic shear model Ignored No 2D
MIT’s model23 Rigid wheel Equations 1D n/a n/a No Closed-form

solution
HIT’s model21,22 Rigid wheel Equations 1D n/a n/a Yes 1D
Tran’s model∗10,11 Rigid wheel Equations 2D Homogeneous soil

assumption
Ignored No 2D

Tohoku UNIV’s
model12,13

Rigid wheel Equations 2D/3D Linear motion
approximation;
Anisotropic shear
model

Yes
(Hegedus’s
formula)

No 1D

AS2 TM15,16 Elastic tire S-function 3D Elastic-tire–soft-soil
model from
literatures

Not men-
tioned

Model the
tire
profile

Not
mentioned

WTIM Rigid wheel Matlab
function;
S-function

3D Isotropic and
anisotropic shear
models both
available

Yes
(Bekker’s
formula)

Yes 2D

∗ Tran’s model is actually a vehicle–soil model of a specific UGV based on a nonmodular approach.

wheel performance, was not theoretically studied in the
model.

In fact, modeling of the lugged wheel (wheel with
grousers) has rarely been studied in previous wheel–terrain
interaction models. One exception is the wheel–soil model
proposed in refs. [21, 22] for linear motion scenarios
(referred to as HIT’s model in subsequent sections). Unlike
Wong’s wheel model, where the normal and shear forces
are distributed along a cylindrical surface determined by the
wheel radius, the normal pressure and the shear stress in
HIT’s model are assumed to be along surfaces with radii equal
to the wheel radius and the shear radius (a newly introduced
variable defined as a function of the wheel radius and the
lug height), respectively. Parameter tuning of soil physical
properties is observed in ref. [22] to fit this model to the
experiment results.

In ref. [23], researchers from MIT proposed a wheel–soil
model for straight-line motion (referred to as MIT’s model in
following sections). Closed-form solutions for the drawbar
pull and the driving torque were derived by linearizing
the stresses along the wheel–soil interface, making real-
time computation and on-line terrain parameter estimation
possible.23 However, this wheel–soil model only covers the
linear motion maneuvers. A wheeled locomotion model ap-
propriate for a variety of circumstances (such as the steering
maneuvers) is required for the simulation of mobile robots.

An elastic-tire-and-soft-soil model AS2T M was de-
veloped by AESCO16 for the prototyping and simulation
of industrial off-road vehicles. This tire–soil model, which
is mainly based on the research summarized in refs. [14,
15], can be used for off-road vehicle simulation in 3D
environments, if combined with an auxiliary road module
and a MBS dynamics solver. Unfortunately, the rigid wheel
model, which is necessary for many robotic vehicles, is
not available in the commercial version.16 Nevertheless,

this tire–soil model has been used to investigate rigid
wheel performance by some researchers.17 In addition, the
relatively expensive cost limits further application of this
commercial product.

A modular software package for the wheel–soil interaction
is useful if it can be integrated either with a MBS dynamics
solver or with vehicle dynamic equations to simulate different
off-road vehicles and robots. The model we developed, called
the “wheel terrain interaction model (WTIM),” incorporates
many key concepts from previous studies of terramechanics.
Our model was developed for the purpose of both dynamic
simulations of mobile robots and the energy/power system
design. A key future application of the WTIM package is the
sizing of on-board power devices (batteries, motors, etc.) for
mobile robots.

Table I gives a detailed comparison between WTIM and
existing wheel/track/vehicle–terrain interaction models from
the literature. The main contributions of WTIM are as
follows:

(a) WTIM has been implemented as an open-source software
package in the form of an S-function; its compatibility
with MBS solvers and the modular, drag-and-drop
features enable efficient tool-based simulation of mobile
robots.

(b) WTIM uses improved approaches to calculate the stresses
along the wheel–soil interface by including the influence
of the wheel profiles (grousers) and the bulldozing
effect contributed by the side surfaces during a steering
maneuver.

(c) Parameter tuning of soil physical properties to fit wheel–
soil models to the experiment results, which is observed
in refs. [13, 22], can be avoided by using WTIM.

The remainder of this paper is organized as follows. The
overall model architecture by incorporating WTIM with
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Fig. 1. (Colour online) Overall model architecture by integrating
WTIM with the MBS software (or dynamic equations) to simulate
mobile robots.

the MBS software for simulation study is introduced in
Section 2. Section 3 gives a detailed description of the wheel–
terrain interaction modeling, with emphases on modeling the
steering maneuvers and the influence of grousers. Simulation
studies and experimental verifications of the proposed model
are given in Section 4. Section 5 concludes the present paper.

2. Overall Model Architecture
Figure 1 shows the overall model architecture by integrating
the WTIM package with the MBS software for off-road
vehicle simulation. The wheel–soil interaction for each wheel
of the robot is handled by a WTIM block while the overall
robotic vehicle configuration is modeled by MBS software,
such as ADAMS and SimMechanics. For each WTIM block,
there are four groups of inputs (1) kinetic parameters and
some other information captured by the MBS solver; (2) the
3D terrain geometry and the soil data, which are handled
by an auxiliary road module; (3) the wheel geometry data;
and (4) some other user-specified parameters for simulation
study. The outputs of the WTIM block include the following:
(1) the forces and torques exerted on the wheel by the soil,
which will be returned to the MBS solver; and (2) some other
parameters which may be required for simulations (outputs
from the miscellaneous port), such as the slip ratio. It should
be pointed out that the configurations of the robots/vehicles
can also be modeled by user-written dynamic equations
rather than the MBS solver.

3. Wheel–Terrain Interaction Modeling
As shown in Fig. 2, the wheel–terrain interaction modeling
generally involves the following steps: (1) preprocessing,

User inputs
wheel data, soil data, kinetic info, etc.

Geometry of the 
wheel–soil interface

contact angles, etc.

Kinetic parameters
Shear rates, shear 
deformations, etc.

Normal pressure
Normal direction

Shear stresses
Tangential and lateral 

directions

Integration over wheel–soil contact area

Postprocessing and Model outputs
Forces, torques, etc.

Preprocessing
coordinate system transformation, etc.

Fig. 2. (Colour online) General procedure for the wheel–terrain
interaction modeling. The key task is to identify the stress
distributions along the wheel–soil contact area based on knowledge
of terramechanics.

such as coordinate system (CS) transformations; (2) identify
the geometric parameters of the wheel–soil interface, such
as wheel sinkage and contact angles; (3) determine the shear
rates and the shear deformations; (4) identify the normal
pressure and shear stresses along the wheel–soil contact area
by using terramechanics; (5) determine the forces and torques
by integrating the stress distributions over the wheel–soil
contact region; (6) postprocessing and CS transformations to
output the forces and torques in the world frame or the wheel
carrier frame, according to the user’s requirements.

3.1. Coordinate systems and transformations
For a modular modeling approach, CS transformations are
required to express the soil deformations and reaction forces
in the same frame. To be clear, all the coordinate frames
defined in this paper follow the right-hand rule and the SAE
standard directions. As shown in Fig. 3, the world reference
frame �0 is defined in the way such that the x0-axis points to
the north direction and the z0-axis points vertically upward.
Thus, the gravity force will be along the negative z0-direction.
A unit vector N is used to represent the normal direction of
the inclined surface and its coordinate in the world frame �0

is

N = [Nx0 Ny0 Nz0 ]T. (1)

We assume that the wheel carrier center and the wheel
center coincide at point O. Frame �1 is a CS attached to the
wheel carrier with the y1-axis coinciding with the rotation
axis. The orientation between frame �1 and frame �0, which
is determined by the rotation matrix R0

1, can be calculated
by the MBS solver. The coordinates of the wheel carrier
center, and the translational and angular velocities of the
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Fig. 3. (Colour online) A rigid wheel traveling on an inclined
slope with the surface normal vector N. The wheel–soil contact
area consists of a cylindrical surface and two side surfaces (if
applicable).

wheel carrier can be expressed in the world frame �0 as⎧⎪⎪⎨
⎪⎪⎩

P0
wc = [

xx0
o y

y0
o zz0

o

]T
,

v0
wc = [

vx0
o v

y0
o vz0

o

]T
,

�0
wc = [

�x0
o �

y0
o �z0

o

]T
.

(2)

If the wheel travels over a flat surface, the x1-axis
will be parallel to the flat surface. Moreover, it will
coincide with the longitudinal direction during linear motion
scenarios. However, for many off-road vehicles and planetary
exploration rovers, where the wheel carriers are connected to
a suspension system or some articulated arms, the x1-axis will
no longer be parallel to the soil surface. For this purpose, a
reference frame �2 is introduced, with the x2-axis parallel to
the surface and the y2-axis coinciding with the wheel rotating
axis. In fact, �2 and �1 are related through a rotation about
the y1-axis by an angle θy , which can be calculated by

θy = −sin−1(Nx1 ), (3)

where Nx1 is the x1-component of N in �1. Then, the rotation
matrix between �2 and �1 can be obtained as18

R1
2 =

⎡
⎣ cos θy 0 sin θy

0 1 0
− sin θy 0 cos θy

⎤
⎦. (4)

The translational and angular velocities of the wheel carrier
can then be expressed in the reference frame �2 as{

v2
wc = R2

0v0
wc = R2

1R
1
0v0

wc = [vx vy vz ]T,

�2
wc = R2

0�
0
wc = R2

1R
1
0�

0
wc = [�x �y �z ]T.

(5)

It is important to make sure that

vx ≥ 0. (6)

If this is not the case, a further rotation of 180◦ about
the z2-axis will be needed because only the forward motion
has been modeled in the terramechanics model. Then, the

y1/y2

z2

x2

d N

P(y,θ )

O
θf

θr

O x2y2

z2

θ

P(y,θ )

hf

ωy vx

hr

α

A

A

A-A section view

r

b

Fig. 4. (Colour online) Rear and side views of a rigid wheel on soft
soil. P(y,θ ) is a point on the cylindrical surface with contact angle
equals to θ .

velocity of the wheel center and the angular velocity of the
rigid wheel can be obtained in the reference frame �2 as{

v = v2
wc = [vx vy vz]T,

ω = [�x �y + ω �z]T = [ωx ωy ωz]T,
(7)

where ω is the wheel rotational speed relative to the wheel
carrier. All the subsequent derivations can be conducted in
the reference frame �2 after the above transformations.

3.2. Geometry of the wheel–soil interface
All the terramechanics models for the wheel–soil interaction
are based on two fundamental relations, the pressure–sinkage
relation and the shear–tension–displacement relation,16

which can be experimentally identified by tests given in ref.
[6]. The shear stress is a function of shear displacement
and normal pressure, the latter of which can usually be
determined by the geometry of the wheel–soil interface1

based on terramechanics. Thus, we first identify the wheel
sinkage and contact angles for the normal pressure in this
section and then calculate the shear deformations for the
shear stress in the next section.

Figure 4 shows two section views of the wheel–soil contact
scenario given in Fig. 3. The distance from the wheel center
to the ground surface d can be identified by the road module.
Let α (α is negative in Fig. 4) denote the angle between the
z2-axis and the ground surface normal vector N. Then,

α = sin−1(Ny2 ). (8)

We consider a point P(y, θ) in the cylindrical wheel–soil
interface, whose coordinate in frame �2 can be expressed
as

P(y, θ) = [r sin θ y −r cos θ ]T. (9)

In Fig. 4, hf (y) represents the wheel sinkage relative to the
uncompacted soil in front of the wheel and hr (y) represents
the rut recovery, as described in refs. [12, 16]. Let θf (y) and

1 In the literatures, the term ‘wheel-soil interface’ usually refers
to the cylindrical wheel-soil contact area, as shown in Fig. 3.
Following this tradition, if not specially pointed out, the term
‘wheel-soil interface’ indicates the cylindrical wheel-soil contact
region in this paper.
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Fig. 5. (Colour online) Determination of the shear rates
corresponding to point P(y,θ ) at the wheel–soil interface
(cylindrical surface).

θr (y) denote the corresponding entry contact angle and the
exit angle, respectively. From Fig. 4, we have

hf (y) = r − d/cos α − y tan α,

= r − d
/√

1 − (Ny2 )2 − y · Ny2
/√

1 − (Ny2 )2,

(10)

θf (y) = cos−1(1 − hf (y)/r), (11)

θr (y) = − cos−1(1 − λ · hf (y)/r), (12)

where λ is the ratio between hr (y) and hf (y), which can be
experimentally measured by sensing systems, e.g., a vision
system.12 Other formulas and techniques can also be used
to identify λ and θr (y).16 In the later sections, we will give
some of these alternative formulas.

3.3. Shear rates and shear deformations
As shown in Fig. 5, the absolute velocity of point P(y, θ)
relative to the world frame can be expressed in frame �2 as

v(y, θ) =

⎡
⎢⎣

ṽx

ṽy

ṽz

⎤
⎥⎦ =

⎡
⎢⎣

vx − ωzy − ωyr cos θ

vy + ωzr sin θ + ωxr cos θ

vz − ωyr sin θ + ωxy

⎤
⎥⎦. (13)

By decomposing this velocity into the tangential, lateral,
and normal directions (Fig. 5), the tangential shear rate vjt ,
the lateral shear rate vjl , and the compression speed vjn (the
positive directions of these speeds are given in Fig. 5) can be
derived as

vjt (y, θ) = −ṽz sin θ − ṽx cos θ,

= −(vz + ωxy) sin θ − (vx − ωzy) cos θ + ωyr,

vjl(y, θ) = ṽy = vy + ωzr sin θ + ωxr cos θ,

vjn(y, θ) = ṽx sin θ − ṽz cos θ,

= (vx − ωzy) sin θ − (vz + ωxy) cos θ.
(14)

By following the approach in ref. [8], shear deformations
of the point P(y, θ) on the wheel–soil interface can be
determined by integrating the corresponding shear rates
from the entry position when this point makes the first
contact with the soil to its current position. By assuming
that vx, vy, vz, ωx, ωy , and ωz are slowly time-varying and

hence can be approximated as constants during the short
time interval of the integration, the shear deformations (the
positive directions are given in Fig. 5) along the tangential
and lateral directions are

jt (y, θ) =
[

(−vx + ωzy)(sθf − sθ) + (vz + ωxy)
·(cθf − cθ) + ωyr(θf − θ)

]/
ωy,

jl(y, θ) =
[
vy(θf − θ) + ωzr(cθ − cθf )
+ ωxr(sθf − sθ)

]/
ωy,

(15)
where sθ ≡ sin θ , cθ ≡ cos θ, and ωy �= 0.

In ref. [19], the authors considered the time-varying case
for a tracked robot and proposed an alternative method to
identify the shear deformations by solving partial differential
equations. This approach may be modified and applied to
wheeled robots. However, it is expected to be much more
complex because the wheel–soil interface is a cylindrical
surface and the entry angle of the wheel is time-varying,
whereas for a tracked vehicle the entire track is assumed to
remain in contact with the flat soil.19 Moreover, wheel–soil
interaction models based on quasi-static approaches are in
reasonably close agreement with experiment results as seen
in refs. [8–13]. Therefore, we use a quasi-static approach in
WTIM.

3.4. Stress distributions along the wheel–soil interface
Wong’s formulas given in ref. [8] are extended to compute the
normal and the shear stress distributions along the wheel–soil
interface. The normal stress can be formulated as

σ (y, θ)

=
{

Cσ [cos θ − cos θf (y)]n (θm(y) ≤ θ ≤ θf (y)),
Cσ [cos θeq(y) − cos θf (y)]n (θr (y) ≤ θ < θm(y)),

(16)

where Cσ is a constant parameter and θeq(y) is the equivalent
front region contact angle for points in the rear region. They
can be determined as

Cσ =
{

rn(kc/b + kφ) (by Bekker′s formula),

(r/b)n(ck′
c + γ bk′

φ) (by Reece′s formula),
(17)

θeq(y) = θf (y) − θ − θr (y)

θm(y) − θr (y)
· (θf (y) − θm(y)). (18)

In addition, θm(y) is the contact angle corresponding to the
maximal normal stress and can be obtained as

θm(y) = (a0 + a1 · s)θf (y), (19)

where a0 and a1 are constant parameters defined in ref. [8]
and their values will depend on the wheel–soil interactions.
The parameter s is the slip ratio, which can be expressed as

s =
{

(ωyr − vx)/(ωyr) (|ωyr| > |vx |),
(ωyr − vx)/vx (|ωyr| < |vx |). (20)

In the wheel–soil model for the steering maneuver given
in ref. [12], the shear stress along the wheel–soil interface
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was assumed to be anisotropic. Two new variables, defined as
the tangential and the lateral shear modulus, are introduced
to calculate the shear stresses along the tangential and
the lateral directions, respectively. It is uncertain, however,
that this method is generally applicable. Moreover, only
the traditional shear modulus, as defined in ref. [6], can
be experimentally measured by terramechanics shear tests.
A method to measure the tangential and the lateral shear
modulus, if possible, is not available in literature.

Just like the modeling of the track–soil interaction in ref.
[9], isotropic modeling of the shear stress distributions during
a turning maneuver is expected to be a better choice over the
anisotropic method for wheeled robotic vehicles. Two basic
assumptions for this isotropic modeling are:

(1) The magnitude of the shear stress developed at a certain
point along the wheel–soil interface is a function of the
overall shear displacement at that point, as described by
the shear–stress–displacement formulas given in ref. [6].

(2) The direction of the shear stress at a point on the wheel–
soil interface is opposite to that of the shearing velocity
of the wheel with respect to the ground at that point.

Analogous2 to the case for the track–soil model given in
ref. [9], the overall shear displacement of point P(y,θ) with
respect to the soil can be computed as

j (y, θ) =
√

jt (y, θ)2 + jl(y, θ)2. (21)

Using the shear formula given by Janosi and Hanamoto,6

the magnitude of the shear stress can be computed as

τ (y, θ) = τmax · [1 − exp(−|j (y, θ)|/K)], (22)

τmax = c + σ (y, θ) · tan φ, (23)

where τmax is the maximal shear stress corresponding to the
normal pressure σ (y, θ), c that represents the cohesion of the
soil, and φ is the internal friction angle of the soil.

For certain muskegs, dry sands, and certain snows, where
the shear curve exhibits a “hump” of maximum shear stress
and then decreases continuously with the increase of the
shear deformation, Wong’s shear formula6 should be used

τ (y, θ) = τmaxKr [1 − exp(−j (y, θ)/Kw)] ×
[1 + [1/(Kr (1 − e−1) − 1)] exp(1 − j (y, θ)/Kw)],

(24)
where Kr is the residual shear stress to τmax, and Kw is the
corresponding shear deformation where τmax occurs.

The tangential and the lateral shear stresses (the positive
directions are given in Fig. 6) can be obtained as

τt (y, θ) = τ (y, θ) · vjt (y, θ)√
vjt (y, θ)2 + vjl(y, θ)2

,

τl(y, θ) = τ (y, θ) · vjl(y, θ)√
vjt (y, θ)2 + vjl(y, θ)2

.

(25)

2 This wheel-and-track analogy (the cylindrical wheel-soil
interface is analogous to the planar track-soil interface) method
has been used to identify the soil deformation along the wheel-soil
interface in linear motion scenarios, as shown in ref. [8].

τl(θ)

vx

vy
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θ f

τt(θ)

θm

θr

vx

x2

θ f

θm

θ r

ωy

σ(θ)

ωy

z2

x2

z2

x2

y2

vx

x2

θ f
θ r

ωy

z2 τ t

τl

σ
θ

Fig. 6. (Colour online) The normal and shear stress distributions
along the wheel–soil interface (cylindrical surface).

Fig. 7. (Colour online) Typical lugged wheels for mobile robots.

For complete purposes, anisotropic shear stress formulas
corresponding to Eqs. (22) and (24) are also included

τi(y, θ) = sgn(ji(y, θ)) · τmax

·[1 − exp(−|ji(y, θ)|/Ki)] (i = t, l), (26)

τi(y, θ) =
[
1 + 1

Kri(1 − e−1) − 1
exp(1 − ji(y, θ)/Kwi)

]
×

Kri[1 − exp(−ji(y, θ)/Kwi)]τmax (i = t, l),

(27)

where Kt and Kl are the tangential and lateral shear stress
modulus of the soil, respectively, as defined in ref. [12]; Kri

and Kwi are defined as variables analogously to Kr and Kw in
Eq. (24) for the tangential and lateral directions, respectively.

3.5. Consider the influence of grousers
Purely smooth wheels are rarely used in real applications.
Instead, to improve the traction performance, many wheels
are equipped with certain profiles or grousers, as shown in
Fig. 7. For simplifications, the lugged wheels are usually
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Fig. 8. (Colour online) The model of a driven lugged wheel on soft
soil. If the area ratio μ is small, the equivalent normal pressure can
be approximated by the pressure along the approximated surface
of equivalent normal pressure (ASENP), which is close to the
concave portion. The shear phenomenon takes place along the shear
surface across the grouser tips.6 Modeling of the lugs/grousers will
be required if the distance between the ASENP and the shear surface
cannot be neglected compared to wheel sinkage.

modeled as smooth wheels, which we call smooth wheel
approximation in this paper. In ref. [12], by tuning soil
parameters, such as the shear modulus, which usually
dominates the shear stress and the wheel performance,
simulation results by the smooth wheel approximation
method are considered to be in close agreement with
experiment data for lugged wheels. This parameter tuning
method, however, is not as sound as it appears, since the
shear modulus is originally defined as a constant parameter
to represent the inherent property of the soil. Its value should
be measured by shear test experiment6 and will be constant
once the soil is given. Additionally, the experiment results
in ref. [20] indicate that the influence of grousers cannot
be neglected for lugged wheels, which are usually used by
robotic planetary rovers. Thus, modeling of lugged wheels is
required for more reasonable and reliable simulation results.

A typical lugged wheel usually consists of two portions
as shown in Fig. 8: the grousers and the concave portion.
In Fig. 8, r is defined to be the radius of the bigger circle
surrounding the grouser tip, hg is the grouser height, and μ

is the area ratio of the grouser tip. Let θf t and θf ca denote the
entry contact angles corresponding to the grouser tip and the
concave portion, respectively. From the geometric relations,
we have

θf t (y) = cos−1(1 − hf (y)/r), (28)

θf ca(y) =
{

cos−1(r − hf (y)/(r − hg)) (hf (y) > hg)

0 (otherwise).

(29)

We assume that the effective exit angle of the grouser tip
equals that of the concave portion. Then, we have

θrt (y) = θrca(y) = θr (y) = − cos−1(1 − λ · hf (y)/r).
(30)

Instead of measuring the ratio λ by a vision system,12 an
alternative analytical formula for this parameter is required
for simulation. By considering the rut recovery and the soil

transported by the grousers, such a formula can be given as

λ = (λ0 + λ1s)(kc/b + kφ)(r − d)n−1/kφ, (31)

where λ0 and λ1 are two constant parameters.
Analogous to the formula given in Eq. (19), an alternative
formula for the exit angles can be expressed as

θr (y) = (b0 + b1s)θf t (y). (32)

The stresses can be determined based on two assumptions3

(1) the equivalent normal stress σe is assumed to be the
average value of the normal stresses at the grouser tip portion
and the concave portion; (2) the shear phenomenon between
the wheel and the soil is assumed to take place along a
cylindrical surface determined by the shear radius, which
usually equals the radius of the grouser tips. Then, the
equivalent normal stress σe is

σe(y, θ)

=
{
μσt (y, θ) + (1 − μ)σca(y, θ) (θr (y) ≤ θ ≤ θf ca(y))

μσt (y, θ) (θf ca(y) ≤ θ ≤ θf t (y)).

(33)

By substituting the equivalent normal pressure σe(y, θ)
into Eq. (23), the equivalent shear stresses τet (y, θ) and
τel(y, θ) can then be derived by Eqs. (25)–(27).

3.6. Forces and torques by the soil
The forces and torques exerted on the wheel by the soil can
be determined by integrating the distributed stresses along
the wheel–soil interface. The components of stresses along
the cylindrical contact region can be determined in frame �2

as⎧⎨
⎩

σx(y, θ) = −σe(y, θ)sθ τx(y, θ) = τet (y, θ)cθ
σy(y, θ) = 0 τy(y, θ) = −τel(y, θ)
σz(y, θ) = σe(y, θ)cθ τz(y, θ) = τet (y, θ)sθ

(sθ ≡ sin θ, cθ ≡ cos θ).

(34)

By integrating these components with respect to an area
increment rdθdy along the cylindrical wheel–soil interface,
the forces exerted on the wheel can be determined as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Fx =
∫ b/2

−b/2

∫ θf (y)

θr (y)
r(−σe(y, θ)sθ + τet (y, θ)cθ) dθ dy

Fy = −
∫ b/2

−b/2

∫ θf (y)

θr (y)
r · τel(y, θ) dθ dy

Fz =
∫ b/2

−b/2

∫ θf (y)

θr (y)
r(σe(y, θ)cθ + τet (y, θ)sθ) dθ dy.

(35)

3 Based on these assumptions, other types of lugs/grousers, such as
the zigzag wheel pattern used by Mars Science Laboratory, can be
modeled as straight grousers (Fig. 8) with the same area ratio μ and
lug height hg . Therefore, the grouser modeling method proposed in
this paper is expected to work for a wide variety of wheel profiles.
It should be pointed out that only the average effect of the grousers
is modeled while the fluctuations of forces and torques observed in
the experiments in refs. [3, 22] are neglected for simplification.
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Fig. 9. (Colour online) Modeling the stresses contributed by the
side surfaces.

The corresponding torques can be computed as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mx =
∫

ydFz−
∫

(−r cos θ)dFy

=
∫ b/2

−b/2

∫ θf (y)

θr (y)

[
ryσe(y, θ)cθ+
ryτet (y, θ)sθ − r2τel(y, θ)cθ

]
dθ dy

My =
∫

(−r cos θ)dFx−
∫

(r sin θ)dFz

= −r2

∫ b/2

−b/2

∫ θf (y)

θr (y)
τet (y, θ)dθdy

Mz =
∫

(r sin θ)dFy−
∫

ydFx

=
∫ b/2

−b/2

∫ θf (y)

θr (y)

[
ryσe(y, θ)sθ−
ryτet (y, θ)cθ − r2τel(y, θ)sθ

]
dθ dy.

(36)
Numerical methods, such as the composite Simpson’s

rule and high-order Gaussian quadrature method, are used
in WTIM to evaluate these two-dimensional integrals.
These forces and torques can then be transformed into the
world coordinate or the wheel carrier frame through the
corresponding rotation matrices discussed in Section 3.1.

3.7. Contribution of the side surfaces
For rigid wheels with sidewalls, the bulldozing effect of
the side surfaces may make considerable contribution to the
lateral force during a steering maneuver. In ref. [12], the
bulldozing resistance due to the side surface is estimated by
Hegedus’s method for the case where the surcharge reached
the saturation state. Moments due to the side surface are not
modeled, since the pressure formula corresponding to the
saturation state is not yet available. In addition, the modeling
of side surface in ref. [12] only covers very limited scenarios.
In the following, we model the case where the wheel just
begins to cause soil failure and the surcharge has not been
developed.

As shown in Fig. 9, the coordinate of the point Ps in the
side surface can be expressed in frame �2 as

Ps(y, rs, θ) = [rs sin θ, y, −rs cos θ]T (y = ±b
/

2) ,
(37)

where rs is the distance from point Ps to the wheel center.
The corresponding shear rates and displacements for point Ps

can be derived in a manner similar to Section 3.3. Notice that
the normal pressure can only be generated when the wheel’s
side surface compresses the soil. Then, based on the formula

for the bulldozing effect of plates given in ref. [4], we have

σs(y, rs, θ) = sgn(y)

(
2c tan(45◦ + φ/2) + γZz2 ·
tan(45◦ + φ/2)2hzs(y, rs, θ)

)
,({

y = ±b/2 (only in the side surfaces)

y · vjns > 0 (wheel compresses the soil)

)
,

(38)
where γ is the density of the soil, Zz2 is the projection of the
world z0-axis onto the z2-axis in �2, hzs is the corresponding
underground depth along the z2-axis and can be obtained as

hzs(y, rs, θ) = rs cos θ + hf (y) − r. (39)

For lugged wheels, the normal pressure over the grouser
portion region can be expressed as

σs(y, rs, θ) = μ · sgn(y)

(
2c tan(45◦ + φ/2) + γZz2 ·
hzs(y, rs, θ) tan(45◦ + φ/2)2

)
,

(y = ±b/2, y · vjns > 0, r − hg ≤ rs ≤ r ).
(40)

For a given point on the side surface, the shear stress can
be developed only if the normal pressure exists at this point.
Then, the shear stresses can be calculated in a way similar to
Section 3.4, with the maximum shear stress expressed as

τmax(y, rs, θ) = σs(y, rs, θ) tan φ. (41)

By integrating these distributed stresses with respect to an
area increment rsdθdrs along the contact region where

{
r − hf ≤ rs ≤ r

− cos−1((r − hf )/rs) ≤ θ ≤ cos−1((r − hf )/rs)
(42)

the forces and torques contributed by the side surface can be
derived similarly to the process described in Section 3.6 and
hence are not repeated.

4. Simulation and Experimental Verifications
WTIM has been realized as a Simulink S-Function (Fig. 1).
The computationally intensive portion is written in ANSI C
and compiled as an MEX file to speed up the simulation.
Currently, a single step calculation costs about 16 ms at the
HP Z400 workstation with an Intel Xeon 3520 CPU @ 2.66
GHz and 6 GB of RAM. In the following, we test the model
by using field experiment data available in the literature.

4.1. Traction performance of lugged wheels
In refs. [20, 22], single-wheel, linear motion experiments
were conducted to investigate the effect of slip and
grousers on the traction performance of rigid wheels for
lunar/planetary rovers. Drawbar pull and the driving torque
were measured for a range of slip ratios under a given
wheel load. Meanwhile, physical properties of the soil (air-
dried sand) used in the experiments were measured using
standard terramechanics tests.22 The soil parameters, the
wheel geometric data, and other parameters required for the
simulation are listed in Table II.
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Table II. Simulation parameters and values.

Parameter Value Unit Description

γ 15.729 kN/m3 Soil density
c 0.251 kPa Cohesion
φ 31.9 deg Internal friction angle
n 1.098 – Sinkage exponent
kc 15.6 kN/mn+1 Cohesive modulus
kφ 2407.4 kN/mn+2 Frictional modulus
Kr 0.96 – Residual shear stress
Kw 0.018 m Modulus in Eq. (24)
r0 0.135 m Radius (concave portion)
b 0.165 m Wheel width
hg 5/10/15 mm Lug height of the grousers
lw 1.5 mm The grouser thickness
Wload 80.0 N Wheel load
a0 0.40 – Coefficient for θm

a1 0.50 – Coefficient for θm

b0 −0.13 – Coefficient for θr

b1 0.0 – Coefficient for θr

The simulation procedure is summarized as (1) input data;
(2) find the entry angle (or the wheel sinkage) corresponding
to the wheel load by interpolation or binary search method;
(3) compute the drawbar pull and driving torque based on
the entry angle (or the wheel sinkage) acquired in step 2.
Equation (32) is used to estimate the exit angles while Eq.
(24) is used to calculate the shear stresses. The area ratio of
the grouser tip is

μ = lw · (360◦/15◦)/(2π(r0 + hg)). (43)

It is observed that the height of grousers (hg in Fig. 8) has a
significant influence on the wheels’ traction performance, as
shown in Fig. 10. The simulation results by WTIM agree well
with the experiment results, especially when the slip ratio
is in the range of [0.10, 0.60]. Thus, it seems the proposed
model in WTIM can predict the linear motion performance of
lugged wheels very well by noticing that the preferable range
of the slip ratio in real application is from 10% to 45%.20

4.2. Single wheel experiments for steering maneuver
In refs. [24, 25], the researchers from the Tohoku University
investigated the steering performance of rigid wheels for the
turning maneuver of planetary/lunar rovers. As shown in
Fig. 11, both the smooth wheel (wheel-A) and the lugged
wheel (wheel-B) were experimentally studied. The soil used
in the experiments is the FJS-1 lunar regolith simulant,24

an artificial soil, which is used to simulate the real lunar
soil returned by The Apollo Program. Physical properties
of this lunar regolith simulant are close to those of the real
lunar soil and are given in Table III. The forces and torques
generated during the wheel locomotion were measured by a
six-axis Force/Torque sensor. By setting the slip ratio from
0.0 to 0.9, in steps of 0.1, and the steering angle (which
is equal to the slip angle β) from 4◦ to 16◦, in steps of
4◦, the experiments were repeated at least twice under the
aforementioned conditions.

A model, termed the reference model in this section, for the
steering maneuver of smooth, rigid wheels was derived based

Table III. Simulation parameters and values for the soil.

Parameter Value Unit Description

γ 15.68 kN/m3 Soil density
c 0.80 kPa Cohesion
φ 37.2 deg Internal friction angle
n 1.0 – Sinkage exponent
kc 1.37 kN/mn+1 Cohesive modulus
kφ 814 kN/mn+2 Frictional modulus
K 0.020 m Shear modulus of the soil
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Fig. 10. (Colour online) Drawbar pull and driving torque for lugged
wheels. The notations (sim) and (exp) represent the simulation
results by WTIM and the experiment results, respectively.
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Wheel-B

Fig. 11. (Colour online) Rigid wheels used in the experiments. From
left to right: wheel without paddle (wheel-A), wheel with paddle
(wheel-B).
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Table IV. Simulation parameters and values for wheel-A and
wheel-B.

Parameter Wheel-A Wheel-B Unit Description

r 0.092 0.100 m Shear radius
b 0.107 0.107 m Wheel width
hg 0 0.008 m Grouser height
μ 0 0.1146 – Grouser area ratio
Wload 64.68 64.68 N Wheel load
a0 0.25 0.30 – Coef. for θm

a1 0.50 0.32 – Coef. for θm

b0 −0.15 −0.20 – Coef. for θr

b1 0.0 0.0 – Coef. for θr

on the anisotropic shear stress approach. In the reference
model, rather than modeling the influence of grousers, the
author used this “smooth wheel” model, with tuning of the
shear moduli to fit the simulation results to the experiment
results, as introduced in the sections above.

The isotropic shear stress approach is used by WTIM for
simulation. Table IV lists some other inputs for WTIM,
such as the wheel geometry data and the wheel load. The
simulation procedure is similar to Section 4.1 and hence not
repeated.

Figure 12 shows the experiment results, the simulation
results by the reference model,25 and the simulation results by
WTIM. For a certain type of wheel, the drawbar pull increases
with respect to the slip ratio due to the increasing shear de-
formation in the longitudinal direction. The lateral force de-
creases with respect to the slip ratio and increases with respect
to the slip angle. The characteristics of the lateral force are
a result of its close dependence on the lateral shear deform-
ation, which also decreases with respect to the slip ratio and
increases with respect to the slip angle. It is also observed that
the surface patterns have a significant influence on the wheel
performance. As shown in Fig. 12, the drawbar pull and the
lateral force of the lugged wheel (wheel-B) are significantly
bigger than those of the smooth wheel (wheel-A) under the
same conditions. This is mainly due to relatively larger shear
deformation, and thus greater shear stresses, developed by
the lugged wheel under the same load as the smooth wheel.

Simulation results by WTIM are in better agreement4 with
the experimental data than those of the reference model. This
is especially true for the lugged wheel (wheel-B), as shown in
Fig. 12. To quantitatively evaluate the model goodness of fit,
a new variable is introduced, as defined in Eq. (44), in analogy
to the coefficient of determination for general data fitting

R − square(mdl) = 1 −

∑
si

(exp(si) − mdl(si))
2

∑
si

(
exp(si) − exp(si)

)2

({
mdl(si) : model result@ slip = si

exp(si) : experiment (meanvalue)@slip = si

)
.

(44)

4 Relatively large differences between the simulation results and
the experimental results are observed for the longitudinal drawbar
pull at very large slip ratios. One possible reason is that the soil
under the wheel becomes fluidized and different mechanics may
dominate the phenomena at high slip ratios12.

Table V. R-square5 values for the reference model and WTIM.

Wheel-A Wheel-B

R-square Ref. model WTIM Ref. model WTIM

Fx(β = 4◦) 0.5098 0.8510 0.4041 0.6773
Fy(β = 4◦) 0.2452 −0.0677 0.6445 0.5040
Fx(β = 8◦) 0.6309 0.8427 0.4461 0.7454
Fy(β = 8◦) 0.5861 0.8573 0.7058 0.9498
Fx(β = 12◦) 0.6714 0.8654 0.5224 0.8370
Fy(β = 12◦) 0.7054 0.9109 0.7374 0.9591
Fx(β = 16◦) 0.8425 0.8011 0.4587 0.7991
Fy(β = 16◦) 0.7033 0.8993 0.7401 0.9499
Mean 0.6118 0.7450 0.5824 0.8027

Under this definition, the “R-square” value of a given
model approaches one as the model outputs become
closer to the experimental results. The “R-square” values
corresponding to the reference model and WTIM for wheel-
A and wheel-B are listed in Table V. Despite tuning the
shear modulus in the reference model to fit each experiment,
WTIM still gives better simulation results in a general sense.
A 21.8% improvement of the mean “R-square” value by
WTIM compared to the reference model has been achieved
for the smooth wheel (wheel-A). The reason is that WTIM
uses an isotropic shear model while the reference model
uses an anisotropic shear model instead. For the lugged
wheel (wheel-B), the improvement is even greater; 37.8%
improvement due to isotropic shear model and the lugged
wheel grouser modeling in WTIM.

These results confirm that WTIM developed in this paper
is able to represent wheeled locomotion on deformable soil
with appropriate accuracy.

4.3. Skid-steering experiment of a wheeled UGV
By integrating the WTIM-based “wheel–soil model” and the
MBS-based “wheel-and-vehicle model,” efficient simulation
of mobile robots/UGVs in off-road environments can be
easily conducted. This fact will be demonstrated by using the
UGV experiment reported in refs. [10, 11]. By commanding
the left and right wheels with different speeds, the turning
trajectory of an 8WD (eight-wheel-drive) skid-steering UGV
was recorded by an on-board GPS sensor. The wheel
angular speeds and the trajectory of the vehicle center
measured in the experiment are given in Figs. 13 and 14,
respectively.

The UGV is modeled as a multibody dynamic system by
using the SimMechanics toolbox in Simulink, as shown in
Fig. 15. Meanwhile, a WTIM block handles the wheel–soil
interaction for each corresponding wheel of the UGV. The
WTIM block computes the forces and torques generated by
the soil. Compared with the UGV modeling procedure in
ref. [11], the tool-based simulation by integrating the WTIM
package with the MBS software is more intuitive and flexible.

The soil data and wheel geometry data for the simulation
are listed in Table VI. The UGV parameters, which are

5 One reason for these lower-than-expected R-square values is the
scattering of the experimental results between the tests conducted
at the same slip angle.
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Fig. 12. (Colour online) Results of the single wheel steering experiments. The notations (exp), (ref), and (sim) represent the experiment
results, simulation results given in ref. [25], and the simulation results by WTIM, respectively.

required for the simulation, can be found in ref. [11]. The
isotropic shear stress approach is used for the simulation.
As shown in Fig. 14, the predicted trajectory of the vehicle
center agrees well with the experimental data measured by
the on-board GPS sensor.

5. Conclusions
Based on the theory of terramechanics, a modular,
easy-to-use WTIM for off-road vehicle simulations has
been developed. The model can be easily integrated
with the MBS software to simulate various wheeled
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Table VI. Simulation parameters and values for the UGV.

Parameter Value Unit Description

γ 12.7 kN/m3 Soil density
c 4.14 kPa Cohesion
φ 13 deg Internal friction angle
n 0.5 – Sinkage exponent
kc 13.19 kN/mn+1 Cohesive modulus
kφ 692.15 kN/mn+2 Frictional modulus
K 0.006 m Shear modulus of the soil
r 0.25 m Wheel radius
b 0.246 m Wheel width
hg 0 mm Lug height of the grousers
μ 0 – Area ratio of grousers
a0 0.5 – Coefficient for θm

a1 0.0 – Coefficient for θm

b0 0.0 – Coefficient for θr

b1 0.0 – Coefficient for θr
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Fig. 13. (Colour online) The left and right wheel angular velocities
measured during the UGV steering experiment.11
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Fig. 14. (Colour online) The UGV trajectory measured in the
steering experiment11 and the simulation results by WTIM and
the MBS software.

Fig. 15. (Colour online) The 8WD skid-steering UGV modeled
in SimMechanics. The wheel–soil interaction for each wheel is
modeled by a WTIM block. Intuitive and flexible simulation has
been achieved by incorporating the WTIM modules with the MBS
solver.

vehicles or mobile robots traveling over deformable
soil.

The main focus of the model is to identify the stresses
along the wheel–soil contact regions, for which some critical
aspects have been improved and can be summarized (1)
isotropic modeling of the shear stresses underneath the
wheel for steering maneuvers; (2) modeling the influence
of grousers; (3) modeling the forces and torques contributed
by the side surfaces during turning maneuvers.

The model was verified by comparing the simulation
results with experimental data reported in the literature, in-
cluding single-wheel (both straight-line motion and steering
maneuvers) experiments and full-vehicle experiments.
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