
The Bulletin of Symbolic Logic

Volume 21, Number 3, September 2015

2015 NORTH AMERICAN ANNUAL MEETING
OF THE ASSOCIATION FOR SYMBOLIC LOGIC

University of Illinois at Urbana-Champaign
Urbana, IL, USA
March 25–28, 2015

The 2015NorthAmericanAnnualMeeting of theAssociation for Symbolic Logic was held
at the University of Illinois in Urbana-Champaign, March 25–28, 2015. There were seven
plenary talks, two tutorials, six special sessions, and two sessions of contributed talks, as well
as the 26th annual Gödel lecture. A reception was held on the evening of ThursdayMarch 26,
2015. A unique feature of this meeting was the panel discussion on academic freedom.
The program committee consisted of D. Haskell (Chair), P. Hieronymi, A. Montalban,

A. Razborov, D. Sinapova, and H. Towsner. The local organizing committee consisted of
A. Arana (Chair), L. van den Dries, P. Hieronymi, and S. Solecki. Many thanks go to the
graduate students at theUniversity of Illinois for their active participation in the organization.
There were 109 registered participants at the meeting, including 46 graduate students.

Generous financial support was provided by theAssociation for Symbolic Logic, theNational
Science Foundation, as well as the Departments of Mathematics and Philosophy at UIUC
and individual logicians at UIUC.
The Gödel Lecture was given by Alex Wilkie: “Complex continuations of functions defin-

able in Ran,exp with a diophantine application”.
The plenary addresses at the meeting were:

Verónica Becker (Universidad de Buenos Aires), Constructing normal numbers.
David Fernández-Duque (Instituto Tecnológico Autónomo deMéxico),Arithmetic reflec-

tion principles and consistency strength.
Rami Grossberg (CMU), Classification theory for abstract elementary classes.
Yuri Gurevich (Microsoft Research), Logic in computer science and software engineering.
Neil Immerman (UMass Amherst), Dynamic reasoning.
Russell Miller (CUNY), Functors and effective interpretations in model theory.
Anush Tserunyan (UIUC), Finite generating partitions for continuous actions of countable

groups.

There were two tutorials, with the novel feature that the second hour was held in parallel,
given by:
James Cummings (CMU), Compactness.
Chris Miller (Ohio State), Tameness and metric dimensions in expansions of the real field.
The panel discussion on the topic:What should the ASL do to protect academic freedom?

Should theASLhave cancelled this conference?waspromptedby recent events at theUniversity
of Illinois, Urbana-Champaign. The panelists were Matthew Finkin, Deirdre Haskell, and
Alisdair Urquhart.

The program included six special sessions (with organizers in parentheses): Computability
(Uri Andrews and Steffen Lempp), Constructive mathematics (Douglas Bridges and Vladik
Kreinovich), Model theory of ordered structures (Kobi Peterzil and Sergei Starchenko),

c© 2015, Association for Symbolic Logic
1079-8986/15/2103-0006
DOI:10.1017/bsl.2015.27

344
https://doi.org/10.1017/bsl.2015.27 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2015.27


2015 NORTH AMERICAN ANNUAL MEETING 345

Parametrized complexity (Rod Downey and Serge Gaspers), Philosophy of mathematics
(Andrew Arana and Audrey Yap), and Set theory (Slawomir Solecki). There were a total of
32 special session speakers.
There were 12 contributed talks delivered at the meeting, and 3 additional abstracts

presented by title.

Abstracts of the invited talks and the contributed talks (given in person or by title) by
members of the Association for Symbolic Logic follow.

For the Program Committee
Deirdre Haskell

Abstract of the 26th Annual Gödel Lecture

� ALEX WILKIE, Complex continuations of functions definable in Ran,exp with a diophantine
application.
School of Mathematics,The Alan Turing Building, The University of Manchester, Manch-
ester M13 9PL, UK.
E-mail: awilkie@maths.man.ac.uk.
Diophantine properties of subsets ofRn definable in ano-minimal expansionof the ordered

field of real numbers have been much studied over the last few years and several applica-
tions to purely number theoretic problems have been made. One line of inquiry attempts to
characterise the set of definable functions f: R → R having the property that f(N) ⊆ N.
For example, a result of Thomas, Jones and myself shows that if the structure under consid-
eration is Rexp (the real field expanded by the exponential function) and if, for all positive r,
f(x) eventually grows more slowly than exp(xr), then f is necessarily a polynomial with
rational coefficients. In this talk I shall improve this result in two directions. Firstly, I take
the structure to be Ran,exp (the expansion of Rexp by all real analytic functions defined on
compact balls inRn) and secondly, I allow the growth rate to be xN ·2x for arbitrary (fixed)N .
The conclusion is that f(x) = p(x) · 2x + q(x) for sufficiently large x, where p and q are
polynomials with rational coefficients.
I should mention that over ninety years ago Pólya established the same result for entire

functions f: C → C and that in 2007 Langley weakened this assumption to f being regular
in a right half-plane ofC. I follow Langley’s method, but first wemust consider whichRan,exp-
definable functions actually have complex continuations to a right half-plane and, as it turns
out, which of them have a definable such continuation.

Abstracts of invited tutorials

� JAMES CUMMINGS, Compactness.
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-
3890, USA.
E-mail: jcumming@andrew.cmu.edu.
The “hard core” of many set-theoretic problems often turns out to involve some form of

compactness (broadly construed). In these lectures we will aim to explain why this is so, give
many examples, and discuss some recent developments.

� CHRIS MILLER, Tameness and metric dimensions in expansions of the real field.
Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus,
OH 43221, USA.
E-mail: miller@math.osu.edu.
It is long known that any expansion, R, of the field of real numbers that defines N (the set

of all natural numbers) also defines every Borel subset of eachRn, hence also every projective
(in the sense of descriptive set theory) subset of each Rn. Thus, one can easily ask questions
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about the definable sets ofR that can turn out to be independent of ZFC (e.g., whether every
definable set is Lebesgue measurable). This leads naturally to wondering what can be said
about its definable sets ifR does not defineN. Philipp Hieronymi and I have recently obtained
a result that can be stated loosely as: R avoids defining N if and only if all metric dimensions
commonly encountered in geometric measure theory, fractal geometry and analysis on metric
spaces coincide with topological dimension on all images of closed definable sets under definable
continuous maps. In the first of two hours, I will make this statement precise (assuming
essentially no knowledge of dimension theory), explain its significance, and give some easy
(yet striking) corollaries and applications. In the second hour, I will explain some crucial (yet
remarkably simple) ideas of the proof. Both hours will be aimed at a general ASL audience.

Abstracts of invited plenary lectures

� VERÓNICA BECHER, Constructing normal numbers.
Departmento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires & CONICET, Pabellón I Ciudad Universitaria, (1428) Buenos Aires, Ar-
gentina.
E-mail: vbecher@dc.uba.ar.
URL Address: http://www.dc.uba.ar/people/profesores/becher/.
Flip a coin a large number of times and roughly half of the flips will come up heads and

half will come up tails. Normality makes similar assertions about the sequences of digits in
the expansions of a real number. For b an integer greater than or equal to 2, a real number x
is simply normal to base b if every digit d in {0, 1, . . . , b − 1} occurs in the base b expansion
of x with asymptotic frequency 1/b; a real number x is normal to base b if it is simply normal
to all powers of b; and a real number x is absolutely normal if it is simply normal to all integer
bases greater than or equal to 2.
More than one hundred years ago E. Borel showed that almost all real numbers are

absolutely normal, and he asked for one example. He would have liked some fundamental
mathematical constant such as � or e, but this remains as the most famous open problem on
normality. As for other examples, there have been several constructions of normal numbers
since Borel’s time, with varying levels of effectivity (computability). I will summarize the latest
results, including our constructions of numbers normal to selected bases, a fast algorithm to
compute an absolutely normal number which runs in nearly quadratic time, and an algorithm
to compute an absolutely normal Liouville number.
This is joint work with Theodore Slaman and Pablo Heiber.

� DAVID FERNÁNDEZ-DUQUE, Arithmetic reflection principles and consistency strength.
Departamento de Matemáticas, Instituto Tecnológico Autónomo de México, Rı́o Hondo 1,
Colonia Progreso Tizapán, Delegación Álvaro Obregón, 01080 México, D. F., México.
E-mail: david.fernandez@itam.mx.
If T is an arithmetic theory and Λ an ordinal notation system, we can define the Turing–

Feferman Progression of T along Λ by transfinitely iterating consistency assertions about
T [5]; to be precise, T0 = T , T�+1 = T� + Cons(T�), and, for � a limit, T� =

⋃
�<� T�.

If T is sound, then Gödel’s Second Incompleteness Theorem tells us that 〈T�〉�<Λ is a strictly
increasing sequence of theories.
This construction can be used as a tool to measure the consistency strength of a theory T

or, more formally, its Π01-ordinal. Suppose that we have a second theory, U , usually weaker
than T . Then, the Π01-ordinal of T relative to U and Λ is the supremum of all � such that
T � Cons(U�). Omitting the dependency on U and Λ, we will denote this ordinal simply by
‖T‖Π01 .
A recent approach by Beklemishev uses modal logic and reflection principles to compute

‖T‖Π01 [1]. If we use �T φ to denote a natural formalization of The formula φ is provable in
T , then uniform reflection over T is the schema

RFN(T ) = ∀x(�T φ(x̄)→ φ(x)
)
.
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Reflection principles are philosophically appealing, since it can be argued that, once one has
accepted T , one should also accept reflection over T ; in this sense, T + RFN(T ) gives a nat-
ural extension of T . Moreover, this extension is sometimes also mathematically natural [4];
for example, if we let EA (Elementary Arithmetic) be the subsystem of PA with exponen-
tiation where induction may only be applied to Δ00 formulas, then PA ≡ EA + RFN(EA).
Beklemishev has used this representation in order to show that ‖PA‖Π01 = ε0, and also to
provide a consistency proof of PA using only finitary means plus one instance of transfinite
induction.
In this presentation we will discuss recent results, obtained in joint work with Andrés

Cordón-Franco, Félix Lara-Martı́n, and Joost J. Joosten [2] that may lead to similar
analyses and consistency proofs of theories of second-order arithmetic. In particular, we
propose two strong reflection principles which are equivalent to the theory ATR0 of Arith-
metic Transfinite Recursion and (Π11-CA)0 of Π

1
1-comprehension, respectively. Both princi-

ples assert that ACA0 (or perhaps a weaker theory, such as RCA0) does not prove false
Π12-sentences, even after transfinitely iterating the �-rule [3]. We then detail how princi-
ples of this form might be used to obtain a Π01 analysis of ATR0, (Π

1
1-CA)0, or related

theories.
[1] L. D. Beklemishev, Provability algebras and proof-theoretic ordinals, I. Annals of Pure

and Applied Logic, vol. 128 (2004), pp. 103–124.
[2] A. Cordón-Franco, D. Fernández-Duque, J. J. Joosten, and F. Lara-Martı́n,

Predicativity through transfinite reflection, arXiv, (2014).
[3]D. Fernández-Duque and J. J. Joosten, The omega-rule interpretation of transfinite

provability logic, submitted, arXiv:1205.2036 [math.LO], 2013).
[4]G.Kreisel andA.Lévy,Reflection principles and their use for establishing the complex-

ity of axiomatic systems.Zeitschrift fürmathematischeLogik undGrundlagen derMathematik,
vol. 14 (1968), pp. 97–142.
[5] A. Turing, Systems of logics based on ordinals. Proceedings of the London Mathemat-

ical Society, vol. 45 (1939), pp. 161–228.

� RAMI GROSSBERG, Classification Theory for Abstract Elementary Classes.
Department of Mathematics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh,
PA 15213, USA.
E-mail: rami@cmu.edu.
Stability theory or what was later renamed as Classification Theory was mainly developed

by Saharon Shelah in the seventies. It is a conceptually rich theory, much of it was motivated
by answering rather strange questions involving cardinal numbers: “what is the first � such
that an uncountable first-order stable theory T is stable in �?” and the much harder “what is
the asymptotic behavior of the number of pairwise nonisomorphic models ofT of cardinality
ℵα as a function of α?”
Only 20 years after much of the theory was discovered, applications to hard problems of

geometry and number theory started to show up, involving methods and arguments much
deeper than what was used by the previous generation of applied model theorists.
After completing much of his theory and answering some of the outstanding questions

concerning models of first-order theories, Shelah introduced the category-theoretic notion of
Abstract Elementary Class (AEC) which is a powerful generalization ofL�1 ,� . Shelah expects
that such a theory will have greater effect on classical problems of mathematics, due to the
greater expressive power of the logics involved. However so far this has not materialized.
Shelah proposed around 1977 a fundamental categoricity conjecture to serve as the test-
question for the understanding of AECs. This started in 1977 what he named Classification
Theory for AECs. Shelah published a two volume book in 2009 on the subject. I estimate
that Shelah is responsible as an author or coauthor for publishing more than 2,500 pages of
original work on this field.
I will focus on describing several recent developments along the main lines of Shelah’s

program, due to former and present students of mine among them: VanDieren, Kolesnikov,
Boney, and Vasey.
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� YURI GUREVICH, Logic in computer science and software engineering.
Microsoft Research, 1 Microsoft Way, Redmond, WA 98052-6399, USA.
E-mail: gurevich@microsoft.com.
Eugene P.Wigner and RichardW.Hamming wrote about the “unreasonable effectiveness”

of mathematics in the natural sciences [4, 2]. This inspired Joseph Y.Halpern, Robert Harper,
Neil Immerman, Phokion G. Kolaitis, Moshe Y. Vardi, and Victor Vianu to write about the
“unusual effectiveness” of logic in computer science [1]. Moshe Vardi gives talks about a
“logic revolution” in computer science and, to an extent, software engineering [3].
We are less jubilant about the role that logic and logicians have been playing in science and

engineering. Logic had the greatest prestige in the first part of the 20th century. Its role could
be bigger nowadays, especially in software engineering. Software engineers use formal logic
day in and day out, even though many of them do not realize that. They studied calculus but
rarely, if ever, use it. They did not study formal logic but use it daily. We will try to illustrate
why formal logic is so relevant for software engineers, and why it is hard for them to pick it up.
[1] Joseph Y. Halpern, Robert Harper, Neil Immerman, Phokion G. Kolaitis, Moshe

Y. Vardi, and Victor Vianu, On the unusual effectiveness of logic in computer science, this
Bulletin, vol. 7 (2001), no. 2, pp. 213–236.
[2] RichardW.Hamming,The unreasonable effectiveness ofmathematics.AmericanMath-

ematical Monthly, vol. 87 (1980), pp. 81–90.
[3]Moshe Vardi,A logical revolution, A lecture atMicrosoft Research,Redmond, August

2013, www.cs.rice.edu/∼vardi/comp409/logicrevo13.pdf.
[4] Eugene P. Wigner, The unreasonable effectiveness of mathematics in the natural

sciences. Communications on Pure and Applied Mathematics, vol. 13 (1960), pp. 1–14.

� NEIL IMMERMAN, Dynamic reasoning.
Department of Computer Science, University of Massachusetts Amherst, 140 Governors
Drive, Amherst, MA 01003-9264, USA.
E-mail: immerman@cs.umass.edu.
Reasoning about reachability—can we get to b from a by following a sequence of

pointers—is crucial for proving that programs meet their specifications. However reason-
ing about reachability in general is undecidable. A related problem concerns reachability in
dynamic graphs (a dynamic graph is a graph in which edges are added or deleted over time).
It would be useful to revise reachabilty relations with minimal recomputation, and indeed,
in undirected graphs and functional graphs, this can be done efficiently.
The problems of reasoning about reachability in programs and computing reachability

in dynamic graphs are connected. For some graphs we can keep track of reachability after
each small change in a quantifier-free language. This leads to an automatic way to check the
correctness of programs whose data structures are appropriately simple. In this talk, I discuss
progress and open questions concerning where such simple dynamic reasoning is possible
and where it is not.

� RUSSELL MILLER, Functors and effective interpretations in model theory.
Mathematics Department, Queens College & CUNYGraduate Center, 65-30 Kissena Blvd.,
Queens, NY 11367, USA.
E-mail: Russell.Miller@qc.cuny.edu.
URL Address: qcpages.qc.cuny.edu/∼rmiller.
We present and connect several recent results in computable model theory in which one

class of countable structures is coded into another class. These include a coding of countable
graphs into fields, by Park, Poonen, Schoutens, Shlapentokh, and the speaker, which is
quantifiably more effective than the well-known Friedman–Stanley coding and which shows
that fields have the same completeness properties as graphs in regard to Turing degree spectra
and computable categoricity. Additionally, we will describe Ocasio’s version of Marker’s
coding of linear orders into real closed fields, followed by a recent coding of graphs into
differentially closed fields using the ENI-DOP for the theory DCF0. Both of these are seen
to be somewhat less effective, although they are still Turing-computable embeddings, in the
sense defined by Knight and her many co-authors.
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To a model theorist, the map from graphs into fields will be readily recognizable as an
interpretation, using existential formulas. The other two maps can also be seen as interpre-
tations, but require the use of computable infinitary ∃∀ formulas. Montalbán’s definition of
effective interpretation is relevant here. On the other hand, the map from graphs into fields
can be viewed as a kind of functor, since it codes each graph into a field in such a way that
the isomorphisms between any two graphs give rise (in an effective way) to all isomorphisms
between the corresponding fields. We will state the natural definition of computable functor
which arose, along with its generalization to the other two maps. Finally, we will describe
work by Harrison-Trainor, Melnikov, Montalbán, and the author in which these two notions
(along with the longstanding notion of Σ-definability, used mostly in Novosibirsk) are all
shown to be equivalent.

� ANUSH TSERUNYAN, Finite generating partitions for continuous actions of countable
groups.
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green
Street, Urbana, IL, 61801, USA.
E-mail: anush@illinois.edu.
URL Address: http://www.math.uiuc.edu/∼anush/.
Let a countable groupG act continuously on a Polish spaceX . A countable Borel partition

P of X is called a generator if the set of its translates {gP : g ∈ G,P ∈ P} generates the
Borel 	-algebra of X . For G = Z, the Kolmogorov–Sinai theorem gives a measure-theoretic
obstruction to the existence of finite generators: they do not exist in the presence of an
invariant probability measure with infinite entropy. It was asked by BenjaminWeiss in the late
80s whether the nonexistence of any invariant probability measure guarantees the existence
of a finite generator. We show that the answer is positive for an arbitrary countable group G
and 	-compact X (in particular, for locally compact X ). We also show that finite generators
always exist for aperiodic actions in the context of Baire category (allowing ourselves to
disregard a meager set), thus answering a question of Alexander Kechris from the mid-90s.

Abstracts of invited talks in the Special Session on
Computability

� WESLEY CALVERTAND JOHANNA N.Y. FRANKLIN, UD-randomness and the Kurtz
random reals.
Department of Mathematics, Southern Illinois University, 1245 Lincoln Drive, Carbondale,
IL 62901, USA.
E-mail: wcalvert@siu.edu.
Department of Mathematics, Hofstra University, Room 306, Roosevelt Hall, Hempstead,
NY 11549-0114, USA.
E-mail: johanna.n.franklin@hofstra.edu.
UD-randomness is an extremely weak randomness notion. For instance, there are UD-

random reals that are notKurtz random.Wewill discuss some recent workon the relationship
between UD-randomness and two disjoint subclasses of the Kurtz random reals: the weakly
1-generic and Schnorr random reals. Avigad has proven that all Schnorr random reals are
UD-random. Here, we will show that there is aKurtz random real that is neither UD-random
nor weakly 1-generic.

� FRANÇOIS G. DORAIS, Nonstandard models and nonuniformity in recursion theory.
Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA.
E-mail: francois.g.dorais@dartmouth.edu.
We will illustrate the use of nonstandard models of subsystems of second-order arithmetic

for the analysis of nonuniform results in recursion theory through the analysis of a classical
result on n-bounded diagonally nonrecursive functions (DNRn functions, for short).
An elegant argument due to Friedberg (see [2, Theorem 5]) shows that every DNRn2 func-

tion computes a DNRn function. However, Friedberg’s proof is nonuniform since it requires
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deciding a Σ02 statement about the DNRn2 function in order to compute the DNRn function.
Jockusch [2] showed that this nonuniformity is essential: there is no uniform reduction pro-
cedure to compute a DNRn function from a DNRn+1 function. Recently, Hirst, Shafer and
the author [1] showed that the Σ02 decision in Friedberg’s argument cannot be replaced by a
Δ02 decision by constructing a nonstandard model of RCA0 with Δ

0
2-induction where there is

a DNRn function for some n but there are no DNR2 functions.
In this talk, we will show that Friedberg’s proof is optimal in the sense that if f(n) is a

primitive recursive function such that RCA0 proves that every DNRf(n) function computes a
DNRn function then f(n) must have polynomial growth rate. This will be accomplished by
forcing over nonstandard models of RCA0. If time permits, we will also discuss related joint
work with Seth Harris on graph colorings.
[1] F. G. Dorais, J. L. Hirst, and P. Shafer, Comparing the strength of diagonally non-

recursive functions in the absence of Σ02 induction, submitted.
[2] C. G. Jockusch, Jr.Degrees of functions with no fixed points, Logic, Methodology and

Philosophy of Science. VIII. (Proceedings of the Eighth International Congress held atMoscow
State University, Moscow, August 17–22, 1987) (J. E. Fenstad, I. T. Frolov, and R. Hilpinen,
editors), North-Holland, Amsterdam, 1989, pp. 191–201.

� MUSHFEQ KHAN,Mass problems and recursively-bounded DNR functions.
Department of Mathematics, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
E-mail: khan@math.hawaii.edu.
If h is a nondecreasing, recursive, and unbounded function, let DNRh be the class of DNR

functions that are bounded pointwise by h. What mass problems are weakly reducible to
DNRh? The motivation for this question came partly from algorithmic randomness, where
an analysis of DNRh functions for a specific h was used to show that it is not always possible
to compute a (ML) random sequence from one of positive information density (as measured
by effective Hausdorff dimension).
However, we need not limit ourselves to mass problems that arise in randomness. For any

problem that is weakly reducible to PA (the class of functions of PA degree), it is natural to
ask if it is reducible to DNRh for some h. I will discuss some of the interesting things that we
know and the questions that remain. Answers to these questions may have consequences not
just for algorithmic randomness, but also for the theory of the Turing degrees.

� JACKH. LUTZ,Mutual dimension and random sequences.
Department of Computer Science, Iowa State University, Ames, IA 50011, USA.
E-mail: lutz@cs.iastate.edu.
Recent results relating mutual dimension to algorithmic randomness of sequences will be

presented.
This is joint work with Adam Case.

� STEPHEN G. SIMPSON, Aspects of the Muchnik lattice.
Department of Mathematics, Pennsylvania State University, McAllister Bldg., University
Park, PA 16802, USA.
E-mail: simpson@math.psu.edu.
URL Address: http://www.math.psu.edu/simpson/.
Let P and Q be sets of reals. Intuitively we may view a set of reals as a “problem,” namely,

the problem of “finding” some real in the set. Accordingly, we say that P isMuchnik reducible
to Q if for all y ∈ Q there exists x ∈ P such that x is Turing reducible to y. The Muchnik
degree of P is the equivalence class of P under mutual Muchnik reducibility. Let Dw be the
lattice of all Muchnik degrees, and let Ew be the sublattice consisting of the Muchnik degrees
of nonempty, effectively closed (i.e., Π01) sets of reals. It is well known that Dw is the natural
completion of the upper semilatticeDT of Turing degrees. Similarly, Ew is a natural extension
of the upper semilattice ET of recursively enumerable Turing degrees. In a recent paper by
Sankha S. Basu and the speaker, we show that the category of sheaves of sets over Dw is an
interesting model of intuitionistic higher-order logic. We call this model theMuchnik topos.
In recent work by Stephen E. Binns, Richard A. Shore and the speaker, we show that Ew is
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dense, i.e., for all p, q ∈ Ew such that p < q there exists r ∈ Ew such that p < r < q. We now
sketch the proof of this latter result. The proof involves some hyperarithmetical theory.

� LINDA BROWNWESTRICK, Comparing subshifts in Z and Z2.
Department of Mathematics, University of Connecticut, 196 Auditorium Rd., Storrs, CT
06269, USA.
E-mail: westrick@uconn.edu.
A subshift is a closed, shift-invariant subset of Cantor space. Also known as symbolic

dynamical systems, subshifts were originally used to discretize information from continuous
dynamical systems. The simplest kind of subshift is a shift of finite type (SFT), obtained
by forbidding finitely many words (or in the two-dimensional case, finitely many n × n
blocks) from occurring anywhere in an element of the subshift. SFTs have been extensively
studied in both the one and two-dimensional cases, but the results have divergent charac-
teristics. This difference often stems from the fact that two-dimensional SFTs can embed
a Turing machine, while one-dimensional SFTs cannot. The distinction raises the ques-
tion of whether some more computationally-powerful class of one-dimensional subshifts,
such as Π01 subshifts, could provide a better analogy to two-dimensional SFTs. For exam-
ple, Hochman (2009), Durand, Romashchenko and Shen (2012), and Aubrun and Sablik
(2013) have described ways to embed one-dimensional Π01 shifts into higher-dimensional
SFTs. However, Π01 subshifts can have more complicated effective dimension spectra than
two-dimensional SFTs. I will discuss the search for a nice one-dimensional analogue to two-
dimensional SFTs, considering in particular the effective dimension of individual elements of
the subshift.

Abstracts of invited talks in the Special Session on
Constructive Mathematics

� SANKHAS.BASUANDSTEPHENG.SIMPSON,Mass problems and intuitionistic higher-
order logic.
Department of Mathematics, The Pennsylvania State University, McAllister Bldg., Univer-
sity Park, PA 16802, USA.
E-mail: basu@math.psu.edu.
E-mail: simpson@math.psu.edu.
We study a model of intuitionistic higher-order logic which we call the Muchnik topos.

The Muchnik topos may be defined briefly as the category of sheaves of sets over the topo-
logical space consisting of the Turing degrees, where the Turing cones form a base for
the topology. We note that our Muchnik topos interpretation of intuitionistic mathemat-
ics is an extension of the well known Kolmogorov/Muchnik interpretation of intuitionistic
propositional calculus via Muchnik degrees, i.e., mass problems under weak reducibility.
We introduce a new sheaf representation of the intuitionistic real numbers, the Muchnik
reals, which are different from the Cauchy reals and the Dedekind reals. Within the Muchnik
topos we obtain a choice principle (∀x ∃y A(x, y))⇒ ∃w ∀x A(x, wx) and a bounding prin-
ciple (∀x ∃y A(x, y))⇒ ∃z ∀x ∃y (y ≤T (x, z)∧A(x, y)) where x, y, z range over Muchnik
reals,w ranges over functions fromMuchnik reals toMuchnik reals, andA(x, y) is a formula
not containing w or z.

� ULRIK BUCHHOLTZ, Primitive recursive homotopy type theory.
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
E-mail: ulrikb@andrew.cmu.edu.
Homotopy type theory (HoTT) refers to the study of homotopical interpretations [1] of

Martin-Löf’s constructive type theory (MLTT) and various principles motivated by such
interpretations.
Voevodsky’s Univalent Foundations program [4] aims to leverage HoTT to provide a foun-

dation of mathematics that is suitable for implementation in proof assistants, particularly
those already based on MLTT.
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The main principles added toMLTT are theUnivalence Axiom (UA) [3] and higher induc-
tive types (HITs) which can represent constructions such as finite cell complexes, truncations,
bracket types, and quotients by equivalence relations.
Primitive Recursive Arithmetic (PRA) is an important subsystem of first-order Heyting

arithmetic (HA), which in turn naturally embeds into a fragment of MLTT. PRA suffices
to prove many syntactical or metamathematical results, e.g., from proof theory. Herbelin
and Patey have presented a Calculus of Primitive Recursive Constructions (CPRC) [2] as an
enriched version of PRA presented as a constructive type theory.
Working with a weak framework often allows us to get a sharper of view of concepts

compared to working in a stronger setting. Here, I shall discuss what happens to HoTT when
pushed down to a weak setting. I shall present a version of UA and a class of HITs that can
be added to a type-theory similar to CPRC while remaining conservative over PRA.
[1] Stewe Awodey and Michael A. Warren, Homotopy theoretic models of identity

types. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 146 (2009),
no. 1, pp. 45–55.
[2]HugoHerbelin and Ludovic Patey,ACalculus of Primitive Recursive Constructions,

(Abstract #41). Contributed talk presented at the Types 2014 meeting, May 12–15, 2014,
Paris, France.
[3] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky, The simpli-

cial model of Univalent Foundations, preprint on arXiv:
http://arxiv.org/abs/1211.2851, 2014.
[4] VladimirVoevodsky,Univalent foundations project,Modified versionof anNSFgrant

application, http://www.math.ias.edu/∼vladimir/Site3/Univalent Foundations -

files/univalent foundations project.pdf, 2010.

� HANNES DIENER, Continuity is overrated ( . . . sometimes).
School ofMathematics and Statistics,University of Canterbury, Christchurch,NewZealand.
E-mail: hannes.diener@canterbury.ac.nz.
The foundations of constructive mathematics are closely linked to continuity, in particular

continuity of functions of type R → R. A, for the uninitiated, bizarre feature of many
constructive varieties of mathematics is that often all such functions are continuous. In some
varieties such as Brouwer’s intuitionism this comes built in as an axiom (with philosophical
backing), whereas in others, such as recursivemodels it is a proven consequence. The situation
is a bit more subtle in Bishop style constructive mathematics (BISH). Since Bishop did not
want to break compatibility to either classical mathematics or Brouwer’s intuitionism, in
Bishop’s system it is neither provable nor disprovable that all functionsR → R are continuous;
he simply assumed that all functions he worked with were continuous. One might assume
that it is not possible to improve much on this situation. However, there is a group of results,
provable in BISH, that do not make any continuity assumption on the function. Among
them, for example, Ishihara’s second trick:

Letf: R → R be a strongly extensional mapping, and let (xn)n�1 be a sequence
in R converging to a limit x. Then for all positive numbers α < 
, either
|f(xn)− f(x)| < 
 eventually or |f(xn)− f(x)| > α infinitely often.

Notice that this is almost saying that we can decide sequential continuity; which is, of course,
not surprising if all functions are continuous. It is, however, surprising that we can make this
decision a priori without knowing whether all functions are continuous or not.
In this talk we are going to present a variety of similar results, showing that sometimes

continuity is overrated.

� HANNES DIENER AND ROBERT LUBARSKY,Weakenings of Cauchy convergence.
Department of Mathematics and Statistics, University of Canterbury, Christchurch, New
Zealand.
E-mail: hannes.diener@canterbury.ac.nz.
Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431,
USA.
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E-mail: Lubarsky.Robert@comcast.net.
URL Address: http://math.fau.edu/lubarsky/pubs.html.
Weakenings of the notion of a Cauchy sequence have been considered by various re-

searchers: Tao [4] (albeit from a classical perspective), Berger, Bridges and Palmgren [1],
Richman [3], the current authors [2]. We investigate these and other related principles, with
an eye toward determining the valid implications among them, and, for those implications
that do not hold, just what additional principle is needed for the implication. For instance,
Tao [4] showed classically that every metastable sequence is Cauchy; we show that that
theorem is equivalent to LPO.
[1] Josef Berger, Douglas Bridges, and Eric Palmgren, Double sequences, almost

cauchyness and BD-N. Logic Journal of Interest Group in Pure and Applied Logics, vol. 20
(2012), no. 1, pp. 349–354.
[2] Robert Lubarsky and Hannes Diener, Principles weaker than BD-N. The Journal of

Symbolic Logic, vol. 78 (2013), no. 3, pp. 873–885.
[3] Fred Richman, private communication.
[4] Terrence Tao, Soft analysis, hard analysis, and the finite convergence principle,

http://terrytao.wordpress.com/2007/05/23/soft-analysis-hard-analysis-and-

the-finite-convergence-principle/, May 2007.

� VLADIK KREINOVICH AND OLGA KOSHELEVA, How physics can influence what is
computable: taking into account that we process physical data and that we can use nonstandard
physical phenomena to process this data.
Department of Computer Science, University of Texas, El Paso, TX 79968, USA.
E-mail: vladik@utep.edu.
Department of Teacher Education, University of Texas, El Paso, TX 79968, USA.
E-mail: olgak@utep.edu.
It is well known that many computational problems—e.g., computing the root of a com-

putable function—are, in general, not algorithmically solvable. Since we mostly process
physical data, it makes sense to restrict ourselves to processing physical inputs. Physicists
believe that events with very small probability cannot occur—this is a standard explanation
of why, e.g., in spite of a stochastic molecular movements, a kettle on a cold stove cannot
start boiling by itself. We show under that a proper formalization of this idea, if we restrict
computations to situations which are “not-abnormal” in this sense, then problems which are
noncomputable in the general case—like comparing real numbers or finding the roots of a
computable function—become computable [2]. Moreover, under the usual physicists’ belief
that no physical theory is perfect, the use of physical phenomena potentially allows to make
the corresponding computations feasible for almost all inputs [1].
[1] O. Kosheleva, M. Zakharevich, and V. Kreinovich, If many physicists are right and

no physical theory is perfect, then by using physical observations, we can feasibly solve almost
all instances of each NP-complete problem. Mathematical Structures and Modeling, vol. 31
(2014), pp. 4–17.
[2] V.Kreinovich, Negative results of computable analysis disappear if we restrict ourselves

to random (or, more generally, typical) inputs.Mathematical Structures and Modeling, vol. 25
(2012), pp. 100–103.

� BAS SPITTERS, Formalizing mathematics in the univalent foundations.
Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
E-mail: spitters@andrew.cmu.edu.
We have been formalizing mathematics in type theory for many years. Although great

progress has been made, there were still a number of issues that are hard to tackle, especially
when leaving the realm of discrete mathematics. We mention a lack of quotient types and the
absence of a clear mathematical semantics for the Coq type theory.
HoTT promises a solution to these challenges. I will discuss how to develop some mathe-

matics in the univalent foundations and report on the design of our Coq library.
Basic familiarity with type theory and some categorical semantics will be assumed. For

more information see: http://homotopytypetheory.org/,
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https://github.com/HoTT/HoTT/, and our book:
http://homotopytypetheory.org/book/

Abstracts of invited talks in the Special Session on
Model Theory of Ordered Structures

� SAUGATA BASU, From combinatorial complexity to triangulations of monotone families.
Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette,
IN 47907-2067, USA.
E-mail: sbasu@math.purdue.edu.
I will explain how to extend the combinatorial parts of certain well known bounds on

the topology (the Betti numbers) of semi-algebraic sets to the general o-minimal setting and
mention some applications of such bounds in discrete geometry. If time permits, in the second
part of the talk I will explain a result of Gabrielov and Vorobjov which reduces the problem
of bounding the topology of arbitrary definable sets to that of compact ones, and show how
it leads to the problem of proving the existence of triangulations compatible with monotone
definable families. I will mention some partial results in this direction.
The last part of the talk is joint work with A. Gabrielov and N. Vorobjov.

� WILL JOHNSON, Interpretable sets in o-minimal structures.
Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720-3840,
USA.
E-mail: willij@math.berkeley.edu.
It is known that not all o-minimal structures have elimination of imaginaries. Definable

quotients cannot always be eliminated. Peterzil asked whether this became true after naming
additional parameters. We will discuss an example of this failing to hold: an o-minimal
structure with a definable quotient that cannot be eliminated even after naming parameters.
We’ll then discuss what can be said about interpretable sets in o-minimal structures. For
example, Kamenkovich and Peterzil have shown that interpretable sets still admit well-defined
Euler characteristics. We’ll discuss a sense in which interpretable sets look “locally” like
manifolds.

� TOBIAS KAISER AND PATRICK SPEISSEGGER, Holomorphic extensions of functions
definable in Ran,exp.
Fakultät für Informatik undMathematik,Universität Passau, Innstrasse 33,D-94032Passau,
Germany.
E-mail: tobias.kaiser@uni-passau.de.
Department of Mathematics and Statistics, McMaster University, 1280 Main Street West,
Hamilton, Ontario L8S 4K1, Canada.
E-mail: speisseg@mcmaster.ca.
We are interested in holomorphic extensions of one-variable functions definable in the

expansion of the real field by all restricted analytic functions and the exponential function.
I will try to precisely state a theorem about such extensions, which in a certain sense is
optimal.

� JANA MAŘÍKOVÁ AND ERIK WALSBERG, Measures and definable metric spaces in
o-minimal fields.
Department of Mathematics, Western Illinois University, 476 Morgan Hall, 1 University
Circle, Macomb, IL 61455, USA.
E-mail: j-marikova@wiu.edu.
Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, 6363
MSB, Los Angeles, CA 90095, USA.
E-mail: erikw@ucla.edu.
We extend the results in [1] and give an application to definable metric spaces in o-minimal

structures.
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This is joint work in progress with Erik Walsberg.
[1] J.Mařı́ková andM. Shiota,Measuring definable sets in o-minimal fields. Israel Journal

of Mathematics, to appear.

� ATHIPAT THAMRONGTHANYALAK, Continuous definable Skolem functions in
d -minimal structures.
Department ofMathematics, Ohio State University, 231W. 18th Ave., Columbus, OH 43210,
USA.
E-mail: t.athipat@gmail.com.
It is well-known that o-minimal structures admit definable Skolem functions which are

piecewise continuous.However,we cannot always find continuous definable Skolem functions
for all definable families. In 2013, M. Aschenbrenneer and I gave a sufficient condition on
definable families that guarantees the existence of continuous definable Skolem functions.
In this talk, we will discuss the similar problem in d -minimal expansions of the real field.
An analog of our result will be proved in this context.

Abstracts of invited talks in the Special Session on
Parametrized Complexity

� CHANDRA CHEKURI, Recent progress in structure of large treewidth graphs and some
applications.
Department of Computer Science, University of Illinois, Urbana-Champaign, Urbana, IL
61801, USA.
E-mail: chekuri@illinois.edu.
The seminal work of Robertson and Seymour on graph minors developed and utilized

several important properties of tree decompositions and treewidth. Treewidth has since
become a fundamental tool for structural and algorithmic results on graphs. One of the key
results of Robertson and Seymour is the Excluded Grid Theorem which states that there is
an integer valued function f such that every graph G with treewidth at least f(k) contains
a k × k grid as a minor.
In this talk we will discuss some recent developments on the structure of graphs with large

treewidth. In particular, Julia Chuzhoy and the author showed that f can be chosen to be
a polynomial, improving previous bounds that were at least exponential. We will discuss
this and related structural results and some applications to fixed parameter tractability and
Erdos–Posa type theorems.

� SERGE GASPERS, Backdoors to satisfaction.
Computer Science and Engineering, The University of New South Wales and NICTA, Bldg.
K17, NSW 2052, Sydney, Australia.
E-mail: sergeg@cse.unsw.edu.au.
A backdoor set is a set of variables of a propositional formula such that fixing the truth

values of the variables in the backdoor set moves the formula into some class where the
Satisfiability problem is polynomial-time decidable. If we know a small backdoor set we
can reduce the question of whether the given formula is satisfiable to the same question for
one or several easy formulas that belong to the tractable class under consideration. In this
talk I will review parameterized complexity results for problems that arise in the context of
backdoor sets, such as the problem of finding a backdoor set of size at most k, parameterized
by k. In particular, I will outline backdoors to combinations of base classes and a recent
FPT-approximation algorithm finding a backdoor to the class of formulas with bounded
incidence treewidth.
[1] Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and

Stanislav Zivny, Backdoors into heterogeneous classes of SAT and CSP, Proceedings of
the 28th AAAI Conference on Artificial Intelligence (AAAI 2014), (Québec City, Québec,
Canada) (Carla E. Brodley and Peter Stone, editors), AAAI Press, Menlo park, CA, 2014,
pp. 2652–2658.
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[2] Serge Gaspers and Stefan Szeider, Strong backdoors to bounded treewidth SAT,
Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2013), (Berkeley, California, USA), IEEE Computer Society, 2013, pp. 489–498.
[3] , Backdoors to satisfaction, The Multivariate Algorithmic Revolution and Be-

yond: Essays Dedicated to Michael R. Fellows on the Occasion of his 60th Birthday (Hans L.
Bodlaender, Rodney G. Downey, Fedor V. Fomin, Dániel Marx, editors), Springer, Berlin,
Lecture Notes in Computer Science, vol. 7370, 2012, pp. 287–317.
[4] RyanWilliams, Carla P. Gomes, and Bart Selman, Backdoors To typical case com-

plexity,Proceedings of the 18th International Joint Conference onArtificial Intelligence (IJCAI
2003), (Acapulco, Mexico) (Georg Gottlob and Toby Walsh, editors), Morgan Kaufmann,
2003, pp. 1173–1178.

� IYADKANJ,When is weighted satisfiability in FPT?
School of Computing, DePaul University, 243 S. Wabash Avenue, 4th floor, Chicago, IL
60604, USA.
E-mail: ikanj@cs.depaul.edu.
We consider the weighted monotone and antimonotone satisfiability problems on normal-

ized circuits of depth at most t ≥ 2, abbreviated wsat+[t] and wsat−[t], respectively. These
problems model the weighted satisfiability of monotone and antimonotone propositional
formulas (including weighted monotone/antimonotone cnf-sat) in a natural way, and serve
as the canonical problems in the definition of the parameterized complexity hierarchy. In
particular, wsat+[t] (t ≥ 2) is W[t]-complete for even t and W[t − 1]-complete for odd t,
and wsat−[t] (t ≥ 2) is W[t]-complete for odd t and W[t − 1]-complete for even t. More-
over, several well-studied problems, including important graph problems, can be modeled as
wsat

+[t] and wsat−[t] problems in a straightforward manner. We study the parameterized
complexity of wsat−[t] and wsat+[t] with respect to the genus of the circuit. For wsat−[t],
we give a fixed-parameter tractable (FPT) algorithm when the genus of the circuit is no(1),
where n is the number of the variables in the circuit. For wsat+[2] (i.e., weighted monotone
cnf-sat), which isW[2]-complete, we also give FPT-algorithms when the genus is no(1). For
wsat

+[t] where t ≥ 3, we give FPT-algorithms when the genus is o(log2/3 (n)). We also show
that both wsat−[t] and wsat+[t] on circuits of genus nΩ(1) have the sameW-hardness as the
generalwsat+[t] andwsat−[t] problem (i.e., with no restriction on the genus), thus drawing
a precise map of the parameterized complexity of wsat−[t] and of wsat+[2] with respect to
the genus of the underlying circuit. As a byproduct of our results, we obtain, via standard
parameterized reductions, tight results on the parameterized complexity of several problems
with respect to the genus of the underlying graph.
This is joint work with Dimitrios Thilikos and Ge Xia.

� AMERMOUAWAD, The complexity of CSP reconfiguration.
David R. Cheriton School of Computer Science, University of Waterloo, Waterloo N2L 3G,
Ontario, Canada.
E-mail: aabdomou@uwaterloo.ca.
Given an n-vertex graph G and two vertices s and t inG , determining whether there exists

a path and computing the length of the shortest path between s and t are two of the most
fundamental graph problems. In the classical battle of P versus NP or “easy” versus “hard”,
both of these problems are on the easy side. That is, they can be solved in poly(n) time, where
poly is any polynomial function. But what if our input consisted of a 2n-vertex graph? Of
course, we can no longer assumeG to be part of the input, as reading the input alone requires
more than poly(n) time. Instead, we are given an oracle encoded using poly(n) bits and that
can, in constant or poly(n) time, answer queries of the form “is u a vertex in G” or “is there
an edge between u and v?”. Given such an oracle and two vertices of the 2n-vertex graph, can
we still determine if there is a path or compute the length of the shortest path between s and
t in poly(n) time? This seemingly artificial question is in fact quite natural and appears in
many practical and theoretical problems. In particular, this is exactly the types of questions
asked under the reconfiguration framework. Under the reconfiguration framework, instead
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of finding a feasible solution to some instance I of a search problem Q, we are interested
in structural and algorithmic questions related to the solution space of Q. For example, a
reconfiguration variant of the k-Coloring problem asks, given two k-colorings α and 

of a graph G and an integer �, can α be modified into 
 by recoloring vertices one at a
time, while maintaining a k-coloring throughout and using at most � such recoloring steps?
This problem is weakly PSPACE-hard for every constant k ≥ 4. We show that the problem is
W[1]-hard (but in XP) when parameterized only by �. On the positive side, we show that the
problem is fixed-parameter tractable when parameterized by k + �. In fact, we show that the
more general problem of length-bounded reconfiguration of constraint satisfaction problems
(CSPs) is fixed-parameter tractable parameterized by k + � + r, where r is the maximum
constraint arity and k is the maximum domain size. We show that for parameter �, the latter
problem is W[2]-hard, even for k = 2. Finally, if p denotes the number of variables with
different values in the two given assignments, we show that the problem is W[2]-hard when
parameterized by � − p, even for k = 2 and r = 3.
This is joint work with Paul Bonsma, Naomi Nishimura, Vinayak Pathak, and Venkatesh

Raman.

� SRIDHARAN RAMANUJAN, A parameterized complexity dichotomy for Boolean QCSP
Deletion.
Department of Informatics, University of Bergen, Postboks 7803, 5020 Bergen, Norway.
E-mail: ramanujan.sridharan@ii.uib.no.
In the Boolean QCSP Deletion problem, the input is a totally quantified CSP instance

over a fixed boolean constraint language Γ and an integer k and the objective is to test if
there is a set of at most k constraints whose deletion makes the resulting quantified CSP
instance true. This problem has the power to model several fundamental and well-studied
problems in parameterized complexity. A prime example is the 2-SAT Deletion problem
which is the special case of Boolean QCSP Deletion where Γ is 2-cnf or bijunctive, and
the quantification is purely existential. The 2-SAT Deletion problem itself has played a
central role in the evolution of FPT algorithms, both as an important subroutine in several
algorithms and as a source of new techniques.
In this work, we study the BooleanQCSPDeletion problem over Schaefer languages and

show that the parameterized complexity of this problem is completely characterized by the
choice of a Schaefer language Γ and the arity of the relations in Γ.
As a corollary of the positive side of the dichotomy, we obtain the fixed parameter tractabil-

ity of theQuantifiedH -Coloring Deletion problem, implying an FPT-version of Hell and
Nesetril’s dichotomy for theH -coloring problem. Furthermore, the fixed parameter tractabil-
ity of several important problems in parameterized complexity follows as a direct corollary
of our theorem, including Odd Cycle Transversal [3], Deletion RHorn-Backdoor Set
Detection, 2-SAT Deletion [2], and Directed Multiway Cut [1].
[1] RajeshChitnis,MohammadTaghiHajiyaghayi, andDánielMarx,Fixed parameter

tractability of Directed Multiway Cut parameterized by the size of the cutset. SIAM Journal
on Computing, vol. 42 (2013), no. 4, pp. 1674–1696.
[2] Igor Razgon and Barry O’Sullivan, Almost 2-SAT is fixed parameter tractable.

Journal of Computer and System Sciences, vol. 75 (2009), no. 8, pp. 435–450.
[3] Bruce Reed, Kaleigh Smith, and Adrian Vetta, Finding odd cycle transversals.

Operations Research, vol. 32 (2004), no. 4, pp. 299–301.

Abstracts of invited talks in the Special Session on
Philosophy of Mathematics

� JOHN T. BALDWIN,Model theory and set theory.
Department of Mathematics, Statistics and Computer Science, University of Illinois at
Chicago, MSCS M/C 249, 851 S. Morgan Street, Chicago, IL 60607, USA.
E-mail: jbaldwin@uic.edu.
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At least since Skolem’s formulation of his paradox set theory and model theory have been
intertwined. In contrast to Skolem, we investigate the methodological role of set theory in
model theory. We will address several questions. What is the role of axiomatic set theory in
model theory? How does this depend on whether the object of study is a logic or a theory?
What is the role of combinatorial set theory in model theory? In particular, what is the role
of indiscernibles in model theory? What is the role of cardinality in model theory. How do
properties of largish cardinals affect countable models? In this talk we will outline some of
these issues and discuss some competing views.

� KATALIN BIMBÓ AND J.MICHAELDUNN, On the decidability of classical linear logic.
Department of Philosophy, University of Alberta, 2–40 Assiniboia Hall, Edmonton, AB
T6G2E7, Canada.
E-mail: bimbo@ualberta.ca.
URL Address: www.ualberta.ca/∼bimbo.
School of Informatics and Computing, and Department of Philosophy, Indiana University,
901 East Tenth Street, Bloomington, IN 47408, USA.
E-mail: dunn@indiana.edu.
Classical linear logic was introduced in [4]. We prove that LL, the propositional fragment

of this logic is decidable. We provide two conceptually different proofs (for the sake of
comparison with [6], where undecidability is claimed).
The relevance logic LR (“lattice-R”) was introduced and proved decidable in [7]. Our first

proof relies on a translation between LR (with constants) and LL.
LL has a simple sequent calculus formulation, which is amenable to an application of the

same proof technique that had been used to show a range of relevance and modal logics
decidable. (See for example, [5], [7], [3], [2], and [1].) A core idea is to allow a limited amount
of contraction in connective rules in lieu of explicit contraction rules.We formulate a sequent
calculus forLLwithout the ( !W�) and (� ?W ) rules, for which we prove the cut theorem and
Curry’s lemma. Then, we show—using a version ofKripke’s lemma andKönig’s lemma—that
a finite proof-search tree can be constructed for a given formula.
[1]KatalinBimbó,ProofTheory: SequentCalculi andRelatedFormalisms,DiscreteMath-

ematics and its Applications, CRC Press, Boca Raton, FL, 2014.
[2]Katalin Bimbó and J. Michael Dunn, On the decidability of implicational ticket

entailment. The Journal of Symbolic Logic, vol. 78 (2013), pp. 214–236.
[3] J. Michael Dunn, Relevance logic and entailment. Handbook of Philosophical Logic

(D. Gabbay and F. Guenthner, editors), vol. 3, 1st ed., D. Reidel, Dordrecht, 1986,
pp. 117–224.
[4] Jean-Yves Girard, Linear logic. Theoretical Computer Science, vol. 50 (1987),

pp. 1–102.
[5] Saul A. Kripke, The problem of entailment, (abstract). The Journal of Symbolic Logic,

vol. 24 (1959), p. 324.
[6] Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar,

Decision problems for linear logic. Annals of Pure and Applied Logic, vol. 56 (1992),
pp. 239–311.
[7] Robert K. Meyer, Topics in Modal and Many-valued Logic, PhD thesis, University of

Pittsburgh, Ann Arbor (UMI), 1966.

� MICHAEL ERNST,What graphs could not be.
Department of Philosophy, University of Illinois at Urbana-Champaign, 105 Gregory Hall,
MC-468, 810 South Wright Street, Urbana, IL 61801, USA.
E-mail: mrnst@illinois.edu.
Categorial structuralism suggests that categories are the most effective, and potentially

the most correct, method for describing mathematical structures. I will show that categorial
structuralism has problems similar to the Benacerraf-style difficulties that originally moti-
vated the structuralist view in the philosophy of mathematics. This will be done by looking
at the categorial treatment of graphs.
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� COLIN MCLARTY, How Alexander Grothendieck (1928–2014) simplified number theory,
and why.
Department of Philosophy, Case Western Reserve University, Clark Hall, 11130 Bellflower
Road, Cleveland, OH 44106-7119, USA.
E-mail: colin.mclarty@case.edu.
Philosophers can learn much about simplicity, structure, historical continuity, and rigor in

mathematics from the extremely productive state of number theory since the “Grothendieck
revolution” (a term used by David Mumford and Barry Mazur). This talk will emphasize
how “etale cohomology” simplifies insights from Bernhard Riemann’s 1851 dissertation on
complex analysis and makes them work in number theory. Riemann and Kronecker, among
others, both believed things like this should be possible and should be done.

� REBECCAMORRIS, Understanding proof steps.
Department of Philosophy, Carnegie Mellon University, Baker Hall 161, Pittsburgh, PA
15213, USA.
E-mail: rebeccam@andrew.cmu.edu.
URL Address: http://rebeccaleamorris.com.
When reading a proof, we not only want to be able to check its correctness, but desire to

understand it. Philosophers of mathematical practice have started to analyze what it means
to understand a proof, for example see [1]. In this talk, I will consider the different senses in
which a reader may understand a particular step in a proof, the associated benefits of such
understanding, and how it may be promoted or stifled. To do this, I will examine case studies
from number theory, comparing different proofs of the same theorem. Using these case
studies, I identify two types of understanding associated with proof steps: (i) understanding
where the proof step comes from; (ii) understanding how the proof step contributes to the
overall argument. I suggest that these two kinds of understanding work together to allow the
reader to reuse the proof step effectively in other contexts, and thus have a practical benefit.
I then argue that the choice of notation, as well as the structure of the proof, can foster, or
suppress, such understanding.
[1] Jeremy Avigad, Understanding proofs, The Philosophy of Mathematical Practice

(Paolo Mancosu, editors), Oxford University Press, 2008, pp. 317–353.

Abstracts of invited talks in the Special Session on
Set Theory

� MARTINO LUPINI, Noncommutative analogs of the Gurarij Banach space.
York University, 4700 Keele Street, Toronto, ONM3J 1P3, Canada.
E-mail: mlupini@yorku.ca.
URL Address: mlupini.org.
Working in the framework of Fraı̈ssé theory for metric structures developed by Ben

Yaacov, we show that finite-dimensional 1-exact operator spaces form a Fraı̈ssé class. We
identify the limit as the (noncommutative) Gurarij operator space introduced by Oikhberg.
As a consequence we obtain that such a space is unique up to complete isometry, homo-
geneous, and universal for separable 1-exact operator spaces. We also show that finite-
dimensional 1-exact operator systems form a Fraı̈ssé class. The corresponding limit is
a nuclear operator system that contains unitally completely isometrically every separable
1-exact operator system. It is moreover universal in the sense of Kirchberg and Wasserman,
i.e., the canonical *-homomorphism from the universal C*-algebra to the C*-envelope is a
*-isomorphism.

� KONSTANTIN SLUTSKY, Orbit equivalences of Borel flows.
Department of Mathematics, Statistics, and Computer Science, University of Illinois at
Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago,
IL 60607-7045, USA.
E-mail: kslutsk2@uic.edu.
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We shall give an overview of different variants of orbit equivalence for multidimensional
Borel flows, that is Borel actions of Rn . Of main importance for us will be the concept of
Lebesgue orbit equivalence. We say that two free flows are Lebesgue orbit equivalent if there
exists a Borel bijection between their phase spaces sending orbits onto orbits which preserves
Lebesgue measure within each orbit. The talk will cover old and new classification results up
to this notion of equivalence in ergodic theory and Borel dynamics.

� ROBIN TUCKER-DROB, Planarity and treeability of groups and equivalence relations.
Mathematics Department, Rutgers University, Hill Center for the Mathematical Sciences,
110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
E-mail: rtuckerd@math.rutgers.edu.
I will discuss recent joint work with C. Conley, D. Gaboriau, and A. Marks, in which we

show that any free Borel action of a group with a planar Cayley graph gives rise to an equiv-
alence relation which is measure treeable. This provides the first examples of nonamenable
groups with one end which are strongly treeable.

� SPENCER UNGER, The tree property at successive regular cardinals.
Department of Mathematics, University of California, Los Angeles, 520 Portola Plaza, Los
Angeles, CA 90064, USA.
E-mail: sunger@math.ucla.edu.
URL Address: www.math.ucla.edu/∼sunger.
We explore recent progress towards a positive solution to a question of Magidor: “Is it

consistent that every regular cardinal greater than ℵ1 has the tree property?” We present
two main advances. First, in joint work with Dima Sinapova we obtained partial progress
towards a positive answer to a question ofWoodin: “Is it consistent that the singular cardinals
hypothesis fails at ℵ� and the tree property holds at ℵ�+1?”. Second, we have extended the
longest known initial segment of regular cardinals on which the tree property can hold.

� TREVORM. WILSON, Covering properties of derived models.
Department of Mathematics, University of California, Irvine, 340 Rowland Hall, Irvine, CA
92697, USA.
E-mail: twilson@math.uci.edu.
After forcing with the Levy collapse at a limit � of Woodin cardinals, one obtains a model

L(R∗) satisfying AD, the Axiom of Determinacy. (The set R∗ consists of all reals added by
proper initial segments of the forcing.) In fact the proof shows that L(R∗) satisfies AD+.
More generally, one may consider the derived modelD(V, �), which is the maximal submodel
of the symmetric model V (R∗) that satisfies AD+ and contains all ordinals and all reals in
R∗. This model may properly extend L(R∗). The existence of such a maximal model follows
from Woodin’s derived model theorem [1, Thm. 31].
We outline some arguments showing that under certain circumstances the derived model

at a limit � of Woodin cardinals is “close to V ” in terms of its ordinal Θ, the successor of
the continuum in the sense of surjections. Namely, we show that if � is inaccessible then the
cofinality ofΘD(V,�) is at least �, and if in addition � is weakly compact then eitherΘD(V,�) = �+

or D(V, �) satisfies “every set of reals is Suslin.” We discuss a question that remains in the
case that � is singular.
[1]W. Hugh Woodin, Suitable extender models I. Journal of Mathematical Logic, vol. 10

(2010), no. 1,2, pp. 101–339.

Abstracts of contributed talks

� WESLEY CALVERT, PAC learning, VC dimension, and the arithmetic hierarchy.
Department of Mathematics, Mail Code 4408, 1245 Lincoln Drive, Southern Illinois Uni-
versity, Carbondale, Illinois 62901, USA.
E-mail: wcalvert@siu.edu.
We compute that the index set of PAC-learnable concept classes is m-complete Σ03 within

the set of indices for all concept classes of a reasonable form. All concept classes considered
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are computable enumerations of computable Π01 classes, in a sense made precise here. This
family of concept classes is sufficient to cover all standard examples, and also has the property
that PAC learnability is equivalent to finite VC dimension.

� GABRIEL CONANT,Model theory and combinatorics of homogeneous metric spaces.
Department of Mathematics, Statistics, and Computer Science, University of Illinois at
Chicago, 851 S. Morgan St., Chicago, IL 60607, USA.
E-mail: gconan2@uic.edu.
Given a countable, totally and positively ordered commutative structureR = (R,⊕,≤, 0),

there is a natural notion of an R-metric space. In this talk, we assume the existence of a
countable, universal, and homogeneous R-Urysohn space, denoted UR. By a generalization
of results due to Delhommé, Laflamme, Pouzet, and Sauer, this is equivalent to the assump-
tion that ⊕ is associative. Let TR denote the complete theory of UR in a relational language
with distance predicates d(x, y) ≤ r, for r ∈ R. We construct a nonstandard extension
R∗ = (R∗,⊕∗,≤∗, 0) such that any model of TR is an R∗-metric space and, moreover,
quantifier elimination in TR is equivalent to a natural continuity property in R∗. We also
show that stability, simplicity, and Shelah’s n-strong order property for TR are characterized
by the archimedean complexity of R. Finally, we focus on the case when R is a finite subset
ofN and r⊕ s = max{x ∈ R : x ≤ r+ s}. Building on work of Nguyen Van Thé, we discuss
some results on the combinatorial and enumerative behavior ofR, as well as conjectures and
connections in other areas of additive combinatorics.

� MATTHEW CORDES, MOON DUCHIN, YEN DUONG, MENG-CHE HO, and
Andrew P. Sánchez Random nilpotent groups.
Department of Mathematics, Brandeis University, 415 South Street, Waltham, MA 02453,
USA.
Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, MA 02155,
USA.
Department of Mathematics, Statistics, and Computer Science, University of Illinois at
Chicago, 851 S. Morgan Street, Chicago, IL 60607, USA.
Department of Mathematics, Univeristy of Wisconsin-Madison, 480 Lincoln Dr., Madison,
WI 53706-1325, USA.
E-mail: ho@math.wisc.edu.
Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, MA 02155,
USA.
We study random nilpotent groups in the well-established style of random groups.Whereas

random groups are quotients of the free group by a random set of relators, random nilpotent
groups are quotients of a free nilpotent group Np,m by a similarly chosen set of relators.
We establish results about the distribution of rank and step for random nilpotent groups.

We show that a random nilpotent group is almost never abelian but not cyclic. We also
describe how to lift results about random nilpotent groups to obtain information about
standard random groups. A random nilpotent group is trivial if and only if the corre-
sponding random group is perfect, i.e., is equal to its commutator subgroup. Considering
adding relators one by one in a stochastic process, we study the threshold number of relators
required.

� BARBARA CSIMA AND MATTHEW HARRISON-TRAINOR, Computable structures
relative to a cone.
Department of Mathematics, University of Waterloo, Waterloo N2L 3G1, Canada.
Group in Logic and the Methodology of Science, University of California, Berkeley, 910
Evans Hall #3840, Berkeley, CA 94720-3840, USA.
E-mail: matthew.h-t@berkeley.edu.
Computable structures can often be constructed to exhibit pathological behaviour. Struc-

tures which naturally occur in mathematics are often more nicely behaved and do not have
such pathological behaviour. One can study the properties of natural structures by relativiz-
ing to a cone of Turing degrees; if a natural structure satisfies some property P on a cone,
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we would expect it to satisfy the unrelativized property P. Some examples of such properties
involve degree spectra of relations and degrees of categoricity.

� PHILIP EHRLICH AND ELLIOT KAPLAN, Number systems with simplicity hierarchies:
A generalization of Conway’s theory of surreal numbers II.
Department of Philosophy, Ohio University, Ellis Hall Rm. 202, University Terrace, Athens,
OH 45701-2979, USA.
E-mail: ehrlich@ohio.edu.
Department of Mathematics, Ohio University, Athens, OH, USA.
E-mail: elliotakaplan@gmail.com.
In [1], the first author brought to the fore the algebraico-tree-theoretic simplicity hier-

archical structure of J. H. Conway’s ordered field No of surreal numbers and employed it
to provide, among other things, necessary and sufficient conditions for an ordered field to
be isomorphic to an initial subfield of No, i.e., a subfield of No that is an initial subtree
of No. This led to the result that every real-closed ordered field is isomorphic to an initial
subfield ofNo. In this paper the authors establish analogous results for domains, groups, and
semigroups.
[1] Philip Ehrlich, Number systems with simplicity hierarchies: A generalization of

conway’s theory of surreal numbers. The Journal of Symbolic Logic, vol. 66 (2001), no. 3,
pp. 1231–1258.

� TIGRAN HAKOBYAN AND MINH CHIEU TRAN, Algebraically closed fields with a
generic multiplicative character.
Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green
Street, Urbana, IL 61801, USA.
E-mail: hakobya2@illinois.edu.
URL Address: http://math.uiuc.edu/∼hakobya2/.
E-mail: mctran2@illinois.edu.
We study the class C of two sorted structures (F,K ; �), where F and K are algebraically

closed fields, K has characteristic 0, and � : F → K is a generic multiplicative character
which means � is injective, multiplication preserving, and takes multiplicatively independent
elements to algebraically independent elements over Q. The examples of main interest are
when F = Facp and K = Qac . We prove the following: C is an elementary class with a natural
axiomatization denoted byACFC; for p prime or p = 0, ACFCp = ACFC ∪{char(F ) = p}
has a categoricity property, is complete, has relative quantifier elimination, is �-stable, has
all models algebraically bounded, and has all definable functions piecewise closed-graph in
a natural topology.

� ALEX KRUCKMAN, Amalgamation and the finite model property.
Department of Mathematics, UC Berkeley, 970 Evans Hall, Berkeley, CA, 94720, USA.
E-mail: kruckman@math.berkeley.edu.
A theory T has the finite model property if every sentence in T has a finite model. In many

examples, such as the theory of the randomgraph, the finitemodel property canbe established
via a probabilistic argument, i.e., a probabalistic construction of finite structures of size n
which produces a model of any sentence ϕ ∈ T with positive probability for large enough n.
It turns out that higher order amalgamation properties for quantifier-free types have a

key role in such probabilistic arguments. From this point of view, I will discuss the question
of whether instances of the finite model property can always be explained by probabilistic
arguments for a natural class of “purely combinatorial” theories.

� JOACHIMMUELLER-THEYS, The positive inexpressibility of consistency.
Kurpfalzstr. 53, 69226 Nußloch bei Heidelberg, Germany.
E-mail: Mueller-Theys@gmx.de.
By the occurrence of immanent unsoundness and inconsistency (due to the existence of

negative fixed points), ı(x) (e.g., Gödel’s Prov (x)) fails to state consequence (provability),
whence κ := ¬ı(〈⊥〉) (e.g., Con := ¬Prov(#(⊥))) fails to state consistency ([1], [2]).
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Consistency is a metatheoretic property defined negatively, by the absence of contradic-
tions. Gödelian andmodal approaches try to represent it positively, by the presence of certain
formulæ. We will now show that this is generally impossible.
0. Let, at least, ⊥ ∈ L, T ⊆ PotL (“theories”), L ∈ T. T ∈ T is consistent :iff ⊥ /∈ T ;

T is inconsistent :iff T is not consistent. L is inconsistent.
Logical systems L = 〈L, seq ⊆ PotL × L〉 with Φ ⊆ seqΦ (:= {φ : Φ seqφ}) can be

subsumed by TL := {T : ∃ΦT = seqΦ}. L ∈ TL follows.
P ⊆ T is a metatheoretic property. Cs := {T ∈ T : T consistent}; Incs := T\Cs. P is

L-free :iff L /∈ P. Cs is L-free.
I. A formula expresses a metatheoretic property if it is present at theories having it and

absent from theories having it not.

Definition.

(i) φ ∈ L expressesP iff for every T ∈ T: φ ∈ T iffT ∈ P;
(ii) P is expressible iff there is φ such that φ expressesP;
(iii) P is inexpressible iff P is not expressible.

Proposition. Incs is expressible.
II. However,metatheoretic properties, which the language does not have, are inexpressible.
Theorem. If P is L-free,P is inexpressible.
Proof. Assume that φ0 expressesP. Thence L ∈ P.
Corollary. Cs is inexpressible.

In particular, formulæ like κ and ¬�⊥ cannot express consistency.
Note. This is also joint work with Wilfried Buchholz, who found the definiens ≈ 2011.

Andreas Haltenhoff was stimulating further development.
[1] Joachim Mueller-Theys, Metalogical extensions—Part II: First-order consequences

and Gödel, 2014 ASL European Summer Meeting.
[2] , Immanent inconsistency, 2014–15 ASLWinter Meeting (with Joint Mathemat-

ics Meeting).

� CAROLINE TERRY, Finite distance metric spaces: global structure and 0-1 laws.
University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60610, USA.
E-mail: cterry3@uic.edu.
Fix an integer r ≥ 3. Given an integer n, we defineMr(n) to be the set of metric spaces with

underlying set {1, . . . , n} such that the distance between any two points lies in {1, . . . , r}.
We present results describing the approximate structure of these metric spaces when n is large.
We then present that as a consequence of these structural results, when r is even, this family
of structures has a first-order labeled 0-1 law in the language consisting of r binary relation
symbols, one for each distance in {1, . . . , r}. We end by discussing similarities between this
example, in the case when r is even, and the family of finite labeled triangle free-graphs.
In particular, both families produce two first order theories: the almost sure theory, and the
theory of the Fraı̈ssé limit associated to the family. In both examples, these two theories are
different. We discuss how the two theories produced by each example differ analogously in
their model theoretic complexity.
This is joint work with Dhruv Mubayi.

� SEBASTIEN VASEY, Independence in abstract elementary classes.
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213,
USA.
E-mail: sebv@cmu.edu.
URL Address: http://math.cmu.edu/∼svasey/.
Independence (or forking) is one of the central notion of modern classification theory.

In first-order model theory, it was introduced by Shelah and is one of the main devices of
his book. One can ask whether there is such a notion outside of elementary classes. We will
focus on abstract elementary classes (AECs), a very general axiomatic framework introduced
by Shelah in 1985. In Shelah’s book on AECs, the central concept is that of a good frame
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(a local independence notion for types of singletons) and conditions are given for their
existence. However, the question of when there is a global independence notion (for types of
all lengths) is still left open.
We show how to construct such a notion assuming categoricity (in a high-enough car-

dinal), amalgamation, tameness (a locality condition for types introduced by Grossberg
and VanDieren), and type-shortness (a relative of tameness introduced by Boney). We also
introduce a definition of superstability that can replace categoricity in our construction.

Abstracts of talks presented by title

� JOHN CORCORAN, Teaching basic logics.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
This accessible presentation explains anddemonstrates the quantifier-free, Jaskowski-style,

natural-deduction logics introduced in [2].
A basic logic BL is a “zero-order logic”: more rudimentary than first-order and tran-

scended by first-order as first-order is transcended by second-order. Every BL includes iden-
tity, individual constants, and the standard truth-functional connectives. BLs may also have
inidentity (diversity or nonidentity), relation symbols, or function symbols. Although they
lack variables and quantification, some BLs are genuine underlying logics suitable for natu-
rally representing actual reasoning in rudimentary sciences including “Leibniz Arithmetic”,
certain versions of “Aristotelian syllogistic”, and portions of high-school arithmetic and
trigonometry.
BLs are not mere logic-schemata like propositional logics, which are incapable of serving

as underlying logics of actual sciences. After all, no proposition’s logical form is adequately
represented by a propositional constant: all propositions have internal structure [1, §00, §01,
and §04]. Unlike propositional logics, under certain interpretations, a BL’s formal deductions
can be used by persons to express their deductive reasoning.
Without underlying logics having sentences exhibiting logical forms of genuine proposi-

tions, understanding the epistemic significance of natural-deduction formalization is awk-
ward if not impossible.
Some logics in [4]—certain underlying logics of set theories—also lack variables and

quantification. Nevertheless, they aren’t BLs; lacking truth-functional connectives, their
sentences are exclusively constant equations such as (1 + 2) = (4 − 1). Such logics in [4],
and thus BLs, extend what are called identity logics in [3]—where sentences are identities or
inidentities between individual constants.
[1] Alonzo Church, Introduction to Mathematical Logic, Princeton University Press,

Princeton, NJ, 1956.
[2] John Corcoran, Second-order logic, Logic, Meaning, and Computation: Essays in

Memory of Alonzo Church (C. Anderson et al., editors), Kluwer, Dordrecht, 1998.
[3] John Corcoran and Stanley Ziewacz, Identity logics.Notre Dame Journal of Formal

Logic, vol. 20 (1979), pp. 777–784.
[4] Alfred Tarski and Steven Givant, Formalization of Set Theory without Variables,

American Mathematical Society, Providence, RI, 1987.

� JOHN CORCORANANDWILLIAM FRANK, Assumptions: Illative and typographical.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
The word ‘assumption’ is appropriate in contrasting contexts with contrasting meanings,

often in one paper, e.g., [3]. We distinguish three context classes.
In the first—possibly the earliest—people making an assumption believe it and thus neces-

sarily understand it; axioms, postulates, and definitions are sometimes called assumptions [1].
No such context occurs in [3].
In the second—also old—people making an assumption necessarily understand it but

often don’t believe it, or may even disbelieve it, e.g., assumptions “for purposes of reasoning”:
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reductio assumptions in indirect proofs and antecedents in conditional proofs. The first such
context in [3] is Section 1.1, pages 371f: a conditional proof of an implication between
two metalanguage propositions. Such assumptions are called illative indicating their role in
illation, reasoning productive of knowledge.
In the third—beginning around 1900—‘assumption’ is used in connection with uninter-

preted syntactic strings [2]: there is nothing to understand much less believe. Dozens of
such contexts occur in [3]—some in proofs of metatheorems. The first such context in [3] is
Section 1.2, pages 372ff, where ‘assumption’ is used in the relation-verb phrase ‘is an assump-
tion in’. Assumptions in this sense are called typographical indicating their connection with
string-manipulation.
Assumptions from the first context—understood and believed—are excluded from this

study. We investigate illative assumptions—understood but possibly disbelieved—and typo-
graphical assumptions—uninterpreted character-strings. We question how illative assump-
tions are modeled, represented, or expressed by typographical assumptions.
[1] John Corcoran, Sentence, proposition, judgment, statement, and fact,Many Sides of

Logic (Walter Carnielli et al., editors), College Publications, London, 2009.
[2] JohnCorcoran,William Frank, andMichaelMaloney, String theory.The Journal

of Symbolic Logic, vol. 39 (1974), pp. 625–637.
[3] John Corcoran and George Weaver, Logical Consequence in Modal Logic: Natural

Deduction in S5. Notre Dame Journal of Formal Logic, vol. 10 (1969), pp. 370–384.

� JOHN CORCORAN AND LEONARDO WEBER, Two satisfactions in Tarski’s truth-
definition paper.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.
Tarski used one satisfaction in his truth-definition [2, p. 195] but another in the preceding

definitions, axioms, and theorems. His metalanguage used the same relation-verb ‘satisfy’ for
both—creating ambiguity and an appearance of circularity. Surprisingly, Tarski never noted
the ambiguity nor did he address the apparent circularity [1].
We use ‘satisfy1’for the first and ‘satisfy2’ for the second.
Thus, ‘satisfy1’ expresses a semantic nonlogical notion: “a given infinite sequence of classes

satisfies1 a given sentential function iff [ . . . ]”; ‘satisfy1’ expresses a nonhomogeneous two-
place semantic relation connecting infinite sequences to object-language expressions.
In contrast, ‘satisfy2’ occurs in various locutions for an arguably logical notion. One such

locution is ‘[ . . . ] satisfies2 the condition: [ . . . ]’—metalanguage formulas follows the colon.
Sometimes some expressions ending with three-word expression ‘satisfies2 the condition’
seem redundant: deletable without altering meaning.
(1) n is positive iff n satisfies2 the condition: n > 0
(2) n is positive iff n > 0

Occasionally the prose reads better if the colon is retained and ‘satisfies2 the condition’
becomes ‘is such that’—a logical expression for many logicians including Peano, Russell, and
Quine. In such contexts ‘satisfies2 the condition’ means the same as ‘is such that’.
(3) n is positive iff n is such that: n > 0

Tarski uses ‘satisfies the condition:’ several times in [2]: e.g., pages 176, 177, 182, 193, 198,
225, and 275. Building on [1], this paper catalogues and analyses all uses of ‘satisfy2’ in [2]
and considers alternative interpretations and justifications of [2]’s uses of ‘satisfy’.
[1] John Corcoran and Leonardo Weber, Tarski’s convention T : condition beta. South

American Journal of Logic, vol. 1 (2014), pp. TBA.
[2] Alfred Tarski, The concept of truth in formalized languages, Logic, Semantics, Meta-

mathematics, Papers from 1923 to 1938 (John Corcoran, editor), Hackett, Indianapolis, 1983,
pp. 152–278.
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