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PyFAI is an open-source Python library for Fast Azimuthal Integration which provides 1D- and 

2D-azimuthal regrouping with a clean programming interface and tools for calibration. The 

library is suitable for interactive use in Python. In optimising the speed of the algorithms there 

has been no compromise on the accuracy compared to reference software. Fast integrations are 

obtained by the combination of an algorithm ensuring that each pixel from the detector provides 

a direct contribution to the final diffraction pattern and an OpenCL implementation that can use 

graphics cards for acceleration. This contribution describes how the algorithms were modified to 

work better in parallel. 
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1 Introduction  

Online data analysis is needed when using fast detectors in order to follow experiments as they 

happen. This is especially important for user experiments at synchrotron radiation facilities, where 

data rates are very high and access to beamtime is usually limited to short visits per measurement. 

If the data can be processed as soon as they are collected and are still "live" in memory then we 

can bypass a slow step of re-reading images from disk or over a network. 

In powder diffraction and small angle scattering experiments the variables of interest are usually 

the scattering angles (or momentum transfer) and not the pixel co-ordinates on the detector. 

Frequently the data should be radially symmetric due to the random orientations inside the 

sample and integration to a give a 1D profile can be carried out to provide data which is ready 

for Rietveld refinement. When the radial symmetry is broken then an azimuthal regrouping (or 

radial transform) is performed as it can be used to measure features in the scattering pattern as a 

function of direction, the azimuthal angle (χ). This transform is useful in the analysis of 

crystallographic texture or strain.  

Over the years a number of software packages have been developed make a radial averaging of 
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image data (Hammersley et al., 1996; Cervellino et al., 2006; Hinrichsen et al., 2006; Rodriguez-

Navarro, 2006; De Nolf and Janssens, 2010).  PyFAI is designed to accomplish this same task 

when used as a library which allows easy integration into other software, including synchrotron 

beamline control software. This can mean running in a dedicated server (Tango device server, 

LImA (Homs et al., 2011) where things must be fast and stable over weeks of operation and also 

suitable for use in interactive graphical user interfaces. PyFAI builds on these recent 

developments and has been extensively optimised for speed on modern parallel computers while 

retaining accuracy. The software is already used on two small angle scattering beamlines at 

ESRF (BM26 and BM29) and under evaluation on several others: ID11, ID13, ID02, ID23 and 

ID29 at ESRF but also on Cristal at Soleil, Lions at CEA-Saclay and i711 at MAX IV. 

 

2 PyFAI: Python Fast Azimuthal Integration 

PyFAI uses the geometry defined in SPD (Bösecke, 2007); it is a 6-parameter geometry 

considering a flat detector. The orthogonal projection of the sample on the detector plane defines 

the Point Of Normal Incidence (PONI); with 2 coordinates in the detector plane plus the distance 

to the sample. Finally 3 rotations around the 3 main axes are considered; but one of them 

(rotation around the incident beam itself) is usually not used due to the symmetry of Debye-

Scherrer cones. This geometry does not consider the beam center as origin, making it suitable for 

detectors mounted on 2θ-arms and other configurations with translation stages reaching large 2θ 

angles.  

PyFAI is a Python library, providing a collection of tools and also a few programs which can be 

used directly (outside of the Python language). There is a program for determining experimental 

parameters, pyFAI-calib, which makes a calibration based on the known 2θ angles of a standard 

material (LaB6, Si, …).  Refinement of a calibration with a good initial set of parameters can be 

done using the pyFAI-recalib script.  The difference between the two programs is the extraction 

of the key-points which is manual in the first case and fully automatic in the second. A simple 

graphical interface based on matplotlib (Hunter, 2007) shows the progress of the process. 

Refinement of the geometry parameters is performed with the constrained least squares from 

scipy (scipy.opimize.fmin_slsqp). 

Azimuthal regrouping can be performed by the script, pyFAI-waxs. There are also a few scripts 

for the definition of the masked-out regions, etc. but most of the package is actually intended to 
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be usable for scientists in an interactive Python session like IPython (Pérez and Granger, 2007). 

Fast Azimuthal Integration 

PyFAI tries to offer a unified and Pythonic interface for azimuthal integration and at the same 

time very high performance. Memory is traded for speed, so PyFAI caches large arrays of pixel 

values for 2θ, χ, solid angles, polarization, etc.  Where appropriate, calculations are only 

performed when needed and the results are stored in a cache when they can be used again. This 

kind of "lazy evaluation" approach means that the time for processing the first image processed 

is significantly longer than for subsequent images. The expectation is that a series of similar 

images will be processed. For various trigonometrical calculations each pixel in the in the input 

image can be treated independently and so the calculations can be done in parallel without 

changing the code. Cython-OpenMP was used to speed up processing of this kind of trivially 

parallelizable problem on computers which have multiple CPU cores. 

When processing, the raw image must be corrected for dark current, flat-field, solid angle and 

polarization effects; then azimuthal integration is performed by histogramming in 1D (or 2D) the 

2θ- positions (or the 2θ, χ-positions) weighted by the intensity of the image. Pixels are split and 

contribute to adjacent bins depending on their spatial extent. This method works well on a single 

processor but runs into problems requiring so called "atomic operations" when run in parallel. 

Processing pixels in the input data order causes write access conflicts which become less 

efficient with the increase of number of computing units. This is the main limit of the method 

exposed in (Kieffer and Karkoulis, 2013); especially on GPU where hundreds of threads are 

executed simultaneously. 

To overcome this limitation; instead of looking at where input pixels GO TO in the output image, 

we instead look at where the output pixels COME FROM in the input image. The 

correspondence between pixels and output bins can be stored in a look-up table (LUT) together 

with the pixel weight which make the integration look like a simple (if large and sparse) matrix 

vector product.  This look-up table size depends on whether pixels are split over multiple bins 

and to exploit the sparse structure, both index and weight of the pixel have to be stored. We 

measured that 500 Mb are needed to store the LUT to integrate a 16 megapixel image, which fits 

onto a reasonable quality graphics card nowadays. By making this change we switched from a 

“linear read / random write” forward algorithm to a “random read / linear write” backward 
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algorithm which is more suitable for parallelization. This algorithm was implemented in Cython-

OpenMP (Behnel et al., 2011) and OpenCL (Stone et al., 2010). When using OpenCL for the 

GPU we used a compensated, or Kahan summation (Kahan, 1965) to reduce the error 

accumulation in the histogram summation (at the cost of more operations to be done). This 

allows accurate results to be obtained on cheap hardware that performs calculations in single 

precision floating-point arithmetic (32 bits) which are available on consumer grade graphic 

cards. Double precision operations are currently limited to high price and performance 

computing dedicated GPUs. The additional cost of Kahan summation, 4x more arithmetic 

operations, is hidden by smaller data types, the higher number of single precision units and that 

the GPU is usually limited by the memory bandwidth anyway. 

3 Examples of scientific usage: 

Separation of powder from single crystal diffraction 

An IPython notebook (Pérez and Granger, 2007) offers a flexible user interface for testing ideas 

and algorithms and using the library (Figure 1). In the different boxes the following steps are 

being carried out: 

1) Load libraries FabIO (Knudsen et al., 2013) and pyFAI (Kieffer and Karkoulis, 2013) into 

current Python interpreter 

2) Load images and correct for dark-current and flat-field 

3-4) Create an “Integrator” object from Fit2D (Hammersley et al., 1996) parameters and 

integrate an image  

5) Generate a computed image from the powder pattern, subtract it from original image to 

highlight Bragg peaks 

6) Following a 2D radial transform, apply a median filter on the vertical dimension to separate 

amorphous scattering from crystalline scattering 
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Figure 1: Interactive IPython session (notebook interface) showing PyFAI in use.

In this example we have exploited the calcfrom1D method of the PyFAI integrator object to 

produce a computed image from the 1D integrated data. This is the image we would have 

recorded in the absence of any errors, given the 1D integrated data. We believe this computed 

image is extremely useful for diagnostics as is allows a direct comparison of the 2D recorded 

data with the integrated radially symmetric part. 

In Figure 2 we compare the integration obtained in 1D and 2D for a specific example where the 

sample contains a few large crystals and some diffraction spots. Using the PyFAI library it is 

straightforward to separate the different contributions to the diffraction pattern.
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Figure 2: Results obtained using PyFAI on a spotty diffraction image. Top left: Original data. Bottom left: 2D radial 

transform. Top middle: Computed 2D image from conventional 1D integration. Bottom middle: Conventional 1D 

integration compared to a median on the 2D radial transform. Top right: Residual image after the 1D computed part 

is removed. Bottom right: The spotty part of the diffraction pattern can be extracted from the background. 

Large diffraction angles 

PyFAI is especially suited to geometry with large 2θ values or detectors mounted on moving 

stages. In the later case; a few diffraction images of a reference sample on various detector 

positions have to be calibrated, then their parameters can be extrapolated from the linear 

regression of those few images. In Figure 3; seven diffraction images of LaB6 have been taken at 

various angles of the 2θ-arm, from 0 to 120°, on the i711 beamline at synchrotron Max IV. The 

three first images were calibrated using pyFAI-calib; then a linear regression allowed to guess 

parameters for the other images; those guess-parameters were used to re-calibrate all seven 

images using the  pyFAI-recalib tool. During this procedure up to 25 diffraction rings per image 

were extracted and fitted fully automatically in a few seconds. PyFAI has no problem calibrating 

experiment setups with tilt > 90°, where diffraction rings are no more circles or ellipses but 

branches of hyperbola (pyFAI uses the general conic equation for fitting).  
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Figure 3: On the top, seven diffraction images of LaB6 powder taken with the detector on a 2θ-arm moving from 0 to 120°. The 

graph shows the overlay of the seven individual powder patterns (lower curve) and the full reconstructed powder pattern obtained 

by merging, on one side weighted and on the other all un-weighted histograms, from the various images (upper curve). 

 

As pyFAI is open source and Python is a dynamic language; one can use some of the internals of 

the library, here the two raw histograms that are calculated during integration. All seven images 

can be integrated on a large 2θ range from 0 to 150°; forcing the position of the 2θ-bins to be the 

same on all powder patterns. Then intensity-weighted histograms in 2θ and un-weighted ones 

can be summed together, weighted on one side, un-weighted on the other. Finally the full powder 

pattern is obtained by dividing the weighted histogram by the un-weighted one (Figure 3, blue 

curve), merging the data into a single pattern. If such experiments become more frequent, a 

specific class could be added to pyFAI for performing such type of analysis in a more routine 

way. 

Error handling 

Error evaluation and handling is especially important for small angle scattering. According to the 

“Poisson's law”, the error of a single pixel can be estimated from the square root of the raw value 

(prior to any corrections); hence its variance is the raw value itself. PyFAI can propagate this 

error during the integration: the error of each bin being the square root of the variance-weighted 

histogram, divided by the number of pixels falling into this bin.  This implies having access to 
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the raw data, so that dark-current and flat-field corrections are  applied by pyFAI itself. A 

specific keywork (error_model=”Poisson”) was added to provide this feature when calling the 

saxs integration method. While the Poisson model works well for photon counting detectors, the 

alternative for other detector types is currently to let the user provide the variance array. 

4 Performance 

The performance of the code is monitored on a variety of computing hardware and for different 

image sizes. A number of different kernels for azimuthal integration are benchmarked and 

compared so that a user may select the right optimised version for a specific computer setup. 

Figure 4 shows the number of frames processed per second versus image size (larger numbers 

are better). The maximum data throughput is of the order 800 megabytes per second (200 

Mpixel/second of float data), and therefore depends on the computer having a sustained supply 

of data to be able to continue working at this speed. This out performs the speed of most current 

hard disks. For a typical image of 2048x2048 pixels, after loading and setting up, pyFAI takes 

about 20 milliseconds per new frame to compute the 1D integrated profile but sustained rate on 

integrating large datasets (thousands of images) is only of 100 milliseconds per image due to 

reading bottleneck. 
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Figure 4: Performances measured on a high-end workstation (above) and on a consumer desktop computer (below). The 

LUT_OpenCL_GPU line in magneta terminates when the consumer card ran out of memory. 
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5 Project status 

The PyFAI code is fully open source under the GPL license and available from 

http://github.com/kif/pyFAI. PyFAI is packaged and available in common Linux distributions 

like Debian 7.0 and Ubuntu 12.04. Installer packages for Windows and MacOSX are available 

on https://forge.epn-campus.eu/projects/azimuthal/files. The software depends on: Python 2.6+, 

NumPy, SciPy, matplotlib and FabIO. Thanks to image input code from the FabIO (Knudsen et 

al., 2013) library, the code is already compatible with at least 20 detectors from 12 different 

manufacturers. For best performances: FFTw3 with pyFFTw, PyOpenCL (Kloeckner, 2012) (and 

a GPU) are recommended. 

The version 0.8 described in this article has been released in November 2012 and includes: 

 1D-regrouping parallel algorithm using look-up tables (LUT) on both CPU and GPU 

 Polarization effect correction in addition to dark-current, flat-field and solid-angle 

corrections 

 Fast checksums to avoid unnecessary data transfers to GPU 

 A unified interface to OpenCL code via PyOpenCL (Kloeckner, 2012) 

 Comprehensive test suites for most algorithms 

In the future we plan to make PyFAI available for integration into LImA (Library for Image 

Acquisition (Homs et al., 2011) so that reduced data will be available inside the detector device 

servers, going around the bottleneck of the disk access. Also the code will be provided as a 

plugin into PyMca (Solé  et al., 2007) to provide azimuthal integration of stacks of images within 

a nice graphical user interface and in EDNA (Incardona et al., 2009) for online data analysis.  

Version 1.0 should include in addition: 

 2D-regrouping algorithm using look-up tables (LUT) 

 Nicer and more intuitive graphical interface for calibration 

 Plugins for LimA (Homs et al., 2011), PyMca (Solé et al., 2007) and  EDNA (Incardona 

et al., 2009) 

 Extensive API documentation and program manuals 

In the spirit of an open source project, any contributions of improvements, test cases or 

adaptations for specialised instrumentation are most welcome.  

6 Conclusions 

PyFAI is a novel library for azimuthal integration which already provides geometric equivalence 

with SPD (Bösecke, 2007) and Fit2D (Hammersley et al., 1996). A clean and modern 

programming interface has been developed which is suitable for interactive use as well as 

integration into beamline control systems. 

By re-ordering the numerical operations to avoid write access conflicts, we have improved the 

performance of parallel implementations of a radial transform running on multi-core systems and 

graphic cards. Numerical precision has been improved via the use of compensated summations. 
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We show how a radially symmetric 2D image can be back-computed from a 1D powder pattern 

and we suggest this computed image can be a powerful tool for processing 2D image data. We 

also show how multiple images taken from a moving detector can be merged into a single 

powder pattern. 
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