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Phase shifts of magneto-acoustic solitons in spin-1/2 fermionic
quantum plasma during head-on collision
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Abstract. The head-on collision between two magneto-acoustic solitons in spin-1/2
fermionic quantum plasma is studied in the framework of the model proposed by
Marklund et al. (Marklund, M., Eliasson, B. and Shukla, P. K. 2007 Phys. Rev. E. 76,
067401). The extended Poincare–Lighthill–Kuo method is used to obtain the phase
shifts and the trajectories during the head-on collision of two solitons. The effect
of the Zeeman energy for different speeds of the waves, the effect of the total mass
density of the charged plasma particles for different strengths of magnetic field, the
effect of the speed of the wave for different values of the Zeeman energy, and that
of the ratio of the sound speed to Alfven speed for different values of Zeeman energ
on the phase shift are studied. It is observed that the phase shifts are significantly
affected in all the cases. The most interesting observation of this paper is that the
phase shifts increase as well as decrease, and also they may be positive as well as
negative depending upon the domain of the chosen parameters.

1. Introduction
After the pioneering work on quantum plasma by Haas
(2005), Garcia et al. (2005), and other workers (Haas
et al. 2000; Manfredi and Haas 2001; Chatterjee et al.
2009), there has been a surge of interest in the physics
of quantum plasma. Quantum plasma is of considerable
interest for its relevance in describing quantum effects
in ultra small electronic devices (Markowich et al. 1990),
dense astrophysical plasma system (Jung 2001), and
laser-produced plasmas (Marklund and Shukla 2006;
Glenzer et al. 2007). Other applications are in ultra
cold plasma (Killian 2006), biophotonics (Barnes et al.
2003), spintronics (Wolf et al. 2001), and plasmonics
(Atwater 2007). On the other hand, superdense quantum
plasmas are present in the interior of massive white
dwarfs, interior of Jupitors, magnetars (Beskin et al.
1993; Harding and Lai 2006; Fortney et al. 2009),
etc. Ion-acoustic waves in quantum plasma have been
studied by a number of authors (Haas et al. 2003;
Misra and Bhowmik 2007; Moslem et al. 2007; Roy
et al. 2008; Masood et al. 2009; Roy and Chatterjee
2011). In quantum plasma the electronic equilibrium is
described by the Fermi Dirac distribution rather than
the Maxwellian–Boltzmann distribution as is done in
the classical plasma. Now it is well known that in dense
plasmas, degenerate electrons follow the Fermi–Dirac
pressure law, and the quantum force is connected with
the Bohm de Broglie potential, as a product of which the
waves disperse at nanoscales (Gardner and Ringhofer

1996). Not only that, the effects of the electron spin ap-
pear itself in terms of a magnetic dipole force, as well as
spin precession, which can be obtained by transforming
the Pauli equation to fluid-like variables (Oraevsky and
Semikoz 2003; Brodin and Marklund 2007; Marklund
and Brodin 2007). Hence, the dynamics of electrons
in Fermi degenerate plasmas will be intervened not
only by the Lorentz force, but also by the effects of
quantum statistical pressure, the Bohm force, as well as
the intrinsic spin of electrons.

Dynamics of the spin-1/2 quantum plasma was in-
troduced by Marklund and Brodin (2007) in the non-
relativistic framework. Brodin and Marklund (2007)
showed that the spin properties of electrons and
positrons may lead to interesting collective effects in
quantum magneto plasma by following the Pauli equa-
tion . Marklund et al. (2007) showed the existence of
magneto solitons in a fermionic quantum plasma. In
their work they found that if one neglects the mag-
netic diffusivity, the magnetic field satisfies an equation
identical to the equation of continuity and hence one
can take the magnetic field linearly proportional to the
density of plasma fluid by applying the simplification
of the governing equations. Later Misra and Ghosh
(2008) obtained the spin magnetosonic shock like waves
in quantum plasma, where they took account of mag-
netic diffusivity, using the reductive perturbation tech-
nique. Very recently, linear and nonlinear compressional
magnetosonic waves in magnetized degenerate spin-1/2
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Fermi plasmas are also investigated (Mushtaq and
Vladimirov 2011). Relativistic corrections to the Pauli
Hamiltonian in the context of the scalar kinetic theory
for spin-1/2 quantum plasmas were also established
(Asenjo et al. 2012).

A parallel development in solitonic studies is the head-
on collision effects. It is known that one of the interesting
properties of solitons is their asymptotic preservation of
form when they undergo a head-on collision (i.e. θ = π,
θ being the angle between two propagation directions of
two solitons). This fact was first observed by Zabusky
and Kruskal (1995). Recently, extensive investigations
have been made by several authors (Han et al. 2008; El-
Shamy et al. 2009, 2010; Akbari-Moghanjoughi 2010;
Chatterjee et al. 2010; Chatterjee and Ghosh 2011) to
study the head-on collision between two ion-acoustic
solitary waves (IASWs) with the help of the exten-
ded Poincare–Lighthill–Kuo (PLK) method in differ-
ent classical plasma models, e.g, head-on collision of
IASWs in a weakly relativistic electron–positron–ion
(e–p–i) plasma by Han et al. (2008) and the head-on
collision of IASWs in e–p–i plasma with superthermal
electrons and positrons by Chatterjee and Ghosh (2011).
In all these investigations the researchers observed that
bidirectional solitary waves are propagated and hence
head-on collision occurs. They also found the phase
shifts and the trajectories of the two solitary waves after
collision, which are the characteristics of the collision.
It is noteworthy that a few investigations had already
been made about the head-on collision phenomena in
quantum plasma (El-Labany et al. 2010; Chatterjee et al.
2011; Ning et al. 2011; Xu et al. 2011). For the first
time El-Labany et al. (2010) investigated the head-on
collision between two quantum IASWs in a dense e–p–i
plasma to discuss the effects of both quantum diffraction
corrections and the Fermi temperature ratio of positrons
to electrons on the phase shifts. The head-on collision
between two IASWs with arbitrary colliding angle in an
unmagnetized ultracold quantum threecomponent e–p–i
plasma had been investigated by Xu et al. (2011). The
propagation and interaction of IASWs in quantum e–p–i
plasma had been investigated by Ning et al. (2011).
Head-on collision of dust-ion-acoustic soliton in
quantum pair ion plasma has also been studied by
Chartterjee et al. (2011). However, head-on collision of
magnetosonic solitons in a fermionic quantum plasma,
taking into account spin effects, has not been studied
so far. On the above background, the present study has
been undertaken on the head-on collision of magneto-
sonic solitons in the framework of the model proposed
by Marklund et al. (2007). We expect that the present
results described here could be useful in strongly mag-
netized astrophysical plasmas like pulsars, magnetars,
etc.

The bauplan of the work is as follows: In Sec. 2 we
present basic equations and derive the two-sided KdV
equations and the phase shifts. Section 3 is kept for
discussion and conclusion.

2. Basic equations and derivation of KdV
equations and phase shifts

Let us consider the governing equations for the quantum
plasma in which the electron spin-1/2 effects are in-
cluded. The total mass density, the center-of-mass fluid
flow velocity, and the current density are defined respect-
ively as ρ = (me ne + mi ni), V = (me ne ve + mi ni vi)/ρ,
and j = (−e ne ve + e ni vi). Here me, ne, and ve are
respectively the mass, number density, and fluid velocity
of electron, and mi, ni, and vi are respectively the mass,
number density, and fluid velocity of ion, and e is the
magnitude of the electron charge. Assuming the quasi-
neutrality condition ( ne = ni), and taking the magnetic
field along the z -axis so that B = B(x, t)�z and taking
the velocity V = V (x, t)�x and the density as ρ(x, t), we
get the following system of normalized basic equations
(Moslem et al. 2007; Roy et al. 2008) as

∂b

∂t
+

∂(bv)

∂x
= 0, (1)

∂v

∂t
+ v

∂v

∂x
= −∂b

∂x
− c2

s

∂(ln b)

∂x

+
2ω2

pe

ωc |ωce|
∂

∂x

(
1√
b

∂2
√
b

∂x2

)

+ v2
B

∂

∂x
[ln(cosh(zeb)) + zeb(tanh(zeb))],

(2)

where ρ = ρ0b with b = B/B0, cs = Cs/CA, v = V/CA,

CA = [
B2

0

μ0ρ0
]

1
2 is the Alfven speed, Cs = [KB (Te+Ti)

mi
]1/2 is

the sound speed, ωpj = [
nj0e

2

ε0mi
]1/2, j = e, i, are respectively

the plasma frequencies for electron and ion, ωc = 2mec
2

h

is the compton frequency, ze = μBB0

KBTe
is the temperature-

normalized Zeeman energy, v2
B = KBTe

miC
2
A

= μBB0

zemiC
2
A

, where

μ0 is the permeability of the vacuum, B0 is the mag-
netic field strength, ρ0 is the total mass density of the
charged plasma particles, Ti and Te are ion and electron
temperatures, KB is the Boltzmann constant, and μB
is the magnitude of Bohr magneton. Moreover, it is to
be noted that the normalized variables are taken as
t → ωcit, x → ωcix

CA
. In deriving (1) and (2) the magnetic

resistivity is neglected.
Now we assume that the two solitons α and β are

asymptotically far apart in the initial state and travel
toward each other. After some time they interact, collide,
and then depart. We also assume that the solitons have
small amplitudes of the order ε (where ε is the small
parameter characterizing the strength of nonlinearity)
and the interaction between the two solitons is weak.
Hence, we expect that the collision will be quasi-elastic,
and hence it will only cause shifts of post-collision
trajectories (phase shifts). In order to analyze the ef-
fects of collision, we employ an extended PLK method.
According to this method, the dependent variables are
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expanded as

b= 1 + εb1 + ε3/2b2 + ε2b3 + · · · , (3)

v = εv1 + ε3/2v2 + ε2v3 + · · · . (4)

The independent variables are given by

ξ = ε1/2(x − vpt) + ε3/2P0(η, τ) + ε5/2P1(ξ, η, τ) + · · · , (5)

η = ε1/2(x + vpt) + ε3/2Q0(ξ, τ) + ε5/2Q1(ξ, η, τ) + · · · , (6)

τ= ε3t, (7)

where ξ and η denote the trajectories of two solitons
travelling toward each other and vp is the unknown
phase speed normalised by CA. The variables of P0(η, τ)
and Q0(ξ, τ) are also to be determined. These types of
strained co-ordinates were used in perturbation methods
in fluid mechanics (Van-Dype 1975).

Substituting (3)–(7) into (1)–(2) and equating the
quantities with equal power of ε, we obtain a set of
coupled equations in different orders of ε. To the leading
order, we have

vp

(
− ∂

∂ξ
+

∂

∂η

)
b1 +

(
∂

∂ξ
+

∂

∂η

)
v1 = 0, (8)

vp

[
− ∂

∂ξ
+

∂

∂η

]
v1 + [1 + c2

s − zev
2
B(2 tanh ze + zesech

2ze)]

×
[
∂

∂ξ
+

∂

∂η

]
b1 = 0. (9)

Solving the above two equations we get

b1 = b11(ξ, τ) + b12(η, τ), (10)

v1 = vp[b11(ξ, τ) − b12(η, τ)], (11)

and with the solvability condition (i.e., the condition to
obtain a uniquely defined v1 from (11) when b1 is given
by (10)), the phase velocity is also obtained as

vp =

√
1 + c2

s − zev
2
B(2 tanh ze + zesech2ze). (12)

The unknown functions b11 and b12 will be determined
from the next orders. Relations (10) and (11) imply that,
at the leading order, we have two waves, one of which
is b11(ξ, τ) travelling in the forward direction, and the
other is b12(η, τ) travelling in the backward direction. At
the next order, we have two similar equations as in the
leading order. Hence, the solutions are given by

b2 = b21(ξ, τ) + b22(η, τ), (13)

v2 = vp[b21(ξ, τ) − b22(η, τ)]. (14)

At the next higher order, we obtain the following set of
equations

−2
∂2v3

∂ξ∂η
=

∂

∂ξ

(
∂b11

∂τ
+ A1b11

∂b11

∂ξ
+ B1

∂3b11

∂ξ3

)

+
∂

∂η

(
∂b12

∂τ
− A1b12

∂b12

∂η
− B1

∂3b12

∂η3

)

+

(
C1

∂P0

∂η
− D1b12

)
∂2b11

∂ξ2

−
(
C1

∂Q0

∂ξ
− D1b11

)
∂2b12

∂η2
. (15)

Integrating the above equation with respect to the vari-
ables ξ and η yields

−2v3 =

∫ (
∂b11

∂τ
+ A1b11

∂b11

∂ξ
+ B1

∂3b11

∂ξ3

)
dη

+

∫ (
∂b12

∂τ
− A1b12

∂b12

∂η
− B1

∂3b12

∂η3

)
dξ

+

∫ ∫ (
C1

∂P0

∂η
− D1b12

)
∂2b11

∂ξ2
dξdη

−
∫ ∫ (

C1
∂Q0

∂ξ
− D1b11

)
∂2b12

∂η2
dξdη, (16)

where

A1 =
3v2

p − c2
s − z2

e v
2
Bsech

2ze(3 − 2ze tanh ze)

2vp
,

B1 = −
ω2

pe

2|ωce|vpωc

, C1 = 2vp,

D1 =
v2
p + c2

s + z2
e v

2
Bsech

2ze(3 − 2ze tanh ze)

2vp
.

Now the question arises, how to extract the equations
satisfied by b11, b12, P0, and Q0 from (16). The clue lies
in the fact that we should not allow any secular terms.
Note that the integrand of the first integral on the right-
hand side of (16) depends only on ξ and τ and therefore
if the integrand is not identically equal to zero, then the
integral will be proportional to η, which will give rise to
secular terms. Hence, we must have the integrand to be
identically zero. The same argument holds for the second
integral. Hence, we obtain the following equations for
b11 and b12:

∂b11

∂τ
+ A1b11

∂b11

∂ξ
+ B1

∂3b11

∂ξ3
= 0, (17)

∂b12

∂τ
− A1b12

∂b12

∂η
− B1

∂3b12

∂η3
= 0. (18)

However, the same argument will not hold for the third
and the fourth integrals of (16). But while they may not
be secular at this order, they will be secular in the higher
order (Su and Mirie 1980; Jaffery and Kawahawa 1982).
Hence, we must have

C1
∂P0

∂η
=D1b12, (19)

C1
∂Q0

∂ξ
=D1b11. (20)

Equations (17) and (18) are the two side-travelling wave
KdV equations in the reference frames of ξ and η

https://doi.org/10.1017/S0022377812000980 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377812000980


308 P. Chatterjee et al.

respectively. Their special solutions are

b11 = bAsech
2

[(
A1bA

12B1

)1/2 (
ξ − 1

3
A1bAτ

)]
, (21)

b12 = bBsech
2

[(
A1bB

12B1

)1/2 (
η +

1

3
A1bBτ

)]
, (22)

where bA and bB are the amplitudes of the two solitons
in their initial positions. The leading phase changes due
to the collision can be calculated from (19) and (20) and
are given by

P0(η, τ) =
D1

C1

(
12B1bB

A1

)1/2
[
tanh

(
A1bB

12B1

)1/2

×
(
η +

1

3
A1bBτ

)
+ 1

]
, (23)

Q0(ξ, τ) =
D1

C1

(
12B1bA

A1

)1/2
[
tanh

(
A1bA

12B1

)1/2

×
(
ξ − 1

3
A1bAτ

)
− 1

]
. (24)

Therefore, up to O(ε2), the trajectories of the two solitary
waves for head-on interactions are

ξ = ε(x − vpt)

+ ε2D1

C1

(
12B1bB

A1

)1/2
[
tanh

(
A1bB

12B1

)1/2

×
(
η +

1

3
A1bBτ

)
+ 1

]
+ · · · , (25)

η = ε(x + vpt)

+ ε2D1

C1

(
12B1bA

A1

)1/2
[
tanh

(
A1bA

12B1

)1/2

×
(
ξ − 1

3
A1bAτ

)
− 1

]
+ · · · . (26)

To obtain the phase shifts after a head-on collision of
the two solitons, we assume that solitons α and β are
asymptotically far from each other at the initial time
(t = −∞), i.e., soliton α is at ξ = 0, η = −∞ and soliton
β is at η = 0, ξ = +∞ respectively. After the collision
(t = +∞), soliton α is far to the right of soliton β,
i.e., soliton α is at ξ = 0, η = +∞ and soliton β is at
η = 0, ξ = −∞. Using (25) and (26), we obtain the
corresponding phase shifts �P0 and �Q0 as follows:

�P0 = −2ε2D1

C1

(
12B1bB

A1

)1/2

, (27)

�Q0 = 2ε2D1

C1

(
12B1bA

A1

)1/2

. (28)

Zeeman energy (ze)

Q

Figure 1. Graphs of the variation of phase shift �Q0 against
the Zeeman energy ze for phase velocities vp = 0.01 (solid line),
0.015 (dotted line), 0.02 (dashed line) when ε = 0.1, bA = 0.1,

ω2
pe

ωc |ωce | = 1, vB = 0.2, and cs = 0.1.

3. Results and discussion
In this paper, the head-on collision phenomenon of the
two magneto-acoustic solitons in a fermionic quantum
plasma with the spin effect is studied using the extended
version of the PLK method. We know that the KdV-
type soliton-like solutions are formed due to the balance
between nonlinearity and dispersion in a nonlinear dis-
persive media. So the condition for the existence of
soliton-like solutions are A1 �= 0 and B1 �= 0. Since the
soliton α is travelling from the left and β is travelling
from the right, (27) and (28) imply that each soliton has
positive or negative phase shift depending upon the sign
of coefficient D. Moreover, it is clear from (27) and (28)
that both B1bB

A1
and B1bA

A1
must be positive if both �P0 and

�Q0 are real. It follows logically that bB and bA must
have the same sign, hence both solitons will be either
hump types or dip types. Thus, the positive or negative
phase shift does not depend on the type of mode (i.e,
ion-acoustic, dust-ion-acoustic, dust-acoustic, magneto-
acoustic, and electrostatic waves). Several authors (Han
et al. 2008; El-Labany et al. 2010) have argued that
for IASWs, due to collision, each soliton has a negative
phase shift in its travelling direction. Han et al. (2008)
demonstrated that due to collision, each IASW has a
positive phase shift in its travelling direction. El-Labany
et al. (2010) claimed that due to collision, each dust-
acoustic solitary wave has a negative phase shift in its
travelling direction. However, their own results do not
support this hypothesis.

To draw the figures, we consider ε = 0.1, bA = 0.1,
ω2

pe

ωc |ωce| = 1, and vB = 0.2 in all the cases. Figure 1

represents the variations of the phase shift �Q0 with the
Zeeman energy (ze) for different values of the speed of
the waves vp = 0.01 (solid line), 0.015 (dotted line), and
0.02 (dashed line) when cs = 0.1. Here it is interesting
to note that the phase shift �Q0 is (i) positive and
increasing when 0 < ze < 0.8 and 3 < ze < 7, (ii)
positive and decreasing when 0.8 < ze < 2, (iii) negative
and decreasing when 2 < ze < 2.5, (iv) negative and
increasing for 2.5 < ze < 3, and (v) positive and constant
for ze > 7. Thus, the phase shift is positive as well as
negative for different domains of the Zeeman energy,
and for a particular value of ze the magnitude of the
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Q

Figure 2. Graphs of the variation of phase shift �Q0 against
phase velocity vp for the Zeeman energy ze =1 (solid line),
3 (dotted line), and 5 (dashed line) when all other physical
parameters are as in Fig. 1.

Q

Figure 3. Graphs of the variation of phase shift �Q0 against
the ratio of the sound speed to Alfven speed cs for the
Zeeman energy ze =0.6 (solid line) and 6.5 (dotted line) when
bA = −0.1, vp = 0.5, and all other physical parameters are as
in Fig. 1.

phase shift increases as the speed of the wave decreases.
Qualitatively one can say that the phase shifts become
flat when the Zeeman energy is large. Since we consider
the case where the Zeeman energy, ze � 1, so the spin
contribution to the soliton dynamics is enhanced and
the Zeeman energy plays a crucial role on the phase
shifts.

Figure 2 shows the variation of the phase shift �Q0

with the speed of the wave for different values of the
Zeeman energy: ze = 1 (solid line), ze = 3 (dotted line),
and ze = 5 (dashed line) when cs = 0.1. Figure 2 implies
that the phase shift decreases rapidly by taking the
positive values, then slowly tends to zero and ultimately
it blows up irrespective of the speed of the wave for
Zeeman energy, ze = 1 and 5, but for ze = 3 the
phase shift increases taking negative values, then slowly
becomes zero and ultimately it blows up irrespective of
the speed of the wave.

To draw Fig. 3 we consider bA = −0.1 and all other
physical parameters as in Fig. 1. Figure 3 shows the
variations of the phase shift �Q0 with the ratio of
sound speed to Alfven speed cs for the Zeeman energy,
ze = 0.6 (solid line) and ze = 6.5 (dotted line) when
vp = 0.5. Figure 3 indicates that the phase shift strictly
increases for increasing cs. It is evident from (12) that
there exists a critical value of ze beyond which vp will
not have real values.

In Fig. 4 we plot the phase shift versus the parameter
ρ0 in the domain 0 < ρ0 < 3×1017 for different strengths
of the magnetic field B0 = 105T (solid line), B0 = 5 ×

Q

ρ0

Figure 4. Graphs of the variation of phase shift �Q0 against
the total mass density ρ0 for the strength of the magnetic field
B0 = 105T (solid line), 5×105T (dotted line), and 107T (dashed
line) when Te = 106, Ti = 104, mi = 10−10kg, and all other
physical parameters are as in Fig. 3.

105T (dotted line), and B0 = 107T (dashed line) when
Te = 106, Ti = 104, mi = 10−10 kg, and all other physical
parameters are as in Fig. 3. Figure 4 indicates that for
B0 = 105, initially the phase shift increases but then it
decreases, but for B0 = 5 × 105 and 107 the phase shift
increases slowly. It is clear from (27) and (28) that �P0

will always be of the opposite sign of �Q0. However,
magnitude-wise they will have the same behavior.

The results obtained here indicate that the effects of
the parameters ze, B0, cs, vp, and ρ0 play important
roles not only on the formation of solitary waves but
also on soliton collision. To summarize, the phase shifts,
the trajectories, and also the head-on collision of two
magnetosonic solitons in a fermionic quantum plasma
(taking the spin effects into account by using the ex-
tended PLK method) are discussed in this paper. It is
found that the nature and the magnitude of the phase
shift depend crucially on the chosen parameters.
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