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Key findings 24 

For every 1°C rise above optimal temperature, malaria risk increases by 9-10%. 25 

About 39.8% to 54.1% cases of malaria are attributable to heat. 26 

Heat-related cases of malaria are projected to increase by 3.5% by 2060s in remote regions of 27 

Pakistan.  28 
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Abstract 29 

Malaria presents a significant health challenge in developing countries, especially as climate 30 

change exacerbates its impact. Temperatures directly affect malaria transmission by 31 

influencing the abundance of disease vectors and the development of the malaria parasite. 32 

Pakistan, known for its warm, arid, and subtropical climate and frequent flooding, faces 33 

increased risks, emphasising the need for research to understand how heat affects malaria 34 

transmission. This study aims to provide empirical evidence of the relationship between 35 

temperature and malaria cases in two remote but highly vulnerable districts: Bannu and Lakki 36 

Marwat, with the goal of informing interventions to combat the negative effects of climate 37 

change on malaria transmission in Pakistan. 38 

The monthly confirmed malaria cases and environmental factors (temperature, precipitation, 39 

and humidity) were analysed using a time-series study design with distributed lag nonlinear 40 

models and quasi-Poisson regression models. Malaria datasets acquired from the Integrated 41 

Vector Control/Malaria Control Program in Khyber Pakhtunkhwa were combined with 42 

publicly available gridded meteorological data from Copernicus ERA5-Land, covering the 43 

period from 2014 to 2022.The findings suggest that as temperatures exceed 22.4°C, malaria 44 

transmission increases by 9 to 10% for every 1°C rise in both districts. In Bannu, up to 39.8% 45 

of reported malaria cases could be attributed to heat, while in Lakki Marwat, 54.1% of cases 46 

were attributable to heat. 47 

Projections based on Shared Socio-Economic Pathways forecast an increase in heat-related 48 

malaria cases by 0.8 to 3.5% in both districts under high emission scenarios by 2060s. The 49 

relationship between temperature and malaria transmission is complex and is influenced by 50 

multiple factors, including human behaviour and environmental conditions such as 51 

precipitation and humidity. 52 

https://doi.org/10.1017/S0950268825000111 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268825000111


 

4 
 

Conducting empirical studies in highly vulnerable regions like Pakistan is crucial due to the 53 

inadequate healthcare infrastructure and limited resources, which heighten the vulnerability 54 

of populations to the impact of climate change. This study highlights the pressing need for 55 

implementing climate change mitigation and adaptation measures. This urgency is 56 

underscored by recent events in Pakistan, such as severe floods followed by a significant 57 

increase in malaria cases. Allocating resources to strengthen healthcare systems and enhance 58 

community resilience is especially critical in light of the recent challenges. 59 

Keywords 60 

Climate, Malaria, Epidemiology, Heat, Low and Middle-Income Countries   61 
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Introduction 62 

Malaria stands as a prominent cause of morbidity and mortality in many developing nations. 63 

As of 2015, which served as the baseline year for the Global Technical Strategy for Malaria 64 

2016–2030 (GTS), an estimated 231 million cases of malaria were reported [1]. By 2022, 65 

there was a notable increase with an estimated 249 million cases documented in 85 malaria-66 

endemic countries and regions (including French Guiana), marking an increase of five 67 

million cases from 2021. Key contributors to this surge included Pakistan (+2.1 million), 68 

Ethiopia (+1.3 million), Nigeria (+1.3 million), Uganda (+597,000), and Papua New Guinea 69 

(+423,000) [1]. The ongoing threat of malaria affects over two billion individuals, including 70 

both travellers and residents in endemic areas, resulting in an annual toll of about 608,000 71 

deaths as of 2022 [1, 2]. 72 

In recent years, the profound impact of climate change on malaria has attracted significant 73 

attention due to its potential to exacerbate the disease burden and alter transmission dynamics 74 

[3]. While climate change affects various aspects of malaria transmission, including vector 75 

abundance and pathogen development, rising temperatures are of paramount concern. Rising 76 

temperatures can expand the geographic range and local abundance of malaria vectors, 77 

Anopheles mosquitoes, which thrive in warm climates [4]. Furthermore, warmer temperatures 78 

accelerate the development of malaria parasites within mosquitoes and shorten the incubation 79 

period of the disease in humans, leading to an increased risk of transmission [5]. 80 

Many studies have incorporated climate change scenarios and geostatistical models to explain 81 

and project future malaria incidence locally and globally. Various process-based or 82 

mechanistic models have been proposed for the intricate and nonlinear weather-driven 83 

Anopheles lifecycle and malaria transmission dynamics. However, these models have yielded 84 

somewhat divergent findings regarding the optimal temperatures for transmission and the 85 
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potential impact of rising temperatures and other extreme weather events on the distribution 86 

of malaria. The projections differ: some suggest a significant increase in malaria-susceptible 87 

areas, while others predict a shift in the geographical range of the disease [4]. 88 

Pakistan remains the most susceptible country to the repercussions of malaria, with the 89 

disease ranking as the fourth-largest cause of death among infectious diseases. Pakistan and 90 

other countries in the WHO Eastern Mediterranean Region, such as Afghanistan, Somalia, 91 

Sudan and Yemen, jointly account for 95% of all malaria cases reported in the region [6]. 92 

Pakistan is considered to be hyperendemic for malaria, and the pooled malaria prevalence is 93 

estimated at 23.3% [7]. Malaria is most prevalent in Khyber Pakhtunkhwa (KPK) and 94 

Balochistan provinces [7]. An. culicifacies, An. stephensi, An. subpictus, and An. superpictus 95 

are the primary vectors for malaria and have been reported to be endemic in the region since 96 

the early 1900s [8-9]. Plasmodium vivax (prevalence rate: 79.13%) and P. falciparum 97 

(prevalence rate: 16.29%) are the predominant malaria parasite species [6-7]. Pakistan's 98 

ecological conditions, characterised by a monsoon-fed agricultural landscape with flat terrain 99 

towards the south, provide ideal settings for malaria transmission. Temperatures from 100 

September to December and April to May frequently range between 20°C and 30°C, 101 

facilitating mosquito breeding, while rainfall creates stagnant water pools essential for larvae 102 

development. Higher humidity levels further enhance malaria transmission.  103 

Over the years, entomological studies in Pakistan have elucidated the vector ecology of 104 

Anopheles mosquitoes, and the prevalence and epidemiology of malaria [8-12]. The 105 

government has launched malaria control efforts to curb the disease; however, Pakistan faces 106 

challenges in reducing malaria incidence. These challenges could be partly attributed to 107 

climate change, particularly the irregular temperature and rainfall patterns in recent years [7]. 108 

Recurrent massive flooding events have exacerbated these challenges by creating additional 109 
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breeding habitats for mosquitoes, thereby facilitating the spread of mosquito-borne diseases 110 

such as malaria and dengue [12]. 111 

Despite the pressing nature of this issue, there is a notable scarcity of empirical evidence on 112 

how climate change specifically affects malaria in low and middle-income countries like 113 

Pakistan. This scarcity creates a significant obstacle to fully understanding the extent of the 114 

problem and implementing effective mitigation and adaptation strategies. 115 

Recently, after catastrophic flooding in Pakistan in 2022 and subsequent increase in malaria 116 

incidence, it has become imperative to estimate the climate change-attributed increase in the 117 

risk of malaria. Understanding the role of climate change in the resurgence of malaria will 118 

guide policy decisions aimed at achieving the ambitious goal of a 'Malaria-Free Pakistan by 119 

2035' [13]. 120 

This study aims to provide empirical evidence of the influence of climate change, using high 121 

temperature as an indicator, on malaria incidence in two highly vulnerable districts of 122 

Pakistan and project future risk estimates. This will lay a solid foundation for informing 123 

response strategies and addressing the uneven implementation of malaria interventions. 124 
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Methods 125 

Study settings 126 

Bannu and Lakki Marwat districts are situated in the southern region of the KPK province in 127 

Pakistan (Figure 1). Bannu covers an area of 1,227 sq. km with a population of 1,167,892, 128 

while Lakki Marwat spans 3,296 sq. km and has a population of 876,182 (Pakistan Bureau of 129 

Statistics, 2017). These districts are recognised as hyperendemic regions for malaria 130 

incidence in KPK, Pakistan [6]. Bannu district has been known for its high malaria 131 

prevalence since the British Raj [10].  In Bannu, P. vivax has a prevalence of 16.9% while P. 132 

falciparum has a prevalence of 2.3%. In Lakki Marwat, one study estimated the prevalence of 133 

P. vivax at 20.2% and P. falciparum at 0.2% [10]. Studies conducted in Pakistan provide 134 

evidence that malaria is predominantly a disease of rural areas (prevalence: 38.65%) where 135 

people live below the poverty line, as compared to urban areas (22.39%) [14]. Integrated 136 

Vector Control/Malaria Control Program KPK (IVC/MCP-KP) and Frontier Primary Health 137 

Care (FPHC) manage control interventions such as Indoor Residual Spraying (IRS), 138 

widespread bed net distribution, provision of bed nets to pregnant women during antenatal 139 

care, and community education campaigns. Antimalaria measures have been in practice since 140 

the colonial era, including fumigating and spraying against adult mosquitos resting in 141 

buildings, filling and draining breeding sites, treating them with oil or Paris Green, and, in the 142 

case of the smaller irrigation channels, completely drying them out once a week [10]. In 143 

terms of healthcare, in Pakistan, Chloroquine serves as the primary treatment for unconfirmed 144 

malaria, Chloroquine-Primaquine is recommended for P. vivax, and Artesunate/Sulfadoxine-145 

Pyrimethamine (AS+SP) is employed for uncomplicated P. falciparum malaria, with severe 146 

cases or treatment failures addressed using Artesunate, Artemether, or Quinine [6].  147 

The districts experience a semi-arid climate with hot and dry summers lasting seven months 148 

from April to October. June experiences maximum temperatures ranging from 42°C to 45°C, 149 
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and the average annual temperature is 24.2 °C. The annual rainfall in Bannu and Lakki 150 

Marwat ranges from 120.0 to 270.0 mm, and rainfall is sporadic, occurring mainly during the 151 

monsoon season. Both districts are predominantly rural, characterised by cropland and 152 

shrubland cover. Sandstorms are periodic occurrences, particularly during May and June, 153 

affecting the entire area. 154 

---------------Insert Figure 1 here--------------- 155 

Environmental Data 156 

Monthly gridded meteorological datasets were acquired for the period of 2014-2022 from 157 

Copernicus ERA5-Land, featuring variables such as mean temperature (oC), precipitation 158 

(mm), and dew point (oC), all at a resolution of 9x9 kilometres [15]. Relative humidity (%) 159 

was estimated using dew point and mean temperature [16]. These datasets were extracted for 160 

the two districts using centroid points. 161 

Malaria Data 162 

In KPK, Pakistan, lab-confirmed cases of malaria are administered by IVC/MCP-KP and 163 

FPHC. Malaria diagnosis is conducted using microscopy and Rapid Diagnostic Tests (RDTs), 164 

with microscopy being the gold standard. In areas where electricity and trained microscopists 165 

are limited, RDTs are primarily used for diagnosis. The RDTs are procured through 166 

international procurement from the World Health Organisation (WHO) approved list of 167 

RDTs. The data at the health facility level is checked and verified by the district malaria 168 

team, and further cross-checked at the provincial level to ensure credibility and reliability. 169 

One Quality Assurance Officer and a microscopist at the provincial level audit the health 170 

facilities to ensure accurate diagnosis and provide on-the-job training to malaria supervisors. 171 

Monthly aggregated records of malaria cases from 2014 to 2022 were obtained from 172 

IVC/MCP-KP, Directorate of General Health Services KPK. The data were already fully de-173 
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identified at the source, provided in aggregated form, and contained no individual-level 174 

patient information, ensuring there was no need for further anonymisation. Specifically, the 175 

dataset included only the total number of positive malaria cases per month, disaggregated 176 

into P. vivax (PV) and P. falciparum (PF) cases, as well as the number of RDTs conducted. 177 

The use and publication of this aggregated, de-identified data were authorised through the 178 

issuance of a No Objection Certificate from the IVC/MCP-KP, Directorate of General Health 179 

Services KPK (NOC provided in Supplementary File).  180 

Statistical Analysis 181 

A time-series study design coupled with distributed lag nonlinear models was utilised to 182 

assess the effects of ambient temperature on the risk of malaria transmission between 2014 183 

and 2022 in the monsoon-fed semi-arid districts of Pakistan [17]. Monthly malaria datasets 184 

were integrated with hydrometeorological variables to explore the association between mean 185 

temperature and malaria. To model the effect of mean temperature on malaria cases, 186 

generalised linear models fitted with distributed lags were applied, utilising a quasi-Poisson 187 

distribution, for each district. A linear threshold function was defined for mean temperature at 188 

22.4oC based on evidence suggesting that the biting activity of malaria-transmitting 189 

mosquitoes is higher above 22.4oC [18]. 190 

To capture the optimal conditions for malaria transmission, predictions and attributable 191 

fractions were estimated within the temperature range of 22.4°C to 35.3°C. This range was 192 

selected to reflect the temperatures most conducive to mosquito activity and Plasmodium 193 

parasite development [3, 18]. The lag dimension was modelled using an unconstrained 194 

distributed lag function up to a period of three months. Natural cubic splines with two degree 195 

of freedom per year were used to adjust the confounders that change slowly over time. The 196 

logarithm of the population was used as an offset variable to account for differences in 197 
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populations sizes among observations. Relative humidity and precipitation were included as 198 

covariates, as they are important factors regulating the growth and incubation period of 199 

malaria vectors. 200 

The final model was structured as follows: 201 

log(μ) = β0 + fcb(cb) + fdate(time) + fRH(relative humidity) + fPrecip(precipitation) + 202 

(log(Population)) 203 

Where log(μ) is the expected monthly count of malaria cases, modelled as a linear 204 

combination of predictor variables. β0 is the intercept. fcb(cb) represents the smooth function 205 

for the bi-dimensional relationship between temperature at each lag and across different lags. 206 

fRH and fPrecip represent the smoothing functions for relative humidity and precipitation. Log 207 

(Population) is the offset term. 208 

The estimate for the overall effect of mean temperature, β^, was subsequently computed by 209 

summing all the contributions at different lags from the coefficients of the cross-basis. This 210 

model assumed a log-linear relationship between the expected number of malaria cases and 211 

the mean temperature. The results were expressed as Relative Risk (RR) estimates, obtained 212 

by exponentiating the estimated β^, representing the percent change in the risk of malaria per 213 

degree increase in temperature. 214 

Estimation of Attributable Number (AN) and Attributable Fraction (AF) 215 

Heat-related attributable numbers (AN) and attributable fractions (AF) of malaria cases were 216 

calculated following the method outlined by Gasparrini and Leone [19]. The AN quantifies 217 

the excess number of malaria cases attributable to heat exposure within the defined 218 

temperature range (22.4°C to 35.3°C). The AN was computed using the formula: 219 

AN = (1−exp (−β^× ΔT) × Y 220 
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Where β^ represents the coefficients derived from the DLNM, ΔT represents temperature 221 

levels during the observed or projected period, Y represents the observed counts of malaria 222 

cases. 223 

The AF was then calculated as the ratio of the AN to the total number of observed cases, 224 

expressed as a percentage: 225 

AF = AN/∑Y×100 226 

The AF represents the proportion of malaria cases attributable to heat exposure within the 227 

defined temperature range. To account for uncertainty in the coefficient estimates, 1,000 228 

iterations of Monte Carlo simulations were performed, generating confidence intervals for the 229 

AF estimates. 230 

Projections of Future Malaria Burden 231 

Projected future increases in mean temperature were obtained for two time slices (2044-2052 232 

and 2064-2072) under different climate change scenarios. The data were sourced from the 233 

World Bank’s Climate Change Knowledge Portal (CCKP) (Table 1) [20]. The heat-related 234 

AF was calculated under two Shared Socio-Economic Pathways (SSP2-4.5 and SSP2-8.5), 235 

using baseline data from 2014 to 2022. The derived temperature effect estimate (β^) was used 236 

to compute the RR and projected AN for future periods using the formula: 237 

RR=exp(β^×ΔT) 238 

Where ΔT is substituted with the projected mean annual increase in temperature for each 239 

climate scenario. The projected AN and AF were calculated using the same approach as for 240 

the baseline period. In the absence of projected population data, we assumed no significant 241 

changes in the population when projecting the future burden of malaria. 242 

All data preprocessing and analyses were conducted using R software (R 4.1.0), with 243 

the dlnm and mvmeta packages for model fitting [21]. Reproducible code is provided in the 244 

Supplementary File. 245 
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---------------Insert Table 1 here--------------- 246 

Results 247 

The Relationship between Environmental Variables and Malaria Incidence 248 

Descriptive statistics reveal that both Bannu and Lakki Marwat share similar climatic 249 

conditions. Bannu experiences average temperatures ranging from 9.45°C to 35.05°C, while 250 

Lakki Marwat's average temperatures span from 10.79°C to 35.35°C. Humidity levels 251 

fluctuate between 19% and 74% in Bannu and 21% and 79% in Lakki Marwat (Table 2). 252 

The calculated prevalence rates signify the occurrences of PV and PF per 1000 RDTs 253 

conducted within the studied population or timeframe. Predominantly, PV constitutes the 254 

majority of cases in both districts, with rates of 144.93 and 92.81 cases per 1000 RDTs in 255 

Bannu and Lakki Marwat, respectively. PF cases show prevalence rates of 2.87 and 2.08 per 256 

1000 RDTs conducted in these respective regions (Table 2). 257 

---------------Insert Table 2 here--------------- 258 

The monthly time-series distribution depicted in Figure 2 and Figure 3 unveils the intricate 259 

relationship between weather patterns and malaria cases in Bannu and Lakki Marwat. Figures 260 

2 and 3 indicate the presence of distinct seasonal patterns, characterised by alternating highs 261 

and lows in malaria cases. Notably, these fluctuations show a positive association between 262 

monthly variations in temperature (Spearman's ρ = 0.34) and relative humidity (Spearman's ρ 263 

= 0.28) with malaria cases throughout the region. 264 

Average monthly trends of malaria, corresponding to variations in temperature and humidity 265 

(Figures 2 and 3), underscore a noteworthy trend observed from 2014 onwards—an evident 266 

decline in reported malaria cases. However, a significant surge becomes apparent in the year 267 

2022. 268 
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---------------Insert Figure 2 here--------------- 269 

---------------Insert Figure 3 here--------------- 270 

In both Bannu and Lakki Marwat, the risk of malaria cases increased with rising temperatures 271 

above 22.4°C (Figures 4 and 5). In Bannu, for every 1°C increase above this threshold, there 272 

was a 9.87% (95%CI: 4.86, 15.12) rise in the risk of malaria cases. Similarly, in Lakki 273 

Marwat, the risk increased by 9.49% (95%CI: 5.25, 13.91) per 1°C rise in temperature. 274 

The risk of PV infections followed a comparable pattern in both locations. In Bannu, the risk 275 

of PV infections rose by an estimated 9.60% (95%CI: 4.50, 14.96) with temperature 276 

increments, mirroring the trend in Lakki Marwat, where it increased by 9.48% (95%CI: 5.21, 277 

13.93). 278 

However, when considering PF infections, the contribution to higher risk varied between the 279 

districts. In Bannu, a 1°C increase above 22.4°C was associated with a substantial 14.95% 280 

(95%CI: 6.07, 24.57) rise in PF infections. In contrast, Lakki Marwat displayed a lower 281 

association, with PF infection contributing to a 4.74% (95%CI: -2.96, 13.06) increase in risk. 282 

Figures 4 and 5 further indicate that as the monthly lag increases from 0 to 3 months, there is 283 

a noticeable escalation in the risk of malaria cases, with two distinct peaks observed at lag 1 284 

and lag 3. In Bannu, the risk is estimated to be 3.66% (95%CI: 0.00, 7.44) at lag 1 and 6.00% 285 

(95%CI: 2.77, 9.27) at lag 3. Similarly, in Lakki Marwat, the risk is estimated to be 6.28% 286 

(95%CI: 1.85, 10.91) at lag 1 and 7.14% (95%CI: 3.61, 10.80) at lag 3. This suggests that 287 

factors influencing malaria occurrence might have a delayed effect, becoming more 288 

influential several months after their initial occurrence. 289 

---------------Insert Figure 4 here--------------- 290 

---------------Insert Figure 5 here--------------- 291 
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 292 

Projected Association between Temperature and Malaria 293 

The attributable fractions outlined in Table 3 provide compelling insights into the impact of 294 

rising temperatures on malaria cases. In Bannu, up to 39.76% (95%CI: 23.19, 51.93) of 295 

reported malaria instances are linked to temperatures ranging between 22.4°C and 35.3°C. 296 

Similarly, in Lakki Marwat, 54.05% (95%CI: 34.64, 68.82) of cases are attributable to this 297 

temperature range. 298 

Projections based on the Shared Socio-Economic Pathways indicate a rise in the attributable 299 

fraction of heat-related malaria cases in both districts. 300 

---------------Insert Table 3 here--------------- 301 

Discussion 302 

This study provides the first evidence from Pakistan taking into account temporal and lagged 303 

dependencies in predicting the association between monthly temperature conditions and 304 

malaria incidence and projecting future trends. The results indicate a direct association 305 

between temperature and malaria incidence in the southern districts of KPK. Findings from 306 

this study suggest that temperatures exceeding 22.4°C corresponded to a 9 to 10% increase in 307 

malaria transmission for every 1°C rise. These findings are consistent with a recent study [22] 308 

from Bannu, Pakistan, suggesting that with every 1oC increase in temperature, the percent 309 

variation in the odds ratio of malaria incidence increases by 4%. Similarly, research 310 

conducted in multiple Chinese provinces reported a 6.7 to 15.8% rise in malaria cases for 311 

every 1°C increase in maximum temperature [23]. Several recent studies from developing 312 

countries, such as Iran and Uganda, discerned similar patterns [24-25]. Numerous studies 313 

indicate a rise in malaria transmission beyond specific temperature thresholds [26-27]. 314 

However, a few studies conducted in China and sub-Saharan Africa provide contrasting 315 
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evidence in the context of climate change [28-29]. The conflicting results could be attributed 316 

to disparities in different modelling approaches [30]. Localised regional conditions play an 317 

important role in the transmission dynamics of malaria and should be considered when 318 

assessing the complex associations between environmental factors and malaria [31]. 319 

The relationship between temperature and malaria transmission tends to be intricate, 320 

influenced by multiple interacting variables such as humidity, rainfall patterns, other local 321 

environmental conditions and human behavior. In tropical countries, such as sub-Saharan 322 

Africa, where temperature remains consistently warm throughout the year, conducive 323 

conditions for the breeding and survival of malaria-carrying mosquitoes persist [32]. 324 

However, with reduced rainfall and hotter, drier conditions, the decrease in standing water 325 

and consequent breeding sites might temporarily reduce mosquito populations, thus lowering 326 

disease transmission. In subtropical monsoon-fed climates typical of Pakistan, temperature 327 

and rainfall patterns vary annually. Monsoon summer seasons can create periods of increased 328 

standing water, providing breeding grounds for mosquitoes. During these times, malaria 329 

transmission may surge due to the shortened development time of the malaria parasite and the 330 

availability of more habitats for mosquito breeding [1]. Other ecological factors, like 331 

topography, also play a crucial role in malaria transmission. For example, the flat terrain of 332 

Bannu and Lakki Marwat can lead to poor drainage of rainwater, resulting in standing 333 

stagnant water [12]. The presence of rivers, canals, and irrigation systems in and around 334 

southern districts of KPK, such as Bannu and Lakki Marwat, provide ample breeding places 335 

for mosquitoes and play a key role in mosquito ecology and malaria transmission [12]. 336 

Furthermore, since the 1930s, numerous irrigation channels in the Bannu cantonment have 337 

served as primary mosquito breeding sites for Anopheles species, such as An. stephensi, An. 338 

culicifacies, and An. subpictus [10]. Due to the endophilic behavior of Anopheles in Pakistan, 339 

the species are generally found indoors [12]. In arid regions like Bannu and Lakki Marwat, 340 
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water is often stored in open containers inside houses, which can serve as breeding sites for 341 

mosquitoes. Human factors such as poorly constructed housing, particularly in rural settings 342 

(e.g., thatched roofs and unsealed walls), can increase exposure to mosquito bites. Nearly a 343 

century ago, malaria surveys revealed that cases began to rise towards the end of August, 344 

reaching their peak in October and November, before declining rapidly [10]. Today, peaks in 345 

malaria transmission are observed during September to December and April to May, which 346 

may be influenced by changing climatic patterns, including temperature, precipitation, 347 

variations in rainy seasons, and agricultural activities [7, 9, 12]. Extensive agricultural 348 

practices, particularly rice paddies and other water-intensive crops, as well as trade 349 

(particularly the used tire trade, which is quite common in KPK) and close contact with 350 

livestock in rural settings, can also facilitate malaria transmission. Many studies have 351 

highlighted the role used tires in vector-borne disease transmission [33-34]. Used tires, when 352 

stored, recycled, or discarded improperly, collect rainwater and create stagnant pools, 353 

providing ideal breeding sites for mosquitoes. In addition, limited access to healthcare 354 

facilities and resources, particularly for socioeconomically disadvantaged communities, can 355 

hinder prompt diagnosis and treatment, exacerbating the spread of malaria. 356 

Furthermore, this study reveals a delayed impact of mean temperature on the burden of 357 

malaria, persisting for up to three months. The peak at a 1-month lag could be associated with 358 

the Extrinsic Incubation Period (EIP) of malaria parasites within mosquitoes and accelerated 359 

larval development. As temperatures rise, mosquitoes may become infectious more quickly, 360 

leading to increased malaria transmission within one month. For example, within the 361 

temperature range of 25-30oC, the EIP for P. vivax in mosquitoes is likely around 8-10 days, 362 

whereas below 20oC, the EIP extend up to 35 days [35]. The peak at 3-month lag suggests a 363 

more extended impact of temperature changes on the malaria transmission cycle. This could 364 

be due to several factors, including i. sustained high temperatures over a period, which lead to 365 
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an increased and continuous population of infectious mosquitoes [36] ii. the compounding 366 

effect of multiple mosquito generations, where an initial temperature increase results in a 367 

progressively higher mosquito population over time [37] and iii. possible delays in human 368 

behaviour or environmental factors that influence mosquito breeding sites [38]. 369 

The increased overall risk can be linked to the faster reproduction rate triggered by warming 370 

temperatures, thereby extending the time frame for mosquito breeding. The observed effect of 371 

environmental covariates at each lag may represent a cumulative influence from preceding 372 

lags [25]. Additionally, recent extreme environmental conditions, such as prolonged rainy 373 

seasons, could also contribute to the impact on malaria burden. This finding aligns with prior 374 

studies highlighting how disease risk temporally shifts in response to temperature variations. 375 

Importantly, an increase in temperature substantially amplifies the incidence rate of malaria, 376 

both in the current month and in subsequent months [24, 25, 37, 38]. The month-lagged 377 

effects of temperature offer a sufficient time-frame for designing interventions to interrupt 378 

malaria transmission. These findings are crucial for administering institutes like IVC/MCP-379 

KP and FPHC, which are responsible for malaria control in KPK, Pakistan. Building on their 380 

existing efforts in distributing bed nets, conducting IRS, and managing cases with RDTs and 381 

antimalarial treatments, a targeted approach could be employed considering the seasonal 382 

nature and lagged effect of temperature on malaria transmission. For instance, mass 383 

distribution of bed-nets before the transmission season, IRS before the monsoon, and 384 

preventive treatment administration to vulnerable groups during peak periods could 385 

significantly reduce malaria burden. Additionally, timely awareness campaigns and 386 

healthcare worker training can better prepare communities for early detection and prevention. 387 

Some of the challenges that hinder effective malaria control in Pakistan include the misuse 388 

and overuse of antimalarial drugs, the use of substandard and counterfeit medications, limited 389 
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access to healthcare and infrastructure - particularly in rural and remote areas - inadequate 390 

vector control programmes, lack of awareness about environmental factors that favour 391 

mosquito breeding, socioeconomic barriers, inadequate preparedness for climatic challenges 392 

and extreme weather conditions such as rainfall and floods, and overall political and financial 393 

instability in the country [39]. 394 

This study further suggests that the temperature-related attributable fraction of malaria cases 395 

is projected to increase from 39.8 to 43.3% and from 54.1 to 57.6% for the two districts in 396 

projected scenarios (SSP2 4.5) as warmer temperatures become more frequent.  These 397 

findings indicate the critical role of temperature in malaria transmission, also suggesting that 398 

climate change is likely to exacerbate malaria transmission. Pakistan already faces a high 399 

burden of malaria and other infectious diseases. An increase in malaria cases due to warming 400 

temperatures could lead to higher mortality and morbidity, further straining already 401 

overstretched healthcare systems and causing significant economic impacts on 402 

socioeconomically vulnerable communities [39]. Additionally, under high-emission scenarios 403 

(SSP2 8.5), the attributable fractions show a slight reduction, likely due to the frequent 404 

occurrence of extreme temperature conditions, which may not be conducive to malaria 405 

transmission. 406 

Climate change is anticipated to exert both direct and indirect influences on the transmission 407 

of malaria, particularly affecting the most vulnerable communities. While there is limited 408 

data on the long-term ramifications of climate change on malaria transmission, recent events 409 

in Pakistan illustrate how extreme weather events, specifically floods, have led to a 410 

substantially increased burden of malaria. As is evident in this study, despite the gradual 411 

decline in malaria from 2014 onwards, a striking surge in malaria cases was observed in 412 

2022. In that year, unprecedented flooding submerged one-third of the country, causing 413 
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widespread devastation and health challenges, including a significant rise in malaria [1]. The 414 

WHO reported a more than four-fold increase in malaria cases in Pakistan in 2022 compared 415 

to 2021, totalling over 1.6 million cases [1]. 416 

Climate change is expected to impact malaria transmission across various scenarios, 417 

potentially affecting both traditionally endemic tropical regions and historically non-endemic 418 

areas, such as higher-altitude temperate zones [40]. Warmer temperatures can accelerate 419 

parasite growth cycles in mosquitoes, amplifying transmission rates and altering the overall 420 

burden of the disease. Shifts in temperature, rainfall, and humidity might expand the habitat 421 

range of malaria-carrying mosquitoes, leading to transmission in previously unaffected areas, 422 

such as the recent resurgence of malaria cases in Europe [40]. Conversely, increase in 423 

heatwaves and extremely hot days may reduce malaria transmission in highly endemic areas.  424 

Temperature and humidity intricately influence mosquito life cycles, potentially increasing 425 

Anopheles mosquito frequency, biting rates, and shortening the extrinsic incubation period of 426 

Plasmodium parasites [40]. This study provides compelling evidence of how temperature 427 

changes likely contributed to malaria transmission in vulnerable regions. 428 

Further, the broader impacts of climate change - such as adverse health effects and 429 

socioeconomic setbacks - can impede disease control efforts, potentially fostering increased 430 

malaria transmission. Vulnerable populations in low and middle-income countries facing 431 

economic hardship and limited access to healthcare, are particularly susceptible. The 432 

compounding impacts of rising temperatures and more frequent extreme weather events, such 433 

as floods, significantly influence malaria prevalence and transmission. For example, during 434 

the 2022 floods in Pakistan, extreme flooding displaced individuals from their residences, 435 

exposing them to mosquito-infested environments. The stagnant water left behind created 436 

optimal breeding grounds for mosquitoes, persisting for extended periods. Additionally, the 437 
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inundation adversely affected healthcare facilities and disrupted transportation, leaving those 438 

afflicted with illness without access to treatment. 439 

Climate change poses a threat to the intricate interplay between natural and human systems, 440 

undermining various social determinants of good health, including livelihoods, nutrition, 441 

security, and access to quality health services. In countries like Pakistan, facing the 442 

compounded challenges of infectious diseases and climate change, urgent evidence-based 443 

studies are crucial for crafting targeted policies. These studies need to focus on the intricate 444 

relationship between changing climate patterns and malaria transmission within specific 445 

localities. By establishing robust surveillance systems, fostering community engagement, and 446 

integrating climate-resilient strategies into healthcare infrastructure, policymakers can 447 

adaptively address the evolving risks. Cross-sector collaborations and investment in capacity 448 

building will be pivotal, ensuring a comprehensive approach that not only targets malaria 449 

control but also strengthens resilience against the health impacts of a changing climate. 450 

Limitations 451 

This study provides empirical evidence regarding the impacts of rising temperatures on 452 

malaria transmission in two endemic districts of Pakistan and highlights the influence of 453 

climate change on malaria dynamics. However, several limitations in the study design should 454 

be noted. 455 

Firstly, this study relied on temperature data from global gridded meteorological datasets to 456 

measure temperature exposure. While this method may overlook micro-scale spatial and 457 

temporal variations in temperature that are critical for mosquito distribution, it has been 458 

successfully used in previous studies to quantify the impacts of meteorological conditions on 459 

malaria transmission [25]. 460 
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Secondly, analysing monthly average temperatures may obscure diurnal or daily temperature 461 

variability, potentially masking the immediate impact of temperature fluctuations on 462 

mosquito ecology and malaria transmission. 463 

Thirdly, this study did not account for all possible environmental covariates, such as altitude, 464 

land-use practices like agriculture, or vector distribution, which could influence malaria 465 

transmission. 466 

Fourth, malaria cases were diagnosed using both RDTs and microscopy. While microscopy is 467 

the gold standard, RDTs were used in several locations due to resource constraints and cost 468 

considerations, posing a risk of including false-positive cases. However, previous studies in 469 

the region have shown significant agreement between microscopy and RDT results [6]. 470 

Therefore, data from both sources were integrated to provide a comprehensive view of 471 

malaria prevalence. 472 

Despite these limitations, this study offers valuable population-level insights crucial for 473 

understanding the current and projected impacts of temperature on malaria transmission 474 

dynamics. Future research should prioritise integrating more detailed microclimatic data to 475 

better quantify the influence of temperature and relative humidity on vector density. 476 

Conducting vector sampling across diverse regions and seasons is essential to develop a 477 

comprehensive spatiotemporal profile of vector distribution, providing critical evidence for 478 

targeted malaria control interventions. 479 

Conclusions 480 

Changing climatic patterns and consequent extreme weather events are associated with 481 

malaria resurgence in Pakistan. It is imperative to estimate the climate change-attributed 482 

increase in the risk of malaria in vulnerable regions of Pakistan. This study provides evidence 483 

showing a direct association between monthly temperature conditions and malaria incidence 484 
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in the southern districts of KPK, Pakistan. Specifically, temperatures exceeding 22.4°C 485 

correspond to a 9-10% increase in malaria transmission for every 1°C rise. The relationship 486 

between temperature and malaria transmission is intricate and is influenced by several factors 487 

such as precipitation, humidity and other local environmental conditions and human 488 

behaviour. The study reveals a lagged impact of mean temperature on malaria incidence, 489 

persisting for up to three months. This lagged effect is likely due to the Extrinsic Incubation 490 

Period (EIP) of malaria parasites within mosquitoes and accelerated larval development. The 491 

lagged effects of temperature on malaria provide a sufficient timeframe for designing 492 

interventions to interrupt malaria transmission. Effective malaria control measures include 493 

vector control, chemoprevention, case management, surveillance, and community 494 

engagement, such as community health education campaigns. The attributable fraction of 495 

malaria cases associated with higher temperatures is projected to increase. Rising 496 

temperatures and extreme weather events, such as the 2022 floods in Pakistan, have already 497 

shown a significant impact on malaria incidence. Urgent, evidence-based studies are needed 498 

to craft targeted policies addressing the interplay between climate change and malaria 499 

transmission. Policymakers should focus on establishing robust surveillance systems, 500 

fostering community engagement, and integrating climate-resilient strategies into healthcare 501 

infrastructure.  502 
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Table 1: Characteristics of Projected Data Obtained from World Bank’s CCKP. 635 

Projection 

coverage 

Climate 

model 

used 

Scenarios Projection 

years 

Projected 

increase in 

temperature 

(ΔT in ºC)  

Remarks Data Source 

Pakistan 

(KPK) 

25X25 Km 

Multi-

Model 

Ensemble 

CMIP 6 

SSP2-4.5 2040s 1.71 Average 

Mean 

Surface Air 

Temperature 

https://climatekno

wledgeportal.worl

dbank.org/country

/pakistan/climate-

data-projections 

 636 
  637 
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Table 2: Descriptive Statistics on Environmental Variables and Malarial Incidence Per 1000 RDTs in 638 

Bannu and Lakki Marwat. 639 

 Monthly Median (range) 

Districts Mean 

Temperature 

(oC) 

 

Humidity 

(%) 

 

PV Prevalence 

Rates per 1000 

RDT cases 

PF 

Prevalence rate 

per 1000 RDT 

cases 

Total Cases 

Prevalence rate 

per 1000 RDT 

cases 

Bannu 24.60 (9.45, 

35.05) 

51.27 (19.57, 

74.30) 

144.93 (15.66, 

1998.52) 

2.87 (0.00, 

47.30) 

150.19 (16.65, 

2008.89) 

Lakki 

Marwat 

25.70 (10.79, 

35.35) 

53.38 (21.58, 

76.80) 

92.81 (19.04, 

229.30) 

2.08 (0.26, 

12.40) 

95.36 (19.79, 

232.35) 

 640 
  641 
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Table 3: Attributable Fraction of Malarial Cases Associated with Mean Temperatures in Baseline Period 642 

(2014-2022) and Projected Climate Change Scenarios (2044-2052 And 2064-2072) for Bannu and Lakki 643 

Marwat. 644 

City   Attributable 

Fraction PV 

Attributable 

Fraction PF 

Attributable 

Fraction Total 

Cases 

Bannu  Baseline 39.1 (21.7, 51.7) 45.3 (24.1, 59.0) 39.8 (23.2, 51.9) 

2044-2052 SSP2 4.5 41.4 (23.4, 54.2) 51.3 (27.9, 65.8) 42.2 (25.0, 54.5) 

SSP5 8.5 42.3 (24.1, 55.0) 51.8 (28.4, 66.1) 43.0 (25.7, 55.3) 

2064-2072 SSP2 4.5 42.5 (24.2, 55.3) 52.5 (28.9, 66.9) 43.3 (25.8, 55.5) 

SSP5 8.5 39.9 (23.1, 51.2) 51.6 (28.9, 64.8) 40.6 (24.6, 51.6) 

Lakki Marwat  Baseline 54.0 (34.4, 68.9) 28.8 (-32.0, 66.6) 54.1 (34.6, 68.8) 

2044-2052 SSP2 4.5 55.3 (35.7, 69.8) 30.9 (-35.9, 70.7) 55.4 (36.0, 69.8) 

SSP5 8.5 57.2 (37.3, 71.7) 32.5 (-38.8, 73.7) 57.3 (37.6, 71.8) 

2064-2072 SSP2 4.5 57.4 (37.5, 72.0) 32.6 (-39.1, 74.0) 57.6 (37.7, 72.0) 

SSP5 8.5 53.4 (35.2, 66.5) 33.1 (-40.9, 74.4) 53.7 (35.5, 66.7) 

 645 
  646 
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Figure 1 647 
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Figure 2 650 
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Figure 3 653 
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Figure 4 656 
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Figure 5 659 
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