X-ray powder diffraction data for 7-ethyl-14-nitro-camptothecin, C₂₂H₁₉N₃O₆

Wan Wang, ¹ Zili Suo, ¹ Lidong Liao, ² and Hui Li^{1,a)}

 1 College of Chemical Engineering, Sichuan University, Chengdu 610065, China

²Sichuan Sinovation Biotech Co., Ltd., Chengdu 610063, China

(Received 3 March 2018; accepted 2 August 2018)

X-ray powder diffraction (XRD) data, unit-cell parameters and space group for 7-ethyl-14-nitro-camptothecin, $C_{22}H_{19}N_3O_6$, are reported [a=10.987(5) Å, b=10.941 (9) Å, c=8.438 (2) Å, $\alpha=71.321(6)^\circ$, $\beta=96.145(0)^\circ$, $\gamma=95.139(3)^\circ$, unit-cell volume V=953.87 Å³, Z=2, $\rho_{cal}=1.467$ g cm⁻³, and space group P-1]. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurities were observed. © 2018 International Centre for Diffraction Data. [doi:10.1017/S0885715618000684]

Key words: X-ray powder diffraction, 7-ethyl-14-nitro-camptothecin

I. INTRODUCTION

7-Ethyl-14-amino-camptothecin was reported as a promising candidate for tumor treatment based on its superiority to traditional camptothecin derivatives, including excellent efficacy, acceptable safety, significant brain penetration and poor substrate properties toward the major drug-resistant pumps (Duan *et al.*, 2011; Cheng *et al.*, 2015). The title compound, 7-ethyl-14-nitro-camptothecin (ENC, Figure 1), is an intermediate in the synthesis of 7-ethyl-14-amino-camptothecin from 7-ethylcamptothecin (Duan *et al.*, 2011). Therefore, it is very important to design the crystallization techniques of ENC as well as to be certain of its crystal structure.

To date, detailed X-ray powder diffraction (XRD) data for ENC have not been reported.

II. EXPERIMENTAL

A. Sample preparation

ENC was obtained from Sichuan Sinovation Biotech Co., Ltd., China. It was re-crystallized in methanol–dichloromethane (1:1, v/v), then dried and ground into powder. The sample was characterized by melting point (306.9 °C), density (1.459 g cm⁻³), FT-IR (Supplementary Figure S1) and MS ([M+H] $^+$ = 422.1, Supplementary Figure S2). Further, a purity of 98.5% was checked by HPLC (Supplementary Figure S3).

B. Diffraction data collection and reduction

XRD measurements were performed at room temperature using an X'Pert PRO diffractometer (PANalytical Co., Ltd., Netherlands) with a PIXcel one-dimensional detector and Cu $K\alpha$ radiation (λ = 1.5406 Å, generator voltage and current were set at 40 kV and 40 mA). The diffraction data were collected over the angular range from 4° to 50° 2 θ with a step size of 0.013 13° 2 θ and a counting time of 29.07 ms per step (Figure 2).

a)Author to whom correspondence should be addressed. Electronic mail: lihuilab@sina.com

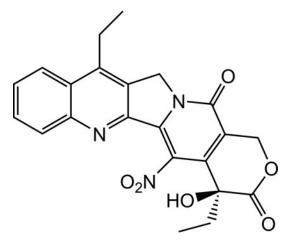


Figure 1. Molecular diagram for 7-ethyl-14-nitro-camptothecin.

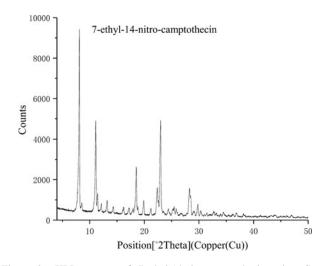


Figure 2. XRD pattern of 7-ethyl-14-nitro-camptothecin using $\text{Cu}K\alpha$ radiation.

Data evaluation was performed using the software package Material Studio 8.0 (Accelrys Co., Ltd., San Diego, California, USA) in the Analytical & Testing Center

327

TABLE I. Indexed XRD data for 7-ethyl-14-nitro-camptothecin, $C_{22}H_{19}N_3O_6$. The d-values were calculated using $CuK\alpha$ radiation ($\lambda = 1.54056$ Å).

Δ2θ	d _{cal} (Å)	2θ _{cal} (°)	l	k	h	$I_{ m obs}$	d _{obs} (Å)	$2\theta_{\rm obs}$ (°)
0.0257	10.9055	8.1006	0	0	1	100	10.8765	8.1263
0.0085	10.3477	8.5380	0	1	0	9	10.3427	8.5465
0.0224	7.9661	11.0977	1	0	0	52	7.9542	11.1201
0.0072	7.7366	11.4280	0	-1	1	14	7.7357	11.4352
-0.0034	7.2956	12.1214	0	1	1	9	7.3013	12.1180
-0.0154	6.7033	13.1969	-1	0	1	10	6.7145	13.1815
-0.0067	6.1924	14.2912	1	0	1	7	6.1984	14.2845
-0.0114	5.5292	16.0159	-1	1	0	5	5.5359	16.0045
-0.0012	5.4527	16.2421	0	0	2	7	5.4559	16.2409
0.0361	5.1739	17.1239	0	2	0	6	5.1657	17.1600
-0.0082	5.1372	17.2470	1	2	0	6	5.1422	17.2388
0.0520	4.9452	17.9221	0	-1	2	6	4.9335	17.9741
-0.0088	4.8618	18.2323	-1	-2	1	7	4.8665	18.2235
-0.0168	4.7845	18.5292	0	-2	1	28	4.7912	18.5124
0.0075	4.7112	18.8200	0	1	2	7	4.7117	18.8275
0.0095	4.4591	19.8947	1	2	1	10	4.4592	19.9042
0.0083	4.1831	21.2221	2	1	0	6	4.1836	21.2304
-0.0454	3.9672	22.3918	-1	-2	2	17	3.9771	22.3464
0.0025	3.9345	22.5803	-1	1	2	10	3.9360	22.5828
0.0050	3.8683	22.9717	0	-2	2	52	3.8694	22.9767
-0.0485	3.7683	23.5898	2	1	1	5	3.7779	23.5413
0.0268	3.6478	24.3811	0	2	2	6	3.6457	24.4079
0.0005	3.6057	24.6700	-1	2	1	4	3.6074	24.6705
0.0003	3.5278	25.2237	-1 -1	-3	1	6	3.5280	25.2351
0.0014	3.4944	25.4686	0	-3 -1	3	7	3.4958	25.4715
-0.0029	3.4441	25.8472	-1	-1 -1	3	6	3.4469	25.8391
	3.4213		-1 -1		3	4		
-0.0277		26.0637		0	3 1	4	3.4213	26.0360
0.0259	3.3256	26.7848	1	3			3.3241	26.8107
0.0618	3.2080	27.7862	1	0	3	4	3.2026	27.8480
0.0116	3.1542	28.2697	2	1	2	17	3.1545	28.2813
0.0061	3.1309	28.4853	1	1	3	13	3.1317	28.4914
-0.0122	3.0748	29.0157	-1	1	3	5	3.0776	29.0035
-0.0103	3.0601	29.1582	0	-2	3	5	3.0627	29.1479
0.0031	2.9955	29.8013	0	-3	2	8	2.9967	29.8044
0.0328	2.9439	30.3362	2	2	2	5	2.9423	30.3690
0.0108	2.8787	31.0410	1	3	2	3	2.8791	31.0518
-0.0216	2.8406	31.4673	0	3	2	4	2.8439	31.4457
0.0419	2.7739	32.2442	-3	-1	1	3	2.7718	32.2861
-0.0007	2.7368	32.6938	3	2	0	5	2.7382	32.6931
-0.0369	2.7243	32.8482	1	4	0	4	2.7286	32.8113
-0.0001	2.7010	33.1396	-1	-4	1	4	2.7023	33.1395
-0.0069	2.6963	33.1990	-1	-3	3	4	2.6982	33.1921
0.0215	2.6397	33.9321	3	1	1	3	2.6394	33.9536
-0.0058	2.5958	34.5240	-3	-1	2	4	2.5975	34.5182
-0.0281	2.4845	36.1220	0	4	1	3	2.4876	36.0939
-0.0012	2.4400	36.8041	2	4	1	4	2.4413	36.8029
-0.0113	2.4319	36.9324	0	3	3	4	2.4338	36.9211
-0.0047	2.3556	38.1731	0	2	4	4	2.3571	38.1684
0.0066	2.1889	41.2081	3	3	2	3	2.1896	41.2147
0.0179	2.0952	43.1400	2	-3	2	2	2.0954	43.1579
-0.0386	2.0505	44.1288	2	5	1	3	2.0532	44.0902
	1.9310	47.0192	4	0	1	3	1.9314	47.0314

(Sichuan University, Chengdu, China). The XRD pattern was pre-treated by subtracting the background, smoothing, and stripping off the $K\alpha_2$ component. Automatic indexing results were obtained with DICVOL91 (Boultif and Louër, 1991). The following figures of merit were achieved: $F_{27} = 26.6$ (0.0132, 77) (Smith and Snyder, 1979) and $M_{27} = 11.1$ (de Wolff, 1968). The indexing results were then refined using Pawley refinement (Pawley, 1981), which involves assigning the Miller indices (h, k, l) to each observed peak in the experimental XRD pattern.

III. RESULTS

The experimental powder diffraction pattern is depicted in Figure 2. Indexing results showed that ENC is triclinic, space group P-1 and unit-cell parameters: a = 10.987(5) Å, b = 10.941 (9) Å, c = 8.438 (2) Å, α = 71.321(6)°, β = 96.145(0)°, γ = 95.139(3)°, unit-cell volume V = 953.87 ų, Z = 2, $\rho_{\rm cal}$ = 1.467 g cm⁻³. The values of $2\theta_{\rm obs}$, $d_{\rm obs}$, $I_{\rm obs}$, h, k, l, $2\theta_{\rm cal}$, $d_{\rm cal}$ are listed in Table I. All measured lines were indexed and are consistent with the P-1 space group. No detectable impurities were observed.

328

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/S0885715618000684.

- Boultif, A. and Louër, D. (1991). "Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method," J. Appl. Crystallogr. 24, 987–993.
- Cheng, X., Qiu, N., Yang, J., Liu, H., and Wen, J. (2015). "Preparation, characterization, and in vivo study of 7-ethyl-14-aminocamptothecin-loaded poly(ethylene glycol) 2000-poly(lactic acid)2000 polymeric micelles
- against H460 human nonsmall cell lung carcinoma," J. Pharm. Sci.-US. **104**(11): 3934–3942.
- de Wolff, P. M. (1968). "A simplified criterion for the reliability of a powder pattern," J. Appl. Crystallogr. 1, 108–113.
- Duan, J., Cai, X., Meng, F., Sun, J. D., and Liu, Q. (2011). "14-Aminocamptothecins: their synthesis, preclinical activity, and potential use for cancer treatment," J. Med. Chem. 54(6): 1715–1723.
- Pawley, G. S. (1981). "Unit-cell refinement from powder diffraction scans," J. Appl. Crystallogr. 14(6), 357–361.
- Smith, G. S. and Snyder, R. L. (1979). "FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder indexing," J. Appl. Crystallogr. 12, 60–65.