
MONITORING CONSTANCY OF
VARIANCE IN CONDITIONALLY

HETEROSKEDASTIC TIME SERIES

LAAAJJJOOOSSS HOOORRRVVVÁÁÁTTTHHH
University of Utah

PIIIOOOTTTRRR KOOOKKKOOOSSSZZZKKKAAA
Utah State University

AOOONNNAAANNN ZHHHAAANNNGGG
Bank of America

We propose several methods of on-line detection of a change in unconditional
variance in a conditionally heteroskedastic time series+ We follow the paradigm
of Chu, Stinchcombe, and White ~1996, Econometrica 64, 1045–1065! in which
the first m observations are assumed to follow a stationary process and the mon-
itoring scheme has asymptotically controlled probability of falsely rejecting the
null hypothesis of no change+ Our theory is applicable to broad classes of GARCH-
type time series and relies on a strong invariance principle that holds for the squares
of observations generated by such models+ Practical implementation of the proce-
dures, which uses a bandwidth selection procedure of Andrews ~1991, Economet-
rica 59, 817–858!, is proposed, and the performance of the methods is investigated
by a simulation study+

1. INTRODUCTION

This paper is concerned with on-line detection of a change in unconditional
variance in a conditionally heteroskedastic time series+ Our sequential testing
procedures are similar in spirit to the procedures developed by Chu, Stinch-
combe, and White ~1996! and Horváth, Hušková, Kokoszka, and Steinebach
~2004!, who considered monitoring for changes in linear regression models+ To
explain the idea, suppose rt , t � 1,2, + + + are returns on a speculative asset+ We
assume that the first m observations r1, + + + , rm are a realization of a stationary
process and, in particular, the unconditional variance does not change up to
time m+ We then monitor the observations rm�1, rm�2, + + + as they arrive, and at
each time n � m we have to make a decision whether r1, + + + , rn are a realization
of the same process as r1, + + + , rm+ The detection algorithms are designed in such
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a way that they will detect changes that lead to a change in the unconditional
variance+

The problem of detecting structural changes in conditionally heteroskedas-
tic time series has received increased attention in recent years+ Most work has,
however, focused on the so-called a posteriori change-point problem in which
a historical sample of fixed size is given and a decision has to be made whether
one model is suitable for the whole sample+ There are many variants of this
problem depending on whether one is interested in the constancy of the param-
eters of a parametric model or merely in the constancy of specified moments+
Contributions in this direction have been made by Inclán and Tiao ~1994!,
Chu ~1995!, Kokoszka and Leipus ~1998, 1999, 2000, 2002!, Kim, Cho, and
Lee ~2000!, Inoue ~2001!, Andreou and Ghysels ~2002, 2003!, and Kulperger
and Yu ~2005!, among others+ By contrast, very few contributions have been
made to the problem of sequential testing for a structural change in condition-
ally heteroskedastic time series+ Mikosch and Stărică ~1999, 2002! suggested
a sequential change-point detection method based on the periodogram, whereas
Berkes, Gombay, Horváth, and Kokoszka ~2004! developed a method based
on likelihood scores that applies to the same testing setting as in Chu et al+
~1996! but focuses on GARCH~ p,q! models rather than linear regression
models+

The methods proposed in this paper are essentially nonparametric, even though
their specific implementations may require estimating an approximate paramet-
ric model for the data+ This is because the detectors have a general form
D~X1, + + + , Xn!0 [s, where [s 2 is an estimator of the variance of the sample mean
of dependent stationary observations+ Whereas the function D~{! is fully spec-
ified and depends only on the observations, some estimators [s 2 may rely on
model assumptions+ In our simulation study, we use a kernel estimator and the
data-driven bandwidth selection procedure of Andrews ~1991! that relies on pos-
tulating and estimating an approximate parametric model for the observations+

Theoretical justification for the procedures proposed here applies to broad
classes of conditionally heteroskedastic time series+ The main assumption is
that the squared returns obey a strong invariance principle; see equation ~2+4!+
Such a very general assumption is possible because recent research has estab-
lished that practically all heteroskedastic models of importance in economet-
rics obey the strong invariance principle ~2+4!; see Carasco and Chen ~2002!
and further references in Section 2+ Using a strong approximation leads to
straightforward proofs that avoid the often very intricate arguments used in the
work of Chu et al+ ~1996!, who based their theory on the weak convergence of
measures in the Skorokhod space+

The paper is organized as follows+ After formulating the monitoring problem
and presenting some further background in Section 2, we describe the detec-
tion schemes and establish their asymptotic properties in Section 3+ Section 4
describes the variance estimator used in simulations presented in Section 5+
Appendixes A and B contain the proofs of theorems stated in Section 3+
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2. PROBLEM FORMULATION AND ASSUMPTIONS

Assume that the returns rt have mean zero and denote Xt � rt
2 , t � 1,2, + + + , so

that vt � EXt is the variance of the tth return+
We assume that

v1 � v2 � {{{� vm �: v0 + (2.1)

We wish to test

H0 :vn � v0 for n � m � 1 (2.2)

against

HA : ∃ n* � m � 1 vn � v0 for n � n* � 1 and

vn � v*� v0 for n � n*+ (2.3)

We assume that under H0 the Xi satisfy the following strong invariance
principle:

(
1�i�n

~Xi � v0 !� sW~n! �
a+s+

o~na ! (2.4)

with some 0 � a � 1
2
_ , where W~{! is a Wiener process+

The following theorem gives sufficient conditions for ~2+4! to hold+

THEOREM 2+1+ Let $Xk% be a weakly stationary sequence of random vari-
ables with mean zero and uniformly bounded ~2 � d!th moments for some
0 � d � 2. Assume that $Xk% satisfies the strong mixing condition

sup
A�F1

m ,B�Fm�n
`
6P~A � B!� P~A!P~B!6 � n�g for all m, n � 1 (2.5)

with g � 300~1 � 20d! , where Fk
� denotes the s-field generated by Xk, Xk�1,

+ + + , X�. Then letting Sn � X1 � {{{ � Xn, the limit

s 2 � lim
nr`

1

n
ESn

2

exists, and if s � 0, then there exists a Wiener process $W~t !,0 � t � `% such
that

Sn � sW~n! �
a+s+

O~n102�® !,

where ® � d0600.

There are several theorems of this type+ Theorem 2+1 is due to Phillip and
Stout ~1975!; see their Theorem 8+1 on p+ 96+ The constants in the theorem are
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far from optimal; however, the theorem of Phillip and Stout ~1975! covers most
applications+

Recently, Carasco and Chen ~2002! established easily verifiable sufficient
conditions for exponential b-mixing ~absolute regularity! and the existence of
finite moments in several important models extending the standard GARCH~1,1!+
Because exponential b-mixing implies exponential strong mixing ~see, e+g+,
Bradley, 1986, eqn+ ~1+7!!, these conditions imply ~2+5! whenever Xk � f ~rk!
and the rk follow one of the GARCH~1,1!-type models considered by Carasco
and Chen ~2002!, f ~{! being any measurable function+ Necessary and sufficient
conditions for the existence of higher order moments in these models were estab-
lished by He and Teräsvirta ~1999!+ The results of Carasco and Chen ~2002!
also imply that condition ~2+5! holds if Xk � f ~rk!, the rk follow a GARCH~ p,q!
process that satisfies (i ai �(jbj � 1, and the innovations have a density that
is continuous and positive on the whole line; see their Proposition 12+

As a corollary of the preceding discussion, we conclude that the theorems in
Section 3 hold, in particular, if Xt � rt

2 and the rt follow a strictly stationary
process that is strongly mixing with exponential rate and has finite ~4 � d!th
moment+

3. DETECTION ALGORITHMS

We now introduce four sequential monitoring methods considered in this paper+
These methods are formulated in terms of the observations Xt , which can be
interpreted as the squares of mean zero returns+ With such an interpretation,
the methods are designed to detect a change in unconditional variance of returns+
Even though this has been our primary motivation, the proposed algorithms
have a much wider applicability+ In fact, the Xt can be viewed as a sequence
of observations satisfying a week dependence condition ~invariance principle
~2+4!!, and the monitoring is then intended to detect a change in the mean of
the Xt +

The monitoring schemes considered in Section 3+1 are motivated by the meth-
ods proposed by Chu et al+ ~1996! in the context of detecting parameter changes
in linear regression models+ The two methods described in Section 3+2 are based
on procedures proposed in Horváth et al+ ~2004!, also in the context of linear
regression models+

In the following discussion, we denote by [s an estimator of the parameter s
appearing in Theorem 2+1 that is consistent under the null+We use [s� [sm, i+e+,
an estimator computed from the noncontaminated initial m observations, or
[s� [sn, i+e+, an estimator that is sequentially updated as new observations arrive+

Specific estimators and their asymptotic properties are discussed in Section 4+
The use of the estimator [sm is justified asymptotically, but no corresponding
theory is yet available for the estimator [sn, which is however recommended, as
it gives much better empirical results; see Section 5+
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3.1. CUSUM and Fluctuation Monitoring Schemes

Cumulative sum ~CUSUM! monitoring is based on the detector

Sn � (
i�2

n

ni
�102~Xi � PXi�1!, n � 2, (3.1)

where

ni �
i

i � 1
, n � 2 (3.2)

and

PXi�1 �
1

i � 1 (j�1

i�1

Xj , i � 2+ (3.3)

~The weights ni are chosen so that Var @Sn# � ~n � 1!Var @X1# +!
The conditions imposed on the boundary function g~{! appearing in Theo-

rems 3+1 and 3+2, which follow, are collected in the following assumption+

Assumption 3+1+ The function g : @1,`! r R satisfies

g~{! is continuous on @1,`!; (3.4)

g~t ! � ct 102, 1 � t � `, for some c � 0; (3.5)

and

lim sup
tr`

6W~t !6

g~t !
� ` a+s+ (3.6)

Sufficient conditions for ~3+6! to hold can be obtained from the results for-
mulated in Section 4+1 of Csörgő and Horváth ~1993!+ For convenience, we
state them in the following proposition+

PROPOSITION 3+1+ Suppose g : @0,`!r R satisfies the following conditions:

inf
1�t�c

g~t ! � 0 for all c � 1, (3.7)

g~t !0t is nonincreasing on @c,`! for some c � 0+ (3.8)

Then

�
1

` 1

t
exp~�cg2~t !0t ! dt � ` for some c � 0 (3.9)

and (3.6) are equivalent.
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The assumptions we impose on the function g~{! are different from those
used by Chu et al+ ~1996!, who required that g~{! be regular ~in the sense
defined in Chu et al+, 1996, p+ 1050!, and t�102g~t ! be eventually nondecreas-
ing+ Assumption ~3+4! implies regularity whereas, in the class of eventually
positive functions, if t�102g~t ! is eventually nondecreasing, then assumption
~3+5! holds+ We point out that ~3+6! ~and hence ~3+9!! is equivalent with the
existence of sup1�t�`6W~t !60g~t !, which appears as the limit in Theorems 3+1
and 3+2+ Also, the discussion in Csörgő and Horváth ~1993, pp+ 190–195! shows
that ~3+8! is weaker than assuming that t�102g~t ! is eventually nondecreasing+

Proposition 3+1 is an integral test that provides an analytic expression for
functions satisfying ~3+6!+ If a function g~{! satisfies ~3+6!, it is called an upper
class function+ For discussion of upper class functions of the Wiener process
we refer to Itô and McKean ~1965, pp+ 33–36! and Csörgő and Horváth ~1993!+

In the empirical applications, we will work with the function

ga~t ! � @t~a
2 � ln t !#102, t � 1, (3.10)

which meets Assumption 3+1+ In ~3+10! and throughout the paper, ln denotes
the natural logarithm+

Conditions ~3+4!, ~3+5!, ~3+7!, and ~3+8! are obviously satisfied by the func-
tion ga~t !+ Because

�
1

` 1

t
exp~�cga

2~t !0t ! dt ��
1

`

e�ca2 1

t 1�c
dt,

assumption ~3+9! is also met+
It is known that ~see Chu et al+, 1996, p+ 1052!

P $6W~t !6 � ga~t !, for some t � 1%� 2@1 �F~a!� af~a!# , (3.11)

where F and f are, respectively, the cumulative distribution function ~c+d+f+!
and probability density function ~p+d+f+! of a standard normal random variable+
For boundary crossing probabilities ~3+11! of 5% and 10%, a2 equals 7+78 and
6+25, respectively+

Theorem 3+1, which is proved in Appendix A, justifies a monitoring scheme
based on the detector ~3+1!+

THEOREM 3+1+ Suppose assumption (2.4) holds and the function g~{! sat-
isfies Assumption 3.1. Then, under H0,

sup
m�n�`

6Sn 6

m102g~n0m!
d
&& sup

1�t�`

s6W~t !6

g~t !
+ (3.12)
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Using the function ga~{! in Theorem 3+1, we obtain the following rejection
rule: reject H0 if

1

[s �(i�2

n

ni
�102~Xi � PXi�1!� � m102� n

m
�a2 � ln

n

m
��102

, for some n � m+

(3.13)

By ~3+12! and ~3+11!, as m r `, the probability of falsely rejecting H0 thus
tends to a prescribed significance level a that is controlled by the constant a+

We now turn to the fluctuation detector defined as

Zn � ns�1~ PXn � PXm !, n � m, (3.14)

with PXn as defined in ~3+3!+
The following theorem provides a justification for the monitoring scheme

based on the fluctuation detector ~3+14!+

THEOREM 3+2+ Suppose assumption (2.4) holds and the function g~{! sat-
isfies Assumption 3.1. Then, under H0,

sup
m�n�`

6Zn 6

m102~~n � m!0m!g~n0~n � m!!
d
&& sup

1�t�`

6W~t !6

g~t !
+

Theorem 3+2 is proved in Appendix A+
Similarly as in CUSUM monitoring, Theorem 3+2 leads to the following rejec-

tion rule: reject H0 if for some n � m

n

[s
6 PXn � PXm 6 � m102�n � m

m
�� n

n � m
�a2 � ln

n

n � m
��102

+ (3.15)

3.2. Monitoring Schemes Based on Partial Sums of Residuals and
Recursive Residuals

The following two kinds of residuals are used to construct detectors:

Zji � Xi � PXm , i � m (3.16)

and

Dji � Xi � PXi�1, i � 2+ (3.17)

First, define the detector

ZS~m, k! � (
i�m�1

m�k

Zji , k � 1 (3.18)
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and consider the boundary function

gg~m, k! � �1 �
k

m
�� k

m � k
�g, 0 � g �

1

2
� a+ (3.19)

Define the critical value ca~g! by

P� sup
0�t�1

6W~t !6

t g
� ca~g!� � a+

The critical values ca~g! are tabulated in Table 1 of Horváth et al+ ~2004!+

THEOREM 3+3+ If (2.4) holds, then under H0

lim
mr`

P� sup
1�k�`

6 ZS~m, k!6

Mmgg~m, k!
� ca~g!� � P� sup

0�t�1

s6W~t !6

t g
� ca~g!� +

Theorem 3+3, which is proved in Appendix B, leads to the following rejec-
tion rule: reject H0 if

1

[s � (i�m�1

m�k

~Xi � PXm !� � ca~g!m
102�1 �

k

m
�� k

m � k
�g, for some k � 1,

(3.20)

or, by letting n � m � k, reject if

1

[s � (i�m�1

n

~Xi � PXm !� � ca~g!m
102� n

m
��n � m

n
�g, for some n � m+ (3.21)

Finally, define the detector

DS~m, k! � (
i�m�1

m�k

Dji , k � 1+ (3.22)

We now denote the boundary function by h~t !, t � 0, and assume that h~t ! �
g~t � 1! for a function g~u!, u � 1 that satisfies Assumption 3+1+ Thus h~{!
satisfies the following assumption+

Assumption 3+2+ The function h~{! satisfies the following conditions:

h~{! is continuous on @0,`!; (3.23)

h~t ! � c~t � 1!102, 0 � t � `, for some c � 0 (3.24)
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and

lim sup
tr`

6W~t !6

h~t !
� ` a+s+ (3.25)

Similarly to Proposition 3+1, if ~3+23! and ~3+24! are satisfied, then ~3+25!
holds if and only if

�
0

` 1

t
exp��ch 2~t !

t
dt� � ` for some c � 0+

THEOREM 3+4+ Suppose assumption (2.4) holds and the function h~{! sat-
isfies Assumption 3.2. Then, under H0,

sup
1�k�`

6 DS~m, k!6

m102h~k0m!
d
&& sup

0�t�`

s6W~t !6

h~t !
+

Theorem 3+4 is proved in Appendix B+
The discussion in Section 3+1 shows that the boundary function

ha~t ! � ~t � 1!102 @a2 � ln~t � 1!#102 (3.26)

satisfies Assumption 3+2+ It is known that ~see Chu et al+, 1996, eqn+ ~8!!

P� sup
0�t�`

6W~t !6

ha~t !
� 1� � exp~�a202!+ (3.27)

For the asymptotic false alarm rate ~3+27! of 5% and 10%, a2 equals 6+0 and
4+6, respectively+

Theorem 3+4 and ~3+27! lead to the rejection rule: reject H0 if for some k � 1

1

[s � (i�m�1

m�k

~Xi � PXi�1!� � Mm�1 �
k

m
�102�a2 � ln�1 �

k

m
��102

(3.28)

or, by letting n � m � k, reject if

1

[s � (i�m�1

n

~Xi � PXi�1!� � Mm� n

m
�102�a2 � ln� n

m
��102

, for some n � m+

(3.29)
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4. ESTIMATION OF THE ASYMPTOTIC VARIANCE

The on-line change-point detection procedures discussed in this paper rely on
the consistent estimation of the asymptotic variance s 2 given by

s 2 � (
l��`

�`

gl , gl � Cov~Xk , Xk�l !+

This estimation problem has been extensively studied; see Bartlett ~1950!,
Grenander and Rosenblatt ~1957!, Parzen ~1957!, Anderson ~1971!, Andrews
~1991!, Andrews and Monahan ~1992!, and Haan and Levin ~1997!+

Because s 2 is the value of the spectral density at 0, we focus on estimators
of the form

[sn
2 �

n

n � 1 (l��n�1

n�1

k� l

Wm
� [gl ~n!, n � m, (4.1)

where k~{! is a real-valued kernel, Wm is the bandwidth parameter, and [gl~n! is
the sth sample autocovariance of $Xt %1

n+
We also discuss the results obtained by using the estimator

[sm
2 �

m

m � 1 (l��m�1

m�1

k� l

Wm
� [gl ~m!+ (4.2)

We emphasize that the optimal bandwidth is obtained using the fixed initial
m data points, and so it does not change as we proceed to monitor the data,
whereas the sample autocovariance function [gl is either sequentially updated in
[sn or computed only once in [sm+

We restrict ourselves to the following two kernel functions:

~1! Bartlett: kBT ~x! � �1 � 6x 6 for 6x 6� 1,

0 otherwise,

~2! Quadratic Spectral ~QS!: kQS ~x! �
25

12p2x 2 � sin~6px05!

6px05
� cos~6px05!�+

According to Andrews ~1991!, the optimal bandwidths Wm
* for the two ker-

nels are

Bartlett: Wm
* � 1+1447~a~1!m!103, (4.3)

QS: Wm
* � 1+3221~a~2!m!105, (4.4)

where a~i !, i � 1 or 2, is a function of the unknown spectral density function
f ~l! of the process $Xt % + In the applications and simulations discussed in the
following material, we assume that the returns follow a GARCH~1,1! model
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before a change has occurred+ We now explain how the constants a~i ! can be
found under this assumption+

Assume then that Xt � rt
2 and

rt � ht Zt , (4.5)

where $Zt % is an i+i+d+ sequence with zero mean and unit variance and ht evolves
according to

ht
2 � v� art�1

2 � bht�1
2 + (4.6)

Following Hamilton ~1994, pp+ 665– 666!, we obtain

Xt � v� ~a� b!Xt�1 � nt � bnt�1, (4.7)

where nt [ Xt
2 � ht

2 is a white noise, i+e+, a second-order stationary sequence of
uncorrelated random variables+ Expression ~4+7! will then be recognized as an
ARMA~1,1! process for Xt , in which the autoregressive coefficient is a � b
and the moving average coefficient is �b+

For ARMA~1,1! models with autoregressive parameter r and moving aver-
age parameter c, estimates of a~1! and a~2! in ~4+3! and ~4+4! are given, respec-
tively, in equations ~6+6! and ~6+5! in Andrews ~1991!+ These equations involve
an integer parameter p, which we set equal to 1+ We thus obtain

[a~1! �
4~1 � [r Zc!2~ [r� Zc!2

~1 � [r2 !2~1 � Zc!4
(4.8)

and

[a~2! �
4~1 � [r Zc!2~ [r� Zc!2

~1 � [r!4~1 � Zc!4
, (4.9)

where [r and Zc are appropriate estimates+ In this paper, using the m historical
observations, we compute the quasi-maximum likelihood estimates ~QMLE! [a
and Zb of the GARCH~1,1! model and set [r � [a � Zb and Zc � � Zb+

We conclude this section by discussing the asymptotic properties of the esti-
mators [sn

2 and [sm
2 introduced previously+

The theory underlying the use of the estimator [sm
2 is fully developed+ Theo-

rem 3+1~i! of Giraitis, Kokoszka, Leipus, and Teyssière ~2003! implies that if
Wm is a deterministic function such that Wm r ` and Wm0m r 0, then

[sm
2 P
&& s 2, as mr ` (4.10)

under both the null and the alternative+ Relation ~4+10! also holds for random
bandwidths ~4+3! and ~4+4!; see Theorem 3~a! of Andrews ~1991!+
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The theory underlying the use of the estimator [sn
2 is not fully developed yet+

Berkes, Horváth, Kokoszka, and Shao ~2005, 2006! considered the estimator

[sn
2 �

n

n � 1 (l��n�1

n�1

k� l

Wn
� [gl ~n!, n � 1, (4.11)

with a deterministic bandwidth Wn rather than Wm as in ~4+1!+ Under the null
hypothesis of no change in the parameters, [sn

2 a+s+
&& s 2 , as n r `, by Theo-

rem 1+1~i! of Berkes et al+ ~2005!+ This almost sure convergence implies that

sup
m�n�`

6 [sn
2 � s 2 6 a+s+

&& 0, as mr `+ (4.12)

It can be expected that for deterministic bandwidth Wm relation ~4+12! contin-
ues to hold with [sn

2 replaced by [sn
2 , but this has not been verified yet+ A much

more difficult problem is to show that

sup
m�n�`

6 [sn
2 � s 2 6 P

&& 0, as mr ` (4.13)

for random Wm as in ~4+3! and ~4+4!+
Relation ~4+13! is needed to asymptotically justify the use of the estimator
[sn

2+ However, even though the proof of ~4+13! is not available yet, we recom-
mend using [sn

2 as it gives much better empirical results than [sm
2+

5. SIMULATION STUDY

The objective of this section is to compare the finite-sample performance of
the four monitoring schemes introduced in Section 3+ We highlight only the
most important findings; detailed simulation results are presented in Zhang
~2005!+

For ease of reference, the following table lists the schemes and the abbrevi-
ations that will be used in the discussion that follows+

Scheme Rejection rule Abbreviation

CUSUM ~3+13! ~Theorem 3+1! CS
Fluctuation ~3+15! ~Theorem 3+2! FL
Partial sum of residuals ~3+21! ~Theorem 3+3! PS
Partial sum of recursive residuals ~3+29! ~Theorem 3+4! RR

Recall that the boundary function ga~t ! � @t~a2 � ln t !#102, t � 1 is used for
both CS and FL monitoring and, for asymptotic controlled sizes of 5% and 10%,
a2 equals 7+78 and 6+25, respectively+ The rejection condition for the method
PS involves ca~g!; see ~3+21!+ If g � 0+25, the value used in our simulations,
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critical value of ca~g!� 2+386 ~2+106! gives 5% ~10%! asymptotic false alarm
rate+ The boundary function is ha~t ! � ~t � 1!102 @a2 � ln~t � 1!#102 in the RR
method, setting a2 equal to 6+0 ~4+6! gives a of 5% ~10%! asymptotically+

We consider the two kernels, Bartlett and QS, for each of the four schemes+
We use autocovariances computed either from all observations available up to
the current time n or from the initial m observations+ We focus mainly on the
former way of computing the autocovariances because it will be seen to give
better results+

We evaluate the four methods and their several variants on time series of
squares of simulated GARCH~1,1! processes with mean zero+ In the following
discussion, the observations Xt are said to follow Model i, i � 1,2,3,4, if
Xt � rt

2 and the rt follow ~4+5! and ~4+6! with standard normal Zt and the
parameters displayed in Table 1 ~with m � 0!+ The pair of Models 1 and 2 re-
flects a possible change point in the Dow Jones index, and the pair of Models 3
and 4 reflects a possible change point in the NASDAQ index+ A detailed justi-
fication for the choice of these change-point models is presented in Zhang ~2005!+
Here we simply view them as examples of potential typical change points that
can be encountered in econometric practice+

The primary concern regarding the performance of the four sequential mon-
itoring procedures is the false alarm rate a, namely, the probability of falsely
rejecting a true null hypothesis of no change in variance+ To evaluate this prob-
ability, we generate GARCH~1,1! time series according to Models 1 and 3, the
two typical prechange specifications in Table 1+ With historical sample sizes
m � 100,200,300,400,500, we begin to monitor the squared process from the
~m � 1!th observation+ The monitoring horizon q is set to be one, two, and
three times m+We replicate the monitoring procedures on a given series of length
~q � 1!m for a large number of times, R � 1,000 in our simulations+ The empir-
ical sizes can then be computed by dividing by R the number of times a bound-
ary is crossed+ Theoretically, they should become close to the asymptotic size
when m and q approach infinity+

Table 2 presents the empirical sizes for the four algorithms when m � 500,
with autocovariances sequentially computed+ We first notice that the sizes pro-
duced by methods CS and RR are below the target levels+ Almost all overrejec-
tions are in the cells of methods FL and PS, and those of FL are more severe:
the worst is 9+9% ~13+7%! for the controlled size of 5% ~10%! and they equal
or surpass the nominal levels even when the monitoring horizon is only one m
long, which equals 500 in Table 2+ The four methods give nearly equal perfor-
mance with respect to the two different models+ The empirical sizes, however,
do depend on model specification to some degree+ Our simulations, whose details
are not reported here, show that, when the sum of a and b is smaller and not as
close to 1 as in Models 1 and 3, the problem of overrejection is much less
severe even for the FL scheme+ This is probably due to the fact that the greater
a � b is, the less accurate estimation of the variance of squared GARCH~1,1!
observations we can get+
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To save space, we do not present tables with the empirical sizes for the other
four values of m, 100, 200, 300, and 400, considered in our study+ To illustrate
the overall conclusions that can be drawn from these tables, we present a rep-
resentative graphical comparison in Figure 1+We focus on the results for Model
1 with controlled size 10% and q � 3+ Plots of other cases support our overall
conclusions+ Figure 1 supports the observation made earlier that methods CS
and RR are more conservative than methods PS and FL+ In addition, empirical
size basically decreases as we extend the historical sample size m+ This is espe-
cially true for methods FL and RR with the Bartlett window, whose sizes fall
monotonically as m increases from 100 to 500+When the Bartlett kernel is used,
it seems that m � 200 is long enough for methods CS and RR to secure a size
close to the nominal level of 10%, whereas for methods PS and FL even m � 500
can only yield sizes that are about 14%+As for the QS kernel, the sizes decrease
consistently when m increases from 100 to 300 for all four algorithms, and
they roughly level off for longer historical samples, meaning that extending m
beyond 300 does not appreciably improve the performance+ As we are more
concerned about overrejections, the QS window is recommended, because it
works better for methods PS or FL and brings their empirical sizes down to
less than 12%, as opposed to 16% for the Bartlett window, when m � 300+
Overall, however, the difference between the two windows is not large+

Table 2. Empirical sizes ~in percentages! for the four monitoring methods
applied to simulated series of squared GARCH~1,1! observations following Mod-
els 1 and 3 in Table 1

Model 1 Model 3

Bartlett QS Bartlett QS

Method q 5% 10% 5% 10% 5% 10% 5% 10%

CS m 2+8 5+1 2+4 4+0 2+8 5+7 4+3 6+3
2m 3+8 7+0 3+5 6+2 3+6 7+2 4+9 8+0
3m 4+7 8+0 4+1 7+5 4+3 7+9 5+5 8+3

FL m 6+9 10+2 5+0 7+8 8+6 10+6 6+2 9+8
2m 8+2 12+3 6+3 10+4 9+3 11+6 6+8 11+1
3m 9+1 13+7 6+7 11+6 9+9 12+3 7+4 11+8

PS m 3+6 6+5 2+3 5+1 2+9 5+8 2+6 5+5
2m 6+0 10+5 5+1 9+1 4+5 9+0 3+9 8+4
3m 7+3 13+0 6+8 11+1 5+6 10+8 4+5 10+8

RR m 0+9 1+6 0+4 1+2 0+2 0+8 0+2 1+2
2m 2+0 4+2 1+4 3+2 1+2 2+4 0+8 2+4
3m 3+1 6+1 2+6 4+7 1+6 3+9 1+0 3+1

Note: The number of replications is R � 1,000 with historical size m � 500 and autocovariances computed
sequentially+
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We next examine the power of the tests+ We consider two typical variance
changes that are represented by the passages from Model 1 to Model 2 and
from Model 3 to Model 4+ Focusing again on the five values of m equal to 100,
200, 300, 400, and 500, we generate the data and let the model transitions hap-
pen at t � 1+1m � 1+ The monitoring starts from the ~m � 1!th observation, but
the monitoring horizon q is fixed at 500, instead of varying with m+ The empir-
ical power of the tests is the percentage of rejections in R replications+We used
R � 1,000 in our simulations+A commonly used criterion of evaluating sequen-
tial procedures is the average run length ~ARL! defined as the average of detec-
tion delays in the presence of a real break+ Empirical ARL can be computed by
subtracting the time of real break from the average of the alarm times in the R
replications+ To save space, we only report in Table 3 the results for m �
100, 300, 500 with controlled size 10%+ The empirical ARL is shown in paren-
theses next to the power+

The general relation between size and power in hypothesis testing is that a
test with a smaller size, i+e+ a lower probability of type I error, tends to have a
higher probability of type II error, i+e+ lower power+With this in mind, it is not
surprising to see that methods CS and RR have less power than methods FL
and PS, because, as shown in Table 2 and Figure 1, their sizes are smaller and
do not suffer from the problem of overrejection+ This difference is most obvi-
ous when m � 100 and becomes negligible when m � 300 and the transition is
from Model 1 to Model 2, in which case the empirical powers are all more than

Table 3. Empirical power and ARL of the four methods applied to the two
types of variance changes

Model 1 r Model 2 Model 3 r Model 4

Bartlett QS Bartlett QS

Method m Break Power ~ARL! Power ~ARL! Power ~ARL! Power ~ARL!

CS 100 111 94+3 ~89! 91+7 ~103! 69+8 ~116! 61+3 ~121!
300 331 98+9 ~102! 98+1 ~117! 86+4 ~155! 81+9 ~169!
500 551 98+5 ~115! 98+7 ~129! 90+0 ~189! 87+8 ~193!

FL 100 111 98+1 ~38! 97+6 ~43! 83+2 ~42! 79+4 ~47!
300 331 99+9 ~36! 100 ~38! 97+4 ~47! 96+7 ~57!
500 551 100 ~37! 100 ~39! 99+1 ~53! 98+7 ~60!

PS 100 111 99+0 ~40! 99+2 ~46! 88+9 ~48! 87+1 ~59!
300 331 100 ~46! 100 ~49! 98+2 ~64! 98+0 ~77!
500 551 100 ~51! 100 ~54! 99+3 ~74! 98+6 ~81!

RR 100 111 97+8 ~76! 96+2 ~83! 79+8 ~98! 74+7 ~110!
300 331 99+7 ~88! 99+8 ~99! 93+2 ~139! 92+2 ~160!
500 551 99+9 ~105! 100 ~113! 96+6 ~166! 95+4 ~175!

Note: The number of replications is R � 1,000, with controlled size of 10%, and [gl computed sequentially+ The
monitoring horizon is q � 500+
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98%+ The powers corresponding to the transition from Model 3 to Model 4 are
generally lower, with longer ARL+ This is may be because the variance increases
about 3+5 times in the transition from Model 1 to Model 2 and about 3 times in
the transition from Model 3 to Model 4+ The difference is however practically
negligible for methods FL and PS with m � 300+ An appealing property of the
tests is that greater power comes with shorter ARL+ In particular, the average
detection delays of methods FL and PS, the two tests with greater power, are
around 40 and less than 55 for the first type of change, but are more than dou-
ble for the other two algorithms+ As regards the choice of kernel function, the
Bartlet kernel gives higher power and shorter ARL than the QS kernel+ Over-
all, we may expect to get higher power by using more observations as a histor-
ical sample, but the gains, in terms of both power and ARL, of extending m
beyond 300 are not significant+

Using box plots, we present the distributions of the first hitting time in Fig-
ure 2 with m � 300+ The plots for methods FL and PS are almost identical,
except that the former has a slightly smaller median and interquartile range
~the difference between third and first quartiles!+ The distributions for meth-
ods CS and RR are clearly more spread out+ All distributions have elongated
upper tails, i+e+, are positively skewed+ For the transition from Model 3 to
Model 4, all summary statistics, including first quartile, median, third quar-
tile, and interquartile range, increase, meaning that all methods are less effec-
tive in detecting this transition+ Hitting time distributions for m � 100 and
m � 500 have similar shapes+ Perhaps somewhat counterintuitively, increasing
m causes the center of the distributions to move to the right ~longer delay
time!+

To investigate the effect of the location of the break point on the power and
the distribution of the detection time, we run simulations with the structural
change occurring at 1+2m � 1, with the length of the monitoring horizon remain-
ing equal to 500+ There are barely any differences in terms of the power of the
tests+ The ARL, however, increases; it prolongs by around 20 for the transition
from Model 1 to Model 2 and by about 30 for the other transition+ The increases
of the order statistics, such as median and the quartiles, are small+

We now discuss the effect of using covariances computed from the initial m
observations rather than from the observations up to the current time n+ The
simulation results show that all four monitoring procedures suffer from the prob-
lem of overrejection; their relative performance, however, does not change+ The
methods CS and RR are still more conservative, producing smaller false alarm
rates+ Nearly all sizes are at least doubled; some are even more than ten times
greater than those in Table 2+ For the monitoring horizon q � 3m, with m � 500,
method FL gives, as observed before, the worst results: 20+3% ~23+9%! for nom-
inal size 5% ~10%!+ The power of the tests exceeds 97% in all cases, with much
shorter ARL, basically halved, than those in Table 3+ Because methods with
covariances computed sequentially also have, however, satisfactory power, we
recommend this way of computing the autocovariances+
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In conclusion, we can say that if the primary concern is to control the false
alarm rate under the nominal level, the methods CS and RR with sequentially
computed covariances and the QS kernel are recommended+ The choice of the
algorithm is especially important for m � 100 and m � 200+ The false alarm
rates of methods PS and FL are much higher, but if we use the QS kernel and
historical samples longer than 300, the problem becomes less severe+ Gener-
ally, the QS kernel gives somewhat more conservative sizes than the Bartlett
kernel+ Methods PS and FL have only somewhat higher power than the other
two methods, but the detection delay of methods CS and RR is basically two
times larger than that of methods PS and FL+
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APPENDIX A: Proofs of Theorems 3+1 and 3+2

The proof of Theorem 3+1 relies on several lemmas and Proposition A+1+

LEMMA A+1+ If (2.4) holds, then

(
1�i�n

~Xi � v0 ! � O~~n log log n!102 ! a+s+

Proof. The lemma follows from assumption ~2+4! and the law of the iterated loga-
rithm for the Wiener process+ �

LEMMA A+2+ If (2.4) holds, then

6Xn 6 � o~na ! a+s+

Proof. Observe that

6Xn 6 � 6Xn � v0 6� 6v0 6

� �(
i�1

n

~Xi � v0 !� sW~n!�� �(
i�1

n�1

~Xi � v0 !� sW~n � 1!�
� s6W~n!� W~n � 1!6� 6v0 6

�
a+s+

o~na !� s6W~n!� W~n � 1!6+
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Because W~n! � W~n � 1! is a standard normal random variable,

P @6W~n!� W~n � 1!6 � ~10 log n!102 #� O~n�2 !,

so by the Borel–Cantelli lemma

6W~n!� W~n � 1!6 �a+s+ O~~ log n!102 !+

This completes the proof of Lemma A+2+ �

We will use the decomposition

Sn � (
2�i�n

~Xi � PXi�1!� (
2�i�n

��1 �
1

i
�102

� 1�~Xi � PXi�1!+ (A.1)

LEMMA A+3+ If (2.4) holds, (A.1) satisfies

(
2�i�n

��1 �
1

i
�102

� 1�~Xi � PXi�1! �
a+s+

o~na !+

Proof. By the mean value theorem, we have

� (2�i�n
��1 �

1

i
�102

� 1�~Xi � PXi�1!�
� � (2�i�n

��1 �
1

i
�102

� 1�~Xi � v0 � ~ PXi�1 � v0 !!�
� C� (

2�i�n

1

i
6Xi � v0 6� (

2�i�n

1

i
6 PXi�1 � v0 6� +

By Lemma A+2,

(
2�i�n

1

i
6Xi � v0 6 � o~na !+

By Lemma A+1,

6 PXi�1 � v0 6 �
a+s+

O� log log i

i
�102

,

and so

(
2�i�n

1

i
6 PXi�1 � v0 6 �

a+s+
O~1! (

2�i�n
� log log i

i 3 �102

� O~1!+

This completes the proof of Lemma A+3+ �
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Introduce the process

W *~t ! � W~t !��
1

t�1 1

x
W~x! dx, t � 0+ (A.2)

Computing the covariances shows that W *~{! is a standard Wiener process+

PROPOSITION A+1+ If condition (2.4) holds, then

Sn � sW *~n! �
a+s+

o~na !+

Proof. Using decomposition ~A+1! and Lemma A+3, we observe that

Sn �
a+s+ (

2�i�n

~Xi � v0 !� (
2�i�n

1

i � 1 (1�j�i�1

~Xj � v0 !� o~na !+

Note that

(
2�i�n

1

i � 1 (1�j�i�1

~Xj � v0 ! ��
1

n 1

@x#
U~x! dx,

where @x# is the integer part of x and

U~x! � (
1�j�x

~Xj � v0 !+

It is easy to see that

� 1

x
�

1

@x# � � O� 1

x 2�, x � 1+

Therefore by Lemma A+1,

��1

n�1 1

x
U~x! dx ��

1

n 1

@x#
U~x! dx�

� ��1

n�1

x
�

1

@x#
�U~x! dx�� ��n

n�1 1

x
U~x! dx�

�
a+s+

O~1!��
1

n ~x log log x!102

x 2
dx �

1

n
~n log log n!102� � O~1!+

We can thus conclude that

Sn �
a+s+
sW~n!��

1

n�1 1

x
U~x! dx � o~na !+
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It remains to note that by ~2+4! and the modulus of continuity of W~{! ~cf+ Csörgő and
Révész, 1981, Lem+ 1+1+1!

U~x!� sW~x! �
a+s+

o~x a !, as xr `

and so

��1

n�1 1

x
~U~x!� sW~x!! dx� �

a+s+
o~1!�

1

n�1 1

x
x a � o~na !+

This completes the proof of Proposition A+1+ �

Proof of Theorem 3.1. First we verify that

sup
m�n�`

6Sn 6

m102g~n0m!
�
a+s+

sup
m�n�`

s6W *~n!6

m102g~n0m!
� o~1! ~mr `!+ (A.3)

Relation ~A+3! follows from Proposition A+1 and ~3+5! because

sup
m�n�`

6Sn � sW *~n!6

m102g~n0m!
�
a+s+

o~1! sup
m�n�`

na�102

~n0m!�102g~n0m!
� o~1!+

By the scale transformation of the Wiener process

sup
m�n�`

6W *~n!6

m102g~n0m!
�
d

sup
m�n�`

6W *~n0m!6

g~n0m!
, (A.4)

so it suffices to verify that

sup
m�n�`

6W *~n0m!6

g~n0m!
a+s+
&& sup

1�t�`

6W *~t !6

g~t !
+ (A.5)

The remainder of the proof consists of the verification of ~A+5!+ To lighten the nota-
tion, denote

U~t ! �
6W *~t !6

g~t !
+

Because U~{! is continuous with probability one, we assume in the following discussion
that we consider a continuous realization for which ~3+6! holds+ Fix e � 0+

By ~3+6!, there is a constant 0 � c � ` such that

lim sup
tr`

U~t ! � c+ (A.6)

By ~A+6!, there is T * � 1 such that

c � sup
T *�t�`

U~t !� c � e+ (A.7)
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Because for any T � 0,

sup
1�t�`

U~t ! � max� sup
1�t�T

U~t !, sup
T�t�`

U~t !� ,
we conclude that

max� sup
1�t�T *

U~t !, c� � sup
1�t�`

U~t !� max� sup
1�t�T *

U~t !, c � e� + (A.8)

By the first inequality in ~A+7!, there is M � T * such that

c � e � sup
T *�t�M

U~t !+

Because for any T � 1,

sup
m�n�mT

U~n0m!r sup
1�t�T

U~t !, as mr `, (A.9)

we have, as m r `,

sup
m�n�`

U~n0m! � max� sup
m�n�mT *

U~n0m!, sup
mT *�n�mM

U~n0m!�
r max� sup

1�t�T *
U~t !, sup

T *�t�M
U~t !�

� max� sup
1�t�T *

U~t !, c � e� +
Hence, there is m* such that for m � m*,

sup
m�n�`

U~n0m! � max� sup
1�t�T *

U~t !, c� � e+ (A.10)

By ~A+10! and the second inequality in ~A+8!, for m � m*,

max� sup
1�t�T *

U~t !, c� � e � sup
m�n�`

U~n0m!� max� sup
1�t�T *

U~t !, c� � e+ (A.11)

Relation ~A+5! follows by combining ~A+8! and ~A+11!+ �

Proof of Theorem 3.2. By Assumption ~2+4!,

Zn � s�1� (
1�i�n

~Xi � v0 !�
n

m (1�i�m

~Xi � v0 !� �
a+s+

W~n!�
n

m
W~m!� o~na !+

By assumption ~3+5!

na

m102�n � m

m
�g� n

n � m
� � O~1!

na�102

~n � m!102
� O~na�102 !� O~1!+ (A.12)
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Using the scale transformation of the Wiener process and the fact that

$W~t !� tW~1!, t � ~1,`!% �d �~t � 1!W� t

t � 1
�, t � ~1,`!�

we conclude that

sup
m�n�`

�W~n!�
n

m
W~m!�

m102�n � m

m
�g� n

n � m
� �

d
sup

m�n�`

�W~n0m!�
n

m
W~1!�

�n � m

m
�g� n

n � m
� (A.13)

�
d

sup
m�n�`

�W� n0m

n0m � 1
��

g� n0m

n0m � 1
� +

By ~A+12! and ~A+13!, it remains to show that

sup
m�n�`

�W� n0m

n0m � 1
��

g� n0m

n0m � 1
�

a+s+
&& sup

1�t�`

�W� t

t � 1
��

g� t

t � 1
� + (A.14)

Note that

sup
1�t�`

�W� t

t � 1
��

g� t

t � 1
� �

d
sup

1�t�`

6W~t !6

g~t !
+

Introduce the map u~t ! � t0~t � 1!, t � 1+ Because 6u '~t !6 � ~c � 1!�2 for t � c � 1,
for any fixed c � 1

sup
n�cm

6W~u~n0m!!6

g~u~n0m!!6
a+s+
&& sup

t�c

6W~u~t !!6

g~u~t !!
+ (A.15)

Because

sup
1�t�c

6W~u~t !!6

g~u~t !!
� sup

u�c0~c�1!

6W~u!6

g~u!
,
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assumption ~3+6! implies that

lim
cr1

sup
1�t�c

6W~u~t !!6

g~u~t !!
�
a+s+

0+ (A.16)

Relation ~A+14! follows from ~A+15! and ~A+16!+ This completes the proof of Theorem 3+2+
�

APPENDIX B: Proofs of Theorems 3+3 and 3+4

Proof of Theorem 3.3. Observe that under H0, by ~2+4!,

ZS~m, k! � (
m�i�m�k

~Xi � v0 !�
k

m (1�i�m

~Xi � v0 !

�
a+s+
s@W~m � k!� W~m!� ~k0m!W~m!#� o~~m � k!a � ~k0m!ma !+

Therefore,

sup
1�k�`

6 ZS~m, k!6

m102gg~m, k!
�
a+s+
s sup

1�k�`

6W~m � k!� W~m!� ~k0m!W~m!6

m102gg~m, k!

� o~1! sup
1�k�`

~m � k!a � ~k0m!ma

m102gg~m, k!
+

Elementary verification shows that

sup
1�k�`

~m � k!a � ~k0m!ma

m102gg~m, k!
� O~ma�g�102 !,

so the assumption g � 1
2
_ � a yields

sup
1�k�`

6 ZS~m, k!6

m102gg~m, k!
�
a+s+
s sup

1�k�`

6W~m � k!� W~m!� ~k0m!W~m!6

m102gg~m, k!
� o~1!+

It thus remains to verify that

sup
1�k�`

6W~m � k!� W~m!� ~k0m!W~m!6

m102gg~m, k!
d
&& sup

0�t�1

6W~t !6

t g
+ (B.1)
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Notice that if k0m r t, as m r `, then

gg~m, k!r hg~t ! :� ~1 � t !� t

1 � t
�g, t � @0,`!+ (B.2)

Note also that ~see Horváth et al+, 2004, proof of Thm+ 2+1!

sup
0�t�`

6W~1 � t !� W~1!� tW~1!6

hg~t !
�
d

sup
0�t�1

6W~t !6

t g
+ (B.3)

Using the scale transformation of the Wiener process, ~B+2! and the modulus of conti-
nuity of the Wiener process, and finally ~B+3!, we obtain

sup
1�k�`

6W~m � k!� W~m!� ~k0m!W~m!6

m102gg~m, k!
�
d

sup
1�k�`

6W~1 � k0m!� W~1!� ~k0m!W~1!6

hg~k0m!

a+s+
&& sup

0�t�`

6W~1 � t !� W~1!� tW~1!6

hg~t !

�
d

sup
0�t�1

6W~t !6

t g
+

This completes the verification of ~B+1! and the proof of Theorem 3+3+ �

Proof of Theorem 3.4. Observe that under H0

DS~m, k! � (
m�i�m�k

~Xi � v0 !� (
m�i�m�k

1

i � 1 (j�1

m

~Xj � v0 !

� (
m�i�m�k

1

i � 1 (j�m�1

i�1

~Xj � v0 !+

Using ~2+4! we obtain

sup
1�k�`

(
m�i�m�k

~Xi � v0 !� s@W~m � k!� W~m!#

~m � k!a
�
a+s+

o~1! ~mr `!

and

� (m�i�m�k

1

i � 1 (j�1

m

~Xj � v0 !� (
m�i�m�k

1

i � 1
sW~m!�

� �(j�1

m

~Xj � v0 !� sW~m!� (m�i�m�k

1

i � 1
� jm ln�m � k

m
� ,

400 LAJOS HORVÁTH ET AL.

https://doi.org/10.1017/S0266466606060191 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466606060191


where jm �
a+s+

o~ma!, as m r `+ Because

sup
1�k�`� (m�i�m�k

1

i � 1
� ln�m � k

m
�� � O� 1

m
�, mr `,

we see that there is a random variable jm
* �

a+s+
o~ma! ~mr `!, which does not depend on

k, such that

� (m�i�m�k

1

i � 1 (j�1

m

~Xj � v0 !� sW~m! ln�m � k

m
�� � jm

* ln�m � k

m
�+

Similarly, as m r `

sup
1�k�`

1

~m � k!a � (m�i�m�k
(

j�m�1

i�1

~Xj � v0 !� s�
m

m�k

@W~x � 1!� W~m!# dx� �
a+s+

o~1!+

We note that

sup
1�k�`

ma ln�m � k

m
�

~m � k!a
� o~1!, ~mr `!

and conclude that, as m r `,

sup
1�k�`

1

~m � k!a � 1

s
DS~m, k!� �@W~m � k!� W~m!#

� W~m! ln�m � k

m
���

m

m�k 1

x � 1

� @W~x � 1!� W~m!# dx�� �
a+s+

o~1!+ (B.4)

By ~3+24!,

sup
1�k�`

~m � k!a

m102h~k0m!
� O~1!, ~mr `!+ (B.5)

Combining ~B+4! and ~B+5!, we obtain

1

s
sup

1�k�`

6 DS~m, k!6

m102h~k0m!

�
a+s+

sup
1�k�`

�@W~m � k!� W~m!#� log~~m � k!0m!W~m!��
m

m�k 1

x � 1
@W~x � 1!� W~m!# dx�

m102h~k0m!

� o~1!+ (B.6)
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By the scale transformation and the modulus of continuity of the Wiener process,

sup
1�k�`

�@W~m � k!� W~m!#� log~~m � k!0m!W~m!��
m

m�k 1

x � 1
@W~x � 1!� W~m!# dx�

m102h~k0m!

�
d

sup
1�k�`

�@W~1 � k0m!� W~1!#� log~1 � k0m!W~1!��
1�10m

1�k0m 1

s
@W~s!� W~1!# ds�

h~k0m!

�
a+s+

sup
1�k�`

6G~k0m!6

h~k0m!
� o~1!,

where

G~t ! � W~1 � t !� W~1!� log~1 � t !W~1!��
1

1�t 1

s
@W~s!� W~1!# ds+

As observed in Section 6 of Horváth et al+ ~2004!, computing the covariances of the
process G~{! shows that it is a Wiener process+ Therefore, it remains to show that

sup
1�k�`

6G~k0m!6

h~k0m!
a+s+
&& sup

0�t�`

6G~t !6

h~t !
+

This can be done by repeating the corresponding argument used in the proof of Theo-
rem 3+1+ Thus the proof of Theorem 3+4 is complete+ �
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