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Abstract. We investigate the modal logic of stepwise removal of objects, both for its intrinsic
interest as a logic of quantification without replacement, and as a pilot study to better understand
the complexity jumps between dynamic epistemic logics of model transformations and logics of
freely chosen graph changes that get registered in a growing memory. After introducing this logic
(MLSR) and its corresponding removal modality, we analyze its expressive power and prove a
bisimulation characterization theorem. We then provide a complete Hilbert-style axiomatization
for the logic of stepwise removal in a hybrid language enriched with nominals and public
announcement operators. Next, we show that model-checking for MLSR is PSPACE-complete,
while its satisfiability problem is undecidable. Lastly, we consider an issue of fine-structure: the
expressive power gained by adding the stepwise removal modality to fragments of first-order
logic.

§1. Model change and quantification. Logical systems describing model change
come up when reasoning about forms of semantic interpretation that affect a current
model, varieties of information update, or more general actions changing a local
environment. A typical feature of such systems is the use of dynamic modalities
that, when evaluated in a current model M, look at what is true in other models N ,
related to M via some relevant cross-model relation. These dynamic logics come in a
wide range of expressive power and computational complexity (Aucher, van Benthem,
Grossi, 2018). Our aim in this small pilot study is to explore a significant border line,
where the complexity of the satisfiability problem jumps from decidable to undecidable.
In the process, we highlight some further issues, as well as some new proof techniques,
as will be explained below.

Dynamic epistemic logics of information update. Here is one recent genre of dynamic
logics that can describe model change. When modeling the effects of new information,
a natural format changes a current epistemic model to a new one, suitably modified.
For instance, an event !ϕ of reliable public information that ϕ is the case changes a
current pointed model (M, s) to the definable sub-model (M|ϕ, s), whose domain is
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THE MODAL LOGIC OF STEPWISE REMOVAL 37

the set of all points inM that satisfyϕ. Likewise, an event where all agents publicly lose
all uncertainty about ϕ takes (M, s) to a model (M\ϕ, s), where the domain stays the
same, but the epistemic accessibility relation ∼ of M gets replaced by the refinement
s ∼ϕ t: i.e., s ∼ t and, also, M, t |= ϕ if and only if M, s |= ϕ. These and many other
model transformations F have matching modalities [F ]� in dynamic epistemic logics,
whose key axioms for [F ]� give a recursive analysis of when the postconditions �
hold in terms of what was true before the F-update (see the survey by van Benthem,
2011). Dynamic epistemic logics are usually decidable if their underlying static logics
are: the recursion axioms reduce out the dynamic modalities, at least on full standard
universes of epistemic models.

Sabotage-style graph logics. Here is a second natural genre of modal logics for
describing model change. In the sabotage game of van Benthem (2005), arbitrary links
in a graph are cut, one by one, by a Demon opposing a Traveler, who, in turn, moves
across the graph along still available links. The winning positions of the Demon and the
Traveler can be analyzed using standard modalities, together with additional modalities
describing what holds in a pointed model after one link has been removed from the
current accessibility relation. However, validity in modal logics for various graph games
of this sort can be undecidable, and the resulting model theory is quite complex (see
(Aucher et al., 2018) and (van Benthem & Liu, 2020)).

This difference in complexity calls for an explanation. The present paper locates its
source in the contrast between, on the one hand, the simultaneous removal of points
or links in dynamic epistemic logics and, on the other, the stepwise modifications
captured by logics for sabotage and related graph games. In doing so, we explore the
border between two system designs: dynamic epistemic logics of graph change that
reduce effectively to a decidable static base language—and, hence, to what is true in the
initial model, which already ‘pre-encodes’ the effects of changes—and, on the other
hand, undecidable sabotage-type logics of graph change operations, whose effects are
not pre-encoded in the original model, but rather depend on a growing ‘memory’ of
previous changes.

To make this concrete, here is a simplest dynamic epistemic logic turned ‘stepwise’.
For simplicity, we focus on point deletion, rather than link deletion.

A stepwise update modality. Consider the standard language of basic modal logic,
augmented with a dynamic modality 〈– ϕ〉� that has the following semantics.

Definition 1.1. Given a relational model M = (W,R,V ), with R ⊆W ×W and V a
valuation, the satisfaction clause for 〈– ϕ〉� reads

M, s |= 〈– ϕ〉� iff there is a point t �= s in M with M, t |= ϕ and M – {t}, s |= �,

where M – {t} is the submodel of M having just the point t removed from its domain.
More generally, givenD ⊆W , M – D denotes the submodel of M with domainW \D.

This system of what may be called stepwise point removal (MLSR) will be studied
here as an intermediate case between the simplest dynamic epistemic logic of public
announcements, where all points satisfying ϕ are removed simultaneously during an
update, and a simple sabotage modal logic for stepwise graph change.

Quantification without replacement. The language introduced here has various further
interpretations. For instance, it can be seen as a medium for describing ‘interventions’

https://doi.org/10.1017/S1755020320000258 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000258


38 JOHAN VAN BENTHEM ET AL.

that minimally change some given model to make some specified new properties
true (Renardel de Lavalette, 2001). But the system has an even more general logical
motivation, which is not tied to information updates or any other specific application.

Consider the evaluation of restricted existential quantifiers ∃x ϕ(x) · �(x) in first-
order logic (FOL). One searches for an object d satisfying ϕ and then checks whether d
also satisfies �. In this second stage, the model has not changed: the witness d is still in
the domain and it influences the evaluation of�. Call this process “quantification with
replacement”. Now, it has been claimed (Hintikka & Sandu, 1997) that quantifiers in
natural language can also behave differently: witness, for instance, the natural sense
in which the distrust in “John distrusted everyone” does not apply to John himself.
Even though this may be an idiosyncrasy of natural language, it clearly makes sense to
explore quantification without replacement as a model for evaluation procedures that
change domains (Gabbay, 2013):

∃x(ϕ|�) says that there is an object (or, in a natural polyadic version
∃x(ϕ|�), a tuple of objects) that satisfies ϕ in the current model M,
while � holds in the sub-model M – {s} where that object (or all
those objects) has been removed.

This quantifier form is clearly definable in FOL with identity, but, taken by itself,
it suggests its own model theory and proof theory. Moreover, as we shall see, adding
quantification without replacement to weaker fragments of the first-order language,
such as monadic predicate logic or basic modal logic, produces much less simple effects.

The system MLSR. The system MLSR of stepwise object removal studied in this paper
provides a simple modal setting for bringing all of this out. Its syntax is that of the
basic modal language with proposition letters, ¬, ∨, �, plus the additional modality
〈– ϕ〉�, whose semantics was given above (Definition 1.1). Occasionally, we will also
use this language extended with a “public announcement,” or relativization, modality
〈!ϕ〉� describing what is true in restrictions to definable subdomains:

M, s |= 〈!ϕ〉� iff M, s |= ϕ and M|ϕ, s |= �,

with M|ϕ the submodel of M consisting of all and only the points in M where ϕ is
true.

Outline of the paper. In this paper, we study the essential features of this modal system.
In §2, we analyze the expressive power of MLSR by providing a first-order translation
and a semantic characterization in terms of bisimulation invariance. This mainly
requires straightforward adaptations of known techniques. §3 and §4 present a complete
axiomatization for MLSR, based on a new idea of mixing standard relativization with
stepwise removal, which may very well be applicable to many other logics of graph
change, for which Hilbert-style axiomatizations have long been an open problem.
In §5, we first analyze the computational complexity of model checking for MLSR,
which turns out to be PSPACE-complete. This analysis uses a reduction technique
from Löding & Rohde (2003) which deserves to be better known in modal logic.
Next, we prove that the satisfiability problem for MLSR is undecidable using a tiling
argument familiar from the modal logic literature (Marx, 2006; Areces, Fervari, &
Hoffmann, 2015). In §6, we then raise a more general definability issue: namely,
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what the addition of quantification without replacement does to various fragments of
first-order logic. In particular, we show that, when added to monadic first-order logic,
the modality 〈– ϕ〉� essentially allows us to count, boosting the expressive power of
monadic first-order logic to that of monadic first-order logic with identity.

In summary, we locate the threshold of complexity in the stepwise character of
the modality for point removal, leading to the need for a computational device for
maintaining a memory of deleted points, whose complexity equals that of arbitrary
tiling problems and computations of Turing machines. In the process, we also raise new
types of questions about modal logics of graph change, and we advertise and introduce
some techniques that deserve to be better known among modal logicians.

§2. Basics of expressive power. We start with the formal language to be used in
most of this paper.1

Definition 2.1. The syntax of MLSR is given by

ϕ := p | ¬ϕ | (ϕ ∨ ϕ) |�ϕ | 〈– ϕ〉ϕ,
with p ∈ PROP. Dual modal operators �, [– ϕ] are defined as usual.

Some definable notions. The language of MLSR can define various modal operators
from hybrid logic (Areces & ten Cate, 2006) that go beyond the basic modal language.
For instance, the difference modality Dϕ (‘ϕ is true at some different point’) can be
defined as 〈– ϕ〉
, and this, in turn, allows to define the existential modality Eϕ as
ϕ ∨ Dϕ. MLSR can also count all finite cardinalities, using suitably iterated formulas

〈– 
〉 ··· 〈– 
〉︸ ︷︷ ︸
k times


,

which express that a model has at least k objects different from the current point of
evaluation. In addition, MLSR can define quite a few finite relational graphs up to
isomorphism. For instance, let �2 be the formula defining domain size 2, and let U be
the universal modality (i.e., Uϕ = ϕ ∧ [– ¬ϕ]⊥). The following observation requires
an easy exercise in understanding what our language can express.

Fact 2.2. The MLSR-formula �2 ∧ U〈– 
〉�⊥ ∧��
 defines a two-point irreflexive
loop.

However, not every finite graph is definable, as we shall soon see.

SR-bisimulation. The semantic invariance matching this language is as follows.

Definition 2.3. A relation Z between a set of pointed relational models is an SR-
bisimulation if it is a modal bisimulation in the ordinary sense, where the back and
forth clauses stay inside the same models M,N , while, in addition,

(a) if (M, s)Z(N , t) and u ∈ M with u �= s , then there is a v ∈ N such that v �= t,
(M, u)Z(N , v), and (M – {u}, s)Z(N – {v}, t),

(b) the analogous clause in the converse direction.

1 This language will be extended slightly with nominals in §3 and §4, which deal with proof
systems.
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Note that this definition imposes some minimal closure conditions on the set of
models involved in the above clauses that are easy to spell out. The following property
is proved by a standard induction on formulas.

Fact 2.4. MLSR-formulas are invariant for SR-bisimulations.

Now we can give an example of two finite graphs that are not definable up to
isomorphism and, in line with this, a first-order formula that is not in MLSR.

Fact 2.5. ∀y(Rxy ∨Ryx) is not MLSR-definable.

Proof. Consider the model M consisting of two isolated reflexive points and the
model N consisting of two points with the universal relation, plus all their submodels.
By checking all clauses, one sees that the universal relation Z between all pairs (M, x)
and (N , y) plus all links between the 1-point pointed sub-models of M and N is an
SR-bisimulation. But, clearly, connectedness holds in N , but not in M.

This new logical system still lies inside standard first-order logic.

Fact 2.6. There is an effective meaning-preserving translation from MLSR into FOL.

Proof. We define the following compositional translation �(ϕ, y,X ) from MLSR-
formulas ϕ to first-order formulas, where y is a free variable and X a finite set of
variables:

�(p, y,X ) = Py,

�(¬ϕ, y,X ) = ¬�(ϕ, y,X ),

�(ϕ ∨ �, y,X ) = �(ϕ, y,X ) ∨ �(�, y,X ),

�(�ϕ, y,X ) = ∃z
(
Ryz ∧

∧
x∈X

¬(z = x) ∧ �(ϕ, z, X )
)
,

�(〈– ϕ〉�, y,X ) = ∃z
(
¬(z = y) ∧

∧
x∈X

¬(z = x) ∧ �(ϕ, z, X ) ∧ �(�, y,X ∪ {z})
)
.

Let (M, s) be any pointed model and D = {d1, ..., dk} a finite set of points in M of
size k. The following equivalence is shown by a straightforward induction on MLSR-
formulas ϕ and sets of variables X = {x1, ..., xk} of size k:

M – D, s |= ϕ iff M, a[y/s, X/D] |= �(ϕ, y,X ),

where a[y/s, X/D] is the variant of the variable assignment a such that
a[y/s, X/D](y) = s and a[y/s, X/D](xi) = di for 1 ≤ i ≤ k. As a special case, there is
an equivalence for MLSR-formulas in ordinary relational models M with D = ∅.

Remark 2.7. The set X in this translation serves as a finite memory storing the points
that have already been deleted. This is an essential difference with first-order translations
for standard modal languages, which usually lie inside fixed finite-variable fragments.

A simple adaptation of a well-known model-theoretic argument for standard modal
logic (cf. (Blackburn, de Rijke, & Venema, 2011)) yields the following result.

Theorem 2.8. The following assertions are equivalent for all first-order formulas ϕ(x)
in the signature of our models, with one free variable:
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(a) ϕ(x) is invariant for SR-bisimulation;
(b) ϕ(x) is equivalent to the translation of some MLSR-formula.

Proof. We merely outline the points that need attention in the nontrivial direction
from (a) to (b). Let SR denote the MLSR-fragment of first-order logic (that is, all first-
order formulas equivalent to translations of MLSR formulas via the translation � from
Fact 2.6). As usual, one shows that ϕ(x) is a semantic consequence of the set Cx(ϕ) of
its SR-consequences and then applies Compactness to get an SR-equivalent. We thus
need to show that Cx(ϕ) |= ϕ(x). Suppose M, s |= Cx(ϕ). A standard compactness
argument shows that there is a model N and t ∈ N such that (M, s) and (N , t) are
SR-equivalent, while N , t |= ϕ(x). These models are then extended to �-saturated
elementary extensions (M+, s) and (N+, t). We use first-order saturation allowing
finite sets of parameters consisting of designated objects in the models; in turn, the
finitely satisfiable sets of first-order formulas to be saturated can have a finite set of
free variables (not just one, as in the argument for basic modal logic). This is needed
for the saturation argument to follow.

Now we define a relation Z between pointed models (M+ – D, u) and (N+ – E, v),
with E,D of the same finite size, which holds if (M+ – D, u) and (N+ – E, v) satisfy
the same SR-formulas. Using saturation, it can be shown that Z is an SR-bisimulation,
where the argument for the modality �ϕ is standard, while the one for 〈– ϕ〉� in terms
of removing single objects goes as follows. Take (M+ – D, u) and w �= u. Now, let

Γ(y) :=
{
�(y) ∈ SR

∣∣M+ – D,w |= �
}

Δ(x) :=
{
�(x) ∈ SR

∣∣M+ – (D ∪ {w}), u |= �}

and consider the set of first-order formulas

p(x, y) := {¬(y = x)} ∪ Γ(y) ∪ Δ(x)

This set is finitely satisfiable in (M+ – D, u,w) (interpreting x as u and y as w). For
each of its finite subsets {¬(y = x)} ∪ Γ′(y) ∪ Δ′(x), we have

M+ – D, u,w |= ¬(y = x) ∧
∧

Γ′(y) ∧
∧

Δ′(x),

which means that

M+ – D, u |= ∃y
(
¬(y = x) ∧

∧
Γ′(y) ∧

∧
Δ′(x)

)
,

and this formula is in SR (it is equivalent to the translation of a 〈– ϕ〉� formula).
This means that the formula also holds in (N+ – E, v). Thus, every finite subset of
p(x, y) is satisfiable in (N+ – E, v) (interpreting x as v). In other words, expanding
the language with a new constant symbol c, the 1-type p(c, y) is finitely satisfiable
in (N+ – E, v) (fixing the interpretation of c as v). Then, by saturation, the type is
realized in (N+ – E, v): we can thus find an object in N+ – E matching the given w,
as required for an SR-bisimulation.

Remark 2.9. The first-order translation for MLSR can also be phrased in terms of
the hybrid language H (E, ↓) (Areces & ten Cate, 2006). The key translation clause here
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reads, for each formula of the form 〈– ϕ〉� and sequence of nominals n = (n1, ..., n	):


(〈– ϕ〉�)n =↓m .E ↓k .
(
¬m ∧

	∧
i=1

¬ni ∧ 
(ϕ)n ∧ @m
(�)n,k
)

Further connections of MLSR with hybrid logics will be discussed in §7 below.

§3. Axiomatization. Thanks to the first-order translation, the valid formulas of
MLSR are effectively axiomatizable. But more immediate information comes from
explicit modal laws. For instance, the removal modality 〈– ϕ〉� distributes over
disjunction in both of its arguments:

Fact 3.1. The following formulas are both valid :

〈– �〉(ϕ1 ∨ ϕ2) ↔
(
〈– �〉ϕ1 ∨ 〈– �〉ϕ2

)
〈– (ϕ1 ∨ ϕ2)〉� ↔

(
〈– ϕ1〉� ∨ 〈– ϕ2〉�

)
To obtain an explicit modal axiomatization, we extend the language of MLSR with a

countable set NOM of nominals, each standing for either a unique point in the model,
or not denoting at all (this small technical deviation from hybrid logic will be helpful
later on.) We also add standard public announcement modalities 〈!ϕ〉� from dynamic
epistemic logic, whose interpretation was given in §1. This will turn out to be useful,
even though the axiom system to follow features no recursion axioms in the usual
dynamic epistemic style for the removal modality. For simplicity, we retain the name
MLSR for this logic.

Remark 3.2. There seem to be no modal recursion axioms inverting the operator order
for combinations 〈– ϕ〉〈!α〉� or 〈!α〉〈– ϕ〉�. For example, 〈!α〉〈– ϕ〉� is not equivalent
to α ∧ 〈– 〈!α〉ϕ〉〈!α〉� (consider, for instance, the case where α = �p, ϕ = �⊥ and
� = 
). This feature of the modal language may be contrasted with how first-order
logic augmented with an explicit syntactic operator of relativization would write this
recursion:

(∃x(ϕ|�))α(·)(x) ↔ α(x) ∧ ∃y(α(y) ∧ y �= x ∧ ϕα(·)(y) ∧ (�)α(·)∧ · �=(y)(x))

We now extend the language of Definition 2.1 with nominals, public announcement
operators, as well as the existential modality.

Definition 3.3. MLSR with nominals ( for short still to be called MLSR) has the syntax

ϕ := p | n | 
 | ¬ϕ | (ϕ ∨ ϕ) |�ϕ | 〈!ϕ〉ϕ | 〈– ϕ〉ϕ |Eϕ,
with p ∈ PROP, n ∈ NOM. Dual modal operators �, [!ϕ], [– ϕ] and U are defined as
usual.

Note that it is not necessary to add the @n operator from hybrid logic as a primitive
symbol, for it can be defined using the universal modality: in our setting with (possibly
non-referring) nominals, @nϕ is simply a shorthand for U(n → ϕ).2 The following
proof system may look somewhat complex, but its components just follow the formal
syntax just introduced.

2 For a further study of combining dynamic epistemic proof systems with hybrid logic, see
Hansen (2011).
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Definition 3.4. The logic MLSR (see Figure 1) consists of:

• the rule of Replacement of Provable Equivalents,3

• the axioms and rules of classical propositional logic;
• the axioms and rules of the minimal normal modal logic for all the universal box

modalities of the language (static or dynamic), plus the standard axioms and rules
for the global universal modality Blackburn et al., 2011;

• the Name Rule and the Paste Rule from hybrid logic (Areces & ten Cate, 2006),
with the latter slightly adapted to our setting;

• the axiom E(n ∧ ϕ) → U(n → ϕ), which we denote by (H );
• the usual reduction axioms of public announcement logicPAL for atoms (including

nominals), the existential base modality, the global existential modality, and
the announcement modality (van Benthem, 2011),4 as well as the Truth Axiom
〈!
〉ϕ ↔ ϕ;

• the following two principles connecting the stepwise removal modality with the
public announcement modality:

(Mix Axiom) (E(n ∧ α) ∧ 〈!¬n〉ϕ) → 〈– α〉ϕ;
(Mix Rule) If � E(n ∧ 〈!ϕ〉E(k ∧ α) ∧ 〈!ϕ〉〈!¬k〉�) → 
,

then � E(n ∧ 〈!ϕ〉〈– α〉�) → 
, where k /∈ 
, ϕ, α,�.

Fact 3.5. The Mix Axiom is valid, and the Mix Rule is semantically sound.

Remark 3.6. The system MLSR does not include all the usual axioms for the basic
hybrid language because nominals can fail to denote in our models after an update. In
particular, after the deletion of a state named by n, the formula ¬En holds. Connected to
this, the equivalence E(n ∧ ¬ϕ) ↔ ¬E(n ∧ ϕ) underpinning the common hybrid notation
@n is no longer valid. However, the proof principles of MLSR guarantee all the properties
of nominals that we need in what follows. In particular, the following useful facts are
provable:

• E(n ∧ ¬ϕ) ↔ (En ∧ ¬E(n ∧ ϕ))
• n → (E(n ∧ ϕ) ↔ ϕ)

The language of MLSR captures various global properties of our semantics, such as
the fact that nominals hold at one state at most. Deriving this shows the Mix Rule at
work.

Observation 3.7. The formula n → ¬〈– n〉
 is an MLSR theorem for any n ∈ NOM.

Proof. Take ϕ,� = 
, 
 = ⊥, α = n. Then the antecedent formula in the Mix Rule
reads

E(n ∧ 〈!
〉E(k ∧ n) ∧ 〈!
〉〈!¬k〉
) → ⊥

3 This rule is the basis for any ordinary logical system. In particular, in MLSR, it applies
to formulas following modalities as well as formulas occurring inside announcement and
deletion modalities.

4 A reduction axiom for disjunction is supplied by the minimal modal logic for announcement
modalities.
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The System MLSR

The rule of Replacement of Equivalents:

All tautologies of classical propositional logic, plus the Modus Ponens rule

(RE)

Modal axioms and rules for all universal modalities

S5-axioms for the universal modality , plus the axiom

Axioms for PAL:

The Truth Axiom:

Hybrid axiom:

Hybrid inference rules:

Axiom for the removal modality:

Inference rule for the removal modality:

(Name)

(Paste)

(Mix Rule)

(Mix)

(H)

E
E(mE(n

E(n n

n n NOM

PROP

E E

p

n

p p

E(n

E(n

E(n

E(k k
k

n

E(n
andm

m
m

Fig. 1. The Hilbert-style proof system for MLSR.
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This is derivable in MLSR. Using Replacement of Equivalents,5 and appealing to (i) a
simple analysis of 〈!
〉E(k ∧ n) using the PAL reduction axioms for E and nominals,
and (ii) the implication from 〈!¬k〉
 to ¬k which is one half of the PAL reduction
axiom for 
, the antecedent of the above formula derives E(k ∧ ¬k). It then suffices to
note that the S5 axioms for quantifiers allow to derive E(k ∧ ¬k) → ⊥.

Therefore, the consequent formula is provable using the Mix Rule:

E(n ∧ 〈!
〉〈– n〉
) → ⊥.
Using the Truth Axiom and the S5 axioms for quantifiers, this is equivalent in MLSR
to U(n → ¬〈– n〉
), which implies the desired n → ¬〈– n〉
.

To increase familiarity with the proof system, we explore MLSR a bit further.

Remark 3.8. (a) Here is a more elaborate derivation showing the interplay of the
two dynamic modalities. The premise of the above Mix Rule uses antecedents
prefixed by an existential modality. However, we can also derive the following
‘bare’ variant:

(Stripped Mix Rule)
E k k

k

To see this, assume the premise. Take a fresh nominal n, and using propositional
logic, derive (n ∧ 〈!ϕ〉(E(k ∧ α) ∧ 〈!¬k〉�)) → 
. Given the facts derived in
Remark 3.6, this is equivalent to (n ∧ E(n ∧ 〈!ϕ〉(E(k ∧ α) ∧ 〈!¬k〉�))) → 
.
Again by propositional logic, this yields E(n ∧ 〈!ϕ〉(E(k ∧ α) ∧ 〈!¬k〉�))) →
(n → 
). Here, since n was fresh, the nominal k still satisfies the conditions
of the Mix Rule. Therefore, we can conclude E(n ∧ 〈!ϕ〉〈– α〉�) → (n → 
).
From this, using propositional logic, (n ∧ E(n ∧ 〈!ϕ〉〈– α〉�)) → 
. Then using
Remark 3.6 once more, we get (n ∧ 〈!ϕ〉〈– α〉�) → 
, and with propositional
logic, n → (〈!ϕ〉〈– α〉�) → 
). Finally, using the Name Rule of the hybrid logic
component of MLSR, the conclusion 〈!ϕ〉〈– α〉� → 
 follows.
Taking the special case of ϕ = 
, and using the Truth Axiom of MLSR (which
was not used in the preceding derivations), the Stripped Mix Rule reduces to:

(Basic Mix Rule)
E k k

k

(b) MLSR also admits the following simple variant of the Paste Rule:

(Basic Paste Rule)
E

E

k
k

The Basic Paste Rule is derivable by the preceding method, starting with the
premise:

� E(k ∧ ϕ) → 

� E(k ∧ ϕ) → (n → 
) (by propositional logic; where n is a fresh nominal)

5 This basic rule of our proof system will be appealed to tacitly at many places in what follows.
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�
(
E(n ∧ Ek) ∧ E(k ∧ ϕ)

)
→ (n → 
) (by propositional logic)

� E(n ∧ Eϕ) → (n → 
) (by the Paste Rule)

�
(
n ∧ E(n ∧ Eϕ)

)
→ 
 (by propositional logic)

� (n ∧ Eϕ) → 
 (by Remark 3.6 and Replacement of Equivalents)

� n → (Eϕ → 
) (by propositional logic)

� Eϕ → 
 (by the Name Rule, since n �∈ ϕ, 
)

We now use our observations to derive some simple but useful validities.

Proposition 3.9. The following are MLSR-provable validities:

(i) 〈!ϕ〉α → ϕ (announced formulas are always true);
(ii) 〈– (ϕ1 ∨ ϕ2)〉� ↔

(
〈– ϕ1〉� ∨ 〈– ϕ2〉�

)
(distributivity over disjunction, cf. Fact

3.1);
(iii) Eα ↔ (α ∨ 〈– α〉
) (the removal modality captures quantifiers).

Proof. (i) This follows since 〈!ϕ〉α → 〈!ϕ〉
 is provable by principles of the minimal
logic K for the modality 〈!ϕ〉, while the PAL reduction axiom for the atom 
 gives
〈!ϕ〉
 ↔ ϕ.

(ii) With the Basic Mix Rule in hand, it is straightforward to derive this nontrivial
distribution law. We sketch the left-to-right direction, appealing to the Basic Mix Rule
with α = ϕ1 ∨ ϕ2 and 
 = 〈– ϕ1〉� ∨ 〈– ϕ2〉�. For k a fresh nominal, E(k ∧ (ϕ1 ∨
ϕ2)) ∧ 〈!¬k〉〉�) provably implies 〈– ϕ1〉� ∨ 〈– ϕ2〉�: this can be shown using the
standard distribution of the E modality over disjunctions, after which the Mix Axiom
gives the required result.

(iii) For the left-to-right direction, let k be a fresh nominal not appearing in α. Note
that, by the (H) Axiom, E(k ∧ α) → U(¬α → ¬k) is derivable. Then, since

� (E(k ∧ α) ∧ ¬α) → (E(k ∧ α) ∧ ¬k),

� (E(k ∧ α) ∧ ¬k) → (E(k ∧ α) ∧ 〈!¬k〉
), and

� (E(k ∧ α) ∧ 〈!¬k〉
) → 〈– α〉
 (by the Mix Axiom),

we have that � (E(k ∧ α) ∧ ¬α) → 〈– α〉
. The following instance of the Basic Paste
Rule then gives us the desired conclusion:

E k
k

E

For the right-to-left direction, we have to show that 〈– α〉
 → Eα. Let k be a fresh
nominal not appearing in α. Since (E(k ∧ α) ∧ 〈!¬k〉
) → Eα is clearly derivable, this
follows from the instance of the Basic Mix Rule displayed here:

E Ek k
k

E�

Many of the formal proof routines illustrated in this section will be assumed without
further explanation in the completeness proof of our next section.
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The above axiom system, though matching our later completeness proof, may have
some redundancies in its formulation. There is more power to thePAL reduction axioms
than meets the eye, and the same is true of the Mix Rule.

Remark 3.10. Consider the Truth Axiom, a modest, but useful principle:

〈!
〉ϕ ↔ ϕ.

In public announcement logic PAL with nominals and global modalities, the Truth Axiom
is redundant, as all its instances are derivable. This can be shown by a straightforward
induction on the formula ϕ. The base cases for atoms (proposition letters, nominals
and 
), as well as the inductive steps for negations, disjunctions, and the two existential
modalities are immediate from the corresponding reduction axioms in PAL.

However, in the setting of MLSR, we must also consider the inductive step for the
removal modality. As it happens, one direction presents no difficulties. By the Stripped
Mix Rule, to prove 〈!
〉〈– α〉� → 〈– α〉�, it suffices to derive, for some fresh nominal k,
the implication 〈!
〉(E(k ∧ α) ∧ 〈!¬k〉�) → 〈– α〉�. And here, distributing the modality
〈!
〉 inside by appealing to the PAL axioms of MLSR, and using the inductive hypothesis
that 〈!
〉α ↔ α is derivable already, the antecedent is provably equivalent to E(k ∧ α) ∧
〈!¬k〉�, which implies 〈– α〉� by the Mix Axiom.

A similar analysis in the opposite direction would derive 〈– α〉� → 〈!
〉〈– α〉� using
the earlier Basic Mix Rule. However, showing the validity of that rule involved an appeal
to the Truth Axiom, and it is not clear whether we can do without.

We leave finding a more minimal and provably nonredundant presentation of MLSR
as an open problem (see also the final point in §4 about the need for the PAL
component). Even so, as shown in this section, MLSR is quite a workable proof system,
whose fine-structure deserves further exploration.

§4. Completeness. We now proceed to prove (strong) completeness of our
deductive calculus.

Theorem 4.1. The system MLSR is complete for validity in the given semantics.

Soundness of the given axioms and rules follows from a straightforward inspection.
The Henkin-style completeness proof follows standard modal and hybrid lines
(Blackburn et al., 2011), but there are some interesting new features that will
be highlighted in what follows. We begin with a preliminary definition toward a
Lindenbaum Lemma.

Definition 4.2 (Named, Pasted, Mixed). A set of MLSR-formulas Γ is

• named if it contains a nominal;
• �-pasted if E(n ∧�ϕ) ∈ Γ implies that there is some nominal m such that the

formula E(n ∧�m) ∧ E(m ∧ ϕ) ∈ Γ;
• E-pasted if E(n ∧ Eϕ) ∈ Γ implies that there is some nominal m such that the

formula E(n ∧ Em) ∧ E(m ∧ ϕ) ∈ Γ;
• mixed if 〈!ϕ〉〈– α〉� ∈ Γ implies that there is some nominal n such that the

formula 〈!ϕ〉E(n ∧ α) ∧ 〈!ϕ〉〈!¬n〉� ∈ Γ;
• E-mixed if, whenever E(n ∧ 〈!ϕ〉〈– α〉�) ∈ Γ, then there is some nominal k such

that E
(
n ∧ 〈!ϕ〉(E(k ∧ α) ∧ 〈!¬k〉�)

)
∈ Γ.
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A set Γ of MLSR-formulas will be said to be pasted if it is both �-pasted and
E-pasted. The technical reason for having two mixing principles instead of one will
become clear later on. But it may be noted here already that if a deductively closed
set Γ contains some nominal n naming it, then E-mixing implies plain mixing. For,
in that case, as was shown in Remark 3.6, modulo Γ, any formula � will be provably
equivalent to E(n ∧ �).

Remark 4.3. As will be seen below, the Mix Rule of MLSR supports the preceding
‘mixing’: i.e., witnessing the removal modality by introducing a new nominal for the
point to be removed. As stated, the rule does this only under one-step update modalities
〈!ϕ〉. But this implies the Mix Rule for arbitrary finite sequences of updates. First, the
special case of 〈!
〉� gives the case of single formulas �, as the two are equivalent in
MLSR . But also, longer sequences of updates are covered, as is easy to see using the PAL
axiom 〈!ϕ〉〈!�〉α ↔ 〈! (ϕ ∧ [!ϕ]�)〉α compressing two nested update modalities to a
single one.

It follows that if a deductively closed set Γ is mixed, then it also witnesses sequences of
announcement modalities 〈!ϕ〉, where 〈!ϕ〉 := 〈!ϕ1〉...〈!ϕk〉 for a sequence of formulas
ϕ = (ϕ1, ... , ϕk). For instance, with simple mixing: if 〈!ϕ〉〈– α〉� ∈ Γ, then there is a
nominal n such that 〈!ϕ〉E(n ∧ α) ∧ 〈!ϕ〉〈!¬n〉� ∈ Γ.6

Lemma 4.4 (Lindenbaum Lemma). Every MLSR-consistent set of formulas can be
extended to an MLSR maximal consistent set that is named, pasted, as well as mixed in
both senses.

Proof. Naming and pasting work in exactly the same way as in the completeness
proof for the basic hybrid logic. As for mixing, given the above observation, we only
consider the case of E-mixing. We have to ensure that, throughout the inductive
construction, whenever we consistently add a formula of the form E(n ∧ 〈!ϕ〉〈– α〉�)
to a consistent, named set of formulas Σ, the formula E(n ∧ 〈!ϕ〉(E(k ∧ α) ∧ 〈!¬k〉�))
is also added to Σ—where k is the first nominal in the enumeration of nominals
used in our construction that occurs in neither Σ nor 〈!ϕ〉〈– α〉�. Crucially, for
such a k, the set Σ ∪ {E(n ∧ 〈!ϕ〉(E(k ∧ α) ∧ 〈!¬k〉�))} is consistent, given that Σ is
consistent. For if not, then for some conjunction 
 of formulas from Σ, the implication
E(n ∧ 〈!ϕ〉(E(k ∧ α) ∧ 〈!¬k〉�)) → ¬
 would be provable. But then, by the Mix Rule,
the implication E(n ∧ 〈!ϕ〉〈– α〉�) → ¬
 is provable from Σ, contradicting our initial
assumption that Σ ∪ {E(n ∧ 〈!ϕ〉〈– α〉�)} is consistent.

For the remainder of this proof, fix a maximal consistent set Γ of MLSR-formulas (an
MLSR-MCS, for short) that is named, pasted, and mixed in all the senses of Definition
4.2. Next, for all nominals n with En ∈ Γ define the set Δn := {ϕ ∈ MLSR |E(n ∧ ϕ)
∈ Γ}. Let

W = {Γ} ∪ {Δn | n ∈ NOM, En ∈ Γ}.

6 For a concrete case of how this works, suppose that 〈!ϕ1〉〈!ϕ2〉〈– α〉� ∈ Γ. Using the PAL
iteration axiom 〈!ϕ1〉〈!ϕ2〉ϑ ↔ 〈! (ϕ1 ∧ [!ϕ1]ϕ2)〉ϑ, we get 〈! (ϕ1 ∧ [!ϕ1]ϕ2)〉〈– α〉� ∈ Γ.
Since Γ is mixed, there is then a nominal n such that 〈! (ϕ1 ∧ [!ϕ1]ϕ2)〉E(n ∧ α) ∧
〈! (ϕ1 ∧ [!ϕ1]ϕ2)〉〈!¬n〉� ∈ Γ. But then, using the PAL iteration axiom once more, it follows
that 〈!ϕ1〉〈!ϕ2〉E(n ∧ α) ∧ 〈!ϕ1〉〈!ϕ2〉〈!¬n〉� ∈ Γ.
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Over this universe, accessibility relations are defined as follows:

R�(Δn,Δm) iff E(n ∧�m) ∈ Γ

RE(Δn,Δm) iff E(n ∧ Em) ∈ Γ.

In this definition, the set Γ is thought of as containing all information about the whole
universe W . This includes information about Γ itself, since, by an earlier observation,
Γ = Δn for any nominal n ∈ Γ, and such nominals exist since Γ is named by our
Lindenbaum construction. One could continue the completeness argument in this
style, but in what follows we consider all sets introduced here on a par, as ‘worlds’ or
‘states’ in a modal model, for which we will use the standard notation w, v, ...7

We now define an initial structure toward finding a model for our consistent set.

Definition 4.5 (Upper Henkin Model). The upper Henkin model M generated by Γ is
defined as the structure (W,R�, RE, V ), where

• W := [Γ]RE
, the equivalence class of Γ in W under RE;

• the relations R� and RE are, respectively, R� and RE restricted to W;
• the valuation V is given by V (p) = {w ∈W |p ∈ w} for all proposition letters

p and, for all nominals n, V (n) = {Δn} if En ∈ Γ, and V (n) = ∅ otherwise.

Setting the domain to be the equivalence class of Γ under RE ensures that RE is the
universal relation in the model. It is also easy to show that the valuation is well-defined
for nominals. This construction has some important properties, listed in the next result.

Lemma 4.6 (Existence Lemma). Let Γ be a named, pasted and E-mixed MLSR-MCS
and M = (W,R�, RE, V ) the upper Henkin model yielded by Γ.

• All sets Δn are MLSR-MCSs;
• If u ∈W and �ϕ ∈ u, then there is an object v ∈W such thatR�uv and ϕ ∈ v.
• If u ∈W and Eϕ ∈ u, then there is some v ∈W such that REuv and ϕ ∈ v.
• All sets Δn are mixed in the first sense listed in Definition 4.2.

The proof of all these assertions is by reference to the Pasting and E-Mixing
properties of the original set Γ, using principles available in MLSR that were identified
earlier.

Next, we define a family of derived structures which capture the effects of finite
sequences of updates on the upper Henkin model M. Recall that, given a sequence
ϕ = (ϕ1, ... , ϕk), the notation 〈!ϕ〉 stands for 〈!ϕ1〉 ··· 〈!ϕk〉.
Definition 4.7 (Derived Henkin Model). For each finite sequence of MLSR-formulas
ϕ = (ϕ1, ... , ϕk), the derived Henkin model M : ϕ is the structure (Wϕ,Rϕ�, R

ϕ
E , V

ϕ),
where

• Wϕ := {(w,ϕ) |w ∈W and 〈!ϕ1〉 ··· 〈!ϕk〉
 ∈ w};
• for (w,ϕ), (v, ϕ) ∈Wϕ , Rϕ�

(
(w,ϕ), (v, ϕ)

)
(resp., RϕE

(
(w,ϕ), (v, ϕ)

)
) if and

only if R�wv (resp., REwv) in the upper Henkin model M;
• Vϕ(p) := {(w,ϕ) |p ∈ w} for p∈PROP and Vϕ(n) := {(w,ϕ) | n ∈ w} for

n∈NOM.

7 The above accessibility relations could also be defined equivalently in a standard modal
manner: for anyw, v ∈ W , we haveR�(w, v) if and only if, for all ϕ, if ϕ ∈ v then �ϕ ∈ w,
and similarly for RE.
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Points in the derived Henkin model M : ϕ are sequences (w,ϕ1, ... , ϕk), where w is
a MCS in the upper Henkin model that contains the pre-condition formula8

pre(ϕ) = 〈!ϕ〉
 = 〈!ϕ1〉 ··· 〈!ϕk〉

The accessibility relations stay as they were for the initial points of the sequences in the
upper Henkin model. Likewise, the valuation for proposition letters at each sequence
stays the same as that for its initial point in the upper Henkin model.

In derived Henkin models, all points are still named by nominals, but some nominals
may fail to denote. This explains the modified hybrid base logic forMLSR (Remark 3.6).

Now, to each point (w,ϕ1, ... , ϕk) in the derived Henkin model M : ϕ, we associate
the following set of formulas

Φ(M, ϕ, w) := {α | 〈!ϕ1〉 ··· 〈!ϕk〉α ∈ w}.
These sets record what the upper Henkin model ‘claims’ is true after the update with

ϕ. Our task is to analyze how this matches up with truth in the updated models.
To do so, we first note some useful theorems of MLSR concerning the effects of finite

sequences of successive updates. The first of these computes preconditions explicitly:

�MLSR 〈!ϕ1〉 ··· 〈!ϕk〉
 ↔ ϕ1 ∧ 〈!ϕ1〉ϕ2 ∧ 〈!ϕ1〉〈!ϕ2〉ϕ3 ∧ ··· ∧ 〈!ϕ1〉 ··· 〈!ϕk–1〉ϕk

↔
k∧
i=1

〈!ϕ1〉 ··· 〈!ϕi–1〉ϕi (R1)

The derivation of (R1) and the following principles of MLSR are obtained
by straightforward iteration of the principles of public announcement logic PAL
(van Benthem, 2011).

Our second observation analyses when atomic formulas are true after iterated
updates:

�MLSR 〈!ϕ〉p ↔ (pre(ϕ) ∧ p) (R2)

The preceding theorem also applies to nominals. A similar pattern occurs with
negations:9

�MLSR 〈!ϕ〉¬α ↔ (pre(ϕ) ∧ ¬〈!ϕ〉α) (R3)

For conjunctions, it is easy to see that

�MLSR 〈!ϕ〉(α ∧ ) ↔ (〈!ϕ〉α ∧ 〈!ϕ〉) (R4)

Finally, consider the diamond modality. Here we have:

�MLSR 〈!ϕ〉�α ↔ (pre(ϕ) ∧�〈!ϕ〉α) (R5)

A similar principle holds for global existential modalities of the form Eα.10

8 From another perspective, worlds in derived Henkin models are like the finite update histories
in temporal ‘protocol models’ for PAL (van Benthem et al., 2009).

9 For a concrete illustration, the following chain of equivalences is provable: 〈!ϕ1〉〈!ϕ2〉¬� ↔
〈!ϕ1〉(ϕ2 ∧ ¬〈!ϕ2〉�) ↔ (〈!ϕ1〉ϕ2 ∧ 〈!ϕ1〉¬〈!ϕ2〉�) ↔ (〈!ϕ1〉ϕ2 ∧ ¬〈!ϕ1〉〈!ϕ2〉�).

10 All these facts unpack finite sequences of PAL-update modalities. But they can also be
understood in terms of one-step modalities using thePAL axiom for compressing two iterated
updates into one.
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Intuitively, the models M : ϕ are meant to be isomorphic to submodels of M after
the sequence of consecutive semantic updates ϕ, but the precise sense in which this is
true will become clear in the following key property of the construction of initial and
derived Henkin models.11

Now comes the main point of our construction so far.

Lemma 4.8 (Truth Lemma). For all formulas �, finite sequences ϕ and points w,

M : ϕ, (w,ϕ) |= � if and only if � ∈ Φ(M, ϕ, w)

Proof. The proof is by induction on the formulas �. For convenience, when the
context is clear, we write w instead of (w,ϕ), reflecting the fact that derived Henkin
models represent submodels arising from iterated PAL updates. Also note that, by
the earlier definitions, the existence of the state (w,ϕ) in M : ϕ assumes that the
precondition pre(ϕ) of the relevant update sequence belongs to w. This fact will be
used repeatedly in what follows.

(a) For the equivalence of truth and membership for atoms p, it suffices to observe that
p ∈ Φ(M, ϕ, w) iff 〈!ϕ〉p ∈ w iff (by the above-noted fact (R2)) pre(ϕ) ∧ p ∈ w. But
then, by the definition of the valuation in derived Henkin models, this means that p is
true at the initial w and all its descendants under update. The same argument applies
to nominals.
(b) For negations, we have ¬� ∈ Φ(M, ϕ, w) iff 〈!ϕ〉¬� ∈ w, which, by (R3), is
provably equivalent to pre(ϕ) ∈ w and ¬〈!ϕ〉� ∈ w. Given that pre(ϕ) ∈ w, we have
that 〈!ϕ〉¬� ∈ w iff 〈!ϕ〉� /∈ w. The latter statement is equivalent to� �∈ Φ(M, ϕ, w),
which, by the inductive hypothesis for �, holds if and only if M : ϕ,w |= ¬�.
(c) The inductive step for conjunctions �1 ∧ �2 is straightforward, using the above
distribution principle (R4) of 〈!ϕ〉 modalities over conjunctions, as well as the fact
that maximally consistent sets decompose conjunctions into components.
(d) Next, we consider the basic modality ��, relying on the above principle (R5).

• If M : ϕ,w |= ��, then, for some v with Rϕ�wv, M : ϕ, v |= �. So, by the
inductive hypothesis, � ∈ Φ(M, ϕ, v). Hence, in the upper Henkin model M,
we have that 〈!ϕ〉� ∈ v and also R�wv. This entails that, in M, �〈!ϕ〉� ∈ w.
Now, using (R5) and the fact that pre(ϕ) ∈ w, 〈!ϕ〉�� ∈ w. By the definition
of Φ, then �� ∈ Φ(M, ϕ, w).

• Conversely: �� ∈ Φ(M, ϕ, w) entails that 〈!ϕ〉�� ∈ w in the upper Henkin
model M. From (R5) we obtain �〈!ϕ〉� ∈ w. Therefore, by the Existence
Lemma 4.6, there is some v ∈ M with R�wv and 〈!ϕ〉� ∈ v. Now obviously
�MLSR 〈!ϕ〉� → 〈!ϕ〉
 = pre(ϕ), and so it follows that pre(ϕ) ∈ v. Hence, v
is in the derived Henkin model under consideration here. So, we have that
� ∈ Φ(M, ϕ, v) and, by the inductive hypothesis, we get M : ϕ, v |= �. Since
R�wv, we have Rϕ�wv, and so M : ϕ,w |= ��.

(e) The reasoning for the existential modality E� is just like the preceding argument.

11 While not essential for what follows, the following fact further clarifies the structure of derived
Henkin models. Given (w,ϕ) and (v, ϕ) inWϕ , the following assertions are equivalent: (a)
R
ϕ
�

(
(w : ϕ), (v : ϕ)

)
as defined earlier, (b) for all formulas α, if α ∈ Φ(M, ϕ, v), then �α ∈

Φ(M, ϕ, w). We omit the proof here.
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(f) The analysis for PAL modalities 〈!α〉� proceeds as follows.

First note that, by the inductive hypothesis, the truth of α at any point (v, ϕ) is
equivalent to α belonging to Φ(M, ϕ, v). Hence, restricting the model M : ϕ to
(M : ϕ)|α in the usual semantic sense yields exactly the derived Henkin model
M : (ϕ�α).12

We then have the following equivalences:

M : ϕ,w |= 〈!α〉� iff M : ϕ,w |= α and (M : ϕ)|α,w |= �
iff M : (ϕ�α), w |= �
iff � ∈ Φ(M, ϕ�α,w) (by the inductive hypothesis)

iff 〈!α〉� ∈ Φ(M, ϕ, w) (since 〈!ϕ�α〉� = 〈!ϕ〉〈!α〉�)

(g) Finally, the MLSR deletion modality 〈– α〉� is analyzed as follows.

• If M : ϕ,w |= 〈– α〉�, then, by the truth definition, for some v �= w,
(i) M : ϕ, v |= α and (ii) (M : ϕ) – {v}, w |= �. Next, since all states in the
upper Henkin model are named (see Definition 4.2), there exists a nominal n
denoting v, and this nominal is still available for denoting v’s descendant in the
derived Henkin model M : ϕ.

First consider conjunct (i). By the inductive hypothesis, α ∈ Φ(M, ϕ, v), while
also, for our nominal n, we have n ∈ Φ(M, ϕ, v). Therefore, in the upper
Henkin model M, 〈!ϕ〉(n ∧ α) ∈ v. Now, the relation RE is universal in
the upper Henkin model, and so, in particular, REwv, which entails that
E〈!ϕ〉(n ∧ α) ∈ w. Next, by our earlier observations about provable generalized
reduction axioms in MLSR:

�MLSR 〈!ϕ〉E(n ∧ α) ↔
(
pre(ϕ) ∧ E〈!ϕ〉(n ∧ α)

)
. (‡)

Together with the fact that pre(ϕ) ∈ w, it follows that 〈!ϕ〉E(n ∧ α) ∈ w.

Next, consider conjunct (ii) in our initial assumption. It is easy to see that
the model (M : ϕ) – {v} equals the updated model (M : ϕ)|¬n, using the
fact that each nominal belongs to at most one world in M. Thus (ii) implies
that (M : ϕ)|¬n, w |= �. Moreover, it can be seen that the latter model in
turn equals M : (ϕ�¬n).13 Therefore, we also have M : (ϕ�¬n), w |= �.
But then, by the inductive hypothesis, we have that � ∈ Φ(M, ϕ�¬n, w), i.e.,
〈!ϕ〉〈!¬n〉� ∈ w.

It now remains to apply the Mix Axiom. As stated in the definition of the system
MLSR, this says that the conjunction E(n ∧ α) ∧ 〈!¬n〉� implies 〈– α〉�. Now
in the upper Henkin model, we only have the antecedent for this in the set
w under the prefix 〈!ϕ〉. But then the modalized conclusion 〈!ϕ〉〈– α〉� is

12 Thanks to the inductive hypothesis, the model (M : ϕ)|α contains exactly the states w for
which 〈!ϕ〉α ∈ w. But by its definition, the derived Henkin model M : (ϕ�α) is restricted
to exactly the states w such that pre(ϕ�α) ∈ w, which is equivalent to 〈!ϕ〉α ∈ w.

13 Observe thatw ∈ M : (ϕ�¬n) iff pre(ϕ�¬n) ∈ w iff 〈!ϕ〉¬n ∈ w. Now, as observed earlier,
�MLSR 〈!ϕ〉¬n ↔ pre(ϕ) ∧ ¬〈!ϕ〉n, so the last statement is equivalent to pre(ϕ) ∈ w and
〈!ϕ〉n �∈ w, which holds exactly when n �∈ w ∈ M : ϕ, which means that w ∈ (M : ϕ)|¬n
by the truth definition.
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derivable using the K axioms for the 〈!ϕ〉 modalities, and hence it, too, is in w.
In other words, 〈– α〉� ∈ Φ(M, ϕ, w).

• Next suppose that 〈– α〉� ∈ Φ(M, ϕ, w): i.e., 〈!ϕ〉〈– α〉� ∈ w. Since w is
mixed by the Existence Lemma 4.6, there exists some nominal n such that (i)
〈!ϕ〉E(n ∧ α) ∈ w, and (ii) 〈!ϕ〉〈!¬n〉� ∈ w. Using the earlier equivalence (‡)
once more, from (i), we getE〈!ϕ〉(n ∧ α) ∈ w. By the Existence Lemma 4.6 once
more, this means that there is some v ∈ M with 〈!ϕ〉(n ∧ α) ∈ v. So, n ∧ α ∈
Φ(M, ϕ, v). By the inductive hypothesis, this entails that M : ϕ, v |= α.

Next, turning to (ii), using the straightforward observation that �MLSR
〈!ϕ〉¬n → ¬n, we get n �∈ w, while 〈!ϕ〉(n ∧ α) ∈ v entails n ∈ v, so w �= v.
Lastly, 〈!ϕ〉〈!¬n〉� ∈ w means 〈!¬n〉� ∈ Φ(M, ϕ, w). This is equivalent to
� ∈ Φ(M, ϕ�¬n, w), which, by the inductive hypothesis, yields that
M : ϕ�¬n, w |= �. Next, as already noted in the argument for the converse
direction, M : (ϕ�¬n) = (M : ϕ)|¬n, and hence we get (M : ϕ)|¬n, w |= �.
Moreover, we had (M : ϕ)|¬n = (M : ϕ) – {v}, and so we also have
(M : ϕ) – {v}, w |= �.

Takingthese three facts together, it canbeconcludedthatM : ϕ,w |= 〈– α〉�.

This concludes the proof of the Truth Lemma, and thus, the consistent set Γ at the
start of the construction has a model. This establishes the completeness of the system
MLSR.

Remark 4.9. One way of understanding the mechanics of this modal completeness
proof is doing a parallel standard Henkin-style completeness proof for a first-order
language with explicit operations of quantification without replacement and definable
relativization.

Finally, a natural question is if our expanded language with nominals and PAL
modalities is really needed. We leave the existence of a ‘pure’ axiomatization of MLSR
open here.14

§5. Complexity and undecidability. Having analyzed expressive power and axiom-
atization, we now turn to matters of computational complexity for the core notions of
our system MLSR as defined in §2.

5.1. Model checking. We begin by showing that model checking for MLSR is
PSPACE-complete. We do so by providing a reduction from the quantified Boolean
formula problem (QBF) (Stockmeyer & Meyer, 1973), in the style of Rohde (2005)
and Löding & Rohde (2003).

14 In ongoing follow-up work, Johan van Benthem, Li Lei, Chenwei Shi, and Haoxuan Yin at
Tsinghua University have used the techniques presented here to axiomatize hybrid sabotage
modal logic in several semantics, and to derive further results such as interpolation theorems.
One feature of their approach suggests an alternative perspective on our completeness
proof. The crucial use of public announcements in the above is in the special form
〈!¬n〉ϕ. This is equivalent to the hybrid MLSR formula (¬En ∧ ϕ) ∨ 〈– n〉ϕ. This suggests
a pure axiomatization where the minimal PAL modalities become convenient suggestive
notation. The full system MLSR merges definable uniform and arbitrary stepwise removal,
thus describing quantification with and without replacement combined with unrestricted
relativization.
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(d) Final verification module.

Fig. 2. The shape of the initial module (a) does not depend on which quantifier ϕ begins with.
In (b), (c) and (d), the top nodes labeled by xj and ¬xj are the end nodes of the previous
module. In (d), each clause vertex ci has an outgoing edge to a vertex labeled by a literal ±xj
exactly if the dual literal ∓xj makes clause Ci true.

Theorem 5.1. Model checking for MLSR is PSPACE-complete.

Proof. An upper bound is established as follows. The translation into first-order
logic given earlier (Fact 2.6) only has a polynomial size increase, and it is known that
model checking for first-order logic is in PSPACE.

The lower bound is demonstrated by a reduction from QBF into model checking for
MLSR. Take any QBF formula ϕ: that is, a formula of the form

Q1x1 ··· Qnxn
∧

1≤i≤k
Ci ,

where Qj ∈ {∃,∀}, and each Ci is a disjunction of literals ±xj (here, without loss of
generality, we can assume that the quantifiers alternate between ∃ and ∀).

Given such a formula ϕ, we construct a finite pointed model (Mϕ, s) and an MLSR
formula �ϕ such thatϕ is true if and only if (Mϕ, s) |= �ϕ . The construction will ensure
that the model Mϕ and the formula �ϕ both have a size that grows linearly in the
number of quantifiers and clauses of ϕ, which gives the desired reduction from QBF.
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To increase intuitive understanding, in what follows the model (Mϕ, s) is constructed
so that the truth of ϕ can be captured by a traveling game on the model between two
players: Traveler and Demon. The formula ϕ is true if and only if Traveler has a
winning strategy in the traveling game on (Mϕ, s), while the MLSR formula �ϕ states
the existence of a winning strategy for Traveler. (Mϕ, s) consists of n + 1 vertically
concatenated ‘modules’: one initial module for the first quantifier in ϕ, one module
for each of the remaining n – 1 quantifiers, plus one final verification module. Each
of these modules is depicted in Figure 2. More in detail, the construction of Mϕ is
as follows: starting with the initial module, we concatenate successive ∀xi - and ∃xj-
modules corresponding to the order of quantifiers in ϕ (we treat the top nodes labeled
by xj and ¬xj as the end nodes of the previous module). The goal points are those to
which the valuation assigns the proposition letter g (as depicted in Figure 2). Once all
n quantifier modules have been added, we append the final verification module. For
each clause Ci , we use a distinct proposition letter ci , which holds at exactly one node
in the verification module, called a clause vertex. Each clause vertex ci has an outgoing
edge to all and only the duals of literals that make Ci true.

Now, the traveling game proceeds in the following manner. At the beginning, Traveler
is positioned at the starting vertex s. When Demon plays, she deletes a node in the
graph. When Traveler plays, she can travel along one of the remaining edges to an
adjacent vertex. Traveler wins if she manages to reach a goal point, marked with the
proposition letter g. Demon wins otherwise. More in detail, if ϕ starts with ∃, Traveler
goes first. If ϕ starts with ∀, Demon goes first: in the first move, she can only delete
a vertex marked by p1—that is, she can only delete a point adjacent to the starting
vertex. From then on, Traveler and Demon alternate their turns, with turns being
either traveling one edge further or deleting one node, respectively, where the Demon’s
second move at each ∀xj-module is restricted to nodes marked with pj (see Figure 2).
This continues in this manner until Traveler reaches a node that sees a clause node. At
this point, Demon has k – 1 moves, which she must use to delete all but one clause
node. Then, we allow Traveler two successive moves (once Demon has restricted her
choices to one clause node). Then, Demon and Traveler once again alternate single
moves until the game is resolved. See Figure 3 for an example.

The game adequately captures the truth of ϕ:

Observation 5.2. Traveler has a winning strategy for the game on (Mϕ, s) if and only
if the initial QBF formula ϕ is true.

Proof. Each travel path to the verification module yields a valuation. Say that a truth
value is selected for xi if Traveler’s path passes through the node labeled xi . At ∀xi
modules, Demon selects a truth value for xi . At ∃xj modules, Traveler selects a truth
value for xj . Once Traveler reaches a clause node, an assignment has thus been chosen
for all variables. Here, the design of the above modules guarantees the following two
key facts at that stage: (i) the deleted goal points are all and only those seen by the
visited vertices, and also, (ii) all unvisited ±xi vertices still have two adjacent goal
points.

If ϕ is true, then the assignment chosen in this manner (with Demon controlling ∀
and Traveler controlling ∃) makes all (disjunctive) clauses true. So, for every clause Ci ,
there is some visited ±xj node, for some ±xj that entails Ci . By design of the final
clause module, no matter which clause Traveler is at, there is some unvisited vertex
labeled ∓xj accessible from this clause vertex. Traveler can then travel to this vertex,
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where C1 C2

C2C1

C3

C3

x1

x1 x2 x3

x1x2 x2 x1 x2x3 x3and

s

p1 p1

x1 x1

g g

g g

g g

x2 x2g g

p3 p3g g

x3 x3g g

c2c1 c3

Fig. 3. An example. The proposition letter g marks the goal points. Each ∀-module forces
Traveler to the literal ±xj point chosen by Demon, while each ∃-module leaves the choice to
Traveler. The letters p1, ..., pk are level markers that restrict Demon’s moves. In the final module,
Demon forces Traveler into some clause. For each literal ±xj that makes such clause true,
Traveler can then go to the node labeled by dual literal ∓xj above.
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where she sees two goal points. Demon can remove at most one of them at her next
move, and Traveler therefore wins. Conversely, if ϕ is false, the final assignment makes
at least one clause false. Demon forces Traveler to the corresponding clause vertex:
because the current assignment makes the disjunctive clause false, all the accessible
±xj vertices have already been visited and, thus, do not see any goal points. Demon
therefore wins.

Lastly, to conclude the proof of Theorem 5.1, we make sure that MLSR can express
the existence of a winning strategy for Traveler. When ϕ starts with ∀ and has n
quantifiers and k clauses, the general form of the corresponding MLSR formula �ϕ is(

[– αj ]�
)f(n)

[�]k–1�2[– 
]�g

Here, f(n) is a function counting the total number of rounds played in the game up to
the final module: f is linear in n (it is in fact easy to see that f(n) ≤ 3n). The symbol
αj denotes pj whenever Traveler sees a pj-point in the corresponding ∀xj-module; it
stands for 
 otherwise. The formula �, on the other hand, is a Boolean combination of
ci ’s expressing that exactly one of the clauses is true. The repeated modalities capture
exactly the structure of the game and the restrictions on the players’ moves. The game
goes on for f(n) rounds until the penultimate stage is reached. The [– pj ] modalities
force Demon to remove only pj-points during the middle round played on a ∀xj-
module. Then, [�]k–1 quantifies over all ways in which Demon can remove k – 1 clauses
(all but one). The formula �ϕ expresses that Traveler can ensure that such a sequence of
moves results in reaching a goal point, and thus holds exactly if Traveler has a winning
strategy: equivalently, it holds if and only if the initial QBF formula ϕ is true.15

Note on game perspectives. While not strictly necessary for the proof of Theorem 4.1,
the above traveling game with point removal over the initial structure is independently
appealing, and it suggests links with the graph games that motivate sabotage logics
and related logics for graph change mentioned in §1 (van Benthem & Liu, 2020). As
a further perspective, the above traveling game is virtually identical to the standard
logical evaluation game for the crucial quantified Boolean formula in the above proof.
Making these game perspectives precise is left as an open problem here.

5.2. Satisfiability. Next, we show that, despite the recursive axiomatizability shown
in §3, stepwise removal has a complex theory. The satisfiability problem for the logic
MLSR is undecidable, which we establish by a reduction from the tiling problem, a
standard technique in modal logic (cf. (Blackburn et al., 2011; Marx, 2006), to which
we refer for details).

Theorem 5.3. The satisfiability problem for MLSR with two binary accessibility relations
Ru and Rr is undecidable.

Proof. LetT = {T1, ..., Tn}beafinite setof tile types.Givenatile typeTi ,u(Ti), r(Ti),
d (Ti) and l(Ti) will represent the colors of the upper, right, lower and left edges of Ti ,
respectively. For each tile type Ti , we fix a proposition letter ti that is going to encode

15 The results in this section extend to the expanded modal language of §3. The PSPACE lower
bound obviously remains valid, but so is the upper bound. The reason is that extending the
first-order translation of Fact 2.5 to nominals and PAL-modalities incurs only a polynomial
blow-up in size.
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Ti . We will now define an MLSR formula ϕT such that the following holds:

ϕT is satisfiable if and only if T tiles the discrete quadrant N× N.

The formula ϕT is the conjunction of the following MLSR formulas. The first three
describe the relational structure of a grid, the last three encode the behavior of a tiling
of the grid:

(Func) U〈– 
〉(�u⊥ ∧�r
)

U〈– 
〉(�r⊥ ∧�u
)

(Conf) U〈– 
〉(�r�u⊥ ∧�u�r⊥)

(Unique) U

( ∨
1≤i≤n

ti ∧
∧

1≤i<j≤n
(ti → ¬tj)

)

(Vert) U
∧

1≤i≤n

(
ti → �u

∨
1≤j≤n,u(Ti )=d (Tj )

tj

)

(Horiz) U
∧

1≤i≤n

(
ti → �r

∨
1≤j≤n,r(Ti )=l(Tj )

tj

)

(⇐) It is easy to see that any tiling of N× N induces a model for ϕT .
(⇒) For the other direction, suppose that M, w |= ϕT , for some LSR-model M =
(W,Ru,Rr, V ) and w ∈W . The formula (Func) ensures that the relations Ru and Rr
are functions, and that for every point x, that Ru[x] �= Rr [x] (the Ru and Rr-images
of x are different). The formula (Conf ) then guarantees that the functions commute:
Ru ◦Rr = Rr ◦Ru . This ensures the existence of an embedding f : N2 →W that
preserves the structure of vertical and horizontal successors: that is, for all (n,m) ∈ N

2,
we have Ru(f(n,m), f(n,m + 1)) and Rr(f(n,m), f(n + 1, m)). Now, tile the point
(n,m) in N

2 with tile Ti exactly if M, f(n,m) |= ti . This gives a tiling of the discrete
quadrant of the plane.

The two standard modalities used in this proof can be reduced to one using standard
techniques (Kracht & Wolter, 1999), but we forego details here because of the syntactic
cost involved in writing the formulas.

The above undecidability argument applies a fortiori to the richer language of §3
with nominals and PAL modlities. But it will also work with languages that are less
expressive thanMLSR. In particular, one can replace the universal modality by an extra
standard modality that can survey the domain by employing the well-known ‘spypoint
technique’ from hybrid logic. A detailed syntactic construction of this sort for modal
logics of graph games can be found in Zaffora Blando, Mierzewski, & Areces, 2020.

Having determined the complexity of model checking and satisfiability, one task
would remain, concerning definability and expressive power. However, we leave this
open here.

Open problem. What is the complexity of testing for SR-bisimulation?

Given any two finite models M, N , it is easy to find an EXPSPACE upper bound.
One considers the space of all models arising from M, N by deleting finite sequences
of different points, and then tests for ordinary modal bisimulation over this space
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with respect to MLSR, now viewed as a standard bimodal language. But, just as with
standard modal bisimulation (Kanellakis & Smolka, 1983), one can probably do better.

§6. Stepwise removal over first-order fragments. Having established the complexity
of adding quantification without replacement to the basic modal language, we can
also consider other fragments of first-order logic. Perhaps the simplest case is adding
the removal modality 〈– ϕ〉� to monadic first-order logic MFOL. As it turns out, this
yields exactly the formulas in MFOL x=: that is, all formulas with one free variable x in
monadic first-order logic with identity.

Theorem 6.1. MLSR(MFOL) = MFOLx=.

Proof. Fix finitely many unary predicates P1, ... , Pk . We define standard normal
forms for the whole language MFOL=. Local state descriptions sd are conjunctions of
±Pi with 1 ≤ i ≤ k. There are 2k of these, and they can be applied to arbitrary vari-
ables. Global state descriptionsSD of depth N are then conjunctions

∧
j SDj where, for

each local state description sdj , SDj is either the statement that exactlymj objects sat-
isfy sdj , where we havemj < N , or the statement that at least N objects satisfy sdj .

Definition 6.2. An enumerative normal form is a disjunction of conjunctions NF , each
consisting of (a) local state descriptions for each of the variables xi plus a complete set
of equalities and inequalities for all pairs of variables from x1, ..., xm, plus (b) a global
state description that is consistent with (a) in an obvious syntactic sense.

Claim. Each formula in MFOL= of quantifier depth N and m free variables x1, ..., xm
is equivalent to an enumerative normal form.

This can be proved by induction on formulas via a syntactic argument.16

Claim. MFOL= is closed under the modality 〈– ϕ〉�.

Proof of Claim.. Using the disjunction axioms for existential modalities and 〈– ϕ〉�
stated in Section 3, in proving closure, one can restrict attention to conjunctive forms
NF and special removal modalities 〈– sd ∧ SD〉NF . Closure can be shown here by a
simple argument, driven by the following two key facts:

• the equivalence 〈– sd ∧ SD〉NF ↔ (SD ∧ 〈– sd 〉NF ) is valid,17

• the formula 〈– sdi 〉(sd ′ ∧ SD) is equivalent to sd ′ ∧ SD[i := i + 1],

where SD[i := i + 1] replaces the quantification in the i-th conjunct of SD by a
quantifier stating the existence of one more point satisfying the relevant local state
description.

Arguments like this are available for other languages that admit of simple normal
forms of modal depth 1. Here is one obvious question.

16 Alternatively, NF describes a model M in such a way that, for any model N that satisfies
NF , Duplicator has a winning strategy in the Ehrenfeucht game over N rounds between M
and N starting with the partial isomorphism between the objects on both sides satisfying
the atomic diagram (a).

17 Here is a general useful principle that is easy to state in first-order syntax. When we take out
a point satisfying ϕ(x) ∧ �, where x does not occur free in �, then we can just put � outside
in a conjunction.
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Open problem. What fragment of first-order logic results from adding the dynamic
operators of MLSR to the language of modal S5?

We have some initial results, but the combinatorics get considerably more complex,
since the logic can now also distinguish between different equivalence classes in S5
models.

The general question suggested by the specific case analyzed in Theorem 6.1 is the
following: what is the boost in expressive power when we close fragments of first-order
logic under various model-changing modalities?

§7. Conclusion and further directions. The logic of stepwise removal of objects
lies in between modal logics of definable model change and logics for graph games
with arbitrary moves, and it may well be the most intuitive example of a modal
system that crosses the line from decidable to undecidable.18 We have established its
main properties, proving a bisimulation characterization theorem and other results on
expressive power, a completeness theorem, and two basic complexity results. Most of
the techniques that we used are well-known, others less so, and we also introduced a
new technique for proving completeness. The resulting style of thinking can be applied
to a wide range of modal systems of this sort.

Among the issues still to be addressed is the complexity problem for SR-bisimulation
(Section 5), as well as the expressive closure problem for S5. Moreover, all of our
questions return for some obvious extensions and variations.
Simultaneous versions of MLSR. It is natural to add a modality for removing a fixed
finite number of points, either in a conjunctive unary version 〈– (ϕ1, ..., ϕk)〉� or with
truly polyadic operators 〈– ϕ〉�, where the formulas ϕ can be evaluated in a tuple of
indices. These modalities seem undefinable as iterations of our unary 〈– ϕ〉�. Even so,
we conjecture that all of our results go through.

Another immediate question concerns other extended modal logics.

Connections with hybrid logic. MLSR seems closely related to hybrid modal formalisms
such as ‘memory logics’ that have been used to detect jumps to undecidability for
fragments of FOL in an illuminating manner (Areces et al., 2008). Given that MLSR
translates into a fragment of the first-order language, cf. Fact 2.5, it may be of
interest to compare the fragments that arise by adding the removal modality 〈– ϕ〉� to
various first-order fragments with the natural hierarchy offered by the memory-logic
perspective.19

Then, there is the question of the scope of our methods.

Axiomatizing logics of graph games. It is a long-standing open problem how to
axiomatize the validities of sabotage-style modal logics and related ones (Aucher

18 Another contender is the ‘modal fact change logic’ of Thompson (2020).
19 The referee has suggested looking also at a variant of MLSR, where 〈– ϕ〉� only describes

taking away a point satisfying � that is R-accessible from the current point. This modified
logic of ‘accessible’ object removal translates into H (@, ↓), i.e., the bounded fragment of
first-order logic.
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et al., 2018). Does our axiomatization technique for MLSR employing added dynamic
epistemic modalities work for these logics, as well?20

Next, returning to the issue of undecidability, a few questions arise naturally.

Other sources of undecidability. In addition to the undecidability induced by stepwise
removal, there is the undecidability induced by local link-cutting or local definable
point removal, taking place only at the current point of evaluation (Li, 2020). Both
modifications of dynamic-epistemic logics block the usual recursion axioms, both allow
for tiling encodings, but the connection remains to be clarified.

But there are also other perspectives on complexity that we have found.

Lowering the complexity of MLSR. CanMLSR be shifted back into the decidable modal
fold? For many logical systems, one can lower the complexity by a Henkin-style change
in the semantics (Andréka et al., 2016). In particular, one could restrict the removal of
points to those that are accessible from the current point in some global relation Axy
and, if this does not suffice for decidability, one might use further guarding, so that the
earlier first-order translations of MLSR formulas (from §2) end up inside guarded, or
loosely guarded, fragments of FOL.

Yet, moves like this make most sense when connected to a principled view of
computation. We believe that modal logics like MLSR, but also hybrid memory logics
or related systems, offer an interesting alternative take on the sources of computational
complexity. In the usual automata hierarchy, Turing machine power arises when we
have an active memory that can be rewritten. In our logics, however, a simple device
that merely stores the set of deleted or visited points suffices. The reason must be
the interplay of memory and expressiveness of the language for constructing models
around that memory, suggesting a sort of descriptive complexity theory complementary
to that of Immerman (1999).
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