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The present study addresses the reaction zone structure and burning mechanism
of unstable detonations. Experiments investigated mainly two-dimensional methane–
oxygen cellular detonations in a thin channel geometry. The sufficiently high temporal
resolution permitted the determination of the probability density function of the
shock distribution, a power law with an exponent of −3, and the burning rate
of unreacted pockets from their edges – through surface turbulent flames with a
speed approximately 3–7 times larger than the laminar one at the local conditions.
Numerical simulations were performed using a novel large-eddy simulation method
where the reactions due to both autoignition and turbulent transport were treated
exactly at the subgrid scale in a reaction–diffusion formulation. The model is an
extension of Kerstein and Menon’s linear eddy model for large-eddy simulation to
treat flows with shock waves and rapid gas-dynamic transients. The two-dimensional
simulations recovered well the amplification of the laminar flame speed due to the
turbulence generated mainly by the shear layers originating from the triple points and
subsequent Richtmyer–Meshkov instability associated with the internal pressure waves.
The simulations clarified how the level of turbulence generated controlled the burning
rate of the pockets, the hydrodynamic thickness of the wave, the cellular structure
and its distribution. Three-dimensional simulations were found to be in general good
agreement with the two-dimensional ones, in that the subgrid-scale model captured
the ensuing turbulent burning once the scales associated with the cellular dynamics,
where turbulent kinetic energy is injected, are well resolved.

Key words: compressible flows, detonation waves, turbulent mixing

1. Introduction
It is well known that multi-dimensional detonations exhibit a characteristic cellular

pattern on their fronts, as they propagate in a reactive medium. This cell pattern is
associated with wave interactions whose directions are predominantly transverse to
the direction of flow. At each transverse wave collision, whose natural spacing is of

† Email address for correspondence: bmaxwell@uottawa.ca
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FIGURE 1. Sketch showing a triple-point collision process. Various waves indicated are
the incident shocks (I), Mach shocks (M) and transverse shocks (T). The extents of the
turbulent reaction zones are also shown (R).

the order of 100 ideal, and steady, induction-zone lengths (Fickett & Davis 1979),
a new cell is formed as triple points are reflected from each other. This process is
illustrated in figure 1. The triple point is a key feature of detonation waves. It is the
location where three principal shock waves meet: the transverse wave, the Mach stem
and incident shock. The latter two are both associated with the front of the wave
as indicated in figure 1. Furthermore, these wave interactions, or cell patterns, are
generally classified as having either a regular structure or an irregular structure.

Regular detonations exhibit very structured-looking fish-scale patterns with
consistent, and repeating, cell sizes (Strehlow 1968; Austin 2003; Pintgen et al. 2003).
In general, regular detonations are associated with fuel mixtures having low activation
energies (Strehlow 1968). Typical examples are H2+O2 (pure hydrogen–oxygen) and
C2H2+O2 (acetylene–oxygen). Owing to the relatively low activation energies, regular
mixtures typically have little variation of ignition delays for the reactive gas mixture
that passes through the wave front structure. For this reason, it is generally believed
that the principal ignition mechanism is by adiabatic shock compression (Radulescu
et al. 2005). This was shown to be the case for regular detonations where the
structure is well predicted by considering only the ignition delay history of a shocked
particle, where transport mechanisms have been neglected (Edwards & Jones 1978).
For irregular mixtures, many experiments (Strehlow 1968; Subbotin 1975; Austin
2003; Radulescu et al. 2005; Kiyanda & Higgins 2013) have shown that a very
different cell pattern exists. Typically, irregular mixtures correspond to hydrocarbon
fuels with oxygen or air. These mixtures tend to exhibit much more stochastic-looking
cell structures. The cell sizes are much more variable, and sometimes contain what
appear to be cells within cells: a smaller cell structure within a much larger, and more
prominent, cell structure. Furthermore, a number of experiments have shown the wave
front to be highly turbulent, often giving rise to shocked unburned pockets of reactive
fuel in its wake (Subbotin 1975; Oran et al. 1982; Austin 2003; Radulescu et al.
2005; Kiyanda & Higgins 2013). An example experiment (Radulescu et al. 2007)
for an irregular detonation wave, involving methane–oxygen, is shown in figure 2. In
this figure, the turbulent structure is illustrated via schlieren photography. In figure 2,
each notable feature is also illustrated and labelled in a supplemental sketch. These
features include the various shock wave dynamics, shear layers and triple points. Of
particular interest is the presence of the unburned fuel pockets in the wake, also
shown in figure 2. Such pockets contain fine-scale corrugations on their edges due to
turbulence, where burning occurs.
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FIGURE 2. Detonation structure for CH4 + 2O2, initially at p̂o = 3.4 kPa: (a) a schlieren
photograph and (b) the corresponding explanatory sketch (Radulescu et al. 2007).

Irregular mixtures, which have higher activation energies, exhibit a much larger
variation of shock-induced ignition delays, for unburned fuel passing through the
wave structure, compared to regular detonations. Furthermore, experiments reveal that
the pockets of gas in the wake burn up relatively quickly, orders of magnitude faster
than expected from diffusionless ignition (Radulescu et al. 2005, 2007; Kiyanda
& Higgins 2013). As a result, the Zel’dovich–von Neumann–Doring (ZND) model
(Fickett & Davis 1979) does not predict well the structure behind the incident and
Mach shocks (Radulescu et al. 2005). This suggests that any unburned pockets in
the wake of irregular mixtures burn through turbulent mixing with product gases, and
not by shock compression alone. Currently, it is not yet understood how the burning
rate of these pockets affects the cell pattern observed on the wave front, and is the
principal topic investigated in this study. One hypothesis proposes that, as energy is
released from the burning of unreacted fuel mixture pockets, pressure pulses can reach
and perturb the leading shock, thus influencing the overall structure to generate new
cells (Oran et al. 1982). Such pressure pulses are able to reach the detonation front
since the unreacted pockets lie within the hydrodynamic structure of the detonation,
between the leading front and its trailing average sonic surface (Radulescu et al.
2007). Furthermore, the triple point appears to play a major role affecting the
dynamics of how these pockets burn out. Not only is the triple point a source of
high temperature and pressure due to shock compression from multiple waves, but it
is also a source of enhanced turbulent mixing. The triple point has been shown to
give rise to a shear layer in its wake that is susceptible to the Kelvin–Helmholtz (KH)
instability and forward jetting (Massa, Austin & Jackson 2007; Mach & Radulescu
2011; Bhattacharjee 2013). This shear layer thus acts to enhance mixing between
burned product gases with unburned pockets, and therefore acts to increase reaction
rates. Therefore, to gain further insight on irregular detonation propagation, it is
important to correctly model this hybrid ignition regime, where both turbulent mixing
and compression ignition are important.

To date, numerical investigations have been able to show that, with sufficient
resolution, mildly irregular detonation structures are recovered quite well by solving
Euler’s equations of fluid motion (Gamezo, Desbordes & Oran 1999; Sharpe 2001;
Cael et al. 2009), which do not account for turbulent mixing or molecular diffusion.
More recent numerical investigations, however, have attempted the same approach
for modelling highly irregular mixtures, with much higher activation energies, but
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with limited success (Radulescu et al. 2007). Although such attempts have provided
some insight into the roles that shock compression or turbulent motions may have on
detonation propagation, the solutions obtained were subject to changes in resolution
and did not converge to unique solutions (Radulescu et al. 2007). Furthermore,
such investigations have confirmed that very long induction times exist, of the
order of 100 times longer than observed experimentally, and that unburned pockets
burn out much more rapidly through numerical diffusion. Some recent modelling
attempts through direct numerical simulation (DNS) of the Navier–Stokes (NS)
equations address this problem by attempting to resolve the full spectrum of scales
present, including molecular diffusion effects. Unfortunately, such investigations
(Gamezo et al. 2000; Mahmoudi et al. 2014) have revealed that practically attainable
resolutions, in full-scale two-dimensional problems, are insufficient to capture the
correct reaction rates of unburned pockets. Thus, full-scale DNS is currently limited
to providing insight only on single isolated events, such as triple-point collisions
(Ziegler et al. 2011; Lau-Chapdelaine & Radulescu 2016). Furthermore, turbulence
inherently contains three-dimensional effects. It is well known that the dissipation of
turbulent motions, the Kolmogorov energy cascade, depends intimately on the ability
of vortices to stretch in the third dimension. For this reason, two-dimensional flows
tend to experience more backscatter, and hence produce larger-scale fluid motions,
compared to realistic three-dimensional flows (Kraichnan 1967; Leith 1968; Batchelor
1969). In order to address these fundamental shortcomings associated with Euler
simulations or DNS, a reasonable compromise between accuracy of solution and
resolvability is to employ large-eddy simulation (LES). For LES, the large-scale
fluid motions, governed by the NS equations, are solved directly using numerical
methods. The unresolved microscale turbulence is then modelled as a supplement to
the large-scale numerical solutions. Recent studies (Gottiparthi et al. 2009; Mahmoudi
et al. 2014) have demonstrated that LES can be used to provide insight on the subgrid
turbulent mixing effects that contribute to the highly irregular detonation reaction rate.
Full closure to the reaction rate, however, remains difficult, as it is typically obtained
by assuming either instantaneous mixing or reaction at the subgrid scale. Owing to
the difficulties associated with each of these strategies, adequate resolution of the
reaction rate of fuel following the wake of a detonation wave remains problematic.
All of this previous work clearly highlights the need to isolate and resolve turbulent
mixing and combustion rates in mixtures prone to irregular structures.

An alternative LES methodology that shows promise at capturing and resolving
mixing rates in detonation propagation problems is the linear eddy model for
large-eddy simulation (LEM-LES) (Menon & Kerstein 2011). In the past, LEM-LES
has been successfully applied to model weakly compressible turbulent premixed and
non-premixed flames (Menon & Calhoon 1996; Chakravarthy & Menon 2000). The
method is therefore adaptable to a range of combustion regimes. Furthermore, the
method has also been successfully applied to model supersonic inert mixing layers
(Sankaran & Menon 2005). Only recently has the methodology been applied to
treat, simultaneously, highly compressible and reactive flows that involve very rapid
transients in pressure and energy (Maxwell et al. 2015; Maxwell 2016). It has thus
been termed compressible LEM-LES (CLEM-LES). In the CLEM-LES context, the
subgrid is treated as a one-dimensional sample of a diffusion–reaction system within
each multi-dimensional LES cell. This reduces the expense of solving a complete
multi-dimensional problem through DNS while preserving microscale hotspots and
their physical effects on ignition. Thus, the model provides high-resolution closure
for the unresolved chemical reaction terms in the governing, LES-filtered, reactive
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NS equations. A principal advantage of this methodology is the ability to treat flows
where chemical reactions and microscale mixing occur on the same scales, without
the need to provide compromising assumptions on the reaction rate.

In the current work, experiments and numerical simulations have been conducted
in order to identify, qualitatively and quantitatively, the flow instabilities that lead
to turbulence in the wake of an irregular detonation wave. Moreover, the effect
that turbulent mixing has on the burning rates of unburned pockets of reactive
gas in the wake of such detonations has been studied. Particular focus has been
placed on investigating the impact that such turbulent burning of pockets has on
local wave velocities, observed cell patterns and overall wave structure. From the
physical experiments, useful quantitative statistical properties of the wave front (i.e.
wave velocity distributions) have been obtained, which are intended to serve as
validation criteria for numerical strategies applied to highly compressible combustion
problems involving detonations. To complement this experimental work, numerical
simulations have been conducted, using the CLEM-LES strategy (Maxwell 2016),
in order to examine the effect that turbulent fluctuations have on the resulting
flow-field evolution, through varying turbulence intensities of the flow. This was
achieved through calibration of a single tuning parameter, as will be discussed
later in the paper. As such, the numerical simulations have been validated to the
experiments accordingly. Further validation has also been made through comparison
to similar experiments (Kiyanda & Higgins 2013), which have also investigated
irregular detonation propagation in methane–oxygen.

The paper is organized as follows. First, the experimental work is presented in § 2,
which includes the methodology and also qualitative and quantitative results. Section 3
presents the strategy and formulation adopted to reconstruct, numerically, the observed
experimental flow field. Section 4 then presents the results obtained through numerical
simulation. Next, § 5 offers a discussion on the findings from both experiments and
numerical simulations and provides further analysis. Finally, conclusions are presented
in § 6.

2. Experiments
2.1. Methodology

For the experiments conducted in this study, a shock tube technique is used,
as illustrated in figure 3. The shock tube is 3 m in total length and has a
rectangular cross-section whose height is Ĥ = 203 mm by d̂ = 19 mm wide. The
narrowness of its cross-section in one direction allows one to establish detonations
whose cellular structure is essentially two-dimensional, permitting comparison with
two-dimensional simulations. The experimental set-up consists of a test section
where a methane–oxygen mixture (CH4 + 2O2) was filled to the desired pressure of
p̂=3.5±0.1 kPa. Such a low pressure has been chosen to allow the formation of cells
larger than the channel thickness, in order to obtain mainly two-dimensional structures.
Furthermore, this pressure is consistent with previous investigations (Radulescu et al.
2007; Kiyanda & Higgins 2013), to provide useful comparison. This test section
was separated from a driver section by an 80 µm thick plastic diaphragm, which
contained acetylene–oxygen (C2H2 + 2.5O2) at p̂ ∼ 20 kPa. A detonation was first
initiated in the driver section by a capacitor discharge, delivering ∼1 kJ in less than
2 µs, to a spark plug located at the end wall, as shown in figure 3. This application
of a driver section was necessary to ensure that a detonation wave propagates through
the test section, which is difficult to initiate directly at such a low pressure. Prior
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Diaphragm Viewing area

Driver section
2C2H2 + 5O2

Test section
CH4 + 2O2@3.5 kPa H

Spark plug

FIGURE 3. Shock tube set-up for the detonation propagation experiment in CH4 + 2O2,
initially at p̂o = 3.5 kPa.

to conducting the experiment, each chamber was evacuated below 80 Pa before it
was filled with the respective gas. To capture the resulting flow-field evolution, a
high-speed camera (Phantom V1210) was used to take schlieren photographs, an
imaging technique that uses refraction of light in a fluid to capture density gradients
(Settles 2001), with a frame rate of 77 108 frames per second. The schlieren system
uses 12 inch field mirrors and a continuous high-intensity light-emitting diode (LED)
light source. This permits velocimetry of the various shock speeds in the flow field
with ∼10 µs time resolution. Further details on the experiments can be found in
Bhattacharjee (2013).

2.2. Qualitative observations
In figure 4, an example flow evolution of a detonation in CH4 + 2O2 at p̂ =
3.5± 0.1 kPa is shown. This figure shows a sequence of schlieren images, at 11 µs
intervals, where various features are observed. These features include the incident and
Mach shocks and triple points, previously indicated in figure 1. In the sequence of
images presented, the reaction zone behind the incident shock, labelled in figure 4(d),
is decoupled from the shock wave. This is observed by a thick region between the
smooth shock and the textured region where turbulent burning occurs. This decoupling
between the shock and reaction zone can be seen to give rise to a pocket of unburned
gas behind the triple-point collision process, as observed in figure 4(e–i). Furthermore,
shear layers are observed behind the triple-point trajectories, which give rise to KH
instability. These hydrodynamic instabilities are further disrupted and thus enhanced
by the passage of transverse shock waves, also originating from the triple point.
Finally, behind the newly formed Mach shocks, following the triple-point collisions,
the wave appears overdriven, as observed by a close coupling between the reaction
zone and leading shock wave in figure 4(k).

In figure 5, a repeated experiment at the same conditions reveals a very different
cell pattern on the wave front. Thus the wave structure appears stochastic, reflecting
the highly irregular nature of detonations in methane–oxygen. Thus, it is of particular
interest to examine how turbulent mixing, driven through turbulent instabilities
and velocity fluctuations, can impact the overall cell structure and propagation
characteristics of a detonation wave.

2.3. Statistical analysis: velocity of the wave
Four different experiments were conducted at the same conditions. In order to obtain
useful quantitative data, and to gain insight into the observed flow-field patterns,
velocimetry of the wave was performed on all images obtained from all experiments.
A probability density function (p.d.f.) of wave velocities was constructed and is shown

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

14
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.145


652 B. McN. Maxwell and others

Incident
shock

(a) (b) (c)
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(d) (e) ( f )

Mach shock

Kelvin–
Helmholtz
instability

De-coupled
reaction zone
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reaction
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FIGURE 4. Detonation flow evolution for CH4 + 2O2, initially at p̂o = 3.5 kPa, obtained
for successive frames, 11 µs apart (Bhattacharjee 2013). Various features of interest are
indicated: the incident and Mach shocks, triple points, decoupled reaction zone (pocket of
unreacted gas) and shear layers where KH instability is present.

in figure 6. This figure shows the probability of the wave having a certain velocity at
any random time and location. The wave speeds expected on the detonation front (D)
are normalized by the averaged propagation speed, which for this study was found
to be Davg = 5.19 (1850 m s−1). It is noted that an average velocity deficit exists
compared to the theoretical Chapman–Jouguet (CJ) value of DCJ = 6.30 (2240 m s−1),
owing to mass divergence from the flow to the boundary layers found on the glass
walls of the channel (Fay 1959). To measure the wave speed, at any given location
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Different cellular
pattern from (a1)

(a1) (b1) (c1)

(a2) (b2) (c2)

FIGURE 5. Another detonation flow evolution for CH4 + 2O2, initially at p̂o = 3.5 kPa,
also obtained for successive frames (a2–c2), 11 µs apart (Bhattacharjee 2013). In this
experiment, a different cell pattern compared to figure 4 (shown here in frames a1–c1)
is observed on the wave front.

101

100

10–1

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

P.
d.

f.

FIGURE 6. (Colour online) P.d.f. of a detonation wave, for H = 20 (203 mm), having
a certain velocity (D/Davg) at any given moment and location (this study). Also shown
is a p.d.f. compiled from Kiyanda & Higgins (2013) for H = 10 (100 mm). Note that
Davg = 5.19 (1850 m s−1) for H = 20 and Davg = 5.53 (1970 m s−1) for H = 10. The
theoretical CJ value is DCJ = 6.30 (2240 m s−1).

on the shock, the distance the shock travels, along its normal vector, to the next
intersecting shock location in the subsequent schlieren image is divided by the time
in between images (11 µs). A total of 6651 velocity measurements were collected
using this procedure. The p.d.f. was then evaluated at δD= 0.2 intervals. Also shown
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in figure 6, for comparison, is a p.d.f. obtained from experimental data provided in
Kiyanda & Higgins (2013) for an experiment at the same conditions, but for half
of the channel height (Ĥ = 100 mm). Here, 37 velocity data points are available,
along the channel walls, to construct the p.d.f. from one entire cell cycle. For this
experiment, Davg = 5.53 (1970 m s−1).

Two principal observations are made. First, for this study the most probable wave
speed favoured is (D/Davg)= 0.93± 0.04 with a peak p.d.f. value of 3.3. This implies
that the detonation tends to favour a greater chance of having wave speeds below
the average propagation speed value, i.e. when (D/Davg) < 1. This observation was
also made previously for irregular detonation wave propagation, through statistical
analysis, in several studies (Radulescu et al. 2007; Shepherd 2009; Mevel et al.
2015). Since the wave spends more time below CJ velocities, most of the unburned
gas that is shocked by the wave front has a lower post-shock temperature, and thus
a much longer ignition delay compared to the ZND model. For this reason, and
owing to very strong unsteady expansion effects (Lundstrom & Oppenheim 1969;
Austin 2003; Radulescu et al. 2005; Kiyanda & Higgins 2013), unburned pockets
of gas are able to form in the wake, which eventually burn up through turbulent
mixing. This burning through turbulent mixing is believed to be a very important
mechanism that allows irregular detonations to sustain propagation (Radulescu et al.
2005, 2007; Borzou & Radulescu 2016). The second observation made is that the
p.d.f. has a decaying behaviour, where the probability of the wave speed exhibits
an approximate power-law dependence on wave speeds above the favoured value.
From the experiments conducted here, the p.d.f. was found to be well predicted
by p.d.f. = 2.6(D/Davg)

−4.0. A similar power-law correlation was also observed
by Radulescu et al. (2007) from high-resolution Euler simulations, who found a −3
power-law dependence of the p.d.f. on detonation velocity. When compared to existing
experimental data (Kiyanda & Higgins 2013), whose p.d.f. correlation was found to
be p.d.f. = 1.9(D/Davg)

−4.7, very close agreement is observed, despite propagation
through a channel with only half the height (H). In Kiyanda & Higgins (2013),
the most probable wave speed favoured is (D/Davg) = 0.814 ± 0.005 with a peak
p.d.f. value of 6.15.

2.4. Rate of burning of fuel pockets in the wake
For the detonation wave, shown previously in figure 4, it is of particular interest
to estimate the rate at which burning of the pockets of unreacted gas occurs. Upon
isolating a single pocket surface, starting with figure 4(g), an approximate method
to estimate the turbulent flame speed is to consider the pocket’s size, and how long
it takes to be consumed. For this method, the pocket’s volume (V̂) and surface
area (Âs) are estimated from the figure by tracing the pocket shape with a linear
spline, multiplied by the channel depth in the third dimension. In this regard, the
reader is cautioned that the extent of the structures based on the schlieren image is
sensitive to the experimental set-up, for which the sensitivity has not been quantified.
For this particular pocket, the characteristic length of the pocket is estimated as
L̂ = V̂/Âs = 5.30 mm, where V̂ = 36 000 mm3 and Âs = 6800 mm2. From this
moment, it takes the pocket four frames (44 µs) to become fully consumed. Thus,
the turbulent flame speed, from experiment, is Ŝt ≈ L̂/1t̂ = 120 m s−1. To compare
with the local laminar flame speed, post-shock conditions are considered for a shock
travelling at 70 % the theoretical CJ speed for the given quiescent mixture. This
particular state of reference (70 % CJ) has been chosen since wave velocity deficits
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of 20–30 % have been found in the current experiment to exist near the end of the
cell cycle during propagation. Furthermore, this state is representative of the pockets
of unreacted gas, which form in regions where the shock strength is weaker. The
velocity deficits, near the end of the cell cycle, give rise to a significant increase in
ignition delay by several orders of magnitude (Radulescu et al. 2007), thus allowing
the pocket to decouple from the wave front. Then, by considering realistic chemistry
using Cantera libraries (Goodwin, Moffat & Speth 2016) and the GRI-3.0 detailed
kinetic mechanism (Smith et al. 2016), the state properties of the unburned pocket,
and the laminar flame speed are obtained prior to autoignition of the pocket. In
this case, ŜL, 70 % CJ = 16.4 m s−1. Thus, the turbulent flame speed is found to be
approximately seven times larger than the laminar flame speed, i.e. Ŝt/ŜL ≈ 7.3.

3. Numerical reconstruction of the flow field
3.1. Overview

In order to reconstruct the flow-field evolution observed experimentally, LEM-LES
(Menon & Kerstein 2011) has been applied. In this approach, solutions to the
governing NS equations were obtained at two different scales; the supergrid and the
subgrid scales. On the large scales, the governing LES equations are obtained in
the usual manner by filtering the NS equations to some attainable scale. Subgrid
contributions are then accounted for through the appropriate closure model. For
LEM-LES, the closure model is a self-contained one-dimensional diffusion–reaction
system within each LES cell. This strategy has proven to be effective for both
non-premixed (McMurtry, Menon & Kerstein 1992; Menon et al. 1994; Menon &
Calhoon 1996) and premixed (Menon & Kerstein 1992; Menon et al. 1993; Calhoon,
Menon & Goldin 1995; Calhoon & Menon 1996; Smith & Menon 1996, 1997;
Chakravarthy & Menon 2000; Porumbel 2006) combustion applications. The LES
formulation adopted here largely follows previous LEM-LES implementations (Smith
& Menon 1997; Sankaran 2003; Menon & Kerstein 2011) with a few differences in
formulation and implementation. The most significant and novel contribution to the
advancement of the LEM-LES strategy is the treatment of pressure on the subgrid,
and its influence on reaction rates, which allows for adequate closure of the reaction
rate in the presence of shocks and strong expansions that evolve on the supergrid.

A significant realization of this methodology is that information regarding local
hotspots and contact surfaces on the molecular level are accounted for and resolved.
This subgrid modelling strategy thus provides high-resolution closure to the filtered
reaction rate on the large scales. Furthermore, to simulate the effect of turbulent
mixing at the subgrid scale, the one-dimensional flow fields are randomly ‘stirred’
by linear eddies according to a p.d.f. (Kerstein 1991a). The effect of the resulting
compressive strain on the flow field, due to the presence of the random subgrid
eddies, is to reproduce the turbulent diffusivity on the small scales, based on local
properties of the flow on the large scales. The principal advantage of this modelling
strategy is that restrictive assumptions, such as infinitely fast mixing or chemical
reactions, are not required.

Finally, adaptive mesh refinement (AMR) is applied to the supergrid, providing
increased efficiency in obtaining solutions by computing high-resolution solutions
only in the regions of interest. In this section, the strategy formulation is first
summarized for both the supergrid and subgrid scales, respectively in §§ 3.2 and 3.3.
Then, the simulation set-up, including initial and boundary conditions, and also the
numerical parameters are presented in § 3.5. Finally, results of the simulation are
provided in § 4. Specific details of the CLEM-LES strategy, including procedural
algorithms, numerical methods and limitations, are given in Maxwell (2016).
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3.2. The filtered large-eddy simulation equations
For flows that are highly transient, turbulent, compressible and involve rapid
combustion chemistry, the gas-dynamic evolution is governed by the compressible NS
equations. In order to address the difficulty of resolving the full spectrum of length
scales resulting from the presence of large flow velocities with high Mach numbers
(Ma) and Reynolds numbers (Re), the unresolved scales of the governing equations
are filtered and modelled through the LES approach. In this respect, rapid transients
and fluid motions are captured on the large scales, while the small-scale contributions
are modelled through source terms. The LES-filtered conservation equations for mass,
momentum and energy (sensible plus kinetic) of a calorically perfect reactive fluid
system are given below in (3.1)–(3.3), respectively. Here, a linear eddy viscosity
model (Pope 2000) and gradient-driven turbulent heat diffusion hypothesis (Poinsot
& Veynante 2005; Combest, Ramachandran & Dudukovic 2011) have been applied
to describe the inert effect of velocity fluctuations on the flow field in terms of a
turbulent kinematic viscosity, νt. The set of equations are further supplemented by a
one-equation localized kinetic energy model (LKM) (Schumann 1975; Chakravarthy
& Menon 2001) to describe the diffusion, advection, production and dissipation of
the subgrid kinetic energy (ksgs) associated with subgrid velocity fluctuations in the
flow; see (3.4). Finally, the equations of state are given by (3.5). It should be noted
that the equations are given in non-dimensional form where the various gas properties
are normalized by the reference quiescent state. Favre-averaged filtering is achieved
by letting f̃ = ρf /ρ̄, where f represents one of the many state variables. Here ρ, p, e,
T and u refer to density, pressure, specific sensible plus kinetic energy, temperature
and velocity vector, respectively. Other usual properties to note are the heat release
Q, the ratio of specific heats γ , the kinematic viscosity ν, the resolved shear stress
tensor ¯̄τ , and the Prandtl number Pr:

∂ρ̄

∂t
+∇ · (ρ̄ũ)= 0, (3.1)

∂(ρ̄ũ)
∂t
+∇ · (ρ̄ũũ)+∇p̄−∇ · ρ̄(ν + νt)

(
∇ũ+ (∇ũ)T − 2

3
(∇ · ũ)I

)
= 0, (3.2)

∂(ρ̄ẽ)
∂t
+∇ · ((ρ̄ẽ+ p̄)ũ− ũ · ¯̄τ)−( γ

γ − 1

)
∇ ·

(
ρ̄

(
ν

Pr
+ νt

Prt

)
∇T̃
)
=−Qω̇, (3.3)

∂(ρ̄ksgs)

∂t
+∇ · (ρ̄ũksgs)−∇ ·

(
ρ̄νt

Prt
∇ksgs

)
= Ṗ− ρ̄ε, (3.4)

ẽ= p̄/ρ̄
(γ − 1)

+ 1
2

ũ · ũ+ ksgs and ρ̄T̃ = p̄. (3.5a,b)

Above, the various state variables have been normalized such that

ρ = ρ̂

ρ̂o
, u= û

ĉo
, p= p̂

ρ̂oĉo
2 =

p̂
γ p̂o

, T = T̂

γ T̂o

, x= x̂

∆̂1/2

, t= t̂

∆̂1/2/ĉo

,

(3.6a−f )
where the subscript ‘o’ refers to the reference state, the hat superscript refers to
a dimensional quantity, I is the identity matrix, c is the speed of sound, and ∆̂1/2
is a reference length scale. This reference length scale is taken as the theoretical
half-reaction length associated with the steady ZND solution for a detonation wave
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propagating in the quiescent reference fluid. In the equation set above, the subgrid
kinetic energy, ksgs, is produced at the same rate as the large-scale turbulent motions
are dissipated, on the supergrid, through the turbulent kinematic viscosity. Hence, the
rate of production of subgrid kinetic energy is given by

Ṗ= ρ̄νt
(
∇ũ+ (∇ũ)T − 2

3(∇ · ũ)I
)
· (∇ũ) (3.7)

and the dissipation rate is modelled as

ε =π

(
2ksgs

3Cκ

)3/2/
∆̄. (3.8)

Finally, a Smagorinsky-type model is applied to link the turbulent kinematic viscosity
to the unresolved velocity fluctuations (Pope 2000), and thus the subgrid kinetic
energy, through

νt = 1
π

(
2

3Cκ

)3/2√
ksgs∆̄. (3.9)

Here, Cκ is the Kolmogorov constant, a model parameter that requires calibration.
Typically, Cκ is estimated from experiments to be ∼1.5; however, published values
range anywhere from 1.2 to 4 (Chasnov 1991). Also found in (3.8) and (3.9) is
the LES filter size, ∆̄. For simplicity, it is assumed that ∆̄ = b, where b is the
minimum grid spacing. It is noted, however, that this assumption may introduce
errors at fine–coarse cell interfaces when coupled with AMR (Pope 2004; Vanella,
Piomelli & Balaras 2008). Since the bulk of the subgrid kinetic energy is generated
and dissipated in regions containing shock waves, which are refined to the highest
level, it is believed that such fine–coarse interface errors will not affect the solution
outcome. Finally, to close the conservation of energy equation (3.3), the heat release
term, ω̇, requires closure. This is done through the application of the CLEM subgrid
within each LES cell.

3.3. The CLEM subgrid model
For the CLEM subgrid modelling strategy, the small-scale mixing and chemical
reactions are solved separately from the large-scale pressure evolution. The present
implementation of the LEM strategy, introduced by Kerstein (1988, 1989, 1990,
1991a,b, 1992a,b), differs from previous subgrid formulations for LES (McMurtry
et al. 1992; Menon et al. 1993; Calhoon & Menon 1996; Menon & Calhoon 1996;
Mathey & Chollet 1997; Sankaran 2003; Porumbel 2006; Menon & Kerstein 2011) by
ensuring appropriate coupling of the pressure and energy fields on both scales. More
specifically, the supergrid simulation, (3.1)–(3.4), provides the local rates of change
of pressure to the subgrid (i.e. the pressure evolution), while the subgrid model is
then applied to simulate the small-scale molecular mixing and chemical reactions,
which thus provides ω̇ to the supergrid as a source term. Thus, the sole purpose of
the subgrid simulation is to provide closure to ω̇ in (3.3).

Here, the subgrid model is a one-dimensional representation of the flow field
within each supergrid cell whose orientation is aligned in the direction of local
flow. Furthermore, the subgrid simulation is only applied to the finest cells on the
AMR-enabled supergrid. Thus, each supergrid cell on the finest grid level, which
requires closure, contains one subgrid domain. To formally derive the subgrid model,
presented below, the low-Mach-number approximation (Paolucci 1982) is applied to
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the governing NS equations. In this approximation, pressure gradients are locally
neglected within the small scales of each supergrid cell. This effectively assumes that
pressure waves travel much faster than the physical expansion or contraction of the
local fluid relative to its convective motion (Maxwell et al. 2015).

Furthermore, the chemistry has been simplified by assuming that reactants form
products according to a single-step global reaction with no intermediate reactions:
reactants → products directly and irreversibly. In reality, the reaction rate (ω̇) is
governed by chemistry involving multiple reactions between multiple species. This
requires significant computational overhead due to the requirement to account for
hundreds, or thousands, of equations and reactions in reactive flows. Thus, for the
subgrid system, the resulting conservations of enthalpy and reactant mass, along
particle paths, are expressed in non-dimensional form as

ρ
DT
Dt︸ ︷︷ ︸

rate of change
of enthalpy along

a particle path

−
(
γ − 1
γ

)
ṗ︸ ︷︷ ︸

rate of change of
energy due to local

pressure changes

− ρ ∂

∂m

(
ρα
∂T
∂m

)
︸ ︷︷ ︸

heat diffusion
to neighbouring
fluid elements

=−
(
γ − 1
γ

)
Qω̇︸ ︷︷ ︸

heat release

+ ḞT, (3.10)

ρ
DY
Dt︸ ︷︷ ︸

rate of change of
reactant density along

a particle path

− ρ ∂

∂m

(
ρ
α

Le
∂Y
∂m

)
︸ ︷︷ ︸

reactant diffusion
to neighbouring
fluid elements

= ω̇+ ḞY, (3.11)

where Y is defined as the reactant mass fraction. In this formulation, the material
derivative has been applied, where Dφ/Dt = ∂φ/∂t + u(∂φ/∂x). Also, m is a one-
dimensional mass-weighted Lagrangian coordinate whose transformation to Cartesian
spatial coordinates is given by

m(x, t)=
∫ x

xo

ρ(x, t) dx. (3.12)

Then, for the one-step global reaction mechanism, which considers a single premixed
reactant, with mass fraction Y , products are formed according to the single-step
Arrhenius expression (Williams 1985):

ω̇=−ρAYe(−Ea/T), (3.13)

where Ea is the non-dimensional activation energy of the reactant mixture. Here, the
activation energy (Êa), heat release (Q̂) and pre-exponential factor (Â) are normalized
according to

Ea = Êa

ĉo
2 , Q= Q̂

ĉo
2 , A= Â

ĉo/∆̂1/2

. (3.14a−c)

Furthermore, it is useful to define the following transport relationships in order to
relate viscosity to heat and mass diffusion in terms of Reynolds (Re), Prandtl (Pr),
Schmidt (Sc) and Lewis numbers (Le):

µ= ρν = 1
Re
= µ̂

ρ̂oĉo∆̂1/2

, α = µ

Pr
= k̂/ĉp

ρ̂oĉo∆̂1/2

, Le= Sc
Pr
= k̂/ĉp

ρ̂D̂
. (3.15a−c)
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The source terms, ḞT and ḞY , in (3.10) and (3.11) do not take on any specific values,
but rather account for the effect of turbulence on the subgrid in the form of random
‘stirring’ events (Kerstein 1991a). These ‘stirring’ events are implemented as a
series of random instantaneous remapping procedures on the subgrid. The remapping
procedure is designed to simulate the effect that a multi-dimensional eddy would
have on a one-dimensional sample of the flow field. In order to achieve this, a triplet
map is implemented, as detailed by Kerstein (1991a). Functionally, the application of
these ‘stirring’ events depends on the local turbulent diffusivity (or viscosity), which
in turn depends on local velocity fluctuations through the subgrid kinetic energy, ksgs.
Finally, the source term involving ṗ accounts for enthalpy changes that arise from
local temporal changes in pressure, which is obtained from the supergrid simulation.

3.4. Numerical implementation
In order to solve the system of equations (3.1)–(3.4), a numerical framework
developed by Mantis Numerics is employed. The compressible flow solver uses
a second-order-accurate exact Godunov solver (Richtmyer & Morton 1967; Falle
1991), which features a symmetric monotonized central flux limiter (van Leer 1977)
to treat the convection terms. The diffusive terms are handled explicitly in time
using the forward Euler method, and spatially discretized using second-order-accurate
central differences (Tannehill, Anderson & Pletcher 1997). Structured Cartesian grids
are applied in order to take advantage of AMR (Falle & Giddings 1993) for increased
efficiency. It should be noted, however, that the application of LEM-LES may not
necessarily be limited to structured Cartesian grids (Cannon et al. 2001). In this
work, AMR is implemented only on the supergrid, equations (3.1)–(3.4). Specifically,
the supergrid is refined, on a per-cell basis, in regions where the density or reactant
mass (ρ̄ or ρ̄Ỹ) changes by more than 0.1 % locally between existing grid levels.
Furthermore, when a cell is flagged as ‘bad’, or needing refinement, this badness is
diffused by approximately 5–10 cells in each direction on the current grid level. For
the purpose of refinement, the Favre-averaged reactant mass, ρ̄Ỹ , is obtained from
information stored entirely on the subgrid, through

ρ̄Ỹ =

N∑
i=1

miYi

Vcell
, (3.16)

where m and Y refer to the mass and reactant mass fraction, respectively, of each ith
subgrid element within the LES cell, and Vcell is the LES cell volume. The supergrid is
also refined in the presence of shocked and unburned reactant (i.e. ρ̄Ỹ>0 and ρ̄ >1.1).
Furthermore, the subgrid model is only active on the finest cells of the supergrid
system, and not the coarsest and intermediate grid levels. AMR is not applied to
the subgrid domains. For newly refined supergrid cells, and thus newly created LEM
subgrid domains, the initial values of ρ and T take on those of the supergrid, and
Y = 1.

To solve the subgrid system of equations (3.10) and (3.11), operator splitting
(Leveque 2002) is applied to treat the various terms. First, the enthalpy contribution
due to pressure changes is applied to each LEM element through the source term ṗ, as
detailed in Maxwell (2016). Then, the diffusion terms are solved in the same manner
as the supergrid diffusion terms: explicitly in time using the forward Euler method,
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Random perturbations to
quiescent density field

Symmetry bc

Symmetry bc

Zero
gradient bc

FIGURE 7. Initial and boundary conditions for the two-dimensional planar detonation
propagation experiment (not to scale). Note that ∆̂1/2 = 9.68 mm.

and spatially discretized using second-order-accurate central differences (Tannehill
et al. 1997). This is done for successive and sufficiently small subgrid time steps
(1tdiff ) in order to satisfy either the Courant–Friedrichs–Lewy (CFL) stability criterion
associated with the explicit diffusion operation, or the time at which the stirring event
occurs, whichever is smaller. Then, the reaction terms are solved, implicitly, for the
same time step, 1tdiff , using the backward Euler method (Tannehill et al. 1997).

Procedurally, the supergrid system of equations (3.1)–(3.4) is solved first for one
global time step (1t) without chemical reaction by letting ω̇ = 0. This provides ṗ
to the subgrid system, (3.10) and (3.11), which is then simulated in each refined
supergrid cell for the same 1t. Zero-gradient boundary conditions are assumed
for the LEM domains during this process. This provides the exact ω̇ contribution,
which is then accounted for in (3.3). Finally, once the LEM domains evolve across
each supergrid time step (1t), large-scale advection of LEM elements is handled
by transferring elements to or from neighbouring cells through a splicing procedure
detailed in Sankaran (2003). This is easily implemented and satisfies the basic mass
conservation requirement since the mass flux (ρ̄ũ) across each LES cell face is
known. More specific details on the procedure, methodology, algorithms and model
derivation are found in Maxwell (2016).

3.5. Numerical domain and model parameters
A schematic showing the set-up for the numerical domain is shown in figure 7. In all
simulations, the total domain length is 900 half reaction lengths (∆̂1/2) long, which is
sufficient to allow adequate sampling and analysis of the detonation structure beyond
the time it takes for the CJ speed to be recovered. A domain height of 20∆̂1/2

corresponds to the experiments in § 2, while a height of 10∆̂1/2 corresponds to the
experiments of Kiyanda & Higgins (2013). For the wall boundary, shown in figure 7,
u= v= ksgs = 0 and the normal gradients of all remaining variables are zero. For the
symmetry boundary condition, only the normal velocity component is taken as zero.
Thus v= 0, while the normal gradients of all other variables are also zero. Finally, the
zero-gradient boundary condition assumes that all normal gradients for all variables
are zero. To initiate the planar detonation wave, an initially overdriven ZND profile
is initialized in the first 20∆̂1/2 lengths of the computational domain. The initial ZND
profile corresponds to an overdriven detonation by 10 % or 20 % in order to overcome
start-up errors associated with the initially sharp discontinuity at the shock. A section
ahead of the ZND profile, 4∆̂1/2 long, contains random perturbations to the quiescent
density field. This allows for the two-dimensional cellular structure to develop further
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down the channel. Finally, the resulting expansion wave which originates from the
wall boundary acts to decelerate the wave from its overdriven state to the theoretical
CJ speed (Fickett & Davis 1979). Formally, the initial conditions for ρ, u, p and Y
are given according to

ρ(x, y, 0)=
ZND solution if x< 0,

1.25− 0.5n if 0 6 x 6 4,
1 otherwise,

(3.17a)

u(x, y, 0)=
{

ZND solution if x< 0,
0 otherwise, (3.17b)

v(x, y, 0)= 0, (3.17c)

p(x, y, 0)=
{

ZND solution if x< 0,
1/γ otherwise, (3.17d)

Y(x, 0)=
{

ZND solution if x< 0,
1 otherwise, (3.17e)

where n is a random real number from 0 to 1. For the turbulent kinetic energy,
ksgs(x, y, 0)= 0 everywhere, and is therefore self-generating throughout the simulation.

Next, in order to determine the required model parameters that mimic the
experimental premixed methane–oxygen mixtures, from § 2 and Kiyanda & Higgins
(2013), the various dimensional and non-dimensional properties were obtained using
the procedure detailed in Maxwell (2016). To summarize the procedure, the global
activation energy, heat release, post-shock flame speed and the ZND structure (Fickett
& Davis 1979) are first obtained using the Cantera libraries (Goodwin et al. 2016) for
realistic chemistry with the GRI-3.0 detailed kinetic mechanism (Smith et al. 2016).
The pre-exponential factor, A, and diffusion coefficients are then chosen such that the
one-step model reproduces the correct half reaction length, ∆̂1/2, and also the correct
laminar premixed flame speed at post-shock conditions, prior to autoignition, for a
shock travelling at 70 % the theoretical CJ speed for the given quiescent mixture. This
particular state of reference (70 % CJ) was previously chosen in order to evaluate the
laminar flame speed of unburned pockets of gas in § 2.4. The various dimensional
and corresponding non-dimensional parameters relevant to the one-step combustion
model are given in table 1.

4. Simulation results
4.1. Preliminary simulation results

Here, a CLEM-LES simulation was conducted for a Cκ value of 1.5 to illustrate the
solution. The maximum resolution of the supergrid was set to b= 1/32 (32 cells per
λ̂1/2), while the number of subgrid elements within each LES cell was set to N = 16.
For the AMR implementation, the base grid (G1) has a resolution of bG1= 1 with five
additional levels of refinement for a total of six grid levels on the supergrid. Also,
the domain height for this simulation was H = 20, consistent with the experiments
in § 2. In the simulation, the wave was allowed to travel approximately ∼850∆̂1/2
downstream, which was found to be sufficient to allow the wave to reach a quasi-
steady state, in terms of velocity and exhibited cell patterns. Snapshots of the density
and temperature fields of the wave, for a particular instant in time near the end of
the channel, are shown in figure 8. This particular figure shows that a very irregular
pattern emerges on the front. Clearly, there is one large cell that spans half of the
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Dimensional properties

ρ̂o 0.04 kg m−3 ĉo 356.36 m s−1 Êa/R̂ 18 357.4 K
D̂CJ 2243.31 m s−1 D̂70 % CJ 1571.55 m s−1 ŜL, 70 % CJ 16.39 m s−1

T̂CJ 3159.60 K p̂CJ 90.7 kPa ρ̂CJ 0.07 kg m−3

T̂70 % CJ 1085.39 K p̂70 % CJ 81.0 kPa ρ̂70 % CJ 0.24 kg m−3

T̂VN 1726.74 K p̂VN 169.5 kPa ρ̂VN 0.32 kg m−3

ν̂ 1.9× 10−4 m2 s−1 k̂/(ρ̂ĉp) 4.8× 10−4 m2 s−1 D̂ 2.0× 10−4 m2 s−1

Q̂ 6388.0 kJ kg−1 ∆̂1/2 9.68 mm

Non-dimensional model parameters

ν 3.68× 10−3 DCJ 6.30 D70 % CJ 4.41
Le 1.32 Pr 0.709 Sc 0.933
Prt 1.0 Sct 1.0 γ 1.17
Ea 45.0 Q 50.3 A 8.96× 103

TABLE 1. Dimensional and non-dimensional fluid properties, and model parameters, for
methane–oxygen combustion at T̂o = 300 K and p̂o = 3500 Pa.

domain height, and several much smaller cells above it. Also shown in the figure is the
formation of a typical unburned pocket of reactive gas that appears in the wake. Such
pockets are much more cool and dense compared to the surrounding burned products.
Also, to complement figure 8, the corresponding grid topology, which indicates the
locations of each grid level (G) in a portion of the flow field, is shown in figure 9
for the same instant in time. From this figure, it can be verified that the reaction zone
is always refined to the finest level, G6 in this case.

To gain insight on how these cells evolve as the wave propagates through the
channel, a numerical soot foil was obtained by integrating the local vorticity Ω(x, y)
throughout the duration of the simulation, locally at each spatial location, given by

Ω(x, y)=
∫ t

t=0
(∇× ū(x, y, t)) dt. (4.1)

Figure 10 shows a portion of the numerical soot foil obtained for a later portion of
the channel, for 700< x< 800. This particular portion is shown because it highlights,
in detail, the complex nature of the cellular pattern that emerges. In figure 10, the
streak marks follow paths of large vorticity associated with triple-point trajectories.
Clearly, there are several different cell sizes observed. These range from as large
as the domain height, H, to cells as small as ∼H/4. Furthermore, there does not
appear to be any coherent pattern to the appearance of smaller cells in the presence
of larger, more prominent, ones. Also, the triple-point paths, given by the streaks on
the image, do not follow perfectly straight lines, or at consistent angles. Sometimes
these triple-point paths curve more than others in a very irregular manner. Thus, it is
of interest to determine how turbulence intensity, a function of Cκ , might affect the
qualitative features discussed above. Of particular interest is the distance it takes for
pockets of unreacted gas to burn up, i.e. the reaction zone thickness. Also, it is of
interest to determine how turbulence affects the overall flow field at the wave front,
the formation and burnout of the unreacted pockets of gas, and also the cell patterns
that emerge. Capturing such features, numerically, will serve to validate the strategy
with experiments in § 2, and also those of Kiyanda & Higgins (2013).
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FIGURE 8. (Colour online) Density (a) and temperature (b) fields for the CLEM-LES with
Cκ = 1.5. This preliminary result shows the irregular cellular pattern that emerges on the
detonation front, and the occasional formation of unburned pockets of reactive gas that
appear in the wake. Note that density, temperature, and distance are normalized by ρ̂o,
γ T̂o, and ∆̂1/2, respectively.

Finally, figure 11 shows the x velocity of the detonation wave as a function of time,
measured along the bottom wall at y = 0. Initially, the wave is clearly overdriven
above the theoretical CJ value. However, after t > 55, sufficient time has passed to
allow the detonation wave to decelerate from the overdriven state and reach velocities
closer to the CJ speed. In fact, beyond t > 55, the averaged speed of the wave was
D= 6.35 (2260 m s−1), within 1 % error of the CJ value of DCJ = 6.30 (2240 m s−1).
Clearly, in figure 11, the velocity peaks and valleys also appear very irregular in
nature, with no coherent pattern. These velocity measurements correspond to cells
that form along the wall. In fact, the maxima correspond to the start of each cell
cycle observed along the bottom wall, where triple-point collisions occur. The minima
represent the end of the cell cycle where the velocity has decayed below the CJ
value. Although the cell cycles appear random, much like the cells shown in the
numerical soot foil of figure 10, it is of particular interest to determine how the wave
velocities are statistically distributed on the wave front, given the turbulence intensity
(Cκ). Furthermore, it is of prime importance to compare such a velocity distribution
with available experimental data obtained in this study and also in Kiyanda & Higgins
(2013), for the purpose of CLEM-LES validation.

4.2. Grid convergence study
Prior to investigating the effect of turbulent mixing rates on the detonation propagation
characteristics, it is important to first determine a sufficient resolution which resolves
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FIGURE 9. Grid topology (a) and corresponding density field (b) for a portion of the
CLEM-LES simulation shown in figure 8. Also shown are the locations of the various
grid levels (G2–G6). Note that the base grid G1 is always refined to at least grid level
G2, everywhere.
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FIGURE 10. Portion of the numerical soot foil obtained for the CLEM-LES with Cκ = 1.5.
The streak marks show the paths of high vorticity associated with triple-point trajectories.
Note that distances are normalized by ∆̂1/2.

both the reaction rate and qualitative features of the cellular structure. For this
resolution study, the domain height is kept constant at H = 20. Also, Cκ = 1.5
is specified for the CLEM-LES simulations, and the number of subgrid elements
within each LES cell is held constant at N = 16. Only the supergrid resolution, b,
is varied. This value for N was found, in previous work (Maxwell et al. 2015), to
be sufficient at capturing stirring events and eddy–flame interactions on the subgrid,
while optimizing computational efficiency associated with the method. Also, it is
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FIGURE 11. (Colour online) The x velocity of detonation for Cκ = 1.5 and b = 1/32
as a function of time, measured along the bottom wall at y= 0. Note that D and t are
normalized by D̂CJ and (∆̂1/2/ĉo), respectively.
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FIGURE 12. Numerical soot foils for Cκ = 1.5 at various resolutions, b (all with N = 16
elements per LES cell). Note that distance x is normalized by ∆̂1/2.

worth noting here that at b = 1/32 resolution with N = 16, the laminar flame speed
is fully resolved in one dimension; see Maxwell et al. (2015) for details.

First, to assess the qualitative behaviour of resolution on the inherent cellular
instability of the wave front, numerical soot foils were obtained for each simulation
and compared in figure 12. For all resolutions, the simulations are run up to t= 127.5.
As observed in figure 12, the lowest resolution, b = 1/4, produces only large cells
whose size appears to be mode-locked by the channel height. Furthermore, the cells
at this resolution exhibit a very regular self-repeating pattern. As the resolution is
increased to b = 1/8, the detonation wave continues to exhibit large cells of the
order of the domain height. However, the cells at this resolution appear to be slightly
irregular in size and shape. Also, the appearance of smaller cells within the larger
cell structure is observed starting around x ∼ 550. For b = 1/16, the cell sizes
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appear much smaller and even more irregular. Also, there appears to be much more
variation in cell sizes observed throughout the channel. For example, at x∼ 200 there
are approximately four cells spanning the domain height. At x ∼ 400, the cells are
intermittently much larger, with approximately one cell spanning the domain height.
At x ∼ 500 there are two cells across the domain height. At x ∼ 700, the cell size
increases to one cell across the domain height. Then, at x ∼ 800 there are once
again approximately two cells spanning the domain height. For the higher resolutions,
b = 1/32 and b = 1/64, the same stochastic cell size behaviour is observed as the
b= 1/8 case. For these two higher-resolution cases, however, the pattern appears even
more irregular than the b = 1/8 case. In fact, the b = 1/32 and b = 1/64 cases are
qualitatively similar to each other in terms of observed cell sizes, pattern behaviour
and irregularity.

To effectively quantify the average rate at which reactant was consumed behind the
leading shock wave, at any given instant in time, the average distance for the reactant
to be consumed behind the leading shock wave was measured. This was indicative of
the time it takes for the reactant burn up behind the leading shock. To measure this
average reaction zone thickness, a Favre averaging technique in spatial slices on the
supergrid, dx, was applied to give a mass-weighted average reactant and density profile
along the channel length for any given time. This procedure was previously applied
in Radulescu et al. (2007). Formally, the Favre-averaged reactant profile is given by
the expression

Ỹ(x, t)=

∫ H

y=0
ρ̄(x, y, t)Ỹ(x, y, t) dy∫ H

y=0
ρ̄(x, y, t) dy

, (4.2)

where the average density profile, in x, is found by

ρ̄(x, t)=

∫ H

y=0
ρ̄(x, y, t) dy

H
. (4.3)

Finally, the Favre-averaged mass fractions are ensemble-averaged for k = 50 random
instants in time. Thus,

Ỹ(x− xs)=

k∑
i=0

Ỹ(x− xs, ti)

k
. (4.4)

Here xs was the location of the shock wave determined by the location where
the right-most maximum gradients in the spatially averaged density occur. Also,
the sample slices for which averaging is done is taken as the minimum supergrid
resolution size, dx = b. Finally, it should be noted that this ensemble averaging
only considers profiles when t > 40. This was done to allow sufficient time for the
detonation wave to decelerate from the overdriven state and reach its self-sustained
equilibrium structure.

In figure 13(a), the average profiles obtained for Ỹ(x − xs) are presented for the
CLEM-LES at various resolutions. For the CLEM-LES, it can clearly be seen that
the average rate of depletion of Ỹ(x − xs) behind the shock wave does not vary
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FIGURE 13. (Colour online) Effect of resolution on average reactant profiles for (a) the
CLEM-LES compared to (b) Euler methods. Note that distances x and xs are normalized
by ∆̂1/2.

significantly across the range of resolutions tested. In fact, all of the simulations
appear to consume 90 % of the reactant within the same average distance, ∼5∆̂1/2.
Only the highest resolutions, b= 1/32 and b= 1/64, develop fluctuations in reactant
mass fractions when Ỹ(x− xs) < 10 %, and thus have a slightly lengthened structure
compared to lower-resolution cases. These fluctuations are believed to arise due to
unresolved sampling of high-frequency statistics sufficiently far from the leading shock
wave. For the low-resolution cases, even though the same reaction zone thickness is
captured, these high-frequency instabilities are effectively filtered out. This suggests
that the reaction rate, in general, is not very sensitive to resolution. However, the
irregular propagation behaviour and fine-scale qualitative observations are sensitive to
resolution. To compare the performance of the CLEM-LES with the traditional use
of Euler simulations, figure 13(b) shows the average reactant profiles for Ỹ(x − xs)
using the Euler method across the range of resolutions from b= 1/4 to b= 1/128. It
should be noted here that the Euler simulations adopt the same second-order-accurate
exact Godunov solver that was applied to the advection terms on the CLEM-LES
supergrid (Falle 1991). Clearly, the Euler method does not provide any convergence
of the solution with increased resolution. This can be observed by the lengthening of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

14
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.145


668 B. McN. Maxwell and others

0

5

10

15

20

25

30

35

1 10 100

Euler
ZND solution

FIGURE 14. (Colour online) Effect of resolution on the mean reaction zone thickness (∆R)
for CLEM-LES compared to Euler methods. The error bars indicate the standard deviation
in ∆R for each simulation. Note that ∆R is normalized by ∆̂1/2.

the structure, or distance it takes for reactant to become consumed, as the resolution
increases. To quantify the reaction zone thickness of the structure of each simulation,
the thickness, ∆R, is arbitrarily taken as the distance from the shock location, at
x= xs, to the position where Ỹ(x− xs) < 2 %. Figure 14 shows that, across the range
of resolutions, the average reaction zone thickness for the CLEM-LES is not very
sensitive to resolution, whereas the Euler method clearly shows an increase in average
thickness as resolution increases. Figure 14 also shows the range of reaction zone
thickness observed throughout the random sampling process. The error bars thus
serve as the variation in thickness for the 50 random samples used in the ensemble
averaging process of each simulation. Clearly, the Euler method yields an increasing
variation in thickness as the resolution is increased. Also, at high resolutions, b>1/64,
the Euler method yields a larger, and more stochastic, range in thickness compared
to the CLEM-LES. The CLEM-LES, on the other hand, appears to converge to a
statistically consistent range of thickness observed with each random sample. This
can be seen for b = 1/32 and b = 1/64 where the reaction zone thickness is found
to vary stochastically between ∆R= 3− 16∆̂1/2 for both resolutions. Furthermore, the
average thickness for the CLEM-LES remains consistent around ∆R = 6− 9∆̂1/2 for
all resolutions.

To summarize the findings in this section, a resolution of b = 1/32 has been
demonstrated to sufficiently resolve and capture the structure size, high-frequency
instabilities exhibited through cell patterns and overall propagation behaviour. Thus,
b= 1/32 is the resolution used throughout the remainder of the paper.

4.3. Effect of the Kolmogorov parameter (Ck)
In order to investigate the role of turbulent mixing rates on the detonation front
cellular patterns, burning rates and irregularity, the parameter Cκ has been varied.
This was done using a maximum supergrid resolution of b = 1/32 with N = 16
subgrid elements within each supergrid cell. As before, to achieve this resolution on
the supergrid, the base grid (G1) has a resolution of bG1 = 1 with five additional
levels of refinement. It should also be noted that a formal grid resolution study for
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FIGURE 15. Numerical soot foils for various Cκ values and an Euler simulation (all with
resolution of b = 1/32 and, for the LES, a further N = 16 elements per supergrid cell).
Note that distance x is normalized by ∆̂1/2.

each Cκ was not conducted here. In the previous section, this particular resolution
and AMR configuration were found to be adequate to resolve the qualitative features
associated with cell sizes and patterns and irregularity. Furthermore, this resolution
was found to give converged burning rates behind the shock, which was measured
quantitatively by considering the size of the observed reaction zone thickness (∆R).
Also, the one-dimensional laminar flame speed is resolved at this resolution. As
discussed previously, in § 3.2, the turbulent viscosity and dissipation rates, νt and ε,
are both functions of Cκ , which are consequently functions of ksgs. Thus turbulent
mixing rates, and hence combustion rates, are expected to be influenced by changes
in Cκ . For the numerical experiment in this section, Cκ has been varied from 1.2
to 10.0. As was done in the previous section, the qualitative features are compared
using numerically obtained soot foil images. The domain height for all simulations in
this section have once again been kept constant at H= 20. Also, the average reaction
zone thickness has been collected for each simulation.

First, numerically obtained soot foils are shown in figure 15 for the range of Cκ

values investigated (1.2–10). Also, the CLEM-LES soot foil images are compared
against the Euler simulation, which also has a resolution of 32 cells per half reaction
length. Clearly the Euler simulation exhibits much smaller cells compared to all of the
CLEM-LES soot foil images. For the CLEM-LES at Cκ = 1.2, in figure 15, the cells
are still fairly small compared to the channel height, but there is some irregularity to
the pattern observed. As Cκ is increased, the observed cell sizes also increase. For
Cκ = 3.0–4.0 it is observed that the range of cell sizes spans from three cells to one
cell per channel height, intermittently, throughout the simulations. As Cκ is increased
beyond 6.7, the cells become even larger, with an observed range of two cells to half
a cell per channel height.

Next, in figure 16, the average reactant profiles are compared for the range of Cκ

values using the procedure described in the previous section. Also, the simulations
are compared to the Euler simulation with the same resolution as the CLEM-LES
supergrid. Clearly, as Cκ increases, not only does the cell size increase, but the average
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FIGURE 16. (Colour online) Effect of turbulent intensity (through Cκ ) on average reactant
profiles for the CLEM-LES (all with resolution b= 1/32 and N = 16 elements per LES
cell). Also shown is the average reactant profile obtained from the Euler method at b=
1/32 resolution. Note that distances x and xs are normalized by ∆̂1/2.

reaction zone thickness of the detonation wave also increases. This observation on
reaction zone thickness is made by considering the distance it takes for Ỹ(x− xs)→ 0.
Furthermore, this relation between the cell size and the reaction zone thickness is
consistent with earlier correlations, as reported by Lee (1984). In this sense, as Cκ

increases, ∆R increases, which consequently exhibits larger cell sizes. On the other
hand, the Euler method at the same resolution, which is subject to a large amount
of numerical diffusion, burns fuel at a much quicker rate than all of the CLEM-LES
simulations. It is noted that, although the Euler simulations and CLEM-LES have the
same numerical diffusion on the supergrid, where the pressure evolution is solved for
both strategies, the CLEM-LES has much better closure of the reaction rate since the
higher-resolution subgrid itself has much less numerical diffusion that contributes to
mixing and chemical reaction. Finally, owing to the sensitivity of the reaction zone
thickness (∆R), and consequently the cell size, to turbulent fluctuations, this permits
us to fit the Kolmogorov parameter (Cκ) against experimental observations.

5. Discussion
5.1. Qualitative comparison of the flow evolution with experiments

A visual comparison of a flow field, obtained through resolved LES and the
corresponding experiment of § 2, is shown in figures 17 and 18 for an instant
where a triple-point collision occurs for a detonation whose cell size is comparable to
the channel height. For the LES, the density evolution is shown for various instants
of the collision process for Cκ = 6.7. This value of Cκ was found to produce cell
sizes and overall qualitative behaviour comparable to experimental observation. Here,
the channel height is kept at H = 20. For the experiment, schlieren images of each
corresponding instant are obtained from high-speed photography and are also shown
in figures 17 and 18. For comparison, many features are noted (1–7). In figure 17,
feature 1 is a Mach shock with a turbulent reaction zone that follows closely. In
both the simulation and the experiment, the reaction zone is slightly decoupled from
the shock owing to local unsteadiness of the wave front. This can be seen by the
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FIGURE 17. (a) Numerical density evolution for Cκ = 6.7 and (b) the corresponding
experimental schlieren photographs (this study) of a detonation triple-point collision
process. The time between images is 1t= 0.425 (11.53 µs). The remaining sequence of
images is continued in figure 18.

thickening of the shocked unburned gas region as time evolves. In the LES, however,
this wave appears to be more irregular, containing what appears to be a smaller and
less pronounced cell structure (cells within cells). It should be noted that experimental
observations, of § 2, report a very stochastic nature of the propagating wave. In this
sense, random bifurcations on wave fronts and changes in cell patterns are expected.
In some cases much smaller cells are observed experimentally and numerically for
the same quiescent conditions and numerical parameters; see figure 19. Feature 2 in
figure 17 is a completely decoupled incident shock reaction zone, as can be seen by
the large region of dense unburned gas. As the two triple points approach each other,
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FIGURE 18. Continuation of figure 17. (a) Numerical density evolution for Cκ = 6.7
and (b) the corresponding experimental schlieren photographs of a detonation triple-point
collision process.

transverse shock waves compress this gas further. At the focal point of the collision,
owing to the increased pressure and temperature, the unburned pocket (2) ignites very
rapidly. This ‘explosion’, denoted by feature 3, drives transverse shock waves and a
strong Mach shock forward coupled with very rapid burning. Feature 4 is a pocket
of unburned gas that is not ignited by compression associated with the original Mach
shocks (feature 1). Instead, these pockets mix and burn, on their surfaces, along
turbulent shear layers. Owing to shock compression associated with the passage of
transverse shock waves, these shear layers experience increased burning rates through
turbulent mixing of the burned and unburned gases via Richtmyer–Meshkov instability.
These transverse shocks, labelled as feature 5 in figure 18, originate from feature
3. Feature 6 in figure 18 is a new pocket of unburned gas that forms along slip
lines associated with the collision process. In fact, the formation of such pockets,
in this manner, is typical of irregular detonation propagation (Subbotin 1975; Oran
et al. 1982; Austin 2003; Radulescu et al. 2005, 2007; Kiyanda & Higgins 2013).
Finally, feature 7 in figure 18 is a bifurcation observed on the Mach shock of feature
3, owing to the unstable nature of methane–air detonations. This bifurcation also
occurs in the experiment but is less pronounced. Although features 1–7 are captured
by the LES, a key difference is observed in the burning rate behind the Mach shock
originating from feature 3. In the simulation, the size of this region grows slightly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

14
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.145


Influence of turbulent fluctuations on detonation propagation 673

Simulation

Stochastic cell
pattern behaviour

175
0

5

15

20

180 185 190

Experiment

y

x

FIGURE 19. Comparison of experiments and the CLEM-LES with Cκ = 6.7, both showing
an instant where stochastic behaviour is observed such that a different cell pattern is
observed compared to figure 17.

faster compared to experiment, owing to the lower detonation velocity reported in
§ 2.3.

To further compare the performance of the LES with available experimental data
(Kiyanda & Higgins 2013), the simulation was repeated with a channel height
of H = 10. Both the density evolution from the numerical simulation and the
corresponding instants obtained in the experiment through schlieren photography
are shown in figures 20 and 21. In this case, all model parameters, including Cκ ,
are consistent with the previous simulation, except that the reduced channel height
permits only half a cell to form. Thus the cell pattern is effectively influenced by the
channel walls, or mode-locked into a cell size which corresponds roughly to twice
the channel height. In this case, only a single transverse wave is observed. Again, for
qualitative comparison, many features (1–7) are noted in figures 20 and 21. Feature
1 in figure 20 is the incident shock wave and decoupled reaction zone, as observed
by the region of very dense, shocked and unburned fuel following the shock. From
the top wall of the channel, feature 2 is a Mach stem, which initially results from
a transverse wave collision with the wall. As observed in figure 17, this Mach stem
travels faster than the incident wave, owing to the wave collision process. Feature
3 in figure 20 is a pocket of dense unburned fuel in the wake of the wave, which
is consumed by a surface turbulent flame. Furthermore, consumption rates would
be enhanced by Richtmyer–Meshkov instability associated with the transverse shock
wave, feature 4. In fact, this region burns out only slightly faster than the observed
experimental rate. In the experiment, the pocket burns up completely within seven
frames (70 µs), while the simulation burns up completely within five frames (50 µs).
Using the method described in § 2.4, the turbulent flame speed of this experiment is
found to be Ŝt/ŜL ≈ 6.6 (Ŝt ≈ 110 m s−1). This is comparable to the experimental
flame speed found in the current study, § 2, where Ŝt/ŜL ≈ 7.3 (Ŝt ≈ 120 m s−1).
Feature 5 in figure 20 is a hotspot that forms behind a bifurcation of the Mach shock
and is only clearly visible in the numerical simulation. This bifurcation of the Mach
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FIGURE 20. (a) Numerical density evolution for Cκ = 6.7 and (b) the corresponding
experimental schlieren photographs (Kiyanda & Higgins 2013) of an irregular detonation
propagation in a channel. The time between images is 1t= 0.37 (10.0 µs). The remaining
sequence of images is continued in figure 21.

stem near the triple point was also observed in the previous comparison to experiment
(figure 17). As the Mach stem, feature 1, continues to evolve, the combustion zone
becomes further decoupled from the shock, as observed by an increased thickness of
dense unburned fuel behind the shock. Furthermore, a new pocket of dense unburned
fuel forms in the wake of the triple-point path, denoted by feature 6 in figure 21.
This pocket is initially consumed from its edges via turbulent flame. The passage of
the reflected transverse shock wave, feature 7, further contributes to turbulent mixing
through Richtmyer–Meshkov instability.

Finally, for the H = 10 simulation, figure 22 shows how the instantaneous reaction
rate obtained numerically compares with the corresponding experimental photographs
of Kiyanda & Higgins (2013), which recorded the self-luminosity signal. In figure 22,
the instantaneous rate of reaction, ω̇, is superimposed onto two consecutive density
evolution plots to show where chemical reactions are occurring, and the intensity. In
both the experiment and the simulation, chemical reactions appear to be very intense
behind the Mach shock, where short ignition delays are expected due to the overdriven
shock. Also, combustion of the unburned gas pockets also becomes intensified with
passage of the transverse shock wave. Finally, for the unburned pockets of gas, the
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FIGURE 21. Continuation of figure 20. (a) Numerical density evolution for Cκ = 6.7 and
(b) the corresponding experimental schlieren photographs (Kiyanda & Higgins 2013) of
an irregular detonation propagation in a channel. The time between images is 1t = 0.37
(10.0 µs).

chemical reactions occur predominantly on the surfaces, and not uniformly throughout.
This suggests that turbulent mixing is the dominant mechanism through which the
unburned pockets are consumed. It is therefore of particular interest to quantify the
turbulent mixing rates and determine their impact on burnout rates of the pockets.
Furthermore, it is of interest to determine the overall impact such burning has on the
observed structure and cell pattern of the detonation wave.

5.2. Quantitative analysis: turbulent flame speeds

For the detonation simulations presented in § 5.1, where Cκ = 6.7 for both H = 10
and H = 20, it is of particular interest to estimate and compare the turbulent flame
speed at which the pockets of unreacted gas, labelled as feature 4 in figure 17 and
as feature 3 in figure 20, burn up. In contrast to the experiments, the turbulent flame
speed of the pockets in the simulations is readily available by considering the rates at
which reactant mass is consumed within the one-dimensional ‘samples’ of the CLEM
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FIGURE 22. (Colour online) (a) Numerical density evolution with superimposed chemical
reaction rate (ω̇), shown in red, and (b) the corresponding experimental self-luminous
images (Kiyanda & Higgins 2013). The time between images is 1t= 0.74 (20.0 µs).

subgrid. For the pockets, the local turbulent flame speeds are estimated from

St,local = ṁ
ρuAc

, (5.1)

where ṁ is the instantaneous rate of reactant mass consumption, ρu is the density of
the upstream unburned reactant, located to within 0.5∆1/2, and Ac is the cross-sectional
area through which the flame propagates against the unburned reactant within each
‘sample’. In this case, Ac is known and constant for all CLEM domains. In this
approach, mass is conserved since the burning rate is balanced by the mass flow rate
of unburned reactant. Furthermore, this method was previously applied to calculate
turbulent flame speeds in a stand-alone one-dimensional CLEM subgrid formulation
(Maxwell et al. 2015). Finally, the global turbulent flame speed is obtained by
ensemble averaging the flame speeds on the pocket surface in both space and time.
Thus

St =
n∑
1

St,local/n, (5.2)

where n is the number of samples acquired on the pocket surface.
Using this method, the turbulent flame speeds of the unburned pockets are found to

be St/SL = 3.74 (Ŝt = 61.3 m s−1) and St/SL = 3.63 (Ŝt = 59.5 m s−1) for the H = 20
and H= 10 simulations, respectively. These values differ, by a factor of 2, from those
found experimentally, which were St/SL ≈ 7.3 (Ŝt = 120 m s−1) and St/SL ≈ 6.6 (Ŝt ≈
110 m s−1) for H = 20 and H = 10, respectively. The difference in simulation values
from the experimental ones are noted in the difficulties of evaluating the true volume
and surface area solely from schlieren images in the experiments. The simulation and
experiment, however, both predict turbulent flame speeds of roughly half an order to
one order of magnitude of the turbulent flame speed.
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FIGURE 23. (Colour online) Average turbulent flame speeds (St/SL) versus turbulent
intensities (u′/SL), obtained from simulation and compared to experiments of Abdel-Gayed
et al. (1984).

To gain further insight into the effect of local turbulent mixing rates on turbulent
flame speeds, it is possible to obtain average turbulent flame speeds for given ranges
of turbulence intensity values, u′, since the subgrid kinetic energy is known. In fact,
the turbulence intensity is simply

u′ =
√

2
3 ksgs. (5.3)

Figure 23 shows the average turbulent flame speeds, St/SL, in the wake of the
simulated detonations according to their turbulence intensities, u′/SL. For each value
of u′/SL, the flame speeds are averaged within intervals of u′/SL± 0.5. Also shown in
figure 23 are fan-stirred bomb experiment measurements of Abdel-Gayed, Al-Khishali
& Bradley (1984) for stoichiometric methane–air mixtures at atmospheric pressures.
Clearly, the simulation exhibits larger average turbulent flame speeds in regions of
higher turbulence intensity. In fact, much like the experiments of Abdel-Gayed et al.
(1984), St/SL appears to increase proportionally with u′/SL. Turbulence intensities were
not recorded above the values shown in figure 23, as such high-velocity fluctuations
have not had sufficient time to develop on the pocket surfaces. For the turbulence
intensities observed, the results are in good agreement with the experiments.

5.3. Quantitative analysis: the reaction zone and hydrodynamic thickness
In order to determine the effect that turbulent mixing intensity has on the reaction
zone thickness, the average thickness of the structure (∆R) has been measured for
various Cκ values for the domain height of H = 20. This was achieved by following
the procedure to generate the Favre-averaged reactant profiles in figure 16. Figure 24
thus shows the reaction zone thickness (∆R), defined here as the distance from the
shock wave, x = xs, to where Ỹ(x) < 2 %, as a function of Cκ . Clearly, there is an
increasing trend in thickness with Cκ . In fact, the thickness appears to increase linearly
with Cκ for the range of values simulated here. A line of best fit (obtained from linear
regression of each data point), ∆R = 1.19Cκ + 4.49, is also indicated in figure 24.
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FIGURE 24. (Colour online) Effect of turbulence intensity (through Cκ ) on the mean
reaction zone thickness (∆R) for the CLEM-LES (all with resolution b= 1/32 and N= 16
elements per LES cell). The error bars indicate the standard deviation in ∆R for each
simulation. Note that ∆R is normalized by ∆̂1/2.

FIGURE 25. Schlieren photograph (this study), which shows that pockets of unburned
gas can take up to ∼9∆̂1/2 behind the leading shock to burn up.

Also shown are error bars indicating the standard deviation of thickness for each value
of Cκ .

To quantitatively compare the CLEM-LES to experimental observations in terms of
the reaction zone thickness, or distance it takes for the pockets of unburned gas to
burn, results from § 4.3 are considered. In figure 24, it was observed that the average
reaction zone thickness captured by all values of Cκ , for H = 20, was in the range
5 < ∆R < 17. More specifically, for Cκ = 6.7 and Cκ = 10.0, the average thickness
was found to be ∆R = 13.0 and ∆R = 16.2, respectively. These computed average
thicknesses are much higher than previous reports of burnout distances of ∼(4–6)∆̂1/2

(Radulescu et al. 2007), which were measured from Euler simulations with significant
numerical viscosity. Upon close inspection, however, of the experimental images
shown in § 2, burnout distances were estimated to be as high as ∼9∆̂1/2, as can be
seen in figure 25. Thus, compared to the experiment in figure 25, Cκ = 6.7 yields
an error of ∼44 %, while Cκ = 10.0 yields an error of ∼80 %. Despite these large
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FIGURE 26. Ensemble space- and time-averaged pressure profile (p̄(x)) for the Cκ = 6.7
and H= 20 simulation and compared to the ZND solution for p(x). Note that distances x
and xs are normalized by ∆̂1/2. The pressure p is normalized by γ po.

errors, however, it should be noted that the simulations for Cκ = 6.7 and Cκ = 10.0
have standard deviations of ∆R ± 6.4 and ∆R ± 5.7, respectively. Thus, a large range
of possible expected thicknesses lie anywhere from 6.6<∆R < 22. Furthermore, the
current experiments, which are stochastic in nature, have not quantified the probability
and variance of the reaction zone thickness that are possible during propagation.

Finally, the reaction zone thickness has been well correlated with the detonation
cell size, where chemical reactions are completed roughly within one cell cycle (Lee
1984). From figure 15, the cell size λ≈ 10 when Cκ = 6.7. This compares well with
the average reaction zone thickness, ∆R= 13.0. Furthermore, the entire hydrodynamic
thickness of the wave (∆H), or distance from the leading shock to the trailing sonic
plane (or CJ state), is also well correlated with the cell size: ∆H= 6.5λ (Lee 1984). In
figure 26, the ensemble space- and time-averaged pressure profile for p̄(x) is presented
for the Cκ = 6.7 and H = 20 case and compared to the ZND solution for p(x). For
this case, it takes approximately ∼50∆1/2 for the pressure to reach the CJ solution
state, which corresponds to the sonic plane in the wake of the wave. This is consistent
with findings in Lee & Radulescu (2005) for highly unstable detonations involving
methane at similar conditions. Furthermore, since λ ≈ 10 for Cκ = 6.7, then ∆H ≈
5λ. This result is of the same order as that reported by Lee (1984) from previous
experimental correlations. To summarize the findings here, increasing the value of Cκ

was found to generate a larger reaction zone thickness. This, in turn, is believed to
lead to an increased hydrodynamic thickness and cell size, due to their dependence
on the reaction zone thickness.

5.4. Qualitative comparison of cell patterns with experiments
To further compare the CLEM-LES with experiment, in terms of cell patterns and
irregularity, numerically obtained soot foils for both H = 10 and H = 20 at Cκ = 6.7
were compared to those obtained experimentally for CH4 + 2O2 at p̂o = 3.5 kPa,
courtesy of Radulescu et al. (2005), and CH4 + 2O2 + 0.2air at p̂o = 11 kPa (Austin
2003). For H= 20, the numerical soot foil, presented in figure 27, corresponds exactly
to the soot foil image of figure 15 for Cκ = 6.7. Although the experimental soot foil,
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FIGURE 27. (a) Numerical soot foil obtained for the CLEM-LES with Cκ = 6.7 and H=
20 compared with (b) an experimental soot foil for CH4 + 2O2 + 0.2air at p̂o = 11 kPa
(Austin 2003). Note that the channel height for the experiment is ∼25∆̂1/2 (127 mm),
while the simulation is 20∆̂1/2 (203 mm).

also shown in figure 27, was obtained for a smaller channel height (127 mm) and
also for a much higher pressure, the two are comparable in terms of scaling through
the half reaction length. For the experiment (Austin 2003), ∆̂1/2 = 5.1 mm. This
value was obtained in this study using the Cantera libraries (Goodwin et al. 2016)
and the GRI-3.0 detailed kinetic mechanism (Smith et al. 2016), consistent with the
procedure in Maxwell (2016). Thus, the experimental soot foil was estimated to be
∼25∆̂1/2 high. This is comparable to the simulation, whose domain is 20∆̂1/2 in
height. In the portion of the numerical soot foil presented in figure 27, the overall
cell size and pattern match well to the experiment. In the experiment, however, a
very distinct substructure was observed. This was observed by the presence of much
smaller cells within the larger and more predominant cell structure. Although such a
fine substructure is not so obvious in the simulation, there are still some streaks on
the numerical soot foil, which are indicative of triple-point paths associated with cell
bifurcations. The lack of detailed substructure in the simulation could be an artifact
of the supergrid resolution, differences in mixture properties, or most likely associated
with the limitation of the one-step model in capturing the very short-duration energy
release of methane combustion and the associated instabilities that exist on that finer
small scale. Furthermore, it is likely that, at the resolution presented here, 32 grids
per ∆̂1/2, the fine details associated with the expected substructure have effectively
been filtered out. It is noted that higher-resolution simulations were not conducted
for Cκ = 6.7. Despite this lack of fine-scale detail for the substructure, the overall
cell behaviour and irregularity are captured well by the simulation.

For H= 10, figure 28 shows numerical soot foils obtained for two different portions
of the numerical domain and compares them to soot foils of experiments conducted
in Radulescu et al. (2005). Here, the experimental soot foils were obtained using
the same experimental apparatus as described in Kiyanda & Higgins (2013). For
both experimental soot foils, the numerical simulation captures well the cell size
behaviour and irregularity. In general the channel height allows only half a cell
to form. The cells, however, occasionally bifurcate, giving rise to the formation of
cells of the order of the channel height. This behaviour can be observed in the
bottom frames of figure 28. Finally, it is noted that a prominent substructure was not
observed experimentally or numerically for H = 10, as was observed experimentally
in figure 27. This could be attributed to differences in the mixture or conditions (i.e.
the pressure) at which tests were performed.
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FIGURE 28. Numerical soot foils obtained for the CLEM-LES with Cκ = 6.7 and H= 10
compared with two experimental soot foils for CH4+ 2O2 at p̂o= 3.5 kPa, courtesy of M.
Radulescu. Note that the channel height for the experiment is also 10∆̂1/2.

5.5. Quantitative analysis: velocity of the wave
To gain insight into why increasing Cκ has the effect of generating larger hydrodynamic
structures, the subgrid kinetic energy associated with random velocity fluctuations
(ksgs) is Favre- and ensemble-averaged for each Cκ case using the same procedure as
was done for the reactant profiles, i.e. equations (4.2)–(4.4). The averaged profiles
obtained for ksgs at various values of Cκ are thus shown in figure 29. The principal
observation made here is that, as Cκ is increased, more subgrid kinetic energy is
generated. This is not surprising since ksgs is a function of Cκ , as demonstrated in
Maxwell (2016). This increase in ksgs with Cκ thus generates more frequent stirring
events on the CLEM subgrid, and therefore faster burning rates on pocket surfaces.
Despite this faster mixing and burning, larger pockets of unburned gas are able to
form in the wake. This suggests that an overall velocity deficit develops on the wave
front, allowing for increased ignition delays.

To quantify the statistical distribution of velocities experienced by the wave front,
and how such a distribution was affected by Cκ , p.d.f.s were constructed from the
numerical simulations and are shown in figures 30 and 31 for H = 20 and H =
10, respectively. Also shown in these figures are the experimental p.d.f.s previously
shown in figure 6. To construct the p.d.f.s from the numerical simulations, velocity
measurements were taken on the top and bottom walls for a total of 500 data points
in each simulation. The p.d.f.s were then evaluated at D±0.5 intervals and normalized
by Davg accordingly. For the CLEM-LES, conducted at various Cκ values, and also an
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FIGURE 29. (Colour online) Effect of Cκ on the averaged subgrid kinetic energy (ksgs)
profile for the CLEM-LES. Note that distances x and xs are normalized by ∆̂1/2.
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FIGURE 30. (Colour online) The p.d.f. of a detonation wave, in a channel with H = 20,
having a certain velocity (D/Davg) at any given moment and location. Also shown is a
p.d.f. compiled from experiments (this study). Note that Davg= 5.19 (1850 m s−1) for the
experiment and Davg = 6.30 (2240 m s−1) for the simulations.

Euler simulation at the same supergrid resolution (b= 1/32), the average propagation
speed is always within 1 % error of the CJ value, where DCJ = 6.30 (2240 m s−1).

Clearly, from figures 30 and 31, as Cκ increases, the likelihood or probability of
the detonation wave to travel at speeds below the average CJ value also increases.
This is especially true for Cκ > 6.7. At these high values of Cκ , the detonation tends
to favour a greater chance of having wave speeds below the average propagation
speed value, i.e. when (D/Davg)< 1. Conversely, at lower values of Cκ , and the Euler
simulation, velocities above the average propagation speed are favoured. This would
lead to much shorter ignition delays, thus explaining the relatively quick burning
times associated with the observed shortened reaction zone thickness, previously
shown in figure 24. For higher Cκ values, since the wave spends more time at below
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Kiyanda & Higgins (2013)
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FIGURE 31. (Colour online) The p.d.f. of a detonation wave, in a channel with H = 10,
having a certain velocity (D/Davg) at any given moment and location. Also shown is a
p.d.f. compiled from Kiyanda & Higgins (2013). Note that Davg = 5.53 (1970 m s−1) for
the experiment and Davg = 6.30 (2240 m s−1) for the simulations.

CJ velocities, most of the unburned gas that is shocked by the wave front has a
much longer ignition delay compared to the ZND model. For this reason, unburned
pockets of gas are able to form in the wake, which eventually burn up through
turbulent mixing. This favouring of velocities below the average propagation speed
thus lengthens the overall hydrodynamic structure of the wave. Consequently, the
cells also increase in size and become more irregular in appearance, as observed
in the cell patterns of figure 15. Since higher Cκ values inherently generate more
random fluctuations, the cell irregularity would also be expected to increase.

In general, the p.d.f.s collected for Cκ > 6.7 compared well to experiments, in
terms of the most probable velocity expected on the wave front. The experiments
and the simulations, for Cκ > 6.7, both show that the most probable velocity on the
wave front, at any given instant or location, is actually below the average propagation
value, (D/Davg) < 1. The simulations for Cκ > 6.7 also reproduce well the decaying
behaviour of the wave velocity, where the probability of the wave speed exhibits a
power-law dependence on wave speeds above the favoured value. For H=20, although
the numerical simulations for Cκ > 6.7 do not collapse onto this correlation, the same
decaying trend is observed. For H = 20, the most probable wave speed favoured,
experimentally, is (D/Davg) = 0.93 ± 0.04 with a peak p.d.f. value of 3.3. For the
simulation at Cκ = 6.7, the most probable velocity was (D/Davg)= 0.96± 0.04 with
a peak p.d.f. value of 1.74. This favoured velocity value has 8.6 % error compared
to experiment. For Cκ = 10.0, the most probable velocity was (D/Davg)= 0.85± 0.04
with a peak p.d.f. value of 2.25. This agrees well for the favoured velocity value, with
only 3.2 % error. Despite this, however, the range of expected velocities on the wave
front is much larger in the simulations compared to experiment. These differences
in peak p.d.f. values and expected ranges of velocities are believed to be influenced
by several factors. First, the numerical simulations do not account for energy losses
that are present in the experiments. Therefore, the detonation, in the simulations,
has higher velocities. Furthermore, cell patterns for a channel height of H = 20 are
very stochastic and irregular. The experimental p.d.f. in figure 30 was compiled for
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FIGURE 32. Numerical soot foils obtained for the 3D CLEM-LES for Cκ = 6.7 and
H = 10.

only four different experiments. It is likely that many more experiments are required
in order to capture the events in the tails of the p.d.f., beyond the velocity limits
currently obtained. Finally, velocity measurements are captured experimentally every
11.53 µs, which may filter out any high-speed and short-lived velocity fluctuations,
which may occur beyond the current p.d.f. limits. It is likely that, in reality, the
experimental p.d.f. should have a larger range with a smaller peak p.d.f. value.
Despite the differences in p.d.f. values between experiment and simulation, it should
be noted that Cκ > 6.7 does much better at capturing the peak value location (D/Davg)
compared to Euler or low-value Cκ simulations. This location, when (D/Davg) < 1,
is the key feature that influences pocket formation, and thus increased hydrodynamic
thickness, owing to increased ignition delays at most locations on the wave front.

For H = 10, much better agreement with experiment is observed when Cκ = 6.7.
The most probable wave speed favoured, experimentally (Kiyanda & Higgins 2013), is
(D/Davg)= 0.814± 0.005 with a peak p.d.f. value of 6.15. In this case, the simulation
at Cκ = 6.7 has a favoured velocity of (D/Davg)= 0.84± 0.04 with a peak p.d.f. value
of 2.55. This also agrees well for the favoured velocity value, with only 1.0 % error.
This better agreement can probably be attributed to the fact that a domain height of
H=10 effectively mode-locks the detonation in such a way that much less variation in
cell size was observed. This was seen in the soot foils presented in figure 28. Clearly,
the analysis conducted here supports the need to calibrate Cκ in order to ensure the
correct velocity probability trend and qualitative features are obtained numerically.

5.6. Three-dimensional effects and the validity of the two-dimensional LES approach
Finally, in order to further validate the two-dimensional (2D) numerical results
obtained throughout this work, a thin-channel three-dimensional (3D) simulation has
been conducted for the H= 10 case, with Cκ = 6.7 and a domain width of 2∆̂1/2. This
corresponds roughly to the experimental set-up of Kiyanda & Higgins (2013). The
grid resolution used for the 3D simulation was b= 1/16 with N= 16 subgrid elements
within each cell. Figure 32 shows a portion of soot foils which were obtained on
the side and top walls of the domain. More specifically, these are obtained at z= 0
in the x–y plane and y = 10 in the x–z plane, respectively. Here, x is the direction
along the channel length, y is along the channel height and z is along the channel
width. Upon comparing the sidewall soot foil with that of the 2D LES simulation in
figure 28, the cell size obtained is comparable. In both the 2D and 3D simulations,
the resulting cell size is one-half cell per channel height throughout most of the
domain. Furthermore, the soot foil obtained in the 3D simulation does not exhibit
a visible substructure, as was the case for the 2D simulation in figure 28. Finally,
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FIGURE 33. Profile sections of density extracted in the x–y, z–y and x–z planes for the
3D CLEM-LES.

the vorticity streaks on the top wall soot foil suggest the resulting cell pattern is
predominantly 2D for the thin channel.

To further investigate the resulting flow pattern of the 3D simulation, various
sections of density profiles are extracted in the x–y, z–y and x–z planes for a single
instant in time and presented in figure 33. This was done for an instant in time just
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FIGURE 34. (Colour online) Average reactant profiles for both 2D and 3D CLEM-LES.
Note that distances x and xs are normalized by ∆̂1/2.

before a triple point reflects on the top wall, where a pocket of unburned gas has
nearly formed in the wake of the wave. In three sections taken in the x–y plane, at
z= 0.25, z= 1.0 and z= 1.75, it is clear that the dense pocket of unreacted gas does
not have a uniform shape along the width of the channel. Upon investigating the
sections along various x locations in the z–y plane and y locations in the x–z plane,
it is clear that the burning of the pocket of unreacted gas indeed occurs in all three
dimensions. The presence of unburned gas, however, varies much more significantly
in the x and y directions compared to the channel width in the z direction. Significant
burn-up along the channel width is only observed in frames where the remaining
pocket is nearly consumed, sufficiently far from the leading shock. This can be seen
in frames in the z–y plane for x6 734.5 and the x–z plane for y6 5.5. Finally, despite
the non-uniformities in the pocket shape observed across the channel width, and the
three-dimensional structure of the pocket burnout, the positions of the incident and
Mach shocks remain uniform throughout the channel width.

To further compare the 2D and 3D simulations, in terms of the rate at which
the unreacted gas is consumed, the Favre-averaged reactant profiles are presented in
figure 34. It is clear that the reactant profiles of the 3D simulation match closely
the profiles obtained from the 2D simulation for Cκ = 6.7. In fact, both the 2D and
3D simulations have an average hydrodynamic thickness of ∆R = 8.2 with standard
deviations of ∆R ± 2.7 and ∆R ± 2.0, respectively. To further compare 2D and 3D
simulation results, the p.d.f.s of wave propagation velocity for both simulations are
presented in figure 35, and compared to the experiment (Kiyanda & Higgins 2013).
It is clear that the 2D and 3D simulations both exhibit a similar p.d.f. trend. The 3D
simulation however favours a slightly higher velocity (D/Davg)= 0.87± 0.04 with a
peak p.d.f. value of 3.30 compared with the 2D simulation which favoured a velocity
of (D/Davg)= 0.84± 0.04 and a peak p.d.f. value of 2.55. The two results, however,
are within measurement error of each other. Since these peak p.d.f. locations are
below (D/Davg) < 1, as was observed in the experiment, pockets of unburned fuel are
able to form in the wake, owing to increased ignition delays at most locations on
the wave front, thus lengthening the hydrodynamic structure as observed in figure 34.
The results presented in figures 34 and 35 suggest that, despite the 3D nature of
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FIGURE 35. (Colour online) The p.d.f.s of a detonation wave having a certain velocity
(D/Davg) at any given moment and location. These p.d.f.s have been compiled from both
2D and 3D simulations where Cκ = 6.7 and H= 10. Also shown is a p.d.f. compiled from
Kiyanda & Higgins (2013). Note that Davg= 5.53 (1969.1 m s−1) for the experiment and
Davg = 6.30± 0.05 (2243.3± 17.8 m s−1) for the simulations.

local burning on unburned pocket surfaces, the use of 2D LES is justified for flows
with high aspect ratios, where cell sizes are sufficiently large in height compared to
their channel width. This can be attributed to the large-scale flow patterns, which
are predominantly 2D. Furthermore, the use of 2D LES, in this study, is further
justified by the fact that the LEM subgrid accounts for the small-scale 3D shear
instabilities, on the unburned gas pocket surfaces, through the stirring terms, ḞT

and ḞY , in (3.10) and (3.11) (Kerstein 1991a). To this effect, the LEM subgrid
simulates 3D isotropic turbulent mixing according to the large-scale flow conditions.
The principal caveat here is that, owing to the low-Mach-number approximation on
the subgrid, shock-driven instabilities, such as Richtmyer–Meshkov, are not captured
on the subgrid itself. This is currently an area of active research in the framework
of one-dimensional turbulence, an alternative grid-within-a-grid approach for LES
(Jozefik, Kerstein & Schmidt 2016). For the high-aspect-ratio flows considered here,
the large-scale 2D flow instabilities are sufficient to generate the bulk of the subgrid
kinetic energy, which influences stirring events on the subgrid scales accordingly.
The second caveat is that the LES scale is assumed to be sufficiently resolved to
the inertial range of the Kolmogorov cascade (Frisch 2000). If this were the case,
one might expect isotropic shear-driven mixing to dominate on the subgrid scales.
However, it is noted that, while the integral scales of turbulence have been resolved
here, it is not clear to what extent the turbulence characteristics of the shear layers
have been captured, with respect to the Kolmogorov cascade. Furthermore, vortex
breakdown, according to the Kolmogorov cascade, depends on the ability of vortices
to stretch in all three dimensions. Flows that are predominantly 2D lack this ability
and tend to experience significant backscatter as a result (Kraichnan 1967; Leith
1968; Batchelor 1969). It is also noted that Kolmogorov’s theory of turbulence was
developed for incompressible flow. It is not yet understood how these assumptions,
regarding isotropic shear-driven mixing, apply to highly compressible flows.
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FIGURE 36. (Colour online) ZND temperature profiles computed for CH4 + 2O2 using
the one-step reaction mechanism (3.13) compared to the SD Toolbox ZND solver (Kao &
Shepherd 2008) using the GRI-3.0 mechanism (Smith et al. 2016).

5.7. Validity and limitations of the global one-step reaction mechanism
In the current study, the global one-step ignition reaction mechanism, given by
(3.13), although simplistic, was calibrated to reproduce the correct ZND half reaction
length for a detonation travelling at the CJ velocity. Figure 36 shows the theoretical
ZND temperature profile, computed using both the one-step model and the GRI-3.0
reaction mechanism (Smith et al. 2016), for a detonation travelling at the CJ velocity
of DCJ = 6.30 (2240 m s−1). Clearly, the correct reaction length is recovered by
the one-step model, where the chemical reactions terminate around 1∆1/2 (10 mm)
downstream from the shock location, shown at x = 0. However, notable differences
in temperature are observed, between the two reaction mechanisms, in the post-shock
and fully burned states. Differences in the state variables of these two locations arise
from the perfect-gas assumptions adopted in the governing equations, where γ was
assumed constant. In reality, however, γ varies across the shock and reaction zone.
Despite this, the amount of heat release, Q, is consistent between the two models,
yielding the correct propagation velocity. Another notable difference between the two
reaction mechanisms is the temperature profile within the reaction zone itself. While
the GRI-3.0 mechanism has a very distinct induction zone, with very little heat release
until x<−0.5 (−5 mm), the one-step model begins releasing heat as soon as the gas
is shocked. This is observed by a gradual increase in temperature from x< 0 onwards.
As a result, the exothermicity of the GRI-3.0 model is confined to a much smaller
layer towards the end of the reaction phase compared to the one-step model. Thus,
there may be implications on the turbulence–chemistry interactions, and therefore
the required value of Cκ , since the one-step model does not accurately capture the
very short-duration energy release of methane combustion. Furthermore, this may
explain the lack of substructure observed in the numerical soot foil records shown
in § 5.4. Despite this deficiency, the correct post-shock ignition delay is captured
by the one-step model for the range of shock velocities expected during detonation
propagation. Figure 37 shows how the constant-volume ignition delays, computed
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FIGURE 37. (Colour online) Ignition delay times for various shock speeds, computed
using the one-step reaction mechanism (3.13) compared to the GRI-3.0 mechanism (Smith
et al. 2016).

from the one-step and GRI-3.0 reaction mechanisms, compare for shock speeds in
the range D= 4–9 (1400–3200 m s−1). Although there exists a slight underprediction
of ignition times at low shock speeds, and overprediction at high speeds, the one-step
model performs well at capturing the correct order of magnitude for the ignition
delay times across the range of values. In fact, the one-step model works well for
predicting ignition delays of methane chemistry, since there are no chain-branching
cross-over effects (Browne, Liang & Shepherd 2005). The sensitivity of the mixture
to changes in temperature and pressure remain relatively unchanged, for the range of
post-shock conditions expected.

5.8. Kolmogorov constant Cκ as a tuning parameter
From the numerical soot foils presented figure 15, it is clear that the Cκ parameter
requires tuning in order to match the desired cell size and behaviour observed in
the experiments of this study and Kiyanda & Higgins (2013). From a quantitative
perspective, figures 30 and 31 have shown that numerically obtained p.d.f.s of
detonation velocity distributions matched well the trends obtained through experiments
when Cκ > 6.7. In general, higher values of Cκ allowed below-average velocities to
be favoured along the wave front, as was the case experimentally. As a result, it is
clear that Cκ requires tuning in order to ensure the correct velocity distribution, and
consequently the correct expected reaction zone thickness. Furthermore, as observed
in figures 17–28, a value of Cκ = 6.7 was found to be adequate to form qualitative
cells and burning patterns comparable to experiments. For smaller values of Cκ , only
much smaller cells appear. For larger values of Cκ , the cells increase in size until
they are mode-locked by the channel height. It should be noted, however, that specific
‘matching’ of Cκ values can prove difficult due to the stochastic nature of both the
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experiments and the numerical simulations. For this, better-converged statistics would
be required. It should be further noted that, even though the value of Cκ = 6.7 was
found to give good agreement with experimental observation, Cκ = 1.4–2.0 is a more
universally accepted value (Chasnov 1991; Bradley 1992). This difference may be
due to several reasons.

First of all, low values of Cκ correspond to Kolmogorov’s theory of the turbulence
cascade in the incompressible limit (Frisch 2000). The detonation phenomenon under
investigation here, on the other hand, is highly compressible. It is possible that highly
compressible regimes generate much more turbulent fluctuations than incompressible
theory predicts. This is especially true for Richtmyer–Meshkov instability, where
turbulent motion is generated from shock waves interacting with material interfaces.
Secondly, the large-scale motions of the experimental flow fields are essentially 2D
due to the thin channel cross-section widths. In fact, the aspect ratios of the channel
heights to widths (H/W) in the experiments are ∼10 (this study) and ∼4 (Kiyanda &
Higgins 2013). In both cases, the channel widths are much smaller than the observed
cell sizes. Thus, straining and decay of turbulent motions along the cross-sectional
width may not be as prominent as would be expected in a full-scale 3D experiment.
Furthermore, turbulence in two dimensions has been shown, theoretically, to exhibit
backscatter (Kraichnan 1967; Leith 1968; Batchelor 1969), and hence generate more
turbulent motions. This has also been assumed to be the case for atmospheric flows,
which are also considered essentially 2D at planetary scales (Lilly 1966). In this sense,
small-scale turbulence is able to feed into, and amplify, larger-scale turbulent motions.
Although 3D burning does occur in the wake of the detonation wave at smaller scales,
a 3D simulation conducted in the previous section suggested that the rate of fuel
burn-up is largely governed by the large-scale fluid motions along the channel length
and height. Since the experiments of this study and Kiyanda & Higgins (2013) are
quasi-2D, it is possible that there are more turbulent motions behind the detonation
front than would be expected in a naturally occurring 3D detonation wave propagation.
In this sense, it is possible that the corresponding 2D simulation would also require
a higher Cκ value to artificially generate more turbulence. Furthermore, Kraichnan
(1971) predicts a theoretical value of Cκ = 6.69 for 2D turbulence, compared to
1.4 for 3D turbulence. Another review of 2D turbulence (Danilov & Gurarie 2000)
indicates that a Cκ value of 5.8–7 should be adopted due to the increased turbulence
associated with backscatter. It should be noted, however, that in the current work this
agreement is simply treated as a coincidence and has not been investigated further.

Other sources of discrepancy may arise from discrepancies associated with
experimental losses, and errors associated with limitations of the chemical model
used. Turbulence–flame interactions of the artificially stretched reaction zone structure,
obtained from the one-step model chemistry, may have an effect on the distribution
of hotspots during subgrid stirring. This should be investigated further in future
work. Despite this potential deficiency, the one-step model was found to produce
the correct post-shock ignition delays for the range of shock speeds expected on the
wave front. Therefore, while the exact value of Cκ may not be captured correctly
by the one-step model, the methodology is able to capture the underlying physics of
how turbulence–reaction layer interactions affect changes in the detonation structure
for the unsteady wave front, with varying shock speeds.

Finally, in terms of calibration, it should be noted that it is possible to implement
a dynamic procedure to obtain the Cκ value, i.e. the localized dynamic kinetic
energy model (LDKM) method (Schumann 1975; Menon & Calhoon 1996; Menon
& Kerstein 2011). Although this is possible, validation and verification would still be
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required. Furthermore, the method may be more appropriate for 3D simulations and
would therefore increase computational expense significantly. Also, the dynamic
procedure may not adequately account for increased turbulent fluctuations due
to compressibility effects. For now, the static method of prescribing Cκ proves
advantageous in two dimensions for examining the effect of turbulence intensity on
detonation propagation patterns and behaviours.

6. Conclusions

In this work, experiments and numerical simulations involving methane–oxygen
have been conducted to identify the mechanisms that contribute to irregular detonation
propagation. Of particular interest was to determine the mechanisms leading to the
formation of unburned pockets of reactive fuel in the wake of an irregular detonation,
and how the burning of these pockets influence the overall cell pattern, size and
structure during propagation. Furthermore, the burning rate on the surface of such
pockets was determined through both experiment and simulation to be of the order
of ∼60–120 m s−1 (St/SL ≈ 3.7–7.3), and was found to vary proportionally to the
local turbulence intensity. To this effect, experiments provided a general qualitative
insight into the role of turbulent mixing on the propagation characteristics, as well as
the necessary data, qualitatively and quantitatively, to validate the numerical strategy,
from which a detailed investigation was carried out.

From experiments, the Richtmyer–Meshkov flow instability, behind triple-point
paths, plays a major role in the burning of such pockets. On the other hand, KH
instability is believed to contribute only a minor role in such burning. In fact, KH
instability growth rates, in the presence of burned and unburned fuel interfaces along
slip lines behind triple points, can actually be damped by the decoupling of velocity
and thermal gradients in high-activation-energy mixtures (Massa et al. 2007). In
general, flow instabilities were found to generate turbulent mixing behind the front
of the wave, thus influencing the overall burning rate of the pockets. Furthermore,
turbulent motions were found to entrain burned products into regions of shocked
and unburned gas, also contributing to the overall burning rate of unburned fuel in
the wake. In order to investigate, in detail, how the turbulent mixing rates of these
pockets affect the overall propagation characteristics of the wave, in terms of cell
pattern and size, irregularity and reaction zone thickness, numerical simulations have
been carried out. In order to resolve the small-scale mixing and chemical reactions,
which are often very challenging to resolve for flows that are highly compressible,
reactive and contain rapid transients in pressure and energy, the compressible linear
eddy model for large-eddy simulation (CLEM-LES) is applied. The strategy itself
serves as extended work to a previously developed linear eddy model formulation
for large-eddy simulation (Menon & Calhoon 1996; Chakravarthy & Menon 2000;
Sankaran & Menon 2005; Menon & Kerstein 2011) whose capabilities were limited
to modelling only weakly compressible flows in multiple dimensions. To this effect,
the CLEM-LES strategy was validated against experiments accordingly. The major
contribution of the current work, in terms of advancing numerical strategies, was
to provide adequate closure of the reaction rate term, ω̇, in (3.3) for modelling
and understanding detonation behaviour. In fact, the CLEM-LES was found to
qualitatively and quantitatively capture experimental observations conducted in this
study, and also Kiyanda & Higgins (2013), in terms of detonation cell structure and
irregularity.
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Given the success of CLEM-LES for capturing experimental observations of
multi-dimensional detonation propagation, the strategy is promising for gaining
insight into the physical influence of turbulent mixing rates on other compressible
and reactive problems. For planar detonation propagation in a thin channel, numerical
simulations have shown that turbulent mixing rates have significantly influenced the
observed cell patterns and detonation structure. Furthermore, for increased levels of
turbulence intensity, such turbulent wave fronts were found to favour local velocities
below the CJ value. This led to a favouring of much longer ignition delays, compared
to ZND theory, for the unburned gas that passed through the front. This, in turn,
contributed to the formation of unburned pockets in the wake, thus lengthening the
overall hydrodynamic structure. Furthermore, the presence of such unburned pockets
was found to give rise to larger and more irregular cell patterns. These findings
thus support previous postulates that turbulence gives rise to a large variation of
shock-induced ignition delays, and thus the formation of unburned pockets. In the
current work, however, the role of turbulence intensity on the resulting cellular flow
patterns, structure thickness and irregularity were clarified. All of these qualitative
features were found to be significantly altered by the degree of turbulence intensity
present.

Finally, in terms of investigation of the role of turbulent mixing itself on highly
compressible combustion, it remains an open question why the optimum Cκ value to
match experiments is higher than theory predicts for incompressible three-dimensional
Kolmogorov turbulence. It is possible that the predominant two-dimensional nature
of the simulated flow field generates more backscatter, resulting in less subgrid
kinetic energy generated at smaller scales. Furthermore, the compressible nature
of the phenomena investigated probably generates backscatter through amplification
of pressure waves that originate from reactive events, which thus feed into larger
low-frequency fluid motions (Radulescu et al. 2005). Thus, compressible problems
may inherently require a higher Cκ value. This should be investigated in future work.
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