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AN INVITATION TO MODEL THEORY AND C*-ALGEBRAS

MARTINO LUPINI

Abstract. We present an introductory survey to first order logic for metric structures and
its applications to C*-algebras.

§1. Introduction. This survey is designed as an introduction to the study
of C*-algebras from the perspective of model theory for metric structures.
The intended readership consists of anyone interested in learning about
this subject, and naturally includes both logicians and operator algebraists.
Considering this, we will not assume in these notes any previous knowledge
of model theory, nor any in-depth knowledge of functional analysis, beyond
a standard graduate-level course. A familiarity with C*-algebra theory and
the classification programme [29] can be useful as a source ofmotivation and
examples. Several facts from C*-algebra theory will be used, and detailed
references provided. Most of the references will be to the comprehensive
monographs [13, 71].
Logic for metric structures is a generalization of classical (or discrete)
logic, suitable for applications to metric objects such as C*-algebras. The
monograph [11] presents a quick but complete introduction to this subject,
and explains how the fundamental results from classical model theory can
be recast in the metric setting. The model-theoretic study of C*-algebras has
been initiated in [38–40] where, in particular, it is shown how C*-algebras fit
into the framework of model theory for metric structures. The motivations
behind this study are manifold. With no pretense of exhaustiveness, we
attempt to illustrate some of them here.
Themost apparent contribution of first-order logic is to provide a syntactic
counterpart to the semantic construction of ultraproducts and ultrapowers:
the notion of formulas. Formulas allow one to express the fundamental
properties of ultrapowers of C*-algebras (saturation) and diagonal embed-
dings into the ultrapower (elementarity). These general principles underpin
most of the applications of the ultraproduct construction in C*-algebra the-
ory, as they have appeared in various places in the literature under various
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names—Kirchberg’s ε-test, reindexing arguments, etc. Isolating such gen-
eral principles provides a valuable service of clarification and uniformization
in the development of C*-algebra theory. In particular, this allows one to
distinguish between, on one hand, what is just an instance of “general non-
sense” and, on the other, what is a salient point where C*-algebras theory is
crucially used.
This abstract model-theoretic point of view also makes it easier to rec-
ognize analogies between different contexts. Furthermore, it provides a
language to formalize such analogies as precise mathematical statements,
rather than just intuitive ideas. For instance, this paradigm can be applied
to some aspects of the equivariant theory of C*-algebras, which studies C*-
algebras endowed with a group action (C*-dynamical systems). At least
when the acting group is compact or discrete, C*-dynamical systems fit in
the setting of first-order logic [48]. Adopting this perspective, one can natu-
rally and effortlessly transfer ideas and arguments from the nonequivariant
theory, as long as these are presented in terms of model-theoretic notions
and principles. An instance of this phenomenon is the general theory of
strongly self-absorbing C*-algebras, which admits a natural model-theoretic
treatment; see Section 6. The equivariant analog strongly self-absorbing C*-
algebras has been recently introduced and studied by Szabó in a series
of papers [75–77], where the theory is developed in close parallel to the
nonequivariant setting.
Beyond the motivations above, model theory provides the right tools for
the study of ultrapowers and central sequence algebras per se. Questions on
the number of nonisomorphic ultrapowers arise naturally in operator alge-
bra theory, and can be traced back toMcDuff’s study of central sequences in
the context of II1 factors [63].Many of such questions have been answered in
[38–40] through the application of rather general model-theoretic principles.
We will explore some of these problems in Section 5, focusing on the situ-
ation under the Continuum Hypothesis. Ultrapowers and central sequence
algebras are in fact just some instances of naturally occurring “massive C*-
algebras”. Other examples are Calkin algebras and, more generally, corona
algebras. Deep questions about such algebras have been recently addressed
in [23, 26, 32, 33, 35, 41, 43, 44, 46, 68, 84]. Methods from model theory, set
theory, and forcing are key components of this line of research.
A further thread of applications of model theory comes from the use of
techniques for constructing “generic objects”, and the potential of using
these techniques to construct interesting new examples of C*-algebras. This
is particularly relevant considering that one of the most important open
problems in C*-algebra theory (the UCT problem) depends on the exis-
tence of other methods of constructing nuclear C*-algebras other than the
standard constructions of C*-algebra theory; see Section 7. Using the tech-
niques of model-theoretic forcing and building models by games, many deep
open problems in operator algebra theory have been reformulated in terms
of model-theoretic notions, in the hope that these might be more amenable
to a direct attack. Examples of these problems include the famous Connes
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Embedding Problem and some its C*-algebraic counterparts (the Kirchberg
Embedding Problem, the MF problem); see [36, 53, 55, 56].
While the list above does not exhaust the possible applications of model
theory to operator algebras, we hope it will sufficiently motivate the choice
of topics in this survey. After a general introduction to the logic for metric
structures (Section 2), we will explain how many classes of C*-algebras can
be described through formulas (Section 3). Ultraproducts and their model-
theoretic properties are considered in Section 4, and the question on the
number of ultraproducts is considered in Section 5. The important class of
strongly self-absorbing C*-algebra and its model-theoretic treatment is the
subject of Section 6. We conclude in Section 7 with a quick introduction
to the classification programme of nuclear C*-algebras, a description of
the model-theoretic content of nuclearity and other regularity properties,
and an outlook on the applications of model-theoretic forcing to produce
interesting examples of nuclear C*-algebras.
No result presented in this survey is original, although the presentation
of some of the material is new. The results concerning the general theory of
first-order logic for metric structures can be found in [11, 39]. Axiomatiz-
ability of the classes of C*-algebras presented here and many other classes is
contained in [19,36], as well as the model-theoretic description of nuclearity
and other regularity properties. The theorem on the number of nonisomor-
phic ultrapowers ofC*-algebras is one of themain results of [38,39], together
with the corresponding fact for II1 factors. The model-theoretic treatment
of strongly self-absorbing C*-algebras is the subject of [37]. The model-
theoretic proof of the characterization of D-absorption presented here is
in some respects original, although heavily inspired by the proofs from the
literature [47,75,83]. Finally, the technique of model-theoretic forcing in the
metric setting has been first considered in [12] and then further developed
in [36, 42, 53].

§2. First-order logic for metric structures.

2.1. Languages. Model theory focuses on the study of classes of objects,
rather than single objects on their own. The important notion of language
or signature has the purpose of formalizing the assertion that a certain class
is made of objects “of the same kind”. It also allows one to make explicit
which operations on the given objects are being considered. Formally, a
language (or signature) usually denoted by L, is a collection of symbols.
These symbols are of two kinds: function symbols and relation symbols.
Each function symbol f in the language L has attached a natural number
nf , called its arity, and a function �f : [0,+∞)nf → [0,+∞) continuous
at 0 and vanishing at 0, called its continuity modulus. Similarly, each relation
symbol R in the language L has attached a natural number nR, called its
arity, a function �R : [0,+∞)nR → [0,+∞) continuous at 0 and vanish-
ing at 0, called its continuity modulus, and a compact internal JR of R,
called its bound. The language L includes a distinguished relation symbol,
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called the metric symbol. This is denoted by d , it has arity 2, and conti-
nuity modulus �d (t0, t1) = t0 + t1. As customary we will call binary a
symbol of arity 2, and unary a symbol of arity 1. The arity nf of a function
symbol f is allowed to be 0, in which case one says that f is a constant
symbol.
Given a languageL, one can then define the notion ofL-structure. Briefly,
an L-structure is a set endowed with functions and relations corresponding
to the symbols in L. Precisely, an L-structure is a complete metric space(
M,dM

)
together with assignments f �→ fM and R �→ RM , which assign

to each function symbol f in L its interpretation fM in M , and to each
relation symbolR inL its interpretationRM inM . These interpretations are
required to satisfy the following properties. Iff is a function symbol of arity
nf and continuity modulus�f , thenfM is a functionfM :Mnf →M such
that, for every ā, b̄ ∈Mnf , dM (f (ā) , f

(
b̄
)
) ≤ �f(dM

(
ā, b̄

)
). When the

arity nf of f is zero, i.e., when f is a constant symbol, by convention the
set Mnf consists of a single point, and the function fM : Mnf → M can
be simply seen as a distinguished element of M . If R is a relation symbol
of arity nR, continuity modulus �R, and bound JR, then RM is a function

RM : MnR → JR ⊂ R such that, for every ā, b̄ ∈ Mnf ,
∣∣∣R (ā)− R (b̄)∣∣∣ ≤

�R(dM
(
ā, b̄

)
). Furthermore, the interpretation of the metric symbol d of

L is required to be equal to the metric dM of M (consistently with the
notation above).
To summarize, an L-structure is a space endowed with some extra oper-
ations (functions and relations) as prescribed by the language. Further-
more, the language contains names (or symbols) for such operations. This
allows one to uniformly and unambiguously refer to such operations when
considering the class of all L-structures.

2.2. Metric groups. At this point, examples are in order. We consider
for now examples from metric geometry and group theory. The first natural
example is the languageL containing no function symbol, andwhose unique
relation symbol is the distinguished symbol for the metric d . One also has
to specify in L a bound Jd for d , which we can choose to be [0, 1]. The
continuity modulus for d can be defined to be �d (t0, t1) = t0 + t1. This
completely defines a language L in the sense above. It is clear that, for such
a language, an L-structure is just a complete metric space

(
M,dM

)
whose

metric attains values in [0, 1]. Thus the class of L-structure consists of the
class of complete metric spaces of diameter at most 1.
A slightly more sophisticated example can be obtained by adding to
this language some function symbols, to describe some additional alge-
braic structure which might be present on a complete metric space. The
first natural example is the case of a language L containing a single binary
function symbol, to describe a binary operation. Since we want to think
of it as a binary operation, we denote such a binary function symbol by
· (for which we use the usual infix notation). We also need to prescribe a
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continuity modulus for such a binary function symbol, which we define to
be (t0, t1) �→ t0 + t1. As above, we assume that the unique relation symbol
in L is the metric symbol. In this case, an L-structure is a complete met-
ric space

(
M,dM

)
with diameter 1 endowed with a binary operation ·M .

The choice of continuity modulus for the symbol · in L forces ·M to
satisfy

dM (a0 ·M b0, a1 ·M b1) ≤ dM (a0, a1) + dM (b0, b1) . (1)

Conversely, any complete metric space with diameter 1 endowed with a
binary operation satisfying Equation (1) can be seen as an L-structure. In
this case, the class of L-structures contains the important example of bi-
invariant metric groups. A bi-invariant metric group is a complete metric
space

(
G, dG

)
endowed with a group operation ·G with the property that

left and right translations, i.e., the maps x �→ ax and x �→ xa for a ∈ G , are
isometries. It is clear from the discussion above that a bi-invariant metric
group can be seen as a structure in the language L just described.
Bi-invariant metric groups arise naturally in operator algebras, group
theory, and metric geometry. For instance, for every n ∈ N, the group Un of
n×n unitary matrices is a bi-invariant metric group when endowed with the
metric d (u, v) = 2−1/2‖u−v‖2. Here ‖a‖2 denotes the normalizedHilbert–
Schmidt norm (or Frobenius norm) � (a∗a)1/2 of a matrix a, where � is the
canonical trace of n×n matrices, suitable normalized so that � (1) = 1. This
is a particular instance of a more general class of examples, arising from
von Neumann algebra theory. If M is a von Neumann algebra endowed
with a faithful normalized trace �, then the unitary group U (M ) of M
is a bi-invariant metric group. The metric now is defined, as above, by
d (u, v) = ‖u − v‖2, where ‖a‖2 denotes the 2-norm � (a∗a)1/2 of a with
respect to the trace �. The case of unitary groups of matrices is recovered in
the case whenM is a full matrix algebra.
One can also consider different metrics on the unitary group Un. For
instance, one can consider the metric d (u, v) = ‖u − v‖ induced by the
operator norm of matrices, which can be concretely defined as the largest
singular value. It is clear that left and right translations inUn are isometries
also with respect to this metric, and so it yields another example of bi-
invariant metric group. Again, this is a particular instance of a more general
class of examples arising from C*-algebra theory. Indeed, if A is a C*-
algebra, then one can consider the unitary group U (A) as a bi-invariant
metric group endowed with a metric induced by the norm of A.
Generalizing the examples above, one can consider an arbitrary unitary-
invariant complete metric d bounded by 1 onMn(C), and then endow the
unitary group Un with the bi-invariant metric induced by d . Any choice of
such a unitary-invariant metric gives rise to a different L-structure. Beside
the ones considered above, an important example of unitary-invariantmetric
d is the (normalized) rank metric, defined by d (a, b) = rank (a − b) /n,
where rank denotes usual rank of matrices. Clearly, such a metric is not
only unitary-invariant, but also invariant with respect to multiplication by
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arbitrary invertible matrices. Therefore, it defines an invariant metric also in
the group GLn(C) of invertible n × n complex matrices.
Another class of examples arises by considering, for n ∈ N, the symmetric
group Sn, consisting of permutations of the set {1, 2, . . . , n}. In this case,
the bi-invariant metric is given by the (normalized) Hamming metric,

d (�, �) =
1
n
|{i ∈ {1, 2, . . . , n} : � (i) 	= � (i)}| .

Finally, any (discrete) group Γ can be regarded as a bi-invariant metric
group with respect to the trivial {0, 1}-valued metric defined by d (g, h) = 1
whenever g, h ∈ Γ are distinct.
We mention in passing that the classes of metric groups introduced here
play a crucial role in defining and studying important regularity properties
for countable discrete groups. Indeed, given a countable discrete group Γ and
a class C of bi-invariant metric groups, one says that Γ is C-approximable
if there exist strictly positive real numbers �g for g ∈ Γ \ {1} such that,
for every finite subset F of Γ \ {1} and for every ε > 0, there exists a bi-
invariant metric group

(
G, dG , ·G) in C and a function Φ : Γ → G such

that Φ (1) = 1, d (Φ (gh) ,Φ(g)Φ (h)) < ε, and d (Φ (g) , 1) > �g for every
g, h ∈ F [79, Definition 1.6]. By varying the class C, one obtains various
regularity properties for countable discrete groups:

• when C is the class of permutation groups Sn for n ∈ N endowed with
the Hamming distance, a group is C-approximable if and only if it is
sofic [18, 57, 66];

• when C is the class of unitary groups Un for n ∈ N endowed with
the Hilbert-Schmidt distance, a group is C-approximable if and only
if it is hyperlinear, which is in turn equivalent to the assertion that
the corresponding group von Neumann algebra satisfies the Connes
Embedding Problem [64];

• when C is the class of unitary groups Un for n ∈ N endowed with the
operator norm, a group is C-approximable if and only if it ismatricially
finite orMF [14,20], which is in turn equivalent to the assertion that the
corresponding group C*-algebra is quasidiagonal [20, Theorem 2.8];

• when C is the class of groups GLn(C) endowed with the rank metric, a
group is C-approximable if and only if it is linear sofic [3].
The interest in these properties is due on one hand to the fact that several
long-standing open problems in group theory—such as Gottschalk’s con-
jecture [57], Kaplansky’s direct finiteness conjecture [27], and the algebraic
eigenvalue conjecture [78]—have been settled for groups satisfying these
extra regularity properties. On other hand, these extra assumptions seem to
be very generous, to the point that no countable discrete group that does
not satisfy any of the approximation properties mentioned above is currently
known.
To conclude this detour on metric groups, and this list of examples of
languages, we mention a language closely related to the one just considered.
We let L be a language consisting of a binary function symbol · as above,
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together with a unary function symbol suggestively denoted by inv, having
the identity map as continuity modulus, and a constant symbol 1. A bi-
invariant metric group G can be naturally regarded as a structure in this
richer language L, where the interpretation of the unary function inv is just
the function g �→ g−1 assigning to an element of G its inverse, and the
constant symbol 1 is interpreted as the identity element of G . This example
showcases an important point: a given object, such as a bi-invariant metric
group, canbe seenas a structure inpossibly different languages. The choice of
the language allows one to keep track ofwhich operations one is considering.

2.3. Languages with domains of quantification. Ultimately, we would like
to regard unital C*-algebras as structures in a suitable language L contain-
ing symbols for all the C*-algebra operations. While not impossible, it is
somewhat inconvenient to regard C*-algebras as structures in the restricted
setting considered in Section 2.1.Naturally, such a languageLwould contain
binary function symbols + and · for sum and multiplication, a unary func-
tion symbol for the adjoint operation, constant symbols for the additive and
multiplicative neutral elements, and a unary function symbols for the scalar
multiplication function x �→ �x for any given � ∈ C, in addition to the dis-
tinguished metric symbol. However, in view of the requirements on bounds
on relation symbols (including the metric symbol) one can only consider
bounded metric spaces as structures. It is therefore natural to then restrict to
the unit ballA1 of a givenC*-algebraA. This is not a real restriction, since it is
clear that all the information about A is already present inA1. This however
makes it problematic to have a function symbol for the addition operation,
since A1 is not invariant under addition. A solution to this would be replace
the binary function symbol for addition with a binary function symbol to
denote the average operation (x, y) �→ (x + y) /2. (More generally, one
could consider for n ∈ N and (�1, . . . , �n) ∈ Cn such that

∑n
i=1 |�i | ≤ 1, an

n-ary function symbol for the function (x1, . . . , xn) �→ �1x1 + · · · + �nxn.)
While this is possible, the corresponding notion of structure that one obtains
seems to be far from the way in which, in practice, C*-algebras are regarded
as structures by C*-algebraists.
We pursue therefore a different path, which consists in introducing a more
general framework than the one considered in Section 2.1. This is the frame-
work of languages with domains of quantification. Briefly, in this setting
one adds to the language a collection of symbols (domains of quantifica-
tion) to be interpreted as closed subsets of the structure. In this case, all
the requirements concerning the interpretations of function and relation
symbols, including the boundedness requirement on the metric, are only
imposed relatively to a given domain, or tuple of domains. This allows one
to consider structures, such as C*-algebras, where the metric is globally
unbounded, although it is bounded when restricted to any given choice
of domains of quantifications. In the case of C*-algebras, the domains of
quantifications will be interpreted as the balls centered at the origin.
We now present the details. As we have just mentioned, in this setting,
a language L is endowed with a collection D of domains of quantification.
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The set D is endowed with an ordering, which is upward directed. In this
case, for each function symbol f in L and for each choice of input domains
D1, . . . , Dnf , the language L prescribes:

• its arity nf ;
• an output domainDfD1,...,Dnf ;
• a continuity modulus �fD1,...,Dnf : [0,+∞)

nf → [0,+∞).
Similarly, for each relation symbol R in L and for each choice of input
domains D1, . . . , Dnf , the language L prescribes:

• its arity nR;
• a bound JRD1,...,Dnf ;
• a continuity modulus �RD1,...,DnR : [0,+∞)

nf → [0,+∞).
Again, the language L is assumed to contain a distinguished binary
function symbol d (metric symbol).
In this case, an L-structure is a complete metric space

(
M,dM

)
together

with assignments:

• D �→ DM from the set of domains of quantification inL to the collection
of closed subsets ofM ;

• f �→ fM from the set of function symbols in L to the collection of
functionsMn →M for n ∈ N;

• R �→ RM from the set of relation symbols in L to the collection of
functionsMn → R for n ∈ N;

satisfying the following properties:

(1) the collection
{
DM : D ∈ D} of closed subsets ofM has dense union;

(2) the assignment D �→ DM is order-preserving, where the collection of
closed subsets ofM is ordered by inclusion;

(3) for every function symbolf and choice of input domainsD1, . . . , Dnf ,

and ā, b̄ ∈ D1 × · · · × Dnf , one has that fM (ā) ∈ DfD1,...,Dnf and
dM (f (ā) , f

(
b̄
)
) ≤ �fD1,...,Dnf (d (ā, b̄));

(4) for every relation symbolR and choice of input domainsD1, . . . , DnR ,
and ā, b̄ ∈ D1 × · · · × DnR , one has that RM (ā) ∈ JRD1,...,Dnf and∣∣∣R (ā)−R (b̄)∣∣∣ ≤ �fD1,...,Dnf (d (ā, b̄)).

We conclude by noting that any language as defined in Section 2.1 can be
seen as a particular instance of a language with domains of quantification
as defined in this section, by declaring that the set D of domains of quan-
tification is a singleton {D}. In this case, we omit the reference to such a
unique domain in the quantifiers, and write simply supx and infx instead of
supx∈D and infx∈D .
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2.4. C*-algebras as structures. We are now ready to discuss how C*-
algebras can be seen as structures in continuous logic, when one consider the
framework introduced in Section 2.3. Recall that a C*-algebra is, abstractly,
a complex algebra A endowed with an involution a �→ a∗ and a complete
norm a �→ ‖a‖ satisfying ‖ab‖ ≤ ‖a‖ ‖b‖ for a, b ∈ A, and the C*-identity
‖a∗a‖ = ‖a‖2 for a ∈ A. For every n ∈ N, the algebraic tensor product
Mn(C) ⊗ A = Mn (A) is endowed with a canonical norm which turns into
a C*-algebra. We will always regardMn (A) as a C*-algebra endowed with
such a norm. We will only consider unital C*-algebras, which are moreover
endowed with a multiplicative identity 1 (the unit).
The Gelfand–Neimark theorem guarantees that one can concretely repre-
sent any (abstract) C*-algebras as a closed subalgebra of the algebra B(H )
of bounded linear operators on aHilbert spaceH . In this case the involution
is the map assigning to an operator its Hermitian adjoint, the norm is the
operator norm given by ‖T‖ = sup {‖T�‖ : � ∈ H, ‖�‖ ≤ 1} forT ∈ B(H ),
and 1 is the identity operator.
The language of C*-algebras LC* consists of:

• a sequence {Dn : n ∈ N} of domains of quantifications, linearly ordered
by setting Dn < Dm if and only if n < m;

• binary function symbols for addition and multiplication;
• for every � ∈ C, a unitary function symbol for the scalar multiplication
function x �→ �x;

• constant symbols for 0 and 1;
• a unary relation symbol for the norm, as well as the metric symbol;
• for every n ∈ N, a n2-ary relation symbol for the norm of elements of
Mn (A).

We want to regard a C*-algebra A as an LC*-structure, where the domain
Dn is interpreted as the ball of A of center 0 and radius n, the function and
relation symbols are interpreted in the obvious way. Keeping this in mind, it
is clear that one can define continuity moduli, output domains, and bounds
for the given function and relation symbols in such away that anyC*-algebra
meets the requirements that anLC*-structure has by definition to satisfy. For
example, let us consider the function symbol formultiplication, and the input
domains Dn and Dm. In this case, one can declare the output domain to be
Dnm, and the continuity modulus to be the function (t1, t2) �→ mt1 + nt2.

2.5. Formulas. One of the upshots of regarding a class of objects as struc-
tures in continuous logic is to obtain a corresponding notion of first-order
property. These are by definition the properties that can be expressed through
formulas. We begin with the syntax of formulas, and describe how formulas
in a given language are defined. So let us fix a language L, and define the
notionofL-formula. Intuitively, anL-formula is an expression that describes
a property of an L-structure, or of a tuple of elements of an L-structure,
by only referring to the given L-structure, its elements, and its operations
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which are given by the interpretations of the function and relation symbols
in L.
Before we introduce the notion of L-formula, we need to consider the
notion of L-term. Informally, an L-term is an expression that described
how elements of a given L-structure can be combined together by using the
function symbols in L. To make this precise, we suppose that we have a
collection of symbols, usually denoted by x, y, z, . . ., possibly with decora-
tions such as x1, x2, x3, . . ., which we call variables. Variables are used in the
definition of terms and formulas, and they should be thought of as “place-
holders”, which can be possibly replaced by elements of a structure. (This is
analogous to the role of variables x̄ in a polynomial p (x̄) with coefficients
in a ring R. These variables can be “substituted” by elements of R when
considering the corresponding polynomial function. In fact, this usage of
variables is a particular instance of the usage frommodel theory.)We assume
that to each variable x is uniquely attached a domain of quantification D,
which we call the domain of x.
Now one can say briefly that an L-term is any expression that can be
formed starting from variables and constant symbols, and applying function
symbols from L. More extensively, one declares that:
• variables are L-terms;
• constant symbols are L-terms;
• if t1, . . . , tn are L-terms, and f is an n-ary function symbol in L, then
(f (t1, . . . , tn)) is an L-term.
Given an L-term t, one can speak of the variables that appear in t. For-
mally, if x is a variable, one can define the property that x appears in t by
induction on the complexity of t as follows: if t is a variable, then x appears
in t if and only if x is equal to t; if t is a constant symbol then x does not
appear in t; if t = f (t1, . . . , tn) then x appears in t if and only if x appears
in ti for some i ∈ {1, 2, . . . , n}. One then writes t (x1, . . . , xk) to denote the
fact that the variables that appear in t are within x1, . . . , xk .
The notion of L-term allows one to easily define the notion of atomic
L-formula. This is an expression ϕ of the form R (t1, . . . , tn), where R is
an n-ary function symbol in L and t1, . . . , tn are L-terms. If t1, . . . , tn are
terms with variables within x1, . . . , xk , then one says thatϕ has free variables
within x1, . . . , xk , and writes ϕ (x1, . . . , xk).
Starting from the notion of atomic formula, one can define arbitrary for-
mulas. Informally, formulas are expressions obtained by combining atomic
formulas by using logical connectives and quantifiers. In classical (discrete)
first-order logic, the logical connectives are the usual symbols ∧, ∨, ¬,→,
↔, which can be thought of as expressions to denote Boolean functions.
In logic for metric structures, these Boolean functions are replaced with
arbitrary continuous functions q : Rd → R. On the side of quantifiers, in the
discrete setting these are the expressions ∀x and ∃x, where x is a variable.
In this case, one also says that ∀x and ∃x are quantifiers over x. In the
continuous setting, for each domain of quantification and for each variable
x one has quantifiers supx∈D and infx∈D (this justifies the name of domains

https://doi.org/10.1017/bsl.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.3


44 MARTINO LUPINI

of quantification). One then formally defines L-formulas by induction as
follows:

• atomic L-formulas are L-formulas;
• if ϕ1, . . . , ϕn are L-formulas and q : Rn → R is a continuous function,
then q (ϕ1, . . . , ϕn) is an L-formula;

• if ϕ is an L-formula, and x is a variable with domain D, then infx∈D ϕ
and supx∈D ϕ are L-formulas.

For brevity, a sequence of quantifiers supx1∈D1 · · · supxn∈Dn is abbrevi-
ated by supx̄∈D̄ where x̄ is the tuple of variables (x1, . . . , xn) and D̄ is the
corresponding tuple of domains (D1, . . . , Dn).
The variables that appear in anL-formula canbe bound or free, depending
on whether they are in the scope of a quantifier over them or not. Formally,
one declares when a variable x appears freely in ϕ by induction on the
complexity of ϕ as follows:

• if ϕ is an atomic formula R (t1, . . . , tn), then x appears freely in ϕ iff it
appears in ti for some i ∈ {1, 2, . . . , n};

• x appears freely in q (ϕ1, . . . , ϕn) iff it appears freely in ϕi for some
i ∈ {1, 2, . . . , n};

• x appears freely in infy∈D ϕ or supy∈D ϕ iff x appears freely in ϕ and x
is different from y.

If the free variables ofϕ arewithinx1, . . . , xk , thenwewriteϕ (x1, . . . , xk).
In this case, ϕ should be thought of as an expression describing how close
a given k-tuple of elements of an L-structure is to satisfy a certain property.
When ϕ has no free variables, one says that ϕ is anL-sentence. In this case,ϕ
should be thought of as an expression describing how close a given structure
is to satisfying a certain property.
As mentioned above, the purpose of formulas is to describe properties of
structures, or elements of structures. This is made precise by the semantic
notion of interpretation of a formula in a given structure. We begin with
the interpretation of an L-term t (x1, . . . , xk) in an L-structure M , which
is going to be a function tM : DM1 × · · · × DMk → M , ā �→ tM (ā), where
(D1, . . . , Dk) are the domains of (x1, . . . , xk). Briefly, this is defined by
replacing the variables of t with the given tuple ā of elements of M , and
by replacing constant symbols and function symbols f with their interpre-
tations. Formally, this is defined, again, by induction of the complexity, as
follows:

• if t (x̄) = xi for some i ∈ {1, 2, . . . , k}, then tM (ā) = ai ;
• if t is a constant symbol c, then tM (ā) = cM ;
• if t = f (t1, . . . , tn), then tM (ā) = fM (tM1 (ā), . . . , tMn (ā)).
Starting from the interpretations of terms, one can define the interpre-
tation of an L-formula ϕ (x1, . . . , xk), which is going to be a function
ϕM : DM1 × · · · × DMk → R, ā �→ ϕM (ā). As above, this can be briefly
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defined by replacing all the terms, relation symbols, and domains of quan-
tifications that appear, with their interpretation in M . Precisely, one can
define this by induction on the complexity, as follows:

• if ϕ is the atomic formula R (t1, . . . , tn), then ϕM (ā) =
RM (t1(ā), . . . , tn(ā));

• if ϕ is equal to q (ϕ1, . . . , ϕn), then ϕM (ā) = q
(
ϕM1 (ā), . . . , ϕ

M
n (ā)

)
;

• if ϕ is equal to infx∈D 
, then ϕM (ā) = infx∈DM 
M (ā), and similarly
with sup.

Clearly, when ϕ is an L-sentence, its interpretation ϕM can be seen simply
as a single real number. At this point, let us pause and see what the notions of
terms and formulas just introduced correspond in the examples of languages
that we have seen so far.
When L is the language only containing the metric symbol, the only terms
are just single variables, and the only atomic formulas are of the form d (x, y)
where x, y are variables. The interpretation of such a formula in a complete
metric space

(
M,dM

)
is the functionM ×M → R, (a, b) �→ dM (a, b). In

this case, an example of sentence is the formulaϕ given by supx supy d (x, y).
The interpretation of ϕ is a metric space

(
M,dM

)
is, clearly, the diameter

ofM .
A slightly more interesting example comes from considering the language
L for bi-invariant metric groups. In this case, a term in the free variables
x1, . . . , xn canbe seenas a parenthesizedword in the variablesx1, . . . , xn, such
as (x1 · (x2 · x3)). (Formally, (x1 · (x2 · x3)) and ((x1 · x2) · x3) are distinct
terms, although they have the same interpretation in any bi-invariant metric
group, or more generally in any L-structure for which the interpretation of
the binary function symbol · is an associative operation.) The interpretation
of a term t (x̄) in a bi-invariant metric group G is then the function ā �→
tG (ā) that replaces the variables x̄ with the tuple ā, and then computes the
products in G . An example of L-sentence in this case is given by the L-
formula supx supy d (x · y, y · x). The interpretation of such an L-sentence
ϕ in a bi-invariantmetric group is then a real number, which is the supremum
of distances from the identity of commutators in G . This can be thought of
as a measure of how far G is from being abelian. Clearly,G is abelian if and
only if ϕG = 0.
We conclude this series of examples by considering the case of the lan-
guage for C*-algebras LC*. In this case, an LC*-term in the variables
x1, . . . , xn can be seen as a complex polynomial with constant term in the
variables x1, . . . , xn and their “formal adjoint” x∗1 , . . . , x

∗
n (∗-polynomials).

This is strictly speaking not entirely correct, since the term
(
(x1 + x2)

∗),
for instance, is not equal to the term

(
(x1)

∗ + (x2)
∗). However, they have

the same interpretation in every C*-algebra, and hence we can for all pur-
poses identify them, and write them simply as x∗1 + x

∗
2 . The same applies to

the terms ((x1 + x2) + x3) and (x1 + (x2 + x3)), which we write simply as
x1 + x2 + x3. Thus, an atomic LC*-formula in the free variables x1, . . . , xn
can be seen as an expression of the form ‖p(x1, . . . , xn)‖where p(x1, . . . , xn)
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is a *-polynomial in the variables x1, . . . , xn. Its interpretation in a C*-
algebraA is the functionAn → R, ā �→ p(ā). An example ofLC*-sentence in

this setting is, for instance theLC*-formula supx∈D1

∣∣∣‖x∗x‖ − ‖x‖2
∣∣∣. (Recall

that inLC* we have domains of quantificationDn for n ∈ N, which are inter-
preted in aC*-algebra as the balls of radius n centered at the origin.) Clearly,
the interpretation of such an LC*-sentence is equal to 0 in any C*-algebra,
in view of the C*-identity.

2.6. Multi-sorted languages. One can consider a further generalization of
the framework introduced in Section 2.3, by allowingmulti-sorted languages.
In this setting, the language prescribes a collection S of sorts. Each sort S in
S comeswith a corresponding collectionDS of domains of quantification for
S. Furthermore, each n-ary function and relation symbol has a prescribed
n-tuple of input sorts and, in the case of function symbols, an output sort as
well. A structureM then consists of a family

(
MS

)
S∈S of metric spaces, one

for each sort, together with the corresponding interpretations of domains
of quantification, and function and relation symbols, subject to the same
requirements as in Section 2.3.All the notions and results thatwewill present
admit natural generalizations to the case of multi-sorted languages.

§3. Axiomatizability and definability.

3.1. Axiomatizable classes. As we have mentioned in Section 2, model
theory focuses on the study of classes of objects of the same kind, rather
than single objects on their own.We have introduced the notion of language,
in order to make precise what it means that a class consists objects of the
same kind. We have also defined the notion of formula in a given language,
which is an expression that allows one to describe properties of an arbitrary
tuple of elements of a structure or, in the case of sentences (formulas with no
free variables), of the structure itself. This leads to the important notion of
elementary or axiomatizable property. By considering the class of structures
that satisfy the given property, one can equivalently speak of elementary or
axiomatizable class.
To give the precise definition, let us fix a language L, and a class of L-
structures C. Recall that given an L-sentence ϕ and a real number r, we let
ϕM be the interpretation of ϕ inM , which is a real number. An L-condition
is an expression ϕ ≤ r where ϕ is an L-sentence and r ∈ R is a real number.
An L-structureM satisfies the condition ϕ ≤ r if and only if ϕM ≤ r.

Definition 3.1. The class C is L-axiomatizable or L-elementary if there
exists a family ofL-conditions ϕi ≤ ri for i ∈ I such that, given an arbitrary
L-structure M , we have that M belongs to C if and only if M satisfies the
condition ϕi ≤ ri for every i ∈ I . In this case, one refers to the conditions
ϕi ≤ ri for i ∈ I as axioms for C.
One then says that a property P isL-elementary if the class ofL-structures
that satisfy P is elementary.
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It is clear that in the definition of L-axiomatizable class, up to replacing
each sentence ϕi with the sentence max {ϕi − ri , 0}, one can always assume
that ri = 0 and that ϕi only attains non-negative values. In practice, when
the language L is clear from the context, one simply speaks of axiomatiz-
able or elementary class, omitting the explicit reference to the language L.
Intuitively, the assertion that a property is L-elementary means that it can
be described by only referring to the elements of a given structure and to the
operations of the structure which are named by the language L.
In order to gain some familiarity with the concept of axiomatizable class,
let us look at examples, drawn from the list of languages and structures
that we have considered in Section 2. We have introduced above the class
of bi-invariant metric groups. For convenience, we can regard these objects
as structures in the language L that contains, besides the metric symbol, a
binary function symbol · for the operation, a unary function symbol inv for
the inverse map, and a constant symbol 1 for the neutral element. Thus the
class C of bi-invariant metric groups is easily seen to be an axiomatizable
class of L-structures, as witnessed by the axiom:

• supx d (x · 1, x) ≤ 0, which prescribes that 1 is interpreted as a neutral
element;

• supx d (x · inv (x) , 1) ≤ 0, which prescribes that inv(x) is interpreted
as the inverse of x;

• supx,y,z d ((x · (y · z)) , ((x · y) · z)) ≤ 0, which prescribes that the
operation is associative;

• supx0,x1,y max {|d (x0y, x1y)− d (x0, x1)| , |d (yx0, yx1)− d (x0, x1)|}≤
0, which forces left and right translations to be isometric.

Several natural properties of bi-invariant metric groups are elementary in
this language. For instance, the property of being abelian is elementary, as
witnessed by the single axiom supx,y d (xy, yx) ≤ 0.
Given a collection C of structures in a languageL, one of the fundamental
problems of the model-theoretic study of C is understanding which sub-
classes of C (including C itself) are L-axiomatizable. While in some cases
this might be apparent, other cases might be more subtle. Often a proof of
axiomatizability of a given property might require obtaining an equivalent
“explicit” or “quantitative” characterization of such a property, which is
easily seen to be captured by L-sentences. Finally, there are many natural
properties which turn out to be not elementary (although there might be
other ways to describe them model-theoretically).
Due to the importance of this task, model theory has developed many
useful criteria that can be used in axiomatizability proofs. Often such criteria
provide a “softer” approach, which allows one to prove that a certain class
is axiomatizable without the need of explicitly writing down axioms for it.
Here, we will content ourselves to verify that certain classes of structures
are axiomatizable by directly applying the definition. In the next section, we
will consider the subtle problem of axiomatizability for various important
classes of C*-algebras.
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3.2. Axiomatizability in C*-algebras. A substantial amount of the recent
efforts in the model-theoretic study of C*-algebras has been directed into
understanding which classes of C*-algebras are axiomatizable in the canon-
ical language LC* described in Section 2.4, starting from the class of
C*-algebras itself. Recall that we are tacitly assuming all C*-algebras to
be unital.

3.2.1. C*-algebras. A C*-algebra A is a unital Banach algebra with a
conjugate-linear involution a �→ a∗ (unital Banach *-algebra) satisfying
the C*-algebra identity ‖a∗a‖ = ‖a‖2. It is fairly obvious that one can
write down sentences that describe that an LC*-structure satisfying such
properties. For example, the assertion that the involution is conjugate linear
is captured by the family of axioms

sup
x∈Dn

∥∥∥(�x)∗ − �x∗∥∥∥ ≤ 0,

where n ∈ N, � varies among all complex numbers, and � denotes the
conjugate of �. Similarly, submultiplicativity of multiplication is reflected by
the conditions

sup
x,y∈Dn

(‖xy‖ − ‖x‖ ‖y‖) ≤ 0

for n ∈ N, while the C*-identity is captured by the conditions

sup
x∈Dn

∣∣∣‖x∗x‖ − ‖x‖2
∣∣∣ ≤ 0

for n ∈ N.
The only tricky point is that, as we discussed, whenwe regard aC*-algebra
as an LC*-structure, we insist that the domain Dn be interpreted as the ball
of radius n centered at the origin. Now, in general this need not be true in an
arbitrary LC*-structure. Therefore we need to add axioms that enforce this
behavior of the interpretation of domains. For n ∈ N, we can consider the
conditions

sup
x∈Dn

‖x‖ ≤ n, (2)

which clearly guarantees that the norm of any element in the interpretation
of Dn is at most n. At this point, we are only missing axioms that guarantee
that any element of norm at most n actually belongs to Dn. This is made
sure by the axioms

sup
x∈Dm

inf
y∈Dn

(‖x − y‖ −max {‖x‖ − n, 0}) ≤ 0 (3)

for n ≤ m. Indeed, observe that if x is an element of a C*-algebra A which
belongs to the ball of radius m centered at the origin, if one actually has
that ‖x‖ ≤ n, then x can also be seen as an element y of the ball of radius
n, witnessing that (3) holds. Otherwise if n < ‖x‖ ≤ m, then y := n

‖x‖x
is an element of the ball of radius n such that ‖x − y‖ ≤ ‖x‖ − n, again
witnessing that 3 holds.
In order to see that these axioms are sufficient to enforce the desired
behavior on the interpretation of the domains of quantificationDn for n ∈ N,
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suppose that M is an LC*-structure satisfying (2) and (3), as well as the
axioms for unital Banach *-algebras satisfying the C*-identity. We claim
then that the interpretationDMn is precisely the ball ofM of radius n centered
at the origin. Indeed, suppose that x ∈M is such that ‖x‖ ≤ n. Then, by the
definition of structure,

⋃
n∈N
DMn is dense inM . Hence, for every ε > 0 there

exists m ∈ N and y ∈ DMm such that ‖x − y‖ ≤ ε. After replacing y with
y

1+ε/n we can assume that ‖y‖ ≤ n. Therefore by (3) there exists z ∈ DMn
such that ‖y − z‖ ≤ ε and hence ‖x − z‖ ≤ 2ε. Since this holds for every
ε > 0, since DMn is closed we conclude that x ∈ DMn . Conversely if x ∈ DMn
then ‖x‖ ≤ n by (2).
In conclusion,wehave shown that the class ofC*-algebras is axiomatizable
in the language LC* introduced in Section 2.4. This paves up the way of
establishing similar results for other subclasses that naturally arise in C*-
algebra theory. This can be seen as the first step towards the application of
methods from logic to C*-algebras.

3.2.2. Abelian C*-algebras. The first natural class to consider is the class
of abelian C*-algebras, which are the C*-algebras for which the multipli-
cation is commutative. This very definition makes it clear that this class is
axiomatizable, by the axiom supx,y∈D1 ‖xy − yx‖ ≤ 0. Abelian C*-algebras
are precisely those of the form C (X ) for some compact Hausdorff space
X (endowed with the pointwise operations and the supremum norm). This
motivates the assertion that arbitrary C*-algebras can be regarded as a non-
commutative analog of compact Hausdorff spaces, and C*-algebra theory
as noncommutative topology.
The class of nonabelianC*-algebras is also axiomatizable, although this is
not immediately obvious from the definition.However, this ismade apparent
by the following equivalent characterization: a C*-algebra is nonabelian if
andonly if it contains an elementx such that ‖x‖ = 1andx2 = 0 [13, Propo-
sition II.6.4.14]. Thus the class of nonabelian C*-algebra is axiomatizable
as witnessed by the condition infx∈D1

∥∥x2∥∥− ‖x‖ ≤ −1.
3.2.3. Nontrivial C*-algebras. A C*-algebra A is nontrivial if it has
dimension at least 2 or, equivalent, A is not isomorphic to C with its canon-
ical C*-algebra structure. If A is nontrivial, then it contains a self-adjoint
element a ∈ A such that the abelian C*-subalgebra A0 of A generated by a
and 1 has dimension at least 2. Thus A0 is isomorphic to the algebra C (X )
of continuous function over a compact Hausdorff space X with at least 2
points. Hence by normality of X we can find positive elements b, c ∈ A0
such that ‖b‖ = ‖c‖ = ‖b − c‖ = 1. Recall that any positive element b
in a C*-algebra is of the form a∗a. This shows that the class of nontrivial
C*-algebras is axiomatized by the condition

sup
x,y∈D1

min {‖x‖ , ‖y‖ , ‖x∗x − y∗y‖} ≥ 1.

3.2.4. n-subhomogeneous C*-algebras. As a generalization of the class of
abelian C*-algebras, one can consider the class of n-subhomogeneous C*-
algebras for some n ∈ N. Recall that a C*-algebra is n-subhomogeneous
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if and only if all its irreducible representation are k-dimensional for some
k ≤ n. When n = 1, this recovers the class of abelian C*-algebras. It is not
obvious by this definition that the class of n-subhomogeneous C*-algebras
is axiomatizable. Indeed, this definition refers to entities, such as irreducible
representations, that are external to the algebra itself. We would rather need
an equivalent characterization that only refers to the elements of the algebra
and their relations as expressed by the norm and *-algebra operations. Such
a characterization can be extracted from a theorem of Amitsur–Levitzki,
which isolates an algebraic relation that is satisfied by all the elements of
Mk(C) for k ≤ n, but is not satisfied by some elements ofMd (C) whenever
d > n. This relation is given by the expression∑

�∈S2n
sgn (�)x�(1)x�(2) · · · x�(2n) = 0, (4)

where S2n denotes the group of permutations of the set {1, 2, . . . , 2n}, and
sgn (�) ∈ {±1} denotes the parity of the given permutation. This allows
one to conclude that a C*-algebra A is n-subhomogeneous if and only
if any n-tuple of elements of A satisfies (4). In order words, the class of
n-subhomogeneous C*-algebras is axiomatized by the condition

sup
x∈D1

∥∥∥∥∥
∑
�∈S2n

sgn (�)x�(1)x�(2) · · · x�(2n)
∥∥∥∥∥ ≤ 0.

A similar argument shows that the class of algebras that are not n-
subhomogeneous is also axiomatizable.
While the above discussion is reassuring, it turns out that several natural
classes of C*-algebras of key importance in modern C*-algebra theory and
in the classification program are not axiomatizable. These include the classes
of simple C*-algebras, nuclear C*-algebra, exact C*-algebras, UHF C*-
algebras, AF C*-algebras, and several other. To see why this is the case,
we will need to develop a bit more machinery, so we postpone the proof
to Section 7.2. On the positive side, these classes of algebras can still be
captured model-theoretically, although in a slightly more sophisticated way.
This will be subject of Section 7.4.

3.3. Definable sets. The notion and study of definability is arguably one
of the cornerstones of model theory, both in the discrete setting and in
the continuous one. In discrete first-order logic, a subset of a structure is
definable whenever can be written as the set of elements that satisfy a certain
formula. The naive analogue of this definition in the metric setting turns out
to be too generous. The right generalization involves the notion, which is
unique to the metric setting, of stability of formulas and relations.
As usual, we begin with a general discussion of stability in logic for metric
structures, before specifying the analysis to C*-algebras. Let us therefore fix
anarbitrary languageL (withdomains of quantification), and an elementary
classC. (Tofix the ideas, one can thinkofL tobe the languageofC*-algebras,
and C be the class of all C*-algebras.) Fix also a tuple x̄ = (x1, . . . , xn) of
variables with corresponding domains D̄ = (D1, . . . , Dn), and let F (x̄) be
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the collection of L-formulas with free variables from x̄. Then F (x̄) admits
a natural structure of algebra over R, induced from the algebra structure
on R via the connectives. For instance, the sum of formulas ϕ,
 is just the
formula ϕ+
. Furthermore, one can define a seminorm on F (x̄) by setting

‖ϕ‖ = sup{ϕM (ā) :M ∈ C, ā ∈ DM1 × · · · ×DMn
}
.

The Hausdorff completionM (x̄) of F (x̄) with respect to such a seminorm
is then a Banach algebra, whose elements are called definable predicates (in
the language L relative to the class C). After identifying a formula with
the corresponding element ofM (x̄), one can regard formulas as definable
predicates. Conversely, definable predicates are precisely the uniform limits
of formulas. Given a definable predicate ϕ and a structure M ∈ C one can
define its interpretation ϕM , which is a function ϕM : DM1 ×· · ·×DMk → R.
As a natural completion of the space of formulas, definable predicates
make it easier to develop the theory smoothly. At the same time, definable
predicates can for all purposes be replaced by formulas, and vice versa.
For instance, it is easy to see that in the definition of axiomatizable class—
Definition 3.1—one can equivalently consider definable predicates rather
than formulas. While this is an obvious observation, we state it explicitly
due to its importance.

Proposition 3.2. Suppose that L is a language, and C is a class of L-
structure. Then C is L-axiomatizable if and only if there exist a family (ϕi)i∈I
of definable predicates in the language L with no free variables and a family
(ri)i∈I of real numbers such that, for every L-structureM ,M ∈ C if and only
if ϕMi ≤ ri for every i ∈ I .
Among definable predicates, there is a particularly important class: the
stable ones.

Definition 3.3. A definable predicate ϕ (x̄) is stable if it satisfies the
following: for every ε > 0 there exists � > 0 such that if M ∈ C and
ā ∈ DM1 ×· · ·×DMn satisfies |ϕ (ā)| < �, then there exists b̄ ∈ DM1 ×· · ·×DMn
such that d

(
ā, b̄

)
< ε and ϕ

(
b̄
)
= 0.

The terminology just introduced is consistent with [19], although the term
“weakly stable” is used in [36] in lieu of “stable”, to match the corresponding
notion of “weakly stable relation” from the C*-algebra literature.
Verifying that a given predicate is stable can be a subtle problem, and such
stability problems arise frequently in operator algebras, geometric group
theory, and metric geometry. Their solution, both in the positive and in
the negative, often requires to use or develop deep and interesting theory.
At the same time, establishing that a given predicate is indeed stable often
has numerous and interesting consequences for the class of structures under
consideration. In the theory of operator algebras, a problem closely related
to stability is the problem of liftability of relations; see [62].
The notion of stable predicate allows one to introduce the notion of
definability. As above, we assume that C is an elementary class ofL-structure.
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Suppose now that S : M �→ S (M ) is an assignment of closed subspaces
S (M ) ⊂ DM1 × · · · ×DMn to structuresM in C.

Definition 3.4. The assignment S : M �→ S (M ) is a definable set if
there exists a stable definable predicate ϕ such that S (M ) is the zeroset
Z
(
ϕM

)
=
{
ā ∈ DM1 × · · · ×DMn : ϕM (ā) = 0

}
.

Among other things, the importance of definable sets lies in the fact that
they can be allowedas additional domains of quantificationwithout changing
the notion of definable predicate and axiomatizable class. This is the content
of the following proposition, established in [11, Theorem 9.17]; see also [36,
Theorem 3.2.2].

Proposition 3.5. Suppose that S : M �→ S (M ) ⊂ DM1 × · · · × DMn is a
definable set for the elementary class of L-structures C. If x̄ = (x1, . . . , xn) is
a tuple of variables with domains (D1, . . . , Dn), ȳ = (y1, . . . , yk) is a tuple of
variables with domains (E1, . . . , Ek), and ϕ (x̄, ȳ) ∈ M (x̄, ȳ) is a definable
predicate in the free variables (x̄, ȳ), then there exists a definable predicate

 (ȳ) ∈ M (ȳ) such that, for every structureM in C and b̄ ∈ EM1 ×· · ·×EMk ,


M
(
b̄
)
= inf

{
ϕM

(
ā, b̄

)
: ā ∈ S (M )

}
.

The same conclusion holds when replacing inf with sup.

One way to think about Proposition 3.5 is that, if ϕ (x̄, ȳ) is a definable
predicate, then the expression

inf
x̄∈S
ϕ (x̄, ȳ)

is also a definable predicate or, more precisely, can be identified with a defin-
able predicate. This gives us much more flexibility in constructing definable
predicates, and it will be used in a crucial way to show that certain classes
of structures are elementary.
At this point, examples of the general notions just introduced are in order.
As usual, we being with examples from the theory of bi-invariant metric
groups, where it is easier to fix the ideas. We consider the language L for bi-
invariantmetric groups consisting of function symbols for group operations,
beside the metric symbol, and the elementary class C of bi-invariant metric
group. A natural definable predicate, which is in fact a formula, that one can
consider in this setting is ϕ (x, y) = d (x · y, y · x). Clearly, such a formula
measures how close two elements of a given bi-invariant metric group are to
be commuting. Several important problems in operator algebras and metric
geometry boils down to the question of whether ϕ is stable for a certain
class of bi-invariant metric groups. An important result of Voiculescu shows
that ϕ is not stable for the class {Un : n ∈ N} of unitary groups endowed
with the operator norm [85]. On the other hand, such a formula is stable for
the class of unitary groups endowed with the normalized Hilbert–Schmidt
norm, as shown by Glebsky [50]. Recently the analogous assertion for the
class {Sn : n ∈ N} of permutation groups with the normalized Hamming
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distance has been established by Arzhantseva–Paunescu [2]. This impor-
tant result relies on the Elek–Szabó result on essential uniqueness of sofic
representations of amenable groups [28].

3.4. Definability in C*-algebras. Understanding which subsets of C*-
algebras are definable is a basic but fundamental problem, that underpins
most of the further model-theoretic analysis of C*-algebras. It turns out
that, fortunately, several important subsets of C*-algebras are indeed defin-
able. Let us therefore consider the language of C*-algebras LC* and the
class C of LC*-structures consisting of all C*-algebras. In the following we
will consider definable predicates and definable sets with respect to such a
class C.

3.4.1. The unitary group. Webeing by considering the unitary groupU (A)
of aC*-algebraA. This is the set of elements u ofA such that uu∗ = u∗u = 1.
Since U (A) is a subset of the unit ball of A, the assignment A �→ U (A) ⊂
DA1 fits in the framework considered in Section 3.3. Naturally, this is the
zeroset of the formula max {‖xx∗ − 1‖ , ‖x∗x − 1‖}. The fact that such a
formula is stable can be verified by using the polar decomposition of operators
[65, Theorem 3.2.17]. Indeed, ifA ⊂ B(H ) is a C*-algebra, and a ∈ A, then
one can write a = u (a∗a)1/2 where u ∈ B(H ), u∗u is the orthogonal
projection onto the orthogonal complement of the kernel of (a∗a)1/2, and
uu∗ is the orthogonal projection onto the orthogonal complement of the
kernel of (aa∗)1/2. Now, if ‖a∗a − 1‖ ≤ � and ‖aa∗ − 1‖ ≤ � for some
small enough �, (a∗a)1/2 and (aa∗)1/2 are invertible, which forces u to be a
unitary and to belong to A. Finally,

‖u − a‖ ≤
∥∥∥1− (a∗a)1/2∥∥∥

which can be made arbitrarily small by choosing � small enough.

3.4.2. Positive contractions. Recall that an element a of A is positive if
it is a positive operator in any faithful representation A ⊂ B(H ). This is
equivalent to the assertion that a is of the form b∗b for some b ∈ A. A posi-
tive contraction is just an positive element of norm at most 1. Therefore the
set of positive contraction is the zeroset of the formula infy∈D1 ‖x − y∗y‖,
which is obviously stable. In a similar way, considering the stable formula
‖x∗ − x‖, shows that the set A1sa of self-adjoint elements of norm at most 1
is definable as well.

3.4.3. Projections. We now consider the set of projections in a C*-algebra
A. These are the self-adjoint elementsp ofA satisfyingp2 = p. By definition,
this is the zeroset of the formula ϕ (x) given by max

{‖x∗ − x‖ , ∥∥x2 − x∥∥}.
To see that such a formula is stable, suppose that a ∈ A is an element of norm
at most 1 satisfying ‖a∗ − a‖ ≤ � and ∥∥a2 − a∥∥ ≤ � for some � ∈ (0, 1/2).
Consider a0 := (a + a∗) /2 and observe that ‖a0‖ ≤ 1, ‖a − a0‖ < �/2 and
hence

∥∥a20 − a0∥∥ < 2�. This implies that the spectrum of a0 is contained in
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(−ε, ε) ∪ (1− ε, 1] where ε = 1−√
1−8�
2 ≤ �. Therefore the function

f(t) =
{
0 if t ∈ (−�, �),
1 if t ∈ (1− �, 1]

is continuous on the spectrum of a. By continuous functional calculus,
one can consider the element p := f (a1) of A. Since the spectrum of
p is the range of f, it is contained in {0, 1}, which implies that p is a
projection. Furthermore ‖p − a1‖ is equal to the supremum of |f(t) − t|
where t ranges in the spectrum of a, which is at most �. In conclusion
‖p − a0‖ ≤ ‖p − a1‖+ ‖a1 − a0‖ < � + 2� ≤ 3�. This shows that if a is an
element of the unit ball of a C*-algebra A satisfying ϕA (a) < �, then there
exists p in the unit ball of A such that ϕA (p) = 0 and ‖p − a‖ < 3�.
In a similar fashion, one can show that the set of n-tuples (p1, . . . , pn) of
pairwise orthogonal projections of A is definable. (Two projections p, q are
orthogonal if pq = qp = 0.) Let us consider for simplicity the case n = 2.
Let ϕ (x, y) be the formula

max
{‖x∗ − x‖ , ∥∥x2 − x∥∥ , ‖y − y∗‖ , ∥∥y2 − y∥∥ , ‖xy‖ , ‖yx‖} .

Clearly, the zeroset ofϕ is the set of pairs of orthogonal projections. In order
to see that ϕ is stable, fix ε > 0, and suppose that a, b are elements of the
unit ball of a C*-algebra A satisfying ϕA (a, b) < � < ε/2 for some small
enough �. By stability of the formula defining projections, we can assume
that a, b are already projections. Then one can set p = a and consider
b0 := (1− p) b (1− p) ∈ (1− p)A (1− p). Since ‖ab‖ < � and ‖ba‖ < �
one has that ‖b0 − b‖ < 2�. Again by stability of the formula defining
projections applied to the C*-algebra (1− p)A (1− p), for � small enough
there exists a projection q ∈ (1− p)A (1− p) such that ‖q − b0‖ < ε/2 and
hence ‖q − b‖ < ε. Observing that q ∈ A is orthogonal to p concludes the
proof that ϕ is stable.

3.4.4. Partial isometries. Recall that a partial isometry in a C*-algebra
A is an element v ∈ A such that v∗v is a projection, called the support
projection of v. This implies that vv∗ is also a projection, called the range
projection of v.Wewant to show that the set of partial isometries is definable.
The following lemma can be extracted from the classical paper of Glimm
classifying UHF algebras; see [51, Lemma 1.9].

Lemma 3.6. Suppose that � ∈ (0, 1/40) and A is a C*-algebra. Fix a
concrete representation A ⊂ B(H ) of A as an algebra of operators on a
Hilbert space H . Suppose that p, q ∈ A are projections, and p̃, q̃ ∈ B(H )
are projections such that ‖p − p̃‖ < �, ‖q − q̃‖ < �. Assume that there exist
a partial isometry ṽ ∈ B(H ) and a ∈ A such that ṽ∗ṽ = p̃, ṽṽ∗ = q̃,
‖a − ṽ‖ < �, and ‖a‖ ≤ 1. Then there exists a partial isometry v ∈ A such
that v∗v = p, vv∗ = q, and ‖v − ṽ‖ < 30�.
We can use this lemma to show that the set of partial isometries of A
is definable. The set of partial isometries is the zeroset of the formula

max{
∥∥∥x∗x − (x∗x)2∥∥∥ , ∥∥∥xx∗ − (xx∗)2∥∥∥}. We claim that such a formula is
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stable. Suppose thata ∈ A ⊂ B(H ) satisfies
∥∥∥a∗a − (a∗a)2∥∥∥ ≤ � ≤ 1/1600.

Up to replacing � with a smaller positive real number, we can also assume by

functional calculus that
∥∥∥(a∗a)1/2 − (a∗a)∥∥∥ ≤ �. Using the polar decom-

position of operators, we can write a = ṽ (a∗a)1/2, where ṽ ∈ B(H ) is a
partial isometry with support projection the orthogonal projection p̃ onto
Ker (a)⊥ = Ker (a∗a)⊥ = Ran(a∗a) and range projection the orthogonal
projection onto Ker (a∗)⊥ = Ker (aa∗)⊥ = Ran (aa∗). (For an operator
T ∈ B(H ) we letKer (T ) be the kernel {� ∈ H : T� = 0} ofT , andRan (T )
the closure of the range {T� : � ∈ H} ofT .) Now for � ∈ Ran(a∗a) we have
that � = (a∗a) � for some � ∈ H and hence

‖(a∗a) � − �‖ =
∥∥∥(a∗a)2 � − (a∗a) �∥∥∥ ≤

∥∥∥(a∗a)2 − (a∗a)∥∥∥ ≤ �.
This shows that ‖a∗a − p̃‖ ≤ �. Similarly, one has that ‖aa∗ − q̃‖ ≤ �.
Thus

‖a − ṽ‖ =
∥∥∥ṽ (a∗a)1/2 − ṽ∥∥∥ ≤

∥∥∥(a∗a)1/2 − p∥∥∥ ≤
√
�.

Furthermore by stability of formula defining projections we have that

there exist projections p, q ∈ A such that
∥∥∥p − (a∗a)1/2∥∥∥ ≤ 3� and∥∥∥q − (aa∗)1/2∥∥∥ ≤ 3�. Therefore ‖p − p̃‖ ≤ 4� ≤ √

� and ‖q − q̃‖ ≤ 4� ≤√
�. Therefore by Lemma there exists a partial isometry v ∈ A with support
projection p and range projection q such that ‖v − ṽ‖ ≤ 30√�.
3.4.5. Murray–von Neumann equivalence. Murray–von Neumann equiv-
alence is an important relation among projections in a C*-algebra, which
is crucial for the definition of the K0-group. Two projections p, q ∈ A are
Murray–von Neumann equivalent—in formulas p ∼ q—if there exists a par-
tial isometry v ∈ A such that p is the support projection of v and q is the
range projection of v. We recall that if p, q ∈ A are projections such that
‖p − q‖ < 1 then p ∼ q.
We want to show that the relation of Murray–von Neumann equivalence
of projections (as a set of pairs) is definable. Indeed, consider the definable
predicate ϕ (x, y) given by

max
{∥∥x2 − x∥∥ , ‖x − x∗‖ , ∥∥y2 − y∥∥ , ‖y − y∗‖ , inf

z partial isometry
max {‖z∗z − x‖ , ‖zz∗ − y‖}

}
.

Then we claim that the zeroset of ϕ in a C*-algebra A is the relation of
Murray–von Neumann equivalence of projections. Indeed, if ϕA (p, q) = 0
then clearly p, q are projections. Furthermore, there exists a partial isometry
v ∈ A such that ‖v∗v − p‖ < 1 and ‖vv∗ − q‖ < 1. This implies p ∼ v∗v ∼
vv∗ ∼ q. It follows easily from stability of the formula defining projections
thatϕ is stable aswell. This shows that the relation ofMurray–vonNeumann
equivalence of projections is a definable set. Adding the clauses |‖x‖ − 1|
and |‖y‖ − 1| shows that the relation of Murray–von Neumann equivalence
of nonzero projections is a definable set. A similar argument shows that the
set of n-tuples of pairwise orthogonal and pairwise Murray–von Neumann
equivalent projections is definable.
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3.4.6. Infinite projections. Suppose that A is a C*-algebra. Recall that for
projections p, q ∈ A one sets p ≤ q if pq = qp = p. Observe that if p ≤ q
and p 	= q, then ‖p − q‖ = 1. A nonzero projection r ∈ A is called
• infinite if there is a nonzero projection r0 ≤ r such that r0 	= r and
r0 ∼ r,

• properly infinite if there exist nonzero orthogonal Murray–von Neu-
mann equivalent projections p, q ∈ A such that p + q = r.
We claim that the set of infinite projections in a C*-algebra is definable. As
we have observed above, there is a definable predicate 
 (x, y) whose zeroset
is the relation of Murray–von Neumann equivalence of nonzero projections.
We can therefore consider the definable predicate � (x) given by

inf
y∈D1
max {
 (x, y) , ‖yx − y‖ , ‖xy − y‖ , |1− ‖x − y‖|} .

It is clear by the above remarks that the set of infinite projections is con-
tained in the zeroset of R. In order to show that � is a stable definable
predicate whose zeroset is the set of infinite projections it remains to show
the following: for every ε > 0 there exists � > 0 such that for every C*-
algebra A and p ∈ A satisfying �A (p) < � there exists an infinite projection
p′ ∈ A such that ‖p − p′‖ < ε. Let us thus consider p ∈ A such that
�A (p) < �. By stability of the predicate p, we can assume that p is itself
a nonzero projection. Furthermore, by stability of the predicate 
, we can
assume, up to replacing � with a smaller positive number, that there exists
a nonzero projection q ∈ A such that q ∼ p, ‖pq − q‖ < �, ‖qp − q‖ < �,
and |1− ‖p − q‖| < �. Consider now pqp ∈ pAp and observe that, again
by stability of the predicate defining projections, and upon replacing � with
a smaller positive number, we can find a projection q′ ∈ pAp such that
‖q′ − q‖ < �. This guarantees that pq′ = q′p = q′ and |1− ‖p − q′‖| < 2�.
As long as � < 1/2 this ensures that q′ is a nonzero projection such that
q′ ≤ p, q′ 	= p, and q′ ∼ q ∼ p. Therefore p is itself infinite projection,
concluding the proof that � is stable.
We now claim that the set of properly infinite projections in a C*-algebra
is definable. Indeed, let now ϕ (x) be the definable predicate whose zeroset is
the set of nonzero projections. Then we can consider, in view of definability
of the relation of Murray–von Neumann equivalence of orthogonal nonzero
projections, the definable predicate � (x) given by

max
{
ϕ (x) , inf

y,z nonozero orthogonal projections, y∼z
‖x − (y + z)‖

}
.

As above, it is clear that the set of properly infinite projections is contained
in the zeroset of S. In order to show that � is a stable definable predicate
whose zeroset is the set of properly infinite projections, it remains to show the
following: for every ε > 0 there exists � > 0 such that ifA is a C*-algebra and
r ∈ A is such that �A (r) < � then there exists a properly infinite projection
r′ ∈ A such that ‖r − r′‖ < ε. Suppose then that r ∈ A satisfies �A (r) < �.
Again, by stability of ϕ we can suppose that r is itself a nonzero projection.
Furthermore there exist orthogonal nonzero projections p, q ∈ A such that

https://doi.org/10.1017/bsl.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.3


AN INVITATION TOMODEL THEORY AND C*-ALGEBRAS 57

‖r − (p + q)‖ < �. Thus r′ := p + q is a nonzero purely infinite projection
such that ‖r − r′‖ < �, concluding the proof.
3.4.7. Scalars. Recall that we are tacitly assuming C*-algebras to be uni-
tal. Thus, after identifying a complex number with the corresponding scalar
multiple of the unit, we can identify C with a subalgebra of any given
C*-algebra. Below we let x be a variable with corresponding domain D1.
Then we have that [0, 1] is definable, as the zeroset of the stable formula
‖x − ‖x‖ 1‖. Using this fact and Proposition 3.5, one can conclude that
inf t0,t1∈[0,1] ‖x − (t0 − t1)‖ is also a definable predicate, which is obviously
stable. Its zeroset is [−1, 1]. Analogously, the set D = {� ∈ C : |�| ≤ 1}
is the zeroset of the definable predicate inf t0,t1∈[−1,1] ‖x − (t0 + it1)‖, and
the set T = {� ∈ C : |�| = 1} is the zeroset of the definable predicate
max{‖x∗x − 1‖ , ‖xx∗ − 1‖ , inf t0,t1∈[−1,1] ‖x − (t0 + it1)‖}. Thus all these
sets are definable.

3.5. More axiomatizable classes of C*-algebras. At this point, we will
use the possibility of quantifying over definable sets guaranteed by Propo-
sition 3.5 to show that several other important classes of C*-algebras are
axiomatizable.

3.5.1. Stably finite C*-algebra. Suppose that A is a C*-algebra. An isom-
etry v in A is an element of A satisfying v∗v = 1. A C*-algebra A is finite
if every isometry is a unitary, and stably finite if Mn (A) is finite for every
n ∈ N. A similar proof as in the case of partial isometries—see Section
3.4.4—shows that the set of isometries is definable. Therefore the class of
finite C*-algebras is elementary, as witnessed by the axiom

sup
v isometry

‖vv∗ − 1‖ ≤ 0.

Since the language of C*-algebras contains relation symbols for the norm
inMn (A) for n ∈ N, one can similarly conclude that the set of isometries in
Mn (A) is definable. Henceforth, the same argument shows that the class of
stably finite C*-algebras is axiomatizable as well.

3.5.2. Real rank zero C*-algebras. By definition, a C*-algebra has real
rank zero if the set of self-adjoint elements with finite spectrum is dense
in the set of all self-adjoint elements. While this definition does not make
it apparent that this is a definable property, we can consider the following
useful equivalent characterization. A C*-algebra has real rank zero if and
only if for every pair of positive elementsa, b inAofnormatmost 1 and every
ε > 0 there exists a projection p ∈ A such that max{‖pa‖2 , ‖(1− p) b‖2} <
‖ab‖+ ε [17, Theorem 2.6]. In other words, a C*-algebra has real rank zero
if and only if it satisfies the condition

sup
x,y∈D1
x,y positive

inf
z∈D1

z projection

max{‖zx‖2 , ‖(1− z)y‖2} − ‖xy‖ ≤ 0.

By Proposition 3.5 and the fact that the sets of projections and positive
contractions are definable, this witnesses that real rank zero C*-algebras
form an axiomatizable class.
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3.5.3. Purely infinite simple C*-algebras. The notion of purely infiniteC*-
algebra canbe defined in terms of the notion ofCuntz equivalence of positive
elements. This is an equivalence relation for positive elements in a C*-
algebra, generalizing the relation of Murray–von Neumann equivalence for
projections. Suppose thatA is a C*-algebra, and a, b are positive elements of
A. Then one sets a � b if there exists a sequence (xn) inA such that x∗n bxn →
a for n → +∞. Then a and b are Cuntz equivalent, in formulas a ∼ b, if
a � b and b � a. It can be shown that this is indeed an equivalence relation
which, in the case of projections, coincides with Murray-von Neumann
equivalence.
For a self-adjoint element a of a C*-algebra A we let a+ be the positive
part of A. In other words, a+ is the element f (a) of A where f : R → R is
the function

f (t) =
{
0 if t ≤ 0,
t otherwise.

The following lemma is proved in [61, Lemma 2.4].
Lemma 3.7. If a, b are positive elements of a C*-algebraA of norm at most
1, and n ∈ N is such that a � (b − 1

n2
)+ then there exists c ∈ A such that

‖c‖ ≤ 2n and a = c∗bc.
A nontrivial C*-algebra A is purely infinite if it has no nontrivial abelian
quotients, and whenever a, b are nonzero positive elements of A such that
b belongs to the closed two-sided ideal generated by a, then a � b [71,
Proposition 4.1.1]. A C*-algebra is simple if it contains no nontrivial closed
two-sided ideals. For simple C*-algebras, being purely infinite is equivalent
to the assertion that A is nontrivial, and whenever a, b are nonzero positive
elements of A, a ∼ b. Furthermore, for nontrivial simple C*-algebras being
purely infinite is equivalent to the assertion that A has real rank zero, and
any nonzero projection in A is properly infinite.
Wehave already seen that the class of real rank zeroC*-algebras is axioma-
tizable. Furthermore, the sets of nonzero projections and of properly infinite
projections are both definable, which easily implies that the class of C*-
algebras with the property that any nonzero projection is properly infinite,
is axiomatizable. Let now C be the axiomatizable class of real rank C*-
algebras with the property that any nonzero projection is properly infinite.
In view of the remarks above, for a C*-algebra A in C being simple (and
hence purely infinite) is equivalent to the assertion that any two nonzero
positive elements of A are Cuntz equivalent. Since any nonzero positive
element a of A is Cuntz equivalent to any nonzero positive scalar multiple
of a, this is in turn equivalent to the assertion that for any two positive
elements a, b of A satisfying ‖a‖ > 1/2 and ‖b‖ > 1/2 one has that a ∼ b.
By Lemma 3.7 applied in the case when n = 2 this is in turn equivalence to
the assertion that if a, b are positive elements of A satisfying ‖a‖ > 1/2 and
‖b‖ > 1/2, then for every ε > 0 there exists c ∈ A such that ‖c‖ ≤ 4 and
‖a − c∗bc‖ < ε. This condition is clearly axiomatized by the condition

sup
x,y∈D1

min
{
‖x‖ − 1/2, ‖y‖ − 1/2, inf

z∈D1

∥∥a − (4z)∗ b (4z)∥∥} ≤ 0.
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This shows that the class of purely infinite simple C*-algebras is axiomatiz-
able.

§4. Ultraproducts and ultrapowers.
4.1. Ultraproducts in the logic for metric structures. Ultraproducts and
ultrapowers are a fundamental construction in model theory, both in its
discrete version and its generalization for metric structures. We introduce
these constructions in the general setting of an arbitrary language L with
domains of quantification, as introduced in Section 2.3.
Let then I be a set, to be considered as an index set. (The reader can
consider the case when I = N, for simplicity.) An ultrafilter U over I is a
collection of subsets of I with the property that ∅ /∈ U , if A,B ∈ U then
A ∩ B ∈ U , and for every A ∈ I either A ∈ U or I \ A ∈ U . One should
consider U as a notion of largeness, where a set A ⊂ I is large if it belongs
to U . In the spirit of this interpretation, U can be thought of as a finitely-
additive {0, 1}-valued measure on I which is defined for arbitrary subsets
of A by

A �→
{
1 if A ∈ U ,
0 if A /∈ U .

Conversely, any finitely-additive {0, 1}-valuedmeasure on I which is defined
on all subsets of I arises from an ultrafilter in this fashion. An ultrafilter U
over I is principal if it contains a finite set (whence it contains a singleton),
and nonprincipal otherwise. A stronger properly than being nonprincipal is
being countably incomplete, which means that it contains a sequence (Xn) of
elements with empty intersection. When I is countable, these two notions
coincide.
Fix an ultrafilter U over I . Consistently with the interpretation of ultra-
filters as notions of largeness, following [80] we introduce the notation of
ultrafilter quantifiers. Let P be a property that elements of I may or may not
have. Then we write (U i)P (i) if the set of elements i of I for which P holds
belongs to U .
Suppose now that f is a continuous function f from I to a compact
Hausdorff space X . One can then define the limit limi→U f (i) ∈ X . This is
the unique element t of X such that, for every neighborhood U of t in X ,
(U i)f (i) ∈ U . It is clear that, since X is Hausdorff, there exists at most
one such an element of X . In order to see that such an element of X exists,
consider the collection F of nonempty closed subsets of the form

{f (i) : i ∈ A}
for A ∈ U . ThenF satisfies the finite intersection property, and by compact-
ness of X one has that

⋂F is nonempty. If x is an element of⋂F and U is
an open neighborhood of x, then we claim that (U i)f (i) ∈ U . Indeed, if
this is not the case, then (U i)f (i) /∈ U . Thus there exists A ∈ U such that
{f (i) : i ∈ A} ⊂ X \U . Since {f (i) : i ∈ A} ∈ F , this contradicts the fact
that x ∈ ⋂F .

https://doi.org/10.1017/bsl.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.3


60 MARTINO LUPINI

Suppose now that (Mi )i∈I is a family of L-structures indexed by I . The
ultraproduct

∏
UMi is the L-structure M defined as follows. For every

domain D in the language L, consider the product
∏
i∈I D

Mi . This is nat-
urally endowed with a pseudometric given by d (a, b) = limi→U d (ai , bi).
Here and in the following, we denote by a an I -sequence (ai )i∈I withai ∈Mi
for i ∈ I . Then one can define MD to be the metric space obtained from
such a pseudometric. If a is an element of

∏
i∈I D

Mi , then we let [a] be the
corresponding element of DM . If D0, D1 are domains such that D0 ≤ D1,
then by definition of structure one has that DMi0 ⊂ DMi1 for every i ∈ I .
Thus one can canonically identify isometricallyDM0 with a subspace ofD

M
1 .

Since the collection D of domains is directed, the union ⋃D∈DD
M is itself

a metric space, and we letM to be the completion of such a metric space.
We now define the interpretation of function symbols in M . Suppose
that f is an n-ary function symbol in L and D1, . . . , Dn are domains. Then
one can consider the corresponding output domain D = DfD1,...,Dn and the

continuity modulus � = �fD1,...,Dn as prescribed by the language L. Then,
for every i ∈ I , the interpretation of f inMi gives a function fMi : DMi1 ×
· · ·×DMin → DMi which is uniformly continuous withmodulus�. Therefore
one can define fM : DM1 × · · · ×DMn → DM by setting

fM ([a(1)], . . . , [a(n)]) = [(fMi (a(1)i , . . . , a
(n)
i ))i∈I ].

This is again a uniformly continuous function with modulus �. Letting
D1, . . . , Dn range among all the domains in the language L one can then
define, by extending it to the completion, the function fM : Mn → M ,
which is still uniformly continuous with modulus �.
Suppose now that R is an n-ary relation symbol in L and D1, . . . , Dn
are domains. Then one can consider the corresponding output domainD =
DfD1,...,Dn , the continuity modulus� = �

f
D1,...,Dn

, and the bound J = JRD1,...,Dn
as prescribed by the language L. Then for every i ∈ I , the interpretation of
R in Mi gives a function RMi : D

Mi
1 × · · · × DMin → J which is uniformly

continuous with modulus �. Therefore one can define RM : DM1 × · · · ×
DMn → J by setting

RM ([a(1)], . . . , [a(n)]) = lim
i→U
RMi (a(1)i , . . . , a

(n)
i ) ∈ J .

This is again a uniformly continuous function with modulus �. Letting
D1, . . . , Dn range among all the domains in the language L one can then
define, by extending it to the completion, the functionRM :Mn → R, which
is still uniformly continuous with modulus �.

4.2. Łos’ theorem. Łos’ theorem is the fundamental result inmodel theory
that relates the construction of ultraproducts with notion of formulas. Let
us adopt the notation of the previous section.
Assume that t is an L-term with variables within x1, . . . , xn which have
D1, . . . , Dn as corresponding domains. Then one can see by induction on
the complexity of t that one can define an output domain D = DtD1,...,Dn
and a continuity modulus� = �tD1,...,Dn in terms of the output domains and
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continuity moduli of the function symbols inL, such that for anyL-structure
N the interpretation tN of t in N is a function tN : DN1 × · · · ×DNn → DN
with continuity modulus �. In particular, this guarantees that, ifMU is the
ultraproduct

∏
UMi , then the function D

MU
1 × · · · ×DMU

n → DMU ,

([a(1)], . . . , [a(n)]) �→ [tMi (a(1)i , . . . , a(n)i )]
is a well-defined function with continuity modulus�. Furthermore, it is also
possible to show by induction on the complexity of the term t, and using
the definition of the interpretation of function symbols inMU , that such a
function coincides with the interpretation tMU of the term t inMU .
Suppose now that ϕ is an L-formula with free variables within x1, . . . , xn.
Again, one can show by induction on the complexity of ϕ that one can
define a bound J = JϕD1,...,Dn and a continuity modulus � = �

ϕ
D1,...,Dn

(in
terms of the bounds, output domains, and continuity moduli of the terms,
connectives, and relation symbols that appear in ϕ) such that for any L-
structureM the interpretation ϕM of ϕ inM is a function ϕM : DM1 ×· · ·×
DMn → J with continuity modulus �. Again, this guarantees that, ifMU is
the ultraproduct

∏
UMi , then the function D

MU
1 × · · · ×DMU

n → J ,
([a(1)], . . . , [a(n)]) �→ lim

i→U
ϕMi [(a(1)i , . . . , a

(n)
i )]

is well defined and uniformly continuous with modulus �. Furthermore,
an induction on the complexity of ϕ shows that such a function coincides
with the interpretation of ϕ in MU . Summarizing, we have the following
statement, which is the content of Łos’ theorem.
Theorem 4.1. Let L be a language, and U be an ultrafilter on a set I . Fix
an I -sequence (Mi)i∈I of L-structures, and denote by M their ultraproduct∏

UMi . Then for any L-formula ϕ (x1, . . . , xn) with free variables within

x1, . . . , xn with domains D1, . . . , Dn, and for every
([
a(1)

]
, . . . ,

[
a(n)

])
∈

DM1 × · · · ×DMn one has that
ϕM ([a(1)], . . . , [a(n)]) = lim

i→U
ϕMi (a(1)i , . . . , a

(n)
i ).

In particular, if ϕ is a sentence, then

ϕM = lim
i→U
ϕMi .

It follows from Łos’ theorem that an axiomatizable class of C*-algebras
is closed under ultraproducts. From Theorem 4.1 one can deduce that the
same conclusions hold for definable predicates rather than formulas. Using
this fact, one can reformulate semantically the assertion that a predicate P
is stable in terms of ultraproducts, as follows:
Proposition 4.2. Suppose that P (x̄) is a definable predicate for the
elementary class of L-structures C. Then the following assertions are
equivalent:
(1) P (x̄) is stable;
(2) for any sequence (Mn)n∈N

of structures in C, for any nonprincipal ultra-
filter U over N, any tuple ā in M :=

∏
UMn satisfying the condition
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P (x̄) = 0 admits a representative sequence (ā(n))n∈N of tuples ā(n) in
Mn such that (Un), PMn (ā(n)) = 0.

Proof. We prove that (1) implies (2). Suppose that P (x̄) is stable. Thus
for every m ∈ N there exists �m ∈ (0, 2−m] such that, ifM is a structure in
C and b̄ is a tuple in M satisfying the condition |P (x̄)| ≤ �m, then there
is a tuple ā in M such that d (ā, b̄) ≤ 2−m, and ā satisfies the condition
P (x̄) = 0.
Suppose that U , (Mn)n∈N

, and ā are as in (2). Fix any representative
sequence (b̄(n))n∈N of ā. Then, for every m ∈ N, (Un), b̄(n) satisfies the
condition |P (x̄)| ≤ �m. Thus, for every m ∈ N, the set

Jm :=
{
n ∈ N : n ≥ m and b̄(n) satisfies the condition |P (x̄)| ≤ �m

}
belongs to U . Since ⋂m∈N

Jm = ∅, for every n ∈ N there exists a largest
m (n) ∈ N such that i ∈ Jm(n), if it exists. Otherwise, we set m (n) = 0.
For n ∈ N such that m (n) > 0 define ā(n) to be a tuple inMn satisfying
the conditions d (x, b̄(n)) ≤ 2−m and P (x̄) = 0. Observe that such a tuple
exists by the choice of �m and the definition of m (n). If m (n) = 0 define
ā(n) arbitrarily. If m ∈ N, then we have that the set of n ∈ N such that
d (a(n), b̄(n)) ≤ 2−m and PMn (ā(n)) = 0 contains Jm, which belongs to U .
Therefore (ā(n)) is a representative sequence for ā. This concludes the proof
that (1) implies (2). The converse implication can be easily proved reasoning
by contradiction. �
4.3. Ultraproducts of C*-algebras. The general notion of ultraproduct in
the logic for metric structures recovers the usual notion of ultraproduct
of C*-algebras, when these are considered as structures in the language
LC* introduced in Section 2.4. Explicitly, suppose that U is an ultrafilter
over a set I , and (Ai )i∈I is an I -sequence of C*-algebras. Then one can
let ∞ (Ai )i∈I be the C*-algebra consisting of all bounded sequences a ∈∏
i∈I Ai endowed with the supremum norm ‖a‖ = supi∈I ‖ai‖. This C*-
algebra contains the closed two-sided ideal JU consisting of those elements
a ∈ ∞ (Ai )i∈I such that limi→U ‖ai‖ = 0. Then

∏
U Ai is by definition the

quotient of ∞ (Ai )i∈I by JU . If [a] is the image in
∏

U Ai of an element
a of ∞ (Ai )i∈I , then ‖[a]‖ = limi→U ‖ai‖. This clearly shows that such a
notion of ultraproduct indeed coincides with the notion of ultraproduct of
C*-algebras as LC*-structures.
Let now A be a C*-algebra, and U is an ultrafilter. One can then consider
the ultrapowerAU , and identifyA as a C*-subalgebra ofAU via the diagonal
embedding. The relative commutant A′ ∩ AU is the set of elements a of AU

that commute with every element of A.

4.4. Quantifier-free formulas andweakly semiprojective C*-algebras. Sup-
pose that L is a language. An L-formula ϕ is quantifier-free if no quantifier
appears in ϕ. Equivalently, ϕ is of the form q (ϕ1, . . . , ϕn) where q : Rn → R

is a continuous function and ϕ1, . . . , ϕn are atomic formulas. The notion of
positive quantifier-free formula is defined similarly, where one furthermore
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demands that the connective q : Rn → R be nondecreasing, in the sense that
q (s̄) ≤ q (r̄) whenever s̄ , r̄ ∈ Rn satisfy si ≤ ri for i = 1, 2, . . . , n.
One can then define the notion of (positively) quantifier-free definable
predicate, by replacing arbitrary formulas with (positive) quantifier-free
ones. A condition ϕ (x̄) ≤ r is then called quantifier-free if the defin-
able predicate ϕ (x̄) is quantifier-free. A (positively) quantifier-free definable
set is then a definable set, whose definability is witnessed by a (positive)
quantifier-free definable predicate. For instance, the unitary group or the
set of projections in a C*-algebra are positive quantifier-free definable
sets.
Let us consider now the language of C*-algebras LC*, and let ϕ (x̄) be a
positive quantifier-free definable predicate. One can then define the universal
C*-algebra Aϕ , if it exists, satisfying the condition ϕ (x̄) = 0. This is a
C*-algebra Aϕ containing a tuple ā satisfying the condition ϕ (x̄) = 0
and generating Aϕ as a C*-algebra, which satisfies the following universal
property: if B is any C*-algebra, and b̄ is a tuple in B satisfying ϕ (x̄) = 0,
then there exists a unital *-homomorphismΦ : Aϕ → B such thatΦ (ā) = b̄.
For instance, in the case of the condition max {‖x∗x − 1‖ , ‖xx∗ − 1‖} = 0
whose zeroset is the unitary group, the universal C*-algebra is the algebra
C (T) of continuous functions over the setT of complex numbers ofmodulus
1. For the condition

max
{∥∥x2i − xi∥∥ , ‖xi − x∗i ‖ , ‖xixj‖ : 1 ≤ i 	= j ≤ n} = 0

whose zeroset is the set of n-tuples of pairwise orthogonal projections, the
universal C*-algebra is Cn.
One can equivalently reformulate stability of a positive quantifier-free
definable predicate ϕ (x̄) in terms of properties of the universal C*-algebra
Aϕ , if it exists. Suppose that (Bn) is a sequence of C*-algebras, and U is an
ultrafilter over N. Given an element J of U , one can define a canonical quo-
tient mapping �J : ∞ (Bn)n∈J → ∏

U Bn mapping (an)n∈J to the element
of
∏

U Bn having (an)n∈J as representing sequence.

Definition 4.3. A C*-algebra A is weakly semiprojective if, for every
sequence (Bn)n∈N

of C*-algebras, for every ultrafilter U over N, and for
every unital *-homomorphism Φ : A → ∏

U Bn, there exists J ∈ U and a
unital *-homomorphism Φ̂ : A→ ∞ (Bn)n∈J such that Φ = �J ◦ Φ̂.

Suppose now that ϕ is a positively quantifier-free definable predicate such
that the condition ϕ (x̄) = 0 has a universal C*-algebra Aϕ. Then one can
easily deduce from Proposition 4.2 the following characterization, which
recovers [62, Theorem 4.1.4].

Theorem 4.4. The positive quantifier-free definable predicate ϕ is stable if
and only if Aϕ is weakly semiprojective.

As an application of Theorem 4.4, one can consider the C*-algebraMn(C)
of complex n × n matrices endowed with the operator norm. This is the
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universal C*-algebra associated with the definable predicate ϕMn(C) (xij)
given by

max

{
‖xijxk − �jkxi‖ , |1− ‖xij‖| ,

∥∥x∗ij − xji∥∥ ,
∣∣∣∣∣1−

n∑
m=1

xm,m

∣∣∣∣∣ : 1 ≤ i, j, k,  ≤ n
}
.

The zeroset of ϕMn(C) in a C*-algebra A is the set ofmatrix units for a unital
copy of Mn(C) inside A. The C*-algebra Mn(C) is weakly semiprojective
[62, Theorem 10.2.3], hence the predicate P is stable. More generally, given
a finite-dimensional C*-algebra F , i.e., a finite sumMn1 (C)⊕ · · · ⊕Mn (C),
one can consider the definable predicate PF whose zeroset in a C*-algebra
A is the set of matrix units for a unital copy of F inside A. The fact that
F is weakly semiprojective shows that such a definable predicate PF is
stable.

4.5. Saturation. One important feature of ultrapowers is their being very
“rich”. To make this precise, we introduce the notion of countably saturated
structure. Suppose that L is a language, andM is an L-structure. Let A be
a subset ofM . Then one can consider the language L (A) obtained starting
from L by adding a constant symbol ca for every element a of A. Then one
can canonically regardM as anL (A) structure bydefining the interpretation
of the constant symbol ca in M to be a itself. We refer to formulas in the
language L (A) as L-formulas with parameters from A.
If C is a class of L-structure, then we say that L is separable for C if, for
every n ∈ N and variables x1, . . . , xn of domains D1, . . . , Dn, the seminorm
on the space of L-formulas ϕ (x1, . . . , xn) defined by

‖ϕ‖ = sup{|ϕ (ā)| :M ∈ C, ā ∈ DM1 × · · · ×DMn
}

is separable.
Recall that an L-condition in the variables x1, . . . , xn of domains
D1, . . . , Dn is an expression of the form ϕ (x1, . . . , xn) ≤ r where ϕ is an
L-formula—or, more generally, a definable predicate—in the free variables
x1, . . . , xn, and r ∈ R. IfM is an L-structure and ā ∈ DM1 × · · · ×DMn , then
(a1, . . . , an) realizes such a condition if ϕM (a1, . . . , an) ≤ r. A collection of
L-conditions in the variables x̄ = (xn)n∈N

is called an L-type in the vari-
ables x̄. If t is an L-type in the variables x̄, then we also write t (x̄). Given
an L-type t we let t+ be the L-type consisting of conditions ϕ (x̄) ≤ r + ε
where ϕ (x̄) ≤ r is a condition in t and ε > 0. Given an L-structureM and
a tuple ā in M , one defines the complete L-type of ā to be the type t (x̄)
consisting of all the L-conditions that are satisfied by ā.

Definition 4.5. Suppose that t is an L-type in the variables x̄ andM is
an L-structure. A realization of t(x̄) inM is a sequence (an) in

∏
n D

M
n that

satisfies every condition in t(x̄). The type t(x̄) t is:

• realized inM if it has a realization inM ;
• approximately realized in M if every finite set of conditions in t+ is
realized inM .
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The notion realized and approximately realized types allows one to define
the property of countable saturation for structures, which formalizes the
intuitive idea of being “rich”.

Definition 4.6. An L-structure M is countably saturated if for every
separable subset A of M and for every L (A)-type t, if t is approximately
realized inM then t is realized inM .

A fundamental feature of ultraproducts associated with countably
incomplete ultrafilters is their being countably saturated.

Proposition 4.7. Let L be a first-order language, and C is a class of L-
structures such thatL is separable for C. If U is a countably incomplete filter on
a set I , and (Mi)i∈I is an I -sequence of structures in C, then the ultraproduct∏

UMi is countably saturated.
Proof. SetM :=

∏
UMi . Suppose that A is a separable subset ofM . We

need to show that if an L (A)-type t is approximately realized inM , then it
is realized inM . For every [a] ∈ A fix a representative sequence a = (ai )i∈I .
For every i ∈ I we can regard Mi as an L (A)-structure by declaring the
interpretation ca of a to be equal to ai . Observe that, sinceA is separable and
L is separable for C, we have that L (A) is separable for {Mi : i ∈ I }∪{M}.
Thus after replacing L with L (A) we can assume without loss of generality
that A is empty.
Let thus t be an L-type in the variables x̄ of domains D̄ which is approxi-
mately realized inM . Since L is separable for C, we can assume without loss
of generality that t consists of a sequence of conditions ϕn (x1, . . . , xn) ≤ 0
for n ∈ N. Since by assumption U is countably incomplete, we can fix a
decreasing sequence (In)n∈N

of elements of U with empty intersection.
For every n ∈ N define 
n to be the sentence infx1,...,xn max{ϕ1 (x1) , . . . ,
ϕn (x1, . . . , xn)}. By assumption, t is approximately realized in M , hence

Mn <

1
n . Therefore by Łos’ theorem, the set

Jn =
{
i ∈ In : 
Mn <

1
n

}
belongs to U . Observe that (Jn)n∈N

is a decreasing sequence of elements of
U with empty intersection. Thus every i ∈ I only belongs to finitely many of
the Jn’s, and hence there exists a largest element n (i) ofN such that i ∈ Jn(i).
If i does not belong to any of the Jn’s then we set n (i) = 0.
Definenow, for i ∈ I , ifn (i) > 0, āi = (a1,i , . . . , an(i),i ) ∈ DMi1 ×· · ·×DMi

n(i)

such that 
n(i)(āi ) < 1/n (i). For i ∈ I such that n (i) = 0 define āi ∈ D̄Mi
arbitrarily. Now, it is clear from the definition of n (i) that, for every n ∈ N

and i ∈ Jn, n (i) ≥ n. Let then an for n ∈ N be the element of
∏

UMi
with representative sequence (an,i )i∈I . Since Jn ∈ U , we have that (U i),

Min (āi) ≤ 1/n. Therefore by Łos’ theorem, 
Mn (ā) ≤ 1/n for every n ∈ N.
Since this holds for every n ∈ N, we have that ϕMn (ā) ≤ 0 for every n ∈ N.
This shows that ā witnesses that the type t is realized inM . �
A type t is called (positive) quantifier-free if all the conditions in t involve
(positive) quantifier-free formulas. One can then naturally define the notion
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of (positively) quantifier-free countably saturated structure as in Definition
4.6, by replacing arbitrary types with (positive) quantifier-free ones.
It is easy to see that, ifM is a quantifier-free countably saturated structure,
and t is a quantifier-free type, then the set of realizations of t in M is
quantifier-free countably saturated. Particularly, if A is a C*-algebra, and U
is a countably incomplete ultrafilter, then the relative commutant A′ ∩AU is
quantifier-free countably saturated.

4.6. Elementary equivalence and elementary embeddings. Elementary
equivalence is a key notion in model theory. Roughly speaking, it asserts
that two structures are indistinguishable as long as first-order properties
(i.e., properties that are captured by formulas) are concerned. To make this
precise, let L be a language, andM be an L-structure. The theory of M is
the multiplicative functional ϕ �→ ϕM defined on the space of L-sentences,
which maps an L-sentence to its interpretation inM .

Definition 4.8. Two L-structures are elementarily equivalent if they have
the same theory.

A straightforward inductionon formulas shows that two isomorphic struc-
tures are, in particular, elementarily equivalent. It follows fromŁos’ theorem
that if M is an L-structure and U is an ultrafilter, then M is elementarily
equivalent to MU . In particular, if two structures have isomorphic ultra-
powers, then they are elementarily equivalent. The continuous version of a
classical result of Keisler and Shelah asserts that, in fact, the converse holds
as well.
The notion of elementary embedding is tightly connected with elementary
equivalence.

Definition 4.9. An embedding ofM toN is a function Φ :M → N such
that, for every domain D in L, the image of DM under Φ is contained in
DN , and such that ϕ(Φ (ā)) = ϕ (ā) for every atomic formula ϕ (x̄) in the
variables x̄ of domains D̄ and ā ∈ D̄M .
We say thatM is a substructure of N ifM ⊂ N and the inclusion map is
an embedding. Clearly, after renaming the elements of M , one can always
assume that a given embedding Φ :M → N is simply the inclusion map.
Suppose that M ⊂ N is a substructure. Then one can regard N as an
L (M )-structure in the obvious way, by interpreting the constant symbol ca
associated with a ∈M as a itself, regarded as an element of N .
Definition 4.10. Suppose that M ⊂ N is a substructure. ThenM is an
elementary substructure of N if M and N are elementarily equivalent as
L (M )-structures.

The notion of elementary embedding Φ : M → N is defined analogously.
In this case, one can consider N as an L (M )-structure by interpreting ca
for a ∈M as Φ (a).
If M is any L-structure and U is an ultrafilter, then there is a canonical
embedding ΔM : M → MU obtained by mapping an element a of M

https://doi.org/10.1017/bsl.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.3


AN INVITATION TOMODEL THEORY AND C*-ALGEBRAS 67

to the element of MU that admits the sequence constantly equal to a as
representing sequence. It is a consequence of Łos’ theorem that this is in
fact an elementary embedding. A useful criterion to verify that an inclusion
M ⊂ N is elementary is the following Tarski–Vaught test.
Proposition 4.11. Suppose thatM,N are L-structures such thatM ⊂ N .
Assume that for everyL-formula ϕ (x̄, y), where x̄ are variables with domains
D̄ and y has domain D, and for every tuple ā ∈ D̄M one has that

inf
{
ϕN (ā, b) : b ∈ DN} = inf {ϕN (ā, b) : b ∈ DM} .

ThenM is an elementary substructure of N .

Proof. One needs to show by induction on the complexity of a given
formula 
 (x̄) and tuple ā in M , where x̄ are variables with domains D̄
and ā ∈ D̄M , that 
M (ā) = 
N (ā). The base case when 
 is atomic (or
quantifier-free) is obvious. The assumption is used to deal with the quantifier
case of the inductive proof. �
4.7. Existential equivalence and existential embeddings. In many cases, it
is sufficient, and useful, to consider a suitably restricted class of formulas.
We have already considered the class of quantifier-free formulas. The next
natural restricted class of formulas consists of existential formulas. These
are the formulas of the form inf x̄ ϕ where ϕ is a quantifier-free formula.
The name “existential” is due to the fact that inf is regarded as the con-
tinuous analog of the existential quantifier ∃ from the logic for discrete
structures.
An even more restrictive class consists of the positive existential formulas,
which are those existential formulas of the form inf x̄ q (ϕ1, . . . , ϕn) where
ϕ1, . . . , ϕn are atomic formulas, and q : Rn → R is a continuous function
which is nondecreasing, in the sense that q (r̄) ≤ q (s̄) if r̄, s̄ ∈ Rn are such
that ri ≤ si for i ∈ {1, 2, . . . , n}. Universal formulas and positive universal
formulas are defined and characterized in a similar fashion, by replacing inf
with sup.
One can then define the (positive) existential theory of a structureM to be
the functional ϕ �→ ϕM defined on the space of (positive) existential formu-
las. It follows from Łos’ theorem and countable saturation of ultrapowers
that, ifM,N are separable structures and U is a countably incomplete ultra-
filter, thenM andN have the same existential theory if and only ifM embeds
into NU and N embeds intoMU . One can similarly characterize the prop-
erty of having the same positive existential theory in terms of ultraproducts
and morphisms.

Definition 4.12. Suppose that M,N are L-structure, and Φ : M → N
is a function. Then Φ is a morphism if for every domain D, the image of
DM under Φ is contained in DN , and such that ϕ(Φ (ā)) ≤ ϕ (ā) for every
atomic formula ϕ (x̄) in the variables x̄ of domains D̄ and ā ∈ D̄M .
One can show using countable saturation of ultraproducts and Łos’ the-
orem that, if M and N are separable structures and U is a countably
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incomplete ultrafilter, thenM andN have the same positive existential the-
ory if and only ifM admits a morphism to NU and N admits a morphism
toMU . More generally, one has that ϕM ≥ ϕN for every existential (respec-
tively, positive existential) sentence if and only if there is an embedding
(respectively, a morphism) fromM to NU .
The notions of (positively) existential substructure and (positively) exis-
tential embedding are defined in the same fashion as elementary substructure
and elementary embeddings, replacing arbitrary formulas with (positive)
existential formulas. The following characterization of (positively) existen-
tial embedding follows again from Łos’ theorem and countable saturation
of ultraproducts.
Proposition 4.13. Assume that C is a class of L-structures such that L
is separable for C. Suppose that M,N are separable structures in C, and
Φ : M → N is an embedding. Fix a countably incomplete ultrafilter U . The
following assertions are equivalent:
(1) Φ is an existential (respectively, positively existential ) embedding;
(2) there exists an embedding (respectively, a morphism) Ψ : N → MU

such that Ψ ◦Φ is equal to the diagonal embedding ΔM :M →MU .
Suppose now that C is an elementary class ofL-structures. AnL-structure
M is said to be (positively) existentially closed in C if it belongs to C and,
wheneverN is a structure in C containingM as a substructure, the inclusion
M ⊂ N is existential. This can be seen as an abstract analog of the notion
of algebraically closed field. (Indeed the algebraically closed fields are pre-
cisely the algebraically closed structures in the class of fields in the standard
language of fields.)

4.8. Positively existential embeddings of C*-algebras. In the case of C*-
algebras regarded as LC*-structures, an embedding is an injective unital
*-homomorphism, and a morphism is a unital *-homomorphism. The gen-
eral notion of (positively) existential embedding yields a notion of (pos-
itively) existential embedding between C*-algebras. If A,B are separable
C*-algebras, an embedding Φ : A→ B is positively existential if and only if
it is sequentially split in the sense of [9].
Using positively existential embeddings, one can give a model-theoretic
description of relative commutants, as follows.
Proposition 4.14. Suppose thatA,C are separable C*-algebras, andU is a
countably incomplete ultrafilter. Then the following assertions are equivalent:
(1) the embedding 1C ⊗ idA : A→ C ⊗max A is positively existential;
(2) there exists a morphism from C to A′ ∩AU .
Proof. (1)⇒(2) We identify A with its image 1 ⊗max A inside C ⊗max A.
By countable saturation of AU it suffices to prove the following. Suppose
that ϕ (x̄) is a positive existential LC*-formula in the variables x1, . . . , xn,
ε > 0, a1, . . . , ak is a tuple inA, and c̄ is a tuple inC satisfying the condition
ϕ (x̄) ≤ 0. Then there exists a tuple in A satisfying the LC* (A)-condition

 (x̄) ≤ ε where 
 (x̄) is the LC* (A)-formula

max {ϕ (x̄) , ‖xiaj − ajxi‖ : i = 1, 2, . . . , n and j = 1, 2, . . . , k} .
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Considering the tuple ci ⊗ 1A ∈ C ⊗ A for i = 1, 2, . . . , n shows that
the LC* (A)-condition 
 (x̄) ≤ 0 is satisfied in C ⊗ A. Since the inclusion
A ⊂ C ⊗max A is positively existential by assumption, we conclude that the
LC* (A)-condition 
 (x̄) ≤ ε is satisfied in A. This concludes the proof.
(2)⇒(1) Suppose that there exists a morphism � : C → A′ ∩ AU . Then
the function

(
A′ ∩AU) × A → AU given by ([ai ] , b) �→ [aib] induces

by the universal property of maximal tensor products a morphism Ψ :(
A′ ∩AU)⊗max A→ AU . One can then define Ψ̂ := Ψ ◦ (� ⊗ idA) : C ⊗max
A → AU . Observe that this is a morphism such that Ψ̂ ◦ (1C ⊗ idA) is the
diagonal embedding of A into AU . This shows that 1C ⊗ idA is a positively
existential embedding. �

§5. The effect of the Continuum Hypothesis.
5.1. The Continuum Hypothesis. The continuum c is, by definition, the
cardinality of the set R of real numbers. The Continuum Hypothesis (CH)
is the assertion that c coincides with the least uncountable cardinal ℵ1. A
famous open problem in set theory asked whether the Continuum Hypoth-
esis holds, or more precisely whether it follows from the usual axioms for
set theory known as Zermelo–Frankel axioms with Choice (ZFC). In 1940
Gödel [52] showed that the Continuum Hypothesis is consistent with ZFC,
in the sense that it can be added to ZFC without leading to a contradiction
(assuming that ZFC itself is not contradictory). In the early 1960s, Cohen
developed the method of forcing, and used it to show that the negation of
the Continuum Hypothesis (the assertion that c is strictly larger than ℵ1)
is also consistent with ZFC [21, 22]. These results together imply that the
Continuum Hypothesis is independent of ZFC, in the sense that it can not
be either proved nor disproved from the axioms of ZFC.
The value of the continuum turns out to be irrelevant for what concerns
sufficiently simple statements. As a rule of thumb, any “reasonable state-
ment” concerning separable C*-algebras that can be proved assuming the
ContinuumHypothesis, can also be provedwithout theContinuumHypoth-
esis. (This assertion can be made precise in set theory through the notion
of absoluteness, and it is the subject of several absoluteness results such as
Shoenfield’s absoluteness theorem [74].)
On the other hand, the value of the continuum, or more generally addi-
tional set-theoretic axioms, can have a deep influence on the structure and
properties of “massive C*-algebras”. Paradigmatic in this sense is the ques-
tion of whether all automorphisms of the Calkin algebraQ are inner. Recall
that Q is the quotient of the algebra B(H ) of bounded linear operators
on the separable Hilbert space H by the closed two-sided ideal of compact
operators. Even when H is separable, Q is nonseparable, and in fact it has
density character c. (Recall that the density character of a metric space is
the least cardinality of a dense subset.)
Originally posed by Brown–Douglas–Fillmore in [16], this problem was
initially addressed in 2007 by Phillips–Weaver [68], who showed that, assum-
ing CH, Q has an automorphism which is not inner. Later on, Farah has
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proved that, under different set-theoretic assumptions, which imply in par-
ticular the negation of CH, all the automorphisms of the Calkin algebra
are inner [32,33]. These results have later been generalized in [23,43,46,84]
to other massive C*-algebras, which are obtained as corona algebras of
separable C*-algebras.
Another problem which is sensitive of the value of the continuum con-
cerns the number of ultrapowers of a fixed separable C*-algebra infinite-
dimensional C*-algebra A with respect to nonprincipal ultrafilters over N.
CH implies that all such ultrapowers of A are isomorphic. On the other
hand, as shown by Farah–Hart–Sherman [38], if CH fails then there exist
two nonisomorphic such ultrapowers of A (in fact, there exist 2c pairwise
nonisomorphic such ultrapowers of A, as proved by Farah–Shelah [45]).
The same conclusions hold if one considers, instead of the ultrapower, the
relative commutant of A inside the ultrapower. The analogous question in
the case of II1 factors had been posed by McDuff [63], and it has also been
settled in [38].

5.2. Isomorphism of countably saturated structures. Let L be a language.
Recall that an L-structure M is countably saturated if for every separable
subset A ofM and every L (A)-type t (x̄), if t (x̄) is approximately realized
in M , then it is realized in M . A fundamental fact in model theory is
that the any two elementarily equivalent countably saturated structures of
density character ℵ1 are isomorphic. More generally, we have the following
result.

Theorem 5.1. Suppose that L is a language, and let C be a class of L-
structures such thatL is separable for C. Consider two elementarily equivalent
countably saturated structuresM,N in C of density character ℵ1. ThenM and
N are isomorphic. Furthermore, ifM0 ⊂ M is a separable substructure, and
Φ0 :M0 → N is an elementary embedding, thenΦ extends to an isomorphism
M → N .
Proof. We prove the second assertion, the proof of the first assertion
being similar.
Since M,N have density character ℵ1, one can enumerate dense subsets

{a� : � < �1} of M and {b� : � < �1} of N . Define N0 to be the range of
Φ0. Let also M� for � < �1 be M0 ∪ {a� : � < �} ⊂ M , and similarly N�
for � < �1 be N0 ∪ {b� : � < �} ⊂ N . Say that an ordinal � < �1 is odd if
it is of the form � + n where � is a limit ordinal and n ∈ � is odd, and it is
even otherwise.
We define by recursion on � < �1 elements â� of M and b̂� of N such
that:

(1) â� = a� if � is even;
(2) b̂� = b� if � is odd;
(3) the assignment Φ� : M� → N� which is the identity onM0 and such
that Φ

(
â�) = b̂� for � < � is well defined and satisfies ϕN (Φ� (ā)) =

ϕM
(
b̄
)
for any tuple ā inM� and L-formula ϕ (x̄).
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Suppose that � < �1 and â�, b̂� have been defined for � < � in such a
way that (1),(2),(3) above hold. (Observe that (3) holds when � = 0 by the
assumption that Φ0 is an elementary embedding.)We consider the case when
� is even, the case of � being odd is analogous. We then set â� = a�, and the
consider the complete L (M�)-type of â�. Recall that this is the L (M�)-type
t (x) consisting of all the L (M�) conditions satisfied by â�. By the inductive
assumption (3), t (x) is approximately realized in N . Since N is countably
saturated, we can conclude that t (x) is realized in N . We then define b̂� to
be any realization of t (x) in N . It is clear by definition of t (x) together
with the inductive assumption that such a choice indeed satisfies (3). This
concludes the recursive construction.
Observe that, by (1), {â� : � < �1} is a dense subset of M . Similarly, by
(2), {b̂� : � < �1} is a dense subset ofN . Granted the construction, one can
define the map Φ : {â� : � < �1} → {b̂� : � < �1} by Φ (â�) = b̂�. By (3),
this extends to an isomorphism Φ :M → N , concluding the proof. �
5.3. Ultrapowers and the Continuum Hypothesis. We now specialize the
discussion to C*-algebras. Let A be an infinite-dimensional separable C*-
algebra, and U is a nonprincipal ultrafilter over N. Recall that this means
thatU does not contain any finite set, which is equivalent to the assertion that
U is countably incomplete. We consider the ultrapower AU and the relative
commutant A′ ∩ AU . A basic question is: how large AU and A′ ∩ AU are?
This question can be interpreted in terms of the cardinality of AU but also,
more appropriately, in terms of its density character. Since we are assuming
that A is separable, and that U is an ultrafilter over N, it is easy to see that
AU has density character at most c, considering that the continuum c is size
of the set of functions from N to N. Clearly, the same conclusion applies
to A′ ∩ AU , which is a C*-subalgebra of AU . We now claim that, in fact,
A′ ∩ AU and hence AU have density character exactly c. In order to show
this, we will use the following criterion, which we formulate in the general
setting of structures in an arbitrary language L.

Proposition 5.2. Suppose that L is a language, U is a nonprincipal ultra-
filter over N, t (x) is an L-type in the variable x with corresponding domain
D, and C is a class of L-structure. Assume that L is separable for C. Consider
a sequence (Mn)n∈N

of L-structures. Assume that there exist � > 0 and, for

every n ∈ N, an n-tuple ā(n) = (a(n)1 , . . . , a
(n)
n ) of elements of DMn ,

such that

(1) for every n ∈ N, and 1 ≤ i, j ≤ n, dMn (ai , aj) ≥ �, and
(2) for every finite set t0 (x) of conditions in t (x)

+, every element of ā(n) is
a realization of t0 (x) for all but finitely many n ∈ N.

LetM be the ultraproduct
∏

UMn, andM
t be the set of realizations of t (x)

in
∏

UMn. ThenM
t contains a family (ai )i<c of size continuum of elements

satisfying dM (ai , aj) ≥ � for every i, j < c.

In fact, a more general version of Proposition 5.2 holds, where one
considers a type in more than one variable.
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In order to prove Proposition 5.2, we will use the following basic lemma
from combinatorial set theory. Let us say that two functions f, g : N → N

are eventually distinct if {n ∈ N : f (n) = g (n)} is finite.
Lemma 5.3. There exists a familyF of size continuumof pairwise eventually
distinct functions f : N → N satisfying f (n) ≤ n for every n ∈ N.

Proof. We will use the fact that the continuum is equal to the cardinality
of the collection of infinite subsets of N. For an infinite subset A ofN, define
the function fA : N → N by

fA (n) =
∑

k<�log2 n
�A (k) 2k.

Observe that if A,B are distinct infinite subsets of N, then fA and fB are
eventually distinct. �
We can now use Lemma 5.3 to prove Proposition 5.2.

Proof of Proposition 5.2. LetF be a family of size continuum consisting
of pairwise eventually distinct functions f : N → N such that f (n) ≤
n for every n ∈ N and limn→+∞f (n) = +∞. For n ∈ N, let ā(n) =
(a(n)1 , . . . , a

(n)
n ) be the tuple of elements of DMn given by hypothesis. LetM

be the ultraproduct
∏

UMn. For every f ∈ F define af to be the element
of DM with representative sequence (a(n)f(n)). The assumption that, for every

finite set t0 (x) of conditions in t (x)
+, every element of ā(n) is a realization

of t0 (x) for all but finitely many n ∈ N implies by Łos’ theorem that af is a
realization of t (x).
If f and g are different elements of F , then they are eventually distinct.
In particular, since U is nonprincipal, (Un), f (n) 	= g (n). Hence, (Un),
d (anf(n), a

n
g(n)) ≥ �. By Łos’ theorem again, we then have d

(
af, ag

) ≥ �.
This concludes the proof. �
Using Proposition 5.2 we can give a sufficient condition for a C*-algebra
A to have, for any nonprincipal ultrafilter U over N, relative commutant in
the ultrapower A′ ∩ AU of density character at least c. For convenience, we
isolate the following notion.

Definition 5.4. AC*-algebraA hasmany asymptotically central elements
if there exists � > 0 such that, for every n ∈ N, finite subset F of A, and
ε > 0, there exist a1, . . . , an in A of norm at most 1 such that, for every
1 ≤ i < j ≤ n and b ∈ F , ‖ai − aj‖ ≥ � and ‖aib − bai‖ ≤ ε.
Thus Proposition 5.2 gives the following.

Proposition 5.5. Suppose that A is a separable C*-algebra that has many
asymptotically central elements, and U is a nonprincipal ultrafilter over N.
Then A′ ∩ AU and AU both have density character and cardinality equal
to c.

Proof. We have already observed above that AU has density character at
most c. In order to see that A′ ∩ AU has density character at least c, one
can apply Proposition 5.2 to the language LC* (A), the sequence (Mn)n∈N
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constantly equal to A, and the relative commutant type t (x) consisting of
the conditions ‖xa − ax‖ ≤ 0 for a ∈ A of norm at most 1.
This shows thatA′∩AU andAU both have density character c. Fix a dense
subset E of AU of size c. Observe that, since E is dense, the cardinality of
AU is bounded by the cardinality of the set of sequences of elements of E,
which is still equal to c. Therefore AU has cardinality at most c, concluding
the proof. �
Due to Proposition 5.5, our original question on the size of ultrapowers
and relative commutants leads us to consider which C*-algebras have many
asymptotically central elements. As it turns out, every infinite-dimensional
C*-algebra has many asymptotically central elements, as we will show
below.
Proposition 5.6. Let A be a separable infinite-dimensional C*-algebra.
Then A has many asymptotically central elements.
Proof. Suppose initially that A is abelian. In this case,A is isomorphic to
the algebra C (X ) of continuous complex-valued function over a compact
Hausdorff spaceX . Since A is infinite-dimensional, X is not finite. Thus, by
normality of X we can find, for every n ∈ N, positive elements a1, . . . , an of
C (X ) of norm 1with disjoint supports. (The support of a function a : X →
[0, 1] is the set {t ∈ X : a (t) 	= 0}.) This guarantees that ‖ai − aj‖ = 1 for
every 1 ≤ i < j ≤ n. This concludes the proof in the case whenA is abelian.
Suppose now that A is a continuous trace C*-algebra [70]. This means
that A can be realized as the algebra of sections of a bundle over a compact
Hausdorff spaceX , with finite-dimensional C*-algebras as fibers. SinceA is
infinite-dimensional, X is infinite. Clearly, the abelian C*-algebra C (X ) is
isomorphic to a C*-subalgebra of the center A′ ∩A of A. This implies that,
since C (X ) has many asymptotically central elements, so does A.
Finally,we consider the casewhenAdoes not have continuous trace. In this
case, by [1, Theorem 2.4], there exists a sequence (dn) of positive elements
of norm 1 in A such that, for every a ∈ A, limn→+∞ ‖dna − adn‖ = 0
and �a := lim supn→+∞ ‖dn − a‖ > 0. Consider then the LC* (A)-type t (x)
consisting of the conditions ‖xa − ax‖ ≤ 0 and ‖x − a‖ ≥ �a for a ∈ A and
|1− ‖x‖| ≤ 0. Then the type t (x) is approximately realized in A, and hence
it is realized in AU by countable saturation. We identify A with a subalgebra
of A′ ∩AU . If a is a realization of t (x) in AU , then a is an element of norm
1 of A′ ∩ AU that does not belong to A. By completeness of A, there exists
� > 0 such that ‖a − b‖ > � for every b ∈ A of norm 1.
Fix an enumeration (bn) of a dense subset of the unit ball of A. If (an)
is a representative sequence of a, then using Łos’ theorem one can recur-
sively define an increasing sequence (nk) in N such that, for every k < m,
‖ak − am‖ > � and ‖bmak − akbm‖ < 2−k. This shows that A has many
asymptotically central elements. �
Combining Proposition 5.6 with Proposition 5.5 and Theorem 5.1, we
finally obtain the following.
Theorem 5.7. Suppose that A is a separable infinite-dimensional C*-
algebra. If U is a nonprincipal ultrafilter over N, then the ultrapower AU and

https://doi.org/10.1017/bsl.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.3


74 MARTINO LUPINI

the relative commutant A′ ∩ AU have density character c. If the Continuum
Hypothesis holds, and U , V are nonprincipal ultrafilters overN, thenAU ∼= AV

and A′ ∩AU ∼= A′ ∩AV .

Proof. The first assertion is an immediate consequence of Proposition 5.5
and the observations above. Suppose now that the Continuum Hypothesis
holds. If U , V are nonprincipal ultrafilters over N, then AU and AV have
density character ℵ1, they are elementarily equivalent by Łos’ theorem, and
they are countable saturated by Proposition 4.7. Therefore Theorem 5.1
implies that AU and AV are isomorphic. Furthermore, since the diagonal
embedding of A in both AU and AV is elementary by Łos’ theorem, again
by Theorem 5.1 there exists an isomorphism Φ : AU → AV which is the
identity on A (canonically identified with a C*-subalgebra of AU and AV).
Henceforth, Φ restricts to an isomorphism from A′∩AU onto A′∩AV . This
concludes the proof. �

§6. Strongly self-absorbing C*-algebras. The class of strongly self-
absorbing C*-algebras, initially introduced by Toms and Winter in [83],
has played in recent years a pivotal role in the study of structure and clas-
sification of simple nuclear C*-algebras. In the rest of this section, we want
to present some model-theoretic results concerning these algebras, their
ultrapowers and relative commutants, obtained in [37].
Recall that a separable C*-algebra D has approximately inner half-flip if
the canonical embeddings D → D ⊗ D defined by d �→ d ⊗ 1D and d �→
1D ⊗ d are approximately unitarily equivalent. (Here and in the following,
we consider the minimal tensor product of C*-algebras; see [13, Section
II.9].) In other words, there exists a sequence (un) of unitary elements of
D ⊗ D such that ‖un (d ⊗ 1D)− (1D ⊗ d ) un‖ → 0 for n → +∞ for every
d ∈ D. This condition is restrictive, indeed a C*-algebra with approximately
inner half-flip is automatically simple and nuclear. A separable C*-algebra
D is strongly self-absorbing if it is not isomorphic to C, it has approximately
inner half-flip, and it is isomorphic to the infinite tensor product D⊗N. The
only currently known examples of strongly self-absorbing C*-algebras are
the infinite type uniformly hyperfinite (UHF) C*-algebras [51], the Cuntz
algebras O2 and O∞ [24], the Jiang–Su algebra Z [59], and their tensor
products.
Suppose that D is a strongly self-absorbing C*-algebra, and A is a sep-
arable C*-algebra. One says that A is tensorially D-absorbing, or simply
D-absorbing, if D ⊗ A is isomorphic to A. The notion of D-absorption
plays a crucial role in the current study of nuclear C*-algebras. The goal of
the next subsection is to present a proof of a well-known characterization
ofD-absorption for separable C*-algebras in terms of the notion of positive
existential embedding.

6.1. A criterion for D-absorption. Throughout this section, we let D be a
fixed strongly self-absorbing C*-algebra, andA,B be separable C*-algebras.
In the following lemma, we consider objects which are triples (A, Â, �) of
two C*-algebras A, Â together with an embedding � : A→ Â. These can be
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regarded as structures in a two-sorted languageLwhich has sorts for the C*-
algebras A, Â, function and relation symbols for the C*-algebra structure
on A, Â, and a function symbol for the embedding � : A→ Â.
Lemma 6.1. Suppose that A,B are C*-algebras and Φ : A → B is a
positively existential embedding. If C is a nuclear C*-algebra, then idC ⊗Φ :
C ⊗ A → C ⊗ B , c ⊗ a �→ c ⊗ Φ(a) is a positively existential embedding.
Furthermore, the pair (Φ, idC ⊗Φ) defines a positive existential embedding
from (A,C ⊗A, 1C ⊗ idA) to (B,C ⊗ B, 1C ⊗ idB) regarded asL-structures.
Proof. We will use below that, since C is nuclear, maximal and minimal
tensor products with C coincide.
Fix a countably incomplete ultrafilter U . Since Φ is a positively existential
embedding, there exists a morphism Ψ : B → AU such that Ψ ◦ Φ = ΔA.
One can then consider idC ⊗Ψ : C ⊗ B → C ⊗AU . Since C is nuclear, the
tensor product C ⊗ AU can be identified with the maximal tensor product.
Let � : C ⊗ AU → (C ⊗A)U be the canonical morphism obtained via the
universal property of the maximal tensor product from the morphisms with
commuting ranges ΔC : C → CU ⊂ (C ⊗A)U and idAU : AU → AU ⊂
(C ⊗A)U . Observe that

� ◦ (idC ⊗Ψ) ◦ (idC ⊗Φ) = � ◦ (idC ⊗ ΔA) = idC⊗A.
Thus � ◦ (idC ⊗Ψ) witnesses that idC ⊗Φ is positively existential.
Consider now (A,C ⊗A, idC ⊗ A) and (B,C ⊗ B, idC ⊗ B) as L-
structures, and observe that the pair (Φ, idC ⊗Φ) defines an L-morphism
between suchL-structures. Observe also that

(
AU , (C ⊗ A)U , (1C ⊗ idA)U

)
can be regarded as the ultrapower of (A,C ⊗A, 1C ⊗ idA) as anL-structure.
Furthermore, the pair (Ψ, � ◦ (idC ⊗Ψ)) defines an L-morphism from
(B,C ⊗ B, 1C ⊗ idB) to

(
AU , (C ⊗A)U , (1C ⊗ idA)U

)
whose composition

with (Φ, idC ⊗Φ) is the canonical embedding of (A,C ⊗A, idC ⊗ A) into its
ultrapower. This witnesses that the pair (Φ, idC ⊗Φ) is a positively existen-
tial embedding from (A,C ⊗A, 1C ⊗ idA) to (B,C ⊗ B, 1C ⊗ idB) regarded
as L-structures. �
The following fundamental intertwining lemma is [71, Proposition 2.3.5].
Lemma 6.2. Suppose that Φ : A → B is an embedding. Assume that for
every ε > 0 and for every finite subset FA of A and FB of B there exists a
unitary element z of B such that
(1) ‖zΦ(a) z∗ −Φ(a)‖ ≤ ε for a ∈ FA, and
(2) d (z∗bz,Φ(A)) ≤ ε for b ∈ FB , where d (x,A) = infa∈A ‖x − a‖.
Then Φ is approximately unitarily equivalent to an isomorphism Ψ.
Using Lemma 6.2 one can obtain the following.
Lemma 6.3. If the canonical embedding 1D⊗ idA : A→ D⊗A is positively
existential, then it is approximately unitarily equivalent to an isomorphism.
Proof. Fix a finite subset F of A, a finite subset F ′ of D ⊗A, and ε > 0.
Consider the structure

A = (A,D ⊗A, 1D ⊗ idA : A→ D ⊗A)
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and the structure

B = (D ⊗ A,D ⊗D ⊗ A, 1D ⊗ idD⊗A : D ⊗A→ D ⊗D ⊗A) .
One can naturally consider A and B as L-structures, where L is the
multi-sorted language considered in Lemma 6.1. We are assuming that the
embedding

1D ⊗ idA : A→ D ⊗A
is positively existential. Therefore by Lemma 6.1 the embedding idD ⊗ 1D ⊗
idA : D ⊗ A → D ⊗ D ⊗ A is positively existential. Furthermore, the pair
Ψ = (1D ⊗ idA, idD ⊗ 1D ⊗ idA) defines an existential embedding from A
to B regarded as L-structures.
SinceD has approximately inner half-flip, there exists a unitary element v
of D ⊗D such that, if û := v ⊗ 1 ∈ D ⊗D ⊗ A, then
(1) ‖û (1D ⊗ 1D ⊗ a) û∗ − (1D ⊗ 1D ⊗ a)‖ < ε for a ∈ F , and
(2) dist (û∗ (idD ⊗ 1D ⊗ idA) (b) û, 1D ⊗D ⊗A) < ε for b ∈ F ′.
Using the fact that the L-morphism Ψ : A → B is positively L-existential
and that the unitary group is a positively existentially definable set, one can
conclude that there exists a unitary element u of D ⊗A such that
(1) ‖u (1D ⊗ a) u∗ − (1D ⊗ a)‖ < ε for a ∈ F , and
(2) dist(u∗bu, 1D ⊗ A) < ε for b ∈ F ′.
This witnesses that 1D ⊗ idA : (A,α) → (D ⊗ A, idD ⊗ α) satisfies the
assumptions of Lemma 6.2. �
Lemma 6.4. The embedding

1D ⊗ idD⊗A : D ⊗ A→ D ⊗D ⊗ A
is positively existential.
Proof. Since D is strongly self-absorbing, it is enough to show that the
embedding

1D ⊗ idD⊗N⊗A : D
⊗N ⊗A→ D ⊗D⊗N ⊗A

is positively existential. For every n ∈ N, let

Ψn : D → D⊗N ⊗ A
be the embedding induced by the embedding of D into D⊗N as n-th tensor
factor. Suppose that ϕ (x1, . . . , x) is a positive existential LC* (A)-formula,
ε > 0, r ∈ R, and consider the condition ϕ (x1, . . . , x) ≤ r. Assume that∑
k di,k ⊗ ai,k for i = 1, 2, . . . ,  is an -tuple inD ⊗D⊗N ⊗A satisfying the

condition ϕ (x1, . . . , x) < r, where di,k ∈ D and ai,k ∈ D⊗N ⊗ A. Then,
for n ∈ N large enough,

∑
k Ψn (di,k) ai,k for i = 1, 2, . . . ,  is an -tuple in

D⊗N⊗A satisfying the condition ϕ (x1, . . . , x) ≤ r+ ε. This concludes the
proof that 1D ⊗ idD⊗N⊗A is a positively existential embedding. �
Using the results above, we can give a characterization of D-absorption.

Theorem 6.5. Suppose that A is a separable C*-algebra, and D is a sep-
arable strongly self-absorbing C*-algebra. Let U be a countably incomplete
ultrafilter. The following statements are equivalent:
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(1) A is D-absorbing;
(2) the embedding idA ⊗ 1D : A→ A⊗D is positively existential;
(3) the embedding idA ⊗ 1D : A → A ⊗ D is approximately unitarily
equivalent to an isomorphisms;

(4) D embeds into A′ ∩AU ;
(5) if t (x̄) is a positive quantifier-free type approximately realized in D,
then the type

t (x̄) ∪ {‖xia − axi‖ ≤ 0 : a ∈ A}
is approximately realized in A.

Proof. The implication (1)⇒(2) is a consequence of Lemma 6.4, while
the implication (2)⇒(3) is a consequence of Lemma 6.3. The equivalence
(2)⇔(4) is a consequence of Lemma 4.14, observing that D is simple so a
morphism D → A′ ∩AU is necessarily an embedding, while the equivalence
(4)⇔(5) follows fromŁos’ theoremand countable saturation of ultrapowers.
Finally, the implication (3)⇒(1) is obvious. �
Theorem 6.5 motivates the following definition.

Definition 6.6. A (not necessarily separable) C*-algebra A is D-
absorbing if it satisfies Condition (5) in Theorem 6.5.

In view of Theorem 6.5, this definition is consistent with the usual one
in the case of separable C*-algebras. Furthermore, when A is positively
quantifier-free saturated, A isD-absorbing if and only if, for every separable
subalgebra S of A, D embeds into S ′ ∩ A. This shows that S ′ ∩ D is still
D-absorbing and positively quantifier-free saturated.
It is clear from the definition that the property of being D-absorbing is
axiomatizable. Indeed, this is witnessed by the conditions

sup
x1,...,xn

inf
y1,...,yn

max {ϕ (x1, . . . , xn) , ‖xiyj − yjxi‖ : 1 ≤ i, j ≤ n} ≤ 0

where ϕ (x̄) varies among the positive quantifier-free formulas for which the
condition ϕ (x̄) ≤ 0 is realized in D.
Definition 6.7. A (positive) sup inf-formula is a formula of the form
supx̄ inf ȳ 
 (x̄, ȳ) where 
 (x̄, ȳ) is a (positive) quantifier-free formula. A
class is (positively) sup inf-axiomatizable if it is axiomatizable, as witnessed
by conditions of the form ϕ ≤ r, where ϕ is a (positive) sup inf-formula.
The above argument shows that the class of D-absorbing C*-algebras is
sup inf-axiomatizable.

6.2. Relative commutants of D-absorbing C*-algebras. Suppose as above
that D is a strongly self-absorbing C*-algebra. Let now C be a (not neces-
sarily separable) D-absorbing C*-algebra, in the sense just defined. Recall
that two morphisms Φ1,Φ2 : A→ B are unitarily equivalent if there exists a
unitary element u ofB such that Φ2 = Ad (u)◦Φ1. In the following theorem,
we denote by ℵ1 the first uncountable cardinal number.
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Theorem 6.8. LetD be a strongly self-absorbing C*-algebra. Suppose that
� : D → C is an embedding, and that C is D-absorbing and positively
quantifier-free countably saturated. The following assertions hold :

(1) Any two embeddingsD → C are unitarily equivalent;
(2) For every separable C*-subalgebraA of � (D)′ ∩C and every separable
C*-subalgebra B of C there exists a unitary u ∈ A′ ∩ C such that
uBu∗ ⊂ � (D)′ ∩ C ;

(3) � (D)′ ∩ C is an elementary substructure of C ;
(4) If C has density character ℵ1, then the inclusion � (D)′ ∩ C ↪→ C is
approximately unitarily equivalent to an isomorphism;

(5) If C is countably saturated, then � (D)′ ∩ C is countably saturated.
Proof. Since C is D-absorbing and positively quantifier-free saturated,
for every separable C*-subalgebra S of C one has that S ′ ∩ C is also
D-absorbing and positively quantifier-free saturated.
(1) Let �1 : D → C be an embedding. We will show that �1 is unitarily
equivalent to �. Let us initially assume that the ranges of � and �1 commute.
We can choose a sequence (un) of unitaries in D witnessing the fact that D
has approximately inner half-flip. Define Θ : D ⊗ D → C by d0 ⊗ d1 �→
� (d0) �1 (d1). Considering the unitaries Θ (un) for n ∈ N and applying the
fact thatC is positively quantifier-free countably saturated, we conclude that
there exists a unitary u ∈ C such that u�(d ) = uΘ(d ⊗ 1) = Θ(1 ⊗ d )u =
�1(d )u. This shows that �, �1 are unitarily equivalent.
In the general case, when the ranges of �, �1 do not necessarily commute,
sinceC isD-absorbing andpositively quantifier-free countably saturated, we
can find an embedding �2 : D → C whose range commutes with the ranges
of � and �1. Therefore by the above we have that � is unitarily equivalent to
�2 and �1 is unitarily equivalent to �2. Hence, � is unitarily equivalent to �1.
For the rest of the proof, we identify D with its image under � inside C .
(2) Fix a separable C*-subalgebra A of D ′ ∩ C and a separable C*-
subalgebra B of C . We want to show that there exists u ∈ A′ ∩ C such that
uBu∗ ⊂ D ′ ∩ C .
Since C is D-absorbing and positively quantifier-free saturated, the same
holds for A′ ∩ C and A′ ∩ B ′ ∩ C . Thus we can fix an embedding Ψ : D →
A′ ∩ B ′ ∩ C . By (1) applied to the pair of embeddings D → A′ ∩ C given
by Ψ and the inclusion � : D ⊂ A′ ∩ C , there exists a unitary u ∈ A′ ∩ C
such that Ψ = Ad (u∗) ◦ � or, equivalently, u∗du = Ψ(d ) for every d ∈ D.
Therefore, if b ∈ B and d ∈ D, we have that

‖ubu∗d − dubu∗‖ = ‖bu∗du − u∗dub‖ = ‖bΨ(d ) −Ψ(d )b‖ = 0.
This concludes the proof.
(3) By the Tarski–Vaught test (Proposition 4.11), it suffices to show that
if r ∈ R, ϕ (x̄, ȳ) is a formula, ā is a tuple in D ′ ∩ C , and b̄ is a tuple in
C such that ϕC

(
ā, b̄

)
< r, then there exists a tuple d̄ in D ′ ∩ C such that

ϕC
(
ā, d̄

)
< r. Let A be the C*-subalgebra of D ′ ∩ C generated by ā, and

let B be the C*-subalgebra of C generated by b̄. Then by (2) there exists a
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unitary u ∈ A′ ∩C such that uBu∗ ⊂ D ′ ∩C . Thus we have that d̄ := ub̄u∗
is a tuple in D ′ ∩ C such that

ϕC
(
ā, d̄

)
= ϕC

(
uāu∗, ub̄u∗

)
= ϕC

(
ā, b̄

)
< r,

concluding the proof.
(4) Suppose now that C has density character ℵ1. Thus we can fix
an enumeration (b�)�<�1 of a subset of C such that, for every � < �,{b� : � < � < �1} is a dense subset of C . Similarly, we can fix an enu-
meration (a�)�<�1 of a subset of D

′ ∩ C such that, for every � < �,
{a� : � < � < �1} is a dense subset of D ′ ∩ C . Here, �1 denotes the first
uncountable ordinal. We will define by transfinite recursion elements â� of
D ′ ∩ C , elements b̂� of C , and unitaries u� in C for � < �1 such that, for
every � ≤ � < �1,

u�b�u
∗
� = â� and u�b̂�u

∗
� = a�.

Granted the construction, we can define the map Φ : {a� : � < �1} → C
by setting Φ

(
a�) = b̂�. Then by construction, Φ is approximately unitarily

equivalent to the inclusion map of {a� : � < �1} inside C . Therefore Φ
extends to a *-homomorphism Φ : D ′ ∩ C → C , which is approximately
unitarily equivalent to the inclusion map D ′ ∩ C → C . It remains to show
that Φ is onto. Fix ε > 0 and � < �1. Then there exists an ordinal � < �
< �1 such that ‖â� − a�‖ < ε. Thus we have that

‖Φ(â�)− b�‖ ≤ ε + ‖Φ(a�)− u∗� â�u�‖ ≤ 2ε +
∥∥∥b̂� − u∗� a�u�∥∥∥ = 2ε.

Since this holds for every � < �1 and for every ε > 0, this shows that Φ is
onto.
It remains to describe the recursive construction. Suppose that the ele-
ments â�, b̂�, u� have been constructed for � < �. Define A to be the
separable C*-subalgebra of D ′ ∩ C generated by â�, a� for � < �. Let
also B be the separable C*-subalgebra of C generated by a�, b�, â�, b̂� for
� < �.
Suppose initially that � is a successor ordinal.We let �−1 be the immediate
predecessor of �. Then by (2) there exists a unitary v ∈ A′ ∩ C such that
vu�−1b�u∗�−1v

∗ ∈ D ′ ∩C . Set then u� := vu�−1, â� := u�b�u∗� ∈ D ′ ∩C and
b̂� := u∗� a�u�. Now we have that, by definition

u�b�u
∗
� = â� and u�b̂�u

∗
� = a�.

For � < � we have that, since v ∈ A′ ∩ C ,
u�b�u

∗
� = vu�−1b�u

∗
�−1v

∗ = vâ�v∗ = â�
and

u�b̂�u
∗
� = vu�−1b̂�u

∗
�−1v

∗ = va�v∗ = a�.
This concludes the construction in the case when � is a successor ordinal.
When � is a limit ordinal, one can obtain u� by applying positive quantifier-
free countable saturation of C to the positive quantifier-free LC* (B)-
type t (x) consisting of the conditions ‖x∗x − 1‖ ≤ 0, ‖xx∗ − 1‖ ≤ 0,
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‖xb�x∗ − â�+1‖ ≤ 0 for � < �, and
∥∥∥xb̂�x∗ − a�∥∥∥ ≤ 0 for � < �. Such a

type is approximately realized in C by the inductive hypothesis that u� has
been defined for � < �. Therefore such a type is realized inC . One can then
let u� be any realization of t (x). This concludes the recursive construction.
(5) Suppose that C is countably saturated. Suppose that A is a separable
C*-subalgebra ofD ′∩C , and t (x̄) is anLC* (A)-typewhich is approximately
realized in D ′ ∩ C . Then t (x̄) is also approximately realized in C . Since by
assumption C is countably saturated, t (x̄) has a realization b̄ in C . By (2)
there exists a unitary u ∈ A′∩C such that ub̄u∗ ⊂ D ′∩C . Since u ∈ A′∩C ,
the map Ad (u) is an LC* (A)-automorphism of C . For every condition
ϕ (x̄) ≤ r in t (x̄) we have that ϕC (b̄) ≤ r, and hence ϕC (ub̄u∗) ≤ r. Since
ubu∗ ∈ D ′ ∩ C and D ′ ∩ C is an elementary substructure of C , we have
that ϕD

′∩C (ub̄u∗) ≤ r. Since this holds for every condition in t(x̄), ub̄u∗

is a realization of t(x̄) in D ′ ∩ C . This concludes the proof that D ′ ∩ C is
countably saturated. �
Corollary 6.9. Let D be a strongly self-absorbing C*-algebra, and A is a
separable D-absorbing C*-algebra. If U is a countably incomplete ultrafilter,
then the conclusions of Theorem 6.8 holds for C = AU and for C = A′ ∩AU .
In particular, if the ContinuumHypothesis holds, and ifD ⊂ A is a copy ofD
inside A, then D ′ ∩ AU and AU are isomorphic.

Proof. It suffices to observe that the algebras AU and A′ ∩ AU are D-
absorbing and positively quantifier-free saturated. The ultrapower AU has
density character c by Theorem 5.7. Since CH is the assertion that c is the
first uncountable cardinal ℵ1, CH implies that AU has density character ℵ1.
Thus the last assertion is a consequence of item (4) of Theorem 6.8. �

6.3. Strongly self-absorbing C*-algebras are existentially closed. Suppose
that C is a class of C*-algebras. Then a C*-algebra A is existentially closed
in C ifA belongs to C and any embedding Φ : A→ B ofA into a C*-algebra
B from C, Φ is existential. This means that if ϕ (x̄) is an existential formula
and ā is a tuple in A, then ϕA (ā) = ϕB (Φ (ā)).
Let nowD be a strongly self-absorbing C*-algebra, and consider the class

CD of C*-algebras that embed into an ultrapower of D. Observe that CD
is an elementary class. Indeed, a C*-algebra A belongs to CD if and only
if ϕA ≤ ϕD for every universal sentence ϕ. When D is the infinite type
UHF algebra

⊗
n∈N
Mn(C)⊗N, CD is the class of MF algebras [14, 20]. The

Kirchberg embedding conjecture asserts that, when D is the Cuntz algebra
O2, CD contains all C*-algebras [56].
Proposition 6.10. LetD be a strongly self-absorbing C*-algebra. ThenD
is existentially closed in CD .
Proof. Suppose thatD ⊂ B whereB ∈ CD . Thenwe can assume thatB ⊂
DU for some countably incomplete ultrafilter U . Since all the embeddings
of D into DU are unitarily conjugate, we can assume that the composition
of the inclusions D ⊂ B and B ⊂ DU is the diagonal embedding of D
into DU .
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Fix a quantifier-free formula ϕ (x̄, ȳ). If ā is a tuple in D and b̄ is a tuple

in B ⊂ DU such that ϕ
(
ā, b̄

)
< r, by Łos’ theorem there exists a tuple

d̄ in D such that ϕ
(
ā, d̄

)
< r. This shows that the inclusion D ⊂ B is

existential. �

§7. Model theory and nuclear C*-algebras.
7.1. The classification programme. Much of the theory of C*-algebras
in the last twenty years has focused on the structure and classification
of simple, separable, nuclear C*-algebra, in the framework of the Elliott
classification programme. Nuclearity, also called amenability, is a regu-
larity property for C*-algebras with several equivalent reformulations. It
can naturally be defined in the broader category of operator systems and
unital completely positive maps. A linear map Φ : A → B between C*-
algebras is unital completely positive (ucp) if Φ (1) = 1 and, for every n ∈ N,
idMn(C) ⊗Φ :Mn(C)⊗A→Mn(C)⊗ B maps positive elements to positive
elements. A C*-algebra is nuclear if the identity map of A is the pointwise
limit of ucp maps of the form Ψ ◦ Φ : A → A, where Φ : A → Mn(C)
and Ψ : Mn(C) → A are ucp maps, and n ∈ N. This definition admits
several equivalent reformulations, including prominently the following: for
any C*-algebra B , the maximal and the minimal tensor product norms on
the algebraic tensor product of A and B coincide. Thus, the class of nuclear
C*-algebras is endowedwith a single canonical C*-algebraic tensor product.
The first hints that a satisfactory classification of separable, nuclear C*-
algebras could be achieved goes back to the seminal works of Glimm [51]
and Elliott [30], who classified those separable, nuclear C*-algebras that
can be realized as direct limits of finite-dimensional C*-algebras. In the
modern perspective, the invariant used in these results is the K0-group.
This is a countable ordered abelian group with a distinguished order unit.
Together with the K1-group, it constitutes the K-theory of a given C*-
algebra. Originally developed in algebraic geometry [4],K-theory was then
translated into purely algebraic language [72], and then incorporated in the
theory of C*-algebras [73].
The class of arbitrary separable, nuclear C*-algebras is extensive, in that
it contains all the algebras of the form C (X ) where X is a compact metriz-
able space. For such algebras, isomorphism coincides with homeomorphism
of the corresponding space. Since a meaningful classification of arbitrary
compact metrizable spaces is considered out of reach, it is natural to impose
restrictions on the class of algebras under consideration to rule out complex-
ity arising from the purely topological setting. One such natural assumption
consists in demanding that the C*-algebras under consideration be simple,
i.e., have no nontrivial ideals.
Building on the results of Glimm and Elliott mentioned above, broader
classes of simple, separable C*-algebras have been classified in the 1980s and
1990s due to the work of many hands. In this case, the invariant consisted in
the K-theory together with the trace simplex. A tracial state on a C*-algebra
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is a unital linear functional � satisfying the trace identity � (xy) = � (yx).
The space T (A) of tracial states over a separable C*-algebra A forms a
Choquet simplex, which is called the trace simplex. Traces can be seen as a
noncommutative analog of measures, and so the trace simplex encodes the
measure-theoretic information on the givenC*-algebras. The conjunction of
the K-theory of a C*-algebra together with its trace simplex and a canonical
pairing between them, is called Elliott invariant.
Motivated by these positive results, Elliott proposed the programme—
known as the Elliott classification programme—of classifying simple, sepa-
rable, nuclear C*-algebras by their Elliott invariant [31]. Despite substantial
progress, examples due to Rørdam and Toms showed that, in general, the
Elliott invariant is not a complete invariant for simple, separable, nuclear
C*-algebras. In [81, 82], nonisomorphic simple separable C*-algebras with
the same Elliott invariant have been constructed. The invariants used to
distinguish such algebras are the real rank and the radius of comparison.
Interestingly, such invariants are captured by the first-order theory of a
C*-algebra [36, Section 8.4]. In fact, no example of nonisomorphic sim-
ple, separable, nuclear C*-algebras with the same elementary theory and
the same Elliott invariant is currently known. This motivated the following
problem, asked in [36].

Problem 7.1. Is the Elliott invariant together with the first-order theory
a complete invariant for simple, separable, nuclear C*-algebras?

In a different direction, the counterexamples due Rørdam and Toms have
suggested to restrict the scope of the Elliott classification programme to a
suitable class of “well-behaved” simple, separable, nuclear C*-algebras. One
interpretation of what well-behaved should mean for a simple, separable,
nuclear C*-algebra is to absorb tensorially the Jiang-Su algebra Z. This is
a strongly self-absorbing C*-algebra, and in fact the unique strongly self-
absorbing C*-algebra that embeds into any other self-absorbing C*-algebra.
The property of Z-absorption is conjecturally equivalent for simple, sepa-
rable, nuclear C*-algebras to other regularity properties of very different
nature (topological, cohomological). This is the subject of the Toms–Winter
conjecture, which has been so far verified inmany cases, prominently includ-
ing the case when the trace simplex is itself well-behaved (its extreme
boundary is compact and finite-dimensional).
The revised Elliott classification programme for Z-absorbing simple, sep-
arable, nuclear C*-algebras has recently been completed, due to the work of
many authors, modulo the standing assumption that the algebras considered
satisfy the Universal Coefficient Theorem (UCT). A technical statement
regarding the relation between different K-theoretic invariants (K-theory
and KK-theory), the UCT is an assumption (in many cases known to be
automatically satisfied) in all the positive classification results for separable,
nuclear C*-algebras that have been obtained so far. At the same time, no
example of separable, nuclear C*-algebra that does not satisfy the UCT is
currently known. This has brought considerable interest to the following
UCT problem.
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Problem 7.2. Does every separable, nuclear C*-algebra satisfy the UCT?
The UCT has been verified for several important classes of C*-algebras.
In fact, it holds for all the separable C*-algebras that can be obtained
starting from finite-dimensional and abelian C*-algebras by the standard
constructions of C*-algebra theory, such as inductive limits and crossed
products by Z. Again, the problem of whether such a class contains in
fact all separable, nuclear C*-algebras is currently open. It is clear that the
answer to this problem is intimately connected with the problem of finding
other methods of constructing nuclear C*-algebras, other than the standard
constructions in C*-algebra theory. This provides a connection with model
theory, which is a source of a different kind of constructions, generally
known as model-theoretic forcing or building models by games.
Another connection of theUCTproblemandmodel theory arises from the
following reformulation due to Kirchberg: is the Cuntz algebraO2 uniquely
determined by its K-theory among simple, separable, purely infinite, nuclear
C*-algebras? This reformulation can be seen as the problem of whether O2
is the unique model of its theory that omits a certain collection of types.
Model theory provides criteria (omitting types theorems) that allow one to
decide when a theory admits a model omitting certain types. It is thus clear
that these results may be particularly relevant to this problem.
The first natural step towards the possible application of methods from
model theory to such problems consists in clarifying the model-theoretic
content of notions such as nuclearity, Z-stability, and the Elliott invariant.
7.2. Nuclearity is not elementary. It turns out that the property of being
nuclear for C*-algebras is not axiomatizable. Also the more generous prop-
erty of exactness is not axiomatizable. A C*-algebra is exact if, roughly
speaking, it can be approximately represented—as an operator space—into
full matrix algebras. A deep result of Kirchberg asserts that a separable C*-
algebra is exact if and only if it embeds into a nuclear C*-algebra, which can
be chosen to be the Cuntz algebraO2. An arbitrary C*-algebra is exact if and
only if all its separable C*-subalgebras are exact. Any nuclear C*-algebra
is, in particular, exact. It is also important to notice that exactness (or
nuclearity) of a C*-algebra only depends on the underlying operator system
structure, and it is inherited by passing to operator subsystems. This has the
following implications. For C*-algebras A,B , a complete order embedding
from A to B is a ucp map Φ : A→ B with a ucp inverse Ψ : Φ (A)→ A. If
A,B are C*-algebras, Φ : A → B is a complete order embedding, and B is
exact, then A is exact.
Lemma 7.3. Suppose that A is a C*-algebra. If every C*-algebra ele-
mentarily equivalent to A is exact, then A is n-subhomogeneous for some
n ∈ N.
Proof. Suppose that, for every n ∈ N,A is not n-subhomogeneous. Thus,
for every n ∈ N, A has an irreducible representation on a Hilbert space
of dimension at least n. This allows one to find, for every n ∈ N, a (not
necessarily unital) subalgebra Bn of A and an ideal Jn of Bn such that
the quotient Bn/Jn is isomorphic to Mn(C). Thus, if U is a nonprincipal
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ultrafilter over N, then AU has
∏

U Bn as a C*-subalgebra. Furthermore,∏
U Jn is a closed two-sided ideal of

∏
U Bn, and the corresponding quotient

can be identified with
∏

U (Bn/Jn) ∼=
∏

UMn(C).
If H is a separable infinite-dimensional Hilbert space, one can consider
an increasing sequence of projections pn ∈ B(C) with rank (pn) = n such
that pn → 1 in the strong operator topology. Then, for n ∈ N, pnB(H )pn ∼=
Mn(C). Furthermore the map B(H ) → ∏

U
(
pnB(H )pn) ∼= ∏

UMn(C)
defined by a �→ [(pnapn)] is a complete order embedding. Since B(H ) is not
exact,

∏
UMn(C) is not exact either. Since exactness passes to quotients, this

implies that
∏

U Bn is not exact, and since exactness passes to subalgebras,
AU is not exact. �
The converse of Lemma 7.3 holds as well. Indeed, if A is n-
subhomogeneous for some n ∈ N, since the class of n-subhomogeneous
C*-algebras is axiomatizable, any C*-algebra elementarily equivalent to A
is n-subhomogeneous, and in particular nuclear, and exact.
It follows from Lemma 7.3 that, if C is an elementary class of C*-algebras,
and C only consists of exact C*-algebras, then in fact C only consists of
n-subhomogeneous C*-algebras for some n ∈ N. In particular, the class of
exact C*-algebras and the class of nuclear C*-algebras are not elementary.
The same conclusions apply to several other classes of C*-algebras that are
important for the classification programme, such as:

• the class of C*-algebras that can be locally approximated by full matrix
algebras, known as uniformly hyperfinite (UHF) algebras;

• the class of C*-algebras that can be locally approximated by finite-
dimensional C*-algebras, known as approximately finite-dimensional
(AF) algebras.

Similarly, the class of simple C*-algebras is not elementary. Indeed, for
every n ∈ N, Mn(C) is simple. However, if U is a nonprincipal ultrafilter
over N, then the ultraproduct

∏
UMn(C) is not simple: the set of elements

a of
∏

UMn(C) with representative sequence satisfying limn→U ‖xn‖2 = 0,
where ‖·‖2 denotes the normalized Hilbert–Schmidt norm, is a nontrivial
closed two-sided ideal of

∏
UMn(C).

7.3. Infinitary formulas. In order to capture properties such as nuclearity,
one needs to consider amore generous notionof “formula”.Wewill therefore
introduce infinitary formulas, where one is allowed to take countably infinite
“conjunctions and disjunctions”, which in this setting are expressions of
the form supn∈N

ϕn and infn∈N ϕn where (ϕn)n∈N
is a sequence of formulas

subject to certain restrictions. Notice that this construction is not allowed
in our previous definition of formulas, in which case one is only allowed
to take infima and suprema over a variable. In particular, it is important
to keep in mind that infinitary formulas are, in general, not formulas in the
strict sense that we have considered so far. To avoid confusions, the formulas
as we have previously defined are also called, for completeness, finitary or
first-order formulas. The same adjectives should be applied to the notions we
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have defined in terms of first-order formulas, such as axiomatizable classes,
definable predicates, and so on.
Let us now formally introduce infinitary formulas in an arbitrary language
L as in the framework considered in Section 2.3. In fact, we will only con-
sider a special case of infinitary formulas, which we call sup

∨
inf-formulas

following [53]. Recall that, if ϕ is a finitary formula (or, more generally, a
definable predicate) and M is an L-structure, then the interpretation ϕM

of ϕ in M is a uniformly continuous function. Furthermore, one can find
uniform continuity modulus for ϕM which is independent of M , and can
be explicitly computed in terms of the uniform continuity of the function
and relation symbols in the language and their bounds. We refer to this as
the continuity modulus �ϕ of ϕ. An (infinitary) sup

∨
inf-formula is an

expression ϕ (x̄) of the form

sup
ȳ∈D̄
inf
n∈N


n (x̄, ȳ)

where x̄ is a tuple of variables with corresponding domains D̄,
and (
n (x̄, ȳ))n∈N

is a sequence of existential L-formulas (or exis-
tential definable predicates) such that the function �ϕ (s̄ , r̄) :=
supn∈N

min {�
n (s̄ , r̄) , 1} tuples s̄ , r̄ of positive real numbers satisfies
�ϕ (s̄ , r̄) → 0 for s̄ → 0 and r̄ → 0. Given an L-structure M , one can
define the interpretation ϕM of ϕ inM in the obvious way. The requirement
on the continuity moduli guarantees that ϕM is a uniformly continuous
function with modulus �ϕ (independent of M ). It is important to notice
that the analog of Łos’ theorem does not hold in general for sup

∨
inf-

formulas. Observe also that any (finitary) sup inf-formula is, in particular, a
sup

∨
inf-formula. A sup

∨
inf-sentence will be a sup

∨
inf-formula with no

free variables. Positive sup
∨
inf-formulas are defined as above, but starting

from positive quantifier-free formulas (or definable predicates).
If now C is a class of L-structure, then we say that C admits an infinitary
sup

∨
inf-axiomatization if there exists a countable collection of conditions

of the form ϕ ≤ r, where ϕ is a sup∨ inf-sentence, such that an L-structure
M belongs to C if and only if ϕM ≤ r for every such a condition.
7.4. Infinitary axiomatization of nuclearity. We now remark how impor-
tant classes of C*-algebras admit an infinitary sup

∨
inf-axiomatization.

7.4.1. UHF algebras. Recall that a C*-algebra A is UHF if and only if
for every tuple ā in the unit ball of A and ε > 0 there exist n ∈ N and a
unital copyMn(C) ⊂ A such that every element of ā is at distance at most
ε from the unit ball ofMn(C). Recall from Section 4.4 that the set of matrix
units for a unital copy ofMn(C) is definable, being the zeroset of the stable
formula ϕMn(C) (zij) given by

max

⎧⎨
⎩‖zijzk − �jkzi‖ ,

∥∥∥∥∥∥1−
n∑
j=1

zjj

∥∥∥∥∥∥ , |1− ‖zij‖| ,
∥∥xij − x∗ji∥∥ : 1 ≤ i, j, k,  ≤ n

⎫⎬
⎭ .

Recall also that the set D of scalar multiples of the identity of norm at most
1 (identified with the set of complex number of absolute value at most 1) is

https://doi.org/10.1017/bsl.2018.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2018.3


86 MARTINO LUPINI

also definable. One can thus consider, given , n ∈ N, the existential definable
predicate 
n (z1, . . . , z) given by

inf
eij
inf
�(m)ij

max

⎧⎨
⎩
∥∥∥∥∥∥zm −

n∑
i,j=1

�(m)ij eij

∥∥∥∥∥∥ : m = 1, 2, . . . , 
⎫⎬
⎭

where eij for 1 ≤ i, j ≤ n range among the matrix units for a unital copy of
Mn(C) and �

(m)
ij for 1 ≤ i, j ≤ n and 1 ≤ m ≤  range among the complex

numbers of absolute value at most 1. It is clear that the continuity modulus
�
n of 
n satisfies �
n (t1, . . . , tn) ≤ max {t1, . . . , t}. Therefore we can
consider the infinitary sup

∨
inf-sentence ϕ given by

sup
z1,...,z∈D1

inf
n∈N


n (z1, . . . , z) .

It is clear that the sup
∨
inf-conditions ϕ ≤ 0 for  ∈ N indeed provide an

infinitary sup
∨
inf-axiomatization for the class of UHF algebras.

7.4.2. AF algebras. The treatment of AF algebras is entirely analogous.
Indeed, a C*-algebra A is AF if and only if for every tuple ā in the unit ball
ofA and ε > 0 there exists a finite-dimensional unital C*-subalgebra F ⊂ A
such that every element of ā is at distance at most ε from the unit ball of
F . One can then consider sup

∨
inf-conditions defined as above, where one

replaced full matrix algebras with arbitrary finite-dimensional C*-algebras.

7.4.3. Nuclear algebras. The proof in the case of nuclearity is similar, but
slightly more delicate. Recall that a C*-algebra A is nuclear if and only if
for every finite tuple ā = (a1, . . . , a) in the unit ball of A and ε > 0 there
exist n ∈ N and ucp maps Φ : A → Mn(C) and Ψ : Mn(C) → A such that
‖(Ψ ◦Φ) (ai )− ai‖ < ε for i = 1, 2, . . . , .We have been identifying the field
C of scalars with the set of scalarmultiples of the unit ofA. Similarly, we can
canonically identifyMn(C) with the subalgebraMn(C)⊗1 ⊂Mn(C)⊗A ∼=
Mn (A).
Consider the relationR onMn(C)×A defined, for α ∈Mn(C) and a ∈ A
of norm at most 1, by

R (α, a) = inf
Ψ

‖Ψ(α)− a‖ .
Here Ψ ranges among all the ucp maps Ψ :Mn(C)→ A. A key step consists
in showing that R given by a quantifier-free definable predicate. To see this,
one should observe that a linear map Ψ : Mn(C) → A is ucp if and only if
Ψ (1) = 1, and the matrix∑

ij

eij ⊗Ψ(eij) ∈Mn(C)⊗ A

is positive. As we have shown the set of positive elements of A is quantifier-
free definable, and the same holds for the set of positive elements ofMn(C)⊗
A. Thus the predicate R is quantifier-free definable as well.
On then needs to show that the relation on A×Mn(C) defined by

S (a, α) = inf
Φ

‖Φ(a)− α‖ ,
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where Φ range among all the ucp maps Φ : A → Mn(C), is given by a
quantifier-free definable predicate. This canbe shownvia the correspondence
between completely positive maps Φ : A → Mn(C) and positive linear
functionals sΦ onMn(C)⊗A such that, for every a ∈ A,

1
n
Φ(a) =

∑
ij

sΦ (eij ⊗ a) eij ,

where (eij) denote the matrix units ofMn(C) [36, Proposition 5.8.5].
Using these facts, one can then consider the existential definable predicate

n (z1, . . . , z) given by

inf
α1,...,α

max
m

{S (zm, αm) , R (αm, zm) : m = 1, 2, . . . , }
where α1, . . . , αm range within the unit ball ofMn(C). Finally, we have that

sup
z1,...,z∈D1

inf
n

n (z1, . . . , z)

is a sup
∨
inf-sentence ϕ . The conditions ϕ ≤ 0 for  ∈ N witness that the

class of nuclear C*-algebras admits an infinitary sup
∨
inf-axiomatization.

7.4.4. Simple C*-algebras. We conclude by showing that the class of sim-
ple C*-algebras admits an infinitary sup

∨
inf-axiomatization. Recall that a

C*-algebra is simple if it has no nontrivial closed two-sided ideal. We will
use the following characterization of simplicity: a C*-algebra is simple A
if and only if for every positive elements a, d ∈ A such that ‖a‖ = 1 and
‖d‖ ≤ 1/2 there exist n ∈ N and c1, . . . , cn ∈ A such that c∗1 c1 + · · · + c∗n cn
is a contraction, and

‖c∗1 ac1 + · · · + c∗n acn − d‖ < ε;
see [36, Lemma 5.10.1].
Fix n ∈ N, and observe that the set of n-tuples c̄ = (c1, . . . , cn) such that
c∗1 c1 + · · · + c∗n cn is a contraction, is quantifier-free definable. Indeed, the
norm of c∗1 c1 + · · ·+ c∗n cn is equal to the norm of the matrix column vector

C :=

⎡
⎢⎢⎢⎣
c1
c2
...
cn

⎤
⎥⎥⎥⎦

which can be identified with the element⎡
⎢⎢⎢⎢⎣
c1 0 0 · · · 0
c2 0 0 · · · 0
c3 0 0 · · · 0
...
...
...
. . .
...

cn 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦

of Mn (A). Thus we can consider for n ∈ N the quantifier-free definable
predicate 
n (x, y) given by

inf
z1 ,...,zn

max
{
‖z∗1 (x∗x) z1 + · · ·+ z∗n (x∗x) zn − y∗y‖ , ‖y‖ − 2−1/2, |1− ‖x‖|

}
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where z1, . . . , zn range among all the n-tuples such that z∗1 z1 + · · · + z∗n zn is
a contraction. We observe that the continuity modulus �
n of 
n satisfies
�
n (t, s) ≤ t + s . Indeed, suppose that c̄ is a tuple in a C*-algebra A such
that c∗1 c1 + · · · + c∗n cn is a contraction, and a, b are elements of the unit
ball of A. Denote by C the column vector with entries c1, . . . , cn defined as
above. Let also a ⊗ In be the n × n matrix inMn (A) with a in the diagonal
and zeros elsewhere. Then we have that

|‖c∗1 a∗ac1 + · · · + c∗n a∗acn‖ − ‖c∗1 b∗bc1 + · · · + c∗n b∗bcn‖|
= |‖(a ⊗ In)C‖ − ‖(b ⊗ In)C‖| ≤ ‖(a ⊗ In)C − (b ⊗ In)C‖
= ‖((a − b)⊗ In)C‖ ≤ ‖(a − b)⊗ In‖ ‖C‖ ≤ ‖a − b‖ .

This easily gives the above claim on the continuity modulus of 
n.
We can thus consider the sup

∨
inf-sentence ϕ given by

sup
x,y∈D1

inf
n∈N


n (x, y) .

It is clear from the characterization of simplicity recalled above that the
condition ϕ ≤ 0 witnesses that the class of simple C*-algebras admits an
infinitary sup

∨
inf-axiomatization.

7.5. Model-theoretic forcing. Suppose that L is a language and C is
an elementary class of L-structure. We present here the technique of
model-theoretic forcing following the presentation from [12]. Alternative
approaches can be found in [36, 42, 53].
We suppose that L is separable for C. Recall that this means that the
seminorm on L-formulas ϕ (x1, . . . , xn) defined by

‖ϕ‖ = sup {ϕM (ā) :M ∈ C, ā ∈ DM1 × · · · ×DMn
}

is separable. After replacing formulas (or definable predicates) with formulas
from a fixed countable dense subset, we can assume that L only contains
countably many symbols. For simplicity, we work in the setting of languages
containing a single domain of quantification, and where all the bounds
for the relation symbols in L are the interval [0, 1]. The arguments can be
adapted to the more general setting a straightforward way.
One can consider a canonical dense set of formulas. This is the collection
of restricted L-formulas, which are formulas where the only connectives
used are among the following ones: t �→ 1 − t, t �→ t/2, (t, s) �→ t+̇s :=
min {t + s, 1}. Observe that, since we are assuming that the languageL only
contains countably many function and relation symbols, the set of restricted
L-formulas is countable. Restricted infinitary sup

∨
inf-formulas are defined

as sup
∨
inf-formulas, but starting from restricted L-formulas.

LetC be a countable set of constant symbols that do not already belong to
L. Set thenL (C ) to be the language obtained fromL by adding the constant
symbols from C . We will denote L (C )-structures as M+, N+, etc. If M+

is an L (C )-structure, the L-structure obtained from M+ by “forgetting”
about the interpretation of constants in C (which is called the L-reduct of
M+) is denoted byM . In this case, we say thatM+ is an expansion ofM . An
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L (C )-structure is canonical if the set of interpretations of constants from
C is dense.
Let us say that an open condition is an expression of the form ϕ < r,
where ϕ is a quantifier-free restricted L (C )-sentence, and r ∈ Q. An L (C )-
structure M+ in C satisfies ϕ < r if ϕM < r. A forcing condition p is a
finite set of open conditions for which there exists an L (C )-structure M+

whose L-reductM belongs to C, and such that all the open conditions in p
are satisfied inM+. The set P of forcing conditions is a countable partially
ordered set with respect to reverse inclusion.
We aim at proving the following omitting types theorem, which provides
a sufficient (in fact, also necessary) criterion for the existence of structures
with certain properties.

Theorem 7.4 (Omitting types). Suppose that P is a property admitting
an infinitary sup

∨
inf-axiomatization given by a countable collection of con-

ditions ϕn ≤ rn, where ϕn is the sup
∨
inf-sentence supx̄ 
n (x̄) and 
n (x̄)

is of the form infm∈N inf ȳ �n,m (x̄, ȳ) for some quantifier-free definable pred-
icates �n,m (x̄, ȳ). Suppose that for every forcing condition q, every n ∈ N,
every ε > 0, and every tuple of constants c̄ in C , the set of open (infinitary)
conditions q ∪ {
n (c̄) < rn + ε} is satisfied in some L (C )-structure whose
L-reduct is in C. Then there exists a separable L-structure satisfying P.
Let us say that a forcing condition p forces an open condition ϕ < r, for
some atomic L (C )-sentence ϕ, in formulas p � ϕ < r, if there is r0 ≤ r
such that the open condition ϕ < r0 belongs to p. We extend the definition
of forcing to more general formulas by induction on the complexity [12,
Remark 2.3]:

• p � 12ϕ < r iff p � ϕ < 2r;
• p � (1 − ϕ) < r iff ∃s > 1− r such that for every q ≤ p, q � ϕ < s ;
• p � ϕ+̇
 < r iff there exist s0, s1 such that s0 + s1 < r and p � ϕ < s0
and p � 
 < s1;

• p � infn ϕn < r iff there is n such that p � ϕn < r;
• p � infx ϕ (x) < r iff there is c ∈ C such that p � ϕ (c) < r.
This forcing notion satisfies the following properties:

(1) Given p, q ∈ P such that q ≤ p, if p � ϕ < r, then q � ϕ < r;
(2) Given p ∈ P, ε > 0, and an L (C )-term � without variables, there
exists q ≤ p and c ∈ C such that q � d (�, c) < ε;

(3) Given p ∈ P, r > 0, and L (C )-terms �, � without free variables, if
p � d (�, �) < r, then there exists q ≤ p such that q � d (�, �) < r;

(4) Given p ∈ P, a quantifier-free L-formula ϕ (x1, . . . , x) with continu-
ity modulus �ϕ, L (C )-terms �1, . . . , � , �1, . . . , � without variables,
and �1, . . . , � > 0 such that p � d (�i , �i) < � for i = 1, 2, . . . , , then
there exists q ≤ p such that q � |ϕ (�1, . . . , �)− ϕ (�1, . . . , �)| <
�ϕ (�1, . . . , �).

In termof this forcing relation, wedefine aweak forcing relation as follows.
Suppose that p is a forcing condition and ϕ < r is an open condition. Then
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p weakly forces ϕ < r, in formulas p �w ϕ < r if and only if there exists
r′ < r such that for every q ≤ p there exists q′ ≤ q such that q′ � ϕ < r′.
The following is the main lemma in the proof of Theorem 7.4; see [12,
Proposition 4.5].

Lemma 7.5. Suppose that ϕ is the sup
∨
inf-sentence inf x̄ 
 (x̄) where


 (x̄) = infm inf ȳ �m (x̄, ȳ). Fix a forcing condition p ∈ P, and ε > 0.
Assume that for every forcing condition q ≤ p and for every tuple c̄, there
exists a tuple d̄ in C and m ∈ N such that q ∪

{
�m(c̄, d̄ ) < r

}
is a forcing

condition. Then p � ϕ < r + ε.
In order to get an L (C )-structure from such a forcing notion, we need to
start from a filter on P. As in the order-theoretic terminology, a subset G of
P is a filter if it satisfies the following properties:

(1) if p, q ∈ P are such that q ≤ p and q ∈ G , then also p ∈ G ;
(2) if n ∈ N and p1, . . . , pn ∈ G , then there exists q ∈ G such that q ≤ pi
for i = 1, 2, . . . , n.

Definition 7.6. A filter G ⊂ P is generic if for every L (C )-sentence ϕ
and ε > 0 there exist p ∈ G and r0, r1 ∈ R such that p � ϕ < r0 and
p � 1− ϕ < r1, where r0 + r1 < 1 + ε.

A standard argument in forcing shows that generic filters do exist; see also
[12, Proposition 2.12].

Lemma 7.7. Fix p ∈ P. Then there is a generic filter G ⊂ P that contains
p.

Proof. Fix an enumeration of all the pairs (ϕn, εn) where ϕn is an L (C )-
sentence and ε ∈ Q ∩ (0,+∞). Define a sequence (pn) in P as follows. Set
p0 := p. Assuming that pn has been defined. By definition of the forcing
notion, there exist pn+1 ≤ pn and r0, r1 ∈ R such that pn+1 � ϕn < r0,
pn+1 � (1− ϕn) < r1, and r0 + r1 < 1 + εn. This defines pn+1, concluding
the recursive construction. Let nowG be the filter generated by the sequence
(pn). This is just the set of q ∈ P such that q ≥ pn for some n ∈ N. Then G
is a generic filter containing p. �
Suppose now that G is a generic filter for P. If ϕ < r is an open condition,
defineG � ϕ < r if and only if p � ϕ < r for some p ∈ G . This is equivalent
to the assertion that p �w ϕ < r for some p ∈ G [12, Lemma 2.13]. For an
L (C )-sentence ϕ, set ϕG to be the infimum of r such that G � ϕ < r.
The properties of the forcing notion listed above readily imply the
following [12, Lemmas 2.14, 2.15]:

(1) If ϕ is an L (C )-sentence, then (1− ϕ)G = 1− ϕG ;
(2) For every L (C )-term � and ε > 0 there exists a term c ∈ C such that
d (�, c) < ε;

(3) If �, � are L (C )-terms without variables, then d (�, �)G = d (�, �)G ;
(4) Given an atomic L (C )-formula ϕ (x1, . . . , x) with continuity mod-
ulus �ϕ, L (C )-terms �1, . . . , � , �1, . . . , � without variables, and
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�1, . . . , � > 0, if d (�i , �i )
G
< �i for i = 1, 2, . . . , , then

|ϕ (�1, . . . , �)− ϕ (�1, . . . , �)|G < �ϕ (�1, . . . , �).
Given a generic filter G , one can define the corresponding canonical com-
piled structureM+G , whose L-reduct is denoted byMG , as follows. Consider
the set M0 of L (C )-terms, and define a metric dM0 on M0 by setting, in
the notation above, dM0 (t0, t1) = ϕ

G , where ϕ is the atomic L (C )-sentence
d (t0, t1). Let then MG be the Hausdorff completion of M0. By abuse of
notation, we identifyM0 as a subset ofMG . One can define interpretation of
function and relation symbols from L inM as follows. If c ∈ C then we let
cM

+
G be c, which belongs toM0 as an L (C )-term. If f is an n-ary function

symbol and t1, . . . , tn ∈ M0 are L (C )-terms, then we let fM+G (t1, . . . , tn)
be the L (C )-term f (t1, . . . , tn) ∈ M0. Uniform continuity guarantees that
fM

+
G extends to a continuous function fM

+
G : MG → MG . Similarly, for

an n-ary relation symbol R and t1, . . . , tn ∈ M0 are L (C )-terms, we let
RM

+
G (t1, . . . , tn) be ϕG , where ϕ is the atomic L (C )-sentence R (t1, . . . , tn).

Again, one can then extend RM to the whole ofMG by uniform continuity.
The properties of the assignment ϕ �→ ϕG listed above show that M+G
is indeed a canonical L (C )-structure. Furthermore, one can show by
induction on the complexity that, if ϕ is anL (C )-formula, then ϕM

+
G = ϕG .

Proof of Theorem 7.4. Let G be a generic filter for P,M+G be the corre-
sponding compiled structure, andMG is itsL-reduct. Recall that by assump-
tion P is a property admitting an infinitary sup

∨
inf-axiomatization given

by a countable collection of conditions ϕn ≤ rn, where ϕn is the sup
∨
inf-

sentence supx̄ 
n (x̄) and 
n (x̄) is of the form infm∈N inf ȳ �n,m (x̄, ȳ) for
some quantifier-free definable predicates �n,m (x̄, ȳ).

Claim. MG satisfies P.

Observe that, by approximating them, we can assume that the sup
∨
inf-

sentences ϕn are actually restricted sup
∨
inf-sentences. Furthermore, after

replacing the conditionsϕn ≤ rn for n ∈ Nwith the conditionsϕn ≤ rn+2−m
for n,m ∈ N, it actually suffices to show that the claim holds under the
following assumptions: for every forcing condition p, every n ∈ N, and
every tuple of constants c̄ in C , the set of open (infinitary) conditions
p ∪{
n (c̄) < rn} is satisfied in some structure from C. Finally, since we will
show that every generic filter works, it suffices to consider the case when P is
axiomatized by a single condition ϕ ≤ r, where ϕ is the infinitary sup∨ inf-
formula supx̄ 
 (x̄) and
 (x̄) is the formula infm inf ȳ �m (x̄, ȳ). In this case,
we want to prove that the claim holds under the assumption that for every
forcing condition q, and every tuple of constants c̄ from C, there exists an
L-structure satisfying 
 (c̄) < r.
Fix ε > 0. By the properties of the compiled structure, we have that
ϕMG = ϕG . Furthermore, ϕG < r + ε if and only if p � ϕ < r + ε for some
p ∈ G . Fix an arbitrary p ∈ G . Fix a forcing condition q ≤ p, and a tuple c̄.
Since q∪{
 (c̄) < r} is satisfiable in anL (C )-structure whoseL-reduct is in
C, there existk ∈ N and a tuple d̄ inC such that q′ := q∪

{
�
(
c̄, d̄

)
< r

}
is a
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forcing condition. By Lemma 7.5, this shows that p � ϕ < r+ε, concluding
the proof. �
7.6. Building models by games. One can alternatively present the ideas
above using the formalism of “building models by games”. This has been
developed in classical discrete logic in [58]. A version in the setting of logic
for metric structures is considered in [53]. In this setting, one considers
game involving two players (Abelard and Eloise). The players alternate
turns, and the game runs for infinitely many turns. Abelard starts by playing
a forcing condition p0, and Eloise has to reply with a forcing condition
p1 such that p1 ≤ p0, in the sense that every open condition in p0 also
belongs to p1. Abelard then replies with a forcing condition p2 containing
p1, and so on. The game runs for infinitely many turns, producing a chain
p0 ≥ p1 ≥ p2 ≥ · · · of conditions. One then lets p be their union.
A play of the game is definitive if, for every atomic L (C )-sentence ϕ there
exists rϕ ∈ R (only depending on ϕ) such that, for every L-structure M
in C satisfying p one has that ϕM = rϕ. In this case, one can define a
canonical L (C )-structureM+ (p), called the compiled structure, as follows.
Consider the set M0 of L (C )-terms, and define a metric dM0 on M0 by
setting, in the notation above, dM0 (t0, t1) = r

ϕ, whereϕ is the atomicL (C )-
sentence d (t0, t1). Let thenM (p) be the Hausdorff completion ofM0. By
abuse of notation, we identify M0 as a subset of M (p). One can define
interpretation of function and relation symbols from L inM (p) as follows.
If c ∈ C then we let cM be c, which belongs toM0 as an L (C )-term. If f
is an n-ary function symbol and t1, . . . , tn ∈ M0 are L (C )-terms, then let
fM (t1, . . . , tn) be the L (C )-term f (t1, . . . , tn) ∈ M0. Uniform continuity
guarantees that fM extends to a continuous function fM : M → M .
Similarly, for an n-ary relation symbol R and t1, . . . , tn ∈ M0 are L (C )-
terms, one let RM (t1, . . . , tn) be, in the notation above, rϕ where ϕ is the
atomic L (C )-sentence R (t1, . . . , tn). Again, one can then extendRM to the
whole ofM by uniform continuity.
Then one can reformulate the weak forcing relation as follows [53, Theo-
rem 2.22]. If p is a forcing condition and ϕ < r is an open condition, then
p �w ϕ < r if andonly if the following holds: suppose that the gamehas been
played up to the k-th turn, defining forcing conditions p0 ≥ p1 ≥ · · · ≥ pk
such that pk ≤ p. Then, regardless of Abelard’s moves, Eloise can keep
playing the game in such a way that the game is definitive and the com-
piled structure M (p) satisfies the open condition ϕ < r. In other words,
the position (p0, . . . , pk) is a winning position for Eloise in the game G (p)
whose winning conditions for Eloise are that the game is definitive and the
compiled structure satisfies the open condition ϕ < r.

7.7. Forcing and theUCTproblem. Theomitting types theorem(Theorem
7.4) provides a method of constructing C*-algebras, which is different from
the standard constructions in C*-algebra theory. It is therefore reasonable
to expect that it might at least have some bearing on the UCT question; see
Section 7.1. Indeed, one can use Theorem 7.4 to provide a “concrete” way
to test the UCT question.
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We will consider a reformulation of the UCT problem due to Kirch-
berg [71, Corollary 8.4.6]. This reformulation asserts that every separable
nuclear C*-algebra satisfies the UCT if and only if O2 is uniquely charac-
terized among separable, nuclear, simple, and purely infinite C*-algebras by
its Elliott invariant. Since for purely infinite C*-algebras the trace simplex
is empty, this is equivalent to the assertion that O2 is the unique separa-
ble, nuclear, simple, and purely infinite C*-algebra with trivial K0 and K1
groups.
We claim that the class of simple, purely infinite C*-algebra with trivial
K0-group is elementary, and in fact sup inf-axiomatizable. We have seen in
Section 3.5 that the class of simple, purely infinite C*-algebras is elementary,
and the proof there shows that it is in fact sup inf-axiomatizable. For a
simple, purely infinite C*-algebra A, the K0-group of A is trivial if and only
if any two nonzero projections of A are Murray–von Neumann equivalent
[71, Proposition 4.1.4]. We have shown in Section 3.4 that the relation of
Murray–von Neumann equivalent is definable, as witnessed by a existential
definable predicate. This easily shows that the class of simple, purely infinite
C*-algebras with trivial K0-group is sup inf-definable.
We now claim that there is a sup inf-axiomatizable class C such that the
set of separable nuclear C*-algebras that belong to C are precisely the sepa-
rable, nuclear, simple, and purely infinite C*-algebras with trivialK0 andK1
groups. LetA be a separable, nuclear, simple, and purely infinite C*-algebra
A. Then, theK1-group ofA is trivial if and only if the unitary groupU (A) is
connected [71, Proposition 4.1.15]. Furthermore, A absorbs tensorially the
Cuntz algebra O∞ by Kirchberg’s O∞-absorption theorem [60]. Thus by
[67, Theorem 3.1], any element in the connected component U0(A) of the
identity in U (A) is connected to the identity by a path of length at most 2�.
Since any unitary at distance less than 2 from the identity is in U0 (A), this
allows one to conclude that A has connected unitary group if and only if it
satisfies the sup inf-condition

sup
u unitary

inf
v1,v2,v3 unitaries

max {‖u − v1‖ , ‖v1 − v2‖ , ‖v2 − v3‖ , ‖v3 − 1‖} ≤ 7/4.

Thus adding such a condition to the set of axioms for simple, purely infinite
C*-algebras with trivialK0-group gives an axiomatization for an elementary
class C as desired.
Let Cnuc be the class of nuclear C*-algebras in C. Since C is sup inf-
axiomatizable, and nuclearity admits an infinitary sup

∨
inf-axiomatization,

the class Cnuc admits an infinitary sup
∨
inf-axiomatization. This is just

obtained by adding to the axioms of C the sup∨ inf-condition defining
nuclearity. Let ϕC

n ≤ 0 for n ∈ N be such conditions, which can be
explicitly extracted from the discussions above. For each n ∈ N, ϕC

n is a
sup

∨
inf-formula, which we can write as supx̄ infm∈N inf ȳ �n,m (x̄, ȳ).

Suppose now that A is a separable C*-algebra from Cnuc. Then by Kirch-
berg’s O2-absorption theorem, A is isomorphic to O2 if and only if A
absorbs O2 tensorially. By Theorem 6.5, this is equivalent to the assertion
that, for every positive quantifier-free formula � (ȳ), if 
� is the positive
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sup inf-sentence

sup
x̄
inf
ȳ
max {� (ȳ) , ‖xiyj − yjxi‖ : i, j} ,

then 
O2
� ≤ 
A� . Thus A is not isomorphic to O2 if and only if there exists

a sup inf-sentence 
� such that 

O2
� > 


A
� . In view of the above discussion

and the omitting types theorem (Theorem 7.4) applied to the class of C*-
algebras regarded asLC*-structures, one can provide the following sufficient
criterion to establish that the UCT fails.

Theorem 7.8. Assume that there exists a quantifier-free formula � such
that the following holds. For every finite set of open quantifier-free conditions

i (x̄, ȳ, z) < ri for i = 1, 2, . . . ,  which are realized in some C*-algebra,
there exist m ∈ N, a C*-algebra A satisfying 
A� < 


O2
� , and tuples ā, b̄, c̄ in

A, satisfying 
i
(
ā, b̄, c̄

)
< ri , and �n,m

(
ā, b̄

)
< ε. Then the UCT fails.

§8. Further results and outlook. For reasons of space, we have omitted
in the above discussion many important directions of applications of model
theory to operator algebras. For the sake of completeness, we mention here
some of such directions.

8.1. Von Neumann factors. Finite von Neumann factors and, more gen-
erally, tracial von Neumann algebras also fit in the framework of first order
logic for metric structures. Recall that a tracial von Neumann algebra is a von
Neumann algebraM endowed with a distinguished faithful normal tracial
state �. A tracial vonNeumann algebra is a finite factor if it has trivial center.
In this case, the faithful normal tracial state � is uniquely determined byM .
A II1 factor is an infinite-dimensional finite factor.
In order to regard tracial von Neumann algebras as structures, one can
consider the language of C*-algebras with an additional relation symbol
� to be interpreted as the given trace. In this case, the relation symbol for
the norm should be interpreted as the 2-norm ‖x‖� = � (x∗x)1/2 associ-
ated with the trace �. Consistently, the canonical binary relation symbol
for the metric should be interpreted as the metric associated with the oper-
ator norm. The domains Dn for n ∈ N should still be interpreted as the
closed balls with respect to the operator norm. This perspective has been
used in [38,39] to answer to a question of McDuff from [63] on the number
of isomorphism classes of relative commutants M ′ ∩MU associated with
nonprincipal ultrafilters U over N for a given separable II1 factorM . As in
the case of C*-algebras, the Continuum Hypothesis (CH) implies that all
such relative commutants are isomorphic, while the negation of CH implies
that there exist at least two nonisomorphic such relative commutants. The
model-theoretic study of factors has been further pursued in [15,34,40,54],
where it is shown that the set of separable models of a consistent theory of
II1 factors has size continuum, the theory of tracial von Neumann algebras
does not have a model companion, there exists a continuum of distinct the-
ories of II1 factors, and the Connes Embedding Problem is equivalent to the
assertion that the hyperfinite II1 factor R is existentially closed.
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8.2. Compact Hausdorff spaces. In a series of papers going back to the
1980s [5–8], Bankston introduced dual notions to fundamental notions in
model theory (elementary equivalence, elementary embedding, ultraprod-
uct), and applied such notions to the study of compact Hausdorff spaces. It
has been observed in [25] that, if one replaces a compact Hausdorff space
X with the abelian C*-algebra C (X ) of continuous functions over X , then
the notions introduced by Bankston coincide with the usual notions from
model theory for metric structures where C (X ) is regarded as a structure
in the language of C*-algebras. This perspective has been used in [25, 53]
to show that, if P is the pseudoarc (the unique hereditarily indecompos-
able, chainable, metrizable continuum), thenC (P) is existentially closed—in
Bankston’s terminology, P is co-existentially closed—and it is the prime
model of its theory. Furthermore, for zero-dimensional compact Hausdorff
spaces, elementary equivalence is equivalent to elementary equivalence of
the associated Boolean algebras of clopen sets [26]. For zero-dimensional
compact Hausdorff spaces without isolated points, countable saturation is
equivalent to countable saturation of the associated Boolean algebras of
clopen sets [26].

8.3. Enforceable operator algebras. The framework of model-theoretic
forcing can be used to define the notion of enforceable structure. Let C be
an elementary class of L-structure, and consider the game between Abelard
and Eloise defined in Section 7.6. One then says that a property P of L-
structures is enforceable if Eloise has a winning strategy when her winning
conditions require the compiled structure to satisfy P. This can be seen as a
model-theoretic notion of genericity for L-structures satisfying P within the
class C. An L-structureM is enforceable if the property of being isomorphic
toM is enforceable.
Many outstanding open problems in operator algebra theory can be refor-
mulated as the assertion that the known examples of strongly self-absorbing
C*-algebras are enforceable within a suitable class of C*-algebras [53].
For instance, the Kirchberg embedding problem, asking whether every C*-
algebra embeds into an ultrapower of the Cuntz algebraO2, is equivalent to
the assertion that O2 is enforceable in the class of all C*-algebras. Similarly,
the MF problem of Blackadar and Kirchberg, asking whether every stably
finite C*-algebra embeds into an ultrapower of the rational UHF algebra
Q =⊗n∈N

Mn(C), is equivalent to the assertion thatQ is enforceable within
the class of stably finite C*-algebras. Finally, the assertion that every stably
finite projectionless C*-algebra embeds into an ultrapower of the Jiang-Su
algebraZ is equivalent to the assertion that Z is enforceable within the class
of stably finite projectionless C*-algebras.
This framework can also be applied in the context of II1 factors. In
this case, the Connes Embedding Problem, asking whether every II1 fac-
tor embeds into an ultrapower of the hyperfinite II1 factor R, turns out to
be equivalent to the assertion that R is enforceable within the class of II1
factors.
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8.4. Actions of compact (quantum) groups on C*-algebras. The equivari-
ant theory of C*-algebras studies C*-algebras endowed with a distinguished
continuous action of a locally compact group G (G-C*-algebras). The case
which is best understood is when the acting group G is finite or, more gener-
ally, compact. It is clear that, whenG is finite, one can regardG-C*-algebras
as structures in the languageLC*G obtained from the language of C*-algebras
by adding unary functions symbols αg for g ∈ G , to be interpreted as the
automorphism of the given C*-algebras that define theG-action. More gen-
erally, as shown in [48], for an arbitrary compact groups G , G-C*-algebras
fit into the framework of first order logic for metric structures described
above. To see this, one should notice the following. Suppose that A is a
C*-algebra, and α is a continuous action of G on A. One can regard α as a
*-homomorphism α : A→ C (G,A) ∼= C (G)⊗A, a �→ (g �→ αg (a)). For
every finite-dimensional irreducible representation � ∈ Rep (�) ofG one can
consider the span C (G)� ⊂ C (G) of the matrix units of �. The subspace
A� =

{
a ∈ A : α (a) ∈ C (G)� ⊗ A

}
is called spectral subspace of α associ-

ated with �. The union ofA� when � varies among all the finite-dimensional
representations of G is a dense *-subalgebra of A (Podleś algebra) [69]. One
can regard theG-C*-algebra (A,α) as a two-sorted structure, with a sort for
A and a sort forC (G)⊗A. The language ofG-C*-algebras is endowed with
domainsD� for � ∈ Rep (�), to be interpreted inA asA� and inC (G)⊗A as
C (G)� ⊗A�. It is shown in [48] that G-C*-algebras form an axiomatizable
class in such a language. This perspective, and the corresponding notion of
positive existential embedding, has been used implicitly in [9] and explicitly
in [49] to give a model-theoretic characterization of the Rokhlin property
for G-C*-algebras. In turn, this characterization has been used to provide a
unified approach to several preservation results for fixed point algebras and
crossed products with respect to Rokhlin actions. More generally, a model-
theoretic characterization of Rokhlin dimension is considered in [49]. This is
applied to obtain preservation results of finite nuclear dimension and finite
composition rank for fixed point algebras and crossed products with respect
to actions with finite Rokhlin dimension.
The theory can be developed in the more general context of actions of
compact quantum groups on C*-algebras. A quantum group G is a C*-
algebraic object which formally satisfies the same properties (save frombeing
abelian) as the C*-algebra C (G) associated with a classical compact group
G endowed with the comultiplication operation Δ : C (G) → C (G ×G) ∼=
C (G) ⊗ C (G), f �→ ((s, t) �→ f (st)). Continuous actions of a compact
quantum group G on C*-algebras (G-C*-algebras) can be defined in closed
parallel with the classical case. It is also shown in [48] that G-C*-algebras
form an axiomatizable class in a suitable language, very similar to the one
described above for classical compact groups. This point of view has been
used, implicitly in [10] and explicitly in [48], to generalize the notions of
Rokhlin property and Rokhlin dimension to the quantum setting, as well
as virtually all known preservation results of regularity properties under
fixed point algebras and crossed products by actions with finite Rokhlin
dimension.
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[9] S. Barlak and G. Szabó, Sequentially split *-homomorphisms between C*-algebras.

International Journal of Mathematics, vol. 27 (2016), no. 13, p. 1650105.
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