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Soft catenaries
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Using the classical catenary as a motivating example, we use slender-body theory
to derive a general theory for thin filaments of arbitrary rheology undergoing large
combined stretching and bending, which correctly accounts for the nonlinear geometry
of deformation and uses integrated state variables to properly represent the complete
deformation state. We test the theory for soft catenaries made of a Maxwell fluid and
an elastic yield-stress fluid using a combination of asymptotic and numerical analyses
to analyse the dynamics of transient sagging and arrest. We validate our results against
three-dimensional finite element simulations of drooping catenaries, and show that our
minimal models are easier and faster to solve, can capture all the salient behaviours
of the full three-dimensional solution, and provide physical insights into the basic
mechanisms involved.
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1. Introduction
The interplay between geometry and continuum physics is rooted in the origins of

seemingly simple questions such as the shape of an inextensible hanging chain under
its own weight, the catenary, which was one of the first nonlinear problems to be
solved exactly nearly three centuries ago. In the time since then, there have been
many developments that account for the role of elasticity (Wang & Watson 1982),
viscosity (Teichman & Mahadevan 2003; Koulakis et al. 2008), and viscoelasticity
(Roy, Mahadevan & Thiffeault 2006) on the shape and the flow of the catenary. Here
we generalize previous analyses to derive a theory for the finite bending and stretching
of filaments of arbitrary rheologies to characterize the dynamics of a soft catenary
– the rheoalysoid.

While linearized bending theories that account for small inelastic effects such as
creep deformation in polymers and metals exist (Hult 1966; Kraus 1980), they have
not typically been generalized to the case of geometrically nonlinear deformations. In
contrast, for simple Newtonian viscous fluids, there have been a number of recent
developments which utilize slender-body approximations to permit larger deformations
and track the competing effects of bending and stretching to the filament dynamics
(Howell 1996; Ribe 2001; Teichman & Mahadevan 2003; Roy et al. 2006; Brochard-
Wyart & de Gennes 2007; Le Merrer et al. 2008; Zylstra & Mitescu 2009). Here we
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generalize previous work on the viscous and viscoelastic catenary to an analysis of
arbitrary non-Newtonian rheology, including both the effects of elasticity and plastic
yielding. This description covers a broad range of constitutive behaviours including
Maxwell and Voigt models, elastic fluids with shear-thinning or shear-thickening flow,
as well as yield-stress fluids such as the Bingham or Herschel–Bulkley models. To
accomplish this, we generalize the classical theory of Euler and Bernoulli for elastic
filaments to a low-dimensional theory for the geometrically nonlinear deformation of
thin filaments of complex materials with finite extensional strains, negligible shear
deformations, and curvature-dominated cross-sectional strain variation, and then use it
to treat two distinct constitutive models – a Maxwell fluid and a Bingham–Norton
viscoplastic law. This allows us to analyse a potentially new geometrical assay for
nonlinear material rheology by visualizing large catenary-like deformations applicable
for materials that can be easily and rapidly extruded as a bridge between points (like
shaving foam) or by stretching a small blob as in Roy et al. (2006). Since our analysis
applies in plane-stress conditions, it can also represent a long sheet with a finite out-of-
plane width. While our theory is capable of accounting for thinning, here we avoid any
discussion of flow instabilities such as necking/fracture when three-dimensional effects
can become important. We also neglect the effect of capillary forces by assuming that
the dimensionless parameter that characterizes its role in creeping flows, the capillary
number, satisfies Ca = ηU/γ � 1 where η is the viscosity of the material, γ is the
surface tension and U a characteristic velocity scale in the problem.

2. Mathematical formulation
2.1. Balance of force and moments

We start with a slender filament of initial length L, cross-sectional area A0 (A0/L2� 1),
and second moment of inertia I0 in the thickness direction z. We focus on the
simple case where A0 and I0 are constant along the length; however, our filament
theory applies equally well if we replace these with A0(x0) or I0(x0) for initially
inhomogeneous filaments. The filament material has density ρ and is suspended
between two level supports at x = ±L/2. Under the influence of its own weight, the
filament deforms, so that a material point originating at (x0, 0) on the centreline of the
filament is displaced to x(x0, t)= (x(x0, t), y(x0, t)). The deflected shape of the filament
centreline, parametrized by an instantaneous (current) arclength variable s (measured
from some prescribed position for s = 0) can be described by the local tangent angle
with the horizontal θ(s) (figure 1), so that the local tangent is xs = t = (cos θ, sin θ).

Along a cross-section, the resultant forces and torques can be decomposed into a
tension T(s), shear N(s), and a moment M(s). Then, the equations of motion for the
filament are

t-direction force Ts − Nθs − λg sin θ = λt · xtt, (2.1)

n-direction force Ns + Tθs − λg cos θ = λn · xtt, (2.2)

moment N =Ms. (2.3)

We choose the reference configuration x0 and t to be the independent variables
for this problem to avoid complicated expressions for the material acceleration xtt.
Using the fact that ∂s(.) = ∂x0(.)/sx0 , and expressing the mass per unit length in the
deformed configuration λ = λ0/sx0 , where λ0 = ρA0 is the mass/length in the original
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) Definition of the
arclength variable s and the angular variable θ . The close-up shows the forces and moments
acting on a differential element of the filament, defined positive as drawn.

configuration, we may rewrite the equations of motion, after eliminating N, as

xtt = 1
λ0

(
cos θ sin θ
−sin θ cos θ

)(
Tx0 −Mx0θx0/sx0 − gλ0 sin θ

Mx0x0 −Mx0sx0x0/sx0 + Tθx0 − gλ0 cos θ

)
. (2.4)

This leads to an evolution law for the position x(x0, t) in terms of M(x0, t), T(x0, t),
and x(x0, t), in combination with the identities

sx0 =
√

x2
x0
+ y2

x0
, sx0x0 =

xx0xx0x0 + yx0yx0x0

sx0

, θ = arctan
(

yx0

xx0

)
,

θx0 =
xx0yx0x0 − yx0xx0x0

s2
x0

.

 (2.5)

2.2. A simple constitutive relation: linear Maxwell fluid
To complete the equations of evolution for the motion of the filament (2.4), we
require constitutive relations linking the various forces in terms of the kinematics
of the filament. Invoking the classical Euler–Bernoulli beam assumptions that plane
cross-sections of the filament remain planar, the only non-vanishing strain field is the
axial strain ε(x0, z, t) at a cross-section, which can be decomposed into two parts: the
finite stretch of the centreline (measured as the true strain), and a z-dependent strain
induced by the local curvature,

ε(x0, z, t)= log(sx0)− θx0z. (2.6)

For a simple Maxwell fluid where the tensile strain decomposes additively as the sum
of an elastic strain εe and a viscous strain εp as ε(x0, z, t)= εe(x0, z, t)+ εp(x0, z, t), the
constitutive relations are

εp
t (x0, z, t)= 1

η
σ(x0, z, t), (2.7)

σ(x0, z, t)= E(ε(x0, z, t)− εp(x0, z, t)) (2.8)

for a material with Young’s modulus E and extensional flow viscosity η. As the
filament stretches, it thins in the transverse plane to conserve volume, a phenomenon
modelled by a uniform local areal contraction. Hence, the through-thickness area and
inertia become

A(x0, t)= A0/sx0, I(x0, t)= I0/s
2
x0
. (2.9)
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FIGURE 2. (Colour online) Comparisons of the asymptotic approximations for a Maxwell
fluid filament to the numerical solution of the full PDE system (dimensionless units,
m= slope). (a) τ = 0.35, (b) τ = 0.035. (a,b) δ = 0.025, B= 3.3× 10−5. End (start) times for
each regime given by the tlow (thigh) approximations in the text.

The resultant tension and moment are

T(x0, t)=
∫

A
σ(x0, z, t) da, M(x0, t)=

∫
A
σ(x0, z, t)z da. (2.10)

Expanding (2.10) using (2.8) and (2.6) to express T and M in terms of the kinematic
quantities yields

T(x0, t)= E(A(x0, t) log(sx0)− P(x0, t)), M(x0, t)=−E(I(x0, t)θx0 + C(x0, t)),
(2.11)

with P defined as P(x0, t) = ∫A ε
p(x0, z, t) da and C(x0, t) = ∫A ε

p(x0, z, t)z da. The
plastic stretch P and bend C evolve according to (2.7), which now implies

Pt(x0, t)=
∫

A
εp

t (z, x0, t) da= T(x0, t)/η, Ct(x0, t)=
∫

A
εp

t (z, x0, t)z da=M(x0, t)/η.

(2.12)

Equations (2.4), (2.5), (2.9), (2.11) and (2.12) constitute a closed system of
equations for the evolution of (x, xt,P,C). Given appropriate boundary/initial
conditions, these laws govern the motion of the centreline of the filament, as well
as the plastic strain state. Our theory may be trivially modified to account for pre-
stressed filaments, reflected as a non-trivial initial condition for P(x0),C(x0), as done,
for example, in Roy et al. (2006). Here, we choose P(x0) = C(x0) = 0 corresponding
to a completely relaxed initial state of the filament.

Numerically solving this system for the case when the filament starts out horizontal
with no initial velocity and with its ends clamped yields the evolving shape of the
filament and thus its midpoint as a function of time, which is shown in figure 2 for
two different relaxation times τ = η/E. For each τ , we see that there are two distinct
regimes for the evolution of the midpoint corresponding to the different force balances
at play, associated with t < tlow and t > thigh > tlow, which we analyse next.

In the small-deflection limit where y/L� 1 and x− x0 = U(x)� y, we have

x≈ x0, s≈ x, sx0 − 1≈ y2
x/2+ Ux� 1, θ ≈ yx� 1,A≈ A0, I ≈ I0, λ≈ λ0. (2.13)
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These approximations permit us to simplify (2.4) and (2.11) to

Mxx + Tyxx = λ(ytt + g), Tx = 0, (2.14)
T = E(A(y2

x/2+ Ux)− P), M = E(−Iyxx − C). (2.15)

Using (2.15) and (2.12), we can solve for T and M exactly using an integrating factor,

T = EAe−Et/η

∫ t

0
eEt′/η((y2

x/2)t′ +Uxt′) dt′, M =−EIe−Et/η

∫ t

0
eEt′/ηyxxt′ dt′. (2.16)

Using the fact that Tx = 0, we have

T(t)= 2
L

∫ L/2

0
T dx= 2EA

L
e−t/τ

∫ t

0
et′/τ

(∫ L/2

0
(y2

x/2)t′ dx

)
dt′. (2.17)

Defining the dimensionless quantities V = η/ρ√gL3, δ = h0/L � 1, I/AL2 = Kδ2,
with K a constant, and the dimensionless variables τ̄ = τ√g/L, t̄ = t

√
g/L and

(x̄, ȳ) = (x, y)L, we substitute (2.16), (2.17) into the first equation in (2.14) to obtain
the initial/boundary value problem for the evolution of the shape of the filament,

−δ2Ke−t̄/τ̄

∫ t̄

0
et′/τ̄yx̄x̄x̄x̄t′ dt′ + ȳx̄x̄e−t̄/τ̄

∫ t̄

0
et′/τ̄

(∫ 1/2

0
(ȳ2

x̄/2)t′ dx̄

)
dt′ = (ȳt̄t̄ + 1)τ̄ /2V,

(2.18)
ȳ(±1/2, t̄)= ȳx̄(±1/2, t̄)= 0, ȳ(x̄, 0)= ȳt̄(x̄, 0)= 0. (2.19)

We now drop the overbars. The above integro-differential equation differs from the
corresponding form derived in Roy et al. (2006) for Oldroyd B fluid primarily
by the presence of inertia and the continued coupling of the deformation to the
stress relaxation through the two time integrals; physically, this corresponds to the
dominance of extensional stresses that relax slowly, as compared to the case treated
in Roy et al. (2006), where it is assumed that the shear stresses relax slowly. The
first term on the left of (2.18) is due to the bending resistance of the filament, the
next represents tensile stretching resistance, and both are balanced by inertial and
gravitational body forces on the right. For small values of time, the free-fall effect
dominates the bending and stretching terms: y and its space derivatives are initially
small, and so is the bending term by virtue of being O(δ2). Hence, up to some
time tlow, dominant balance yields ytt + 1 = 0, which can be solved for the midpoint
deformation as y(0, t) = −t2/2. At later times, t > thigh > tlow, the effect of inertia
can be neglected as the tension dominates the still-negligible bending term. Letting
B≡ 1/2V , in this regime

yxxe−t/τ

∫ t

0
et′/τ

(∫ 1/2

0
(y2

x/2)t′ dx

)
dt′ = τB. (2.20)

An exact solution of (2.20) is y(x, t) = (x2 − 1/4)φ(t) for t = τ logφ(t) + φ (t)3 /9B.
This ‘outer’ solution neglects boundary layers of sharp bending near the supports,
i.e. yx(±1/2, t) 6= 0. In the large time limit, neglecting the logarithmic viscoelastic
relaxation term leads to the simple expression φ(t) = (9Bt)1/3 and the corresponding
midpoint deflection relation y(0, t) = − (9Bt)1/3 /4, which is consistent with the
behaviours in Teichman & Mahadevan (2003) and Roy et al. (2006).

When t < tlow we simplify by considering a parabolic spatial dependence, implying
y(x, t) = 2t2(x2 − 1/4). The size of the tensile term corresponding to this deformation,
i.e. the second term on the left of (2.18), is 16t5τ/3. Similarly, the inertial term
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is |yttBτ | = Bτ . Setting the ratio of tensile to inertial terms, 16t5/3B, equal to some
tolerance α � 1 allows us to solve the resulting equation for tlow. Conversely, the
long-time solution should be valid when its corresponding inertial term is less than
α times the tensile contribution, ultimately giving (B/3t5

high)
1/3
/6 = α as a criterion

for inferring thigh. In what follows, we approximate tlow and thigh using α = 1/15. By
visualizing an experiment, we could measure these times, respectively, by the point
where the midpoint deflection ceases to be quadratic in time, and the point where a
1/3 power law begins (possibly with oscillations thereof, discussed next).

When t ≈ thigh the competition between elasticity and ‘residual’ inertia can lead to
underdamped oscillations of the filament. Assume for t > thigh that the shape follows a
perturbed version of the asymptotic shape, i.e. y(x, t)= (x2−1/4)(− (9Bt)1/3/4+λf (t))
for small λ and unknown function f . We substitute this into (2.18), neglect the O(δ2)
bending term, expand to O(λ1), and integrate the result from x = 0 to 1/2 to get an
equation for the evolution of the midpoint height. Keeping the three largest terms in
the result leads to the following ordinary differential equation for f :

τ f ′′′ + f ′′ + 6 (3t2/B)
1/3

f ′ = 0, (2.21)

When t ≈ thigh, (2.21) approximates to a linear constant-coefficient ordinary differential
equation with the solution

f (t)≈ a1 + a2e−t/2τ cos(Rt)+ a3e−t/2τ sin(Rt) (2.22)

for R= (1/2τ) (24τ (3t2
high/B)

1/3−1)
1/2

.
Comparisons of the numerical solution of (2.21) and the approximate solution

equation (2.22) with those of the complete system shown in figure 2 show that we
can capture the different transients using this simplified theory. Our expression for the
damped oscillations (2.22) gives an initial oscillation period of 2π/R. Through our
various formulae, η and E can be expressed in terms of R, thigh, and B, which can each
be measured experimentally by visualizing the midpoint of the filament; this suggests
an experimental procedure for measuring the Maxwell fluid properties η and E from a
drooping filament.

2.3. A non-Newtonian constitutive law: yield-stress materials
To account for materials with a yield criterion or other kind of non-Newtonian flow
behaviour, one must modify (2.12) and correctly account for the transition from elastic
deformation to plastic flow, since now the time derivatives of P and C cannot be
expressed directly in terms of T and M owing to the nonlinearity of the flow rule
ε

p
t = ε̂p

t (σ ). In the thin filament limit of interest here, the variation in the extensional
stress σ(z, x0, t) across the thickness is assumed linear in z, so that σ(z) = σ0 + σ1z.
Then the resultant tension and torque are given by

T =
∫

A
(σ0 + σ1z) dz dy= σ0A, M =

∫
A
(σ0 + σ1z)z dz dy= σ1I. (2.23)

Solving for σ0 and σ1 above, we substitute the resulting stress field into the flow rule
to obtain

Pt =
∫

A
ε̂p

t

(
T

A
+ M

I
z

)
dA, Ct =

∫
A
ε̂p

t

(
T

A
+ M

I
z

)
z dA, (2.24)

completing our formulation for the plastic tension and plastic torque. For example, in
the fundamental case of a Bingham–Norton fluid, an elastic perfectly viscoplastic
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material with yield stress σY and linear flow-rate dependence during plastic
deformation, we have

ε̂p
t (σ )= (σ − sign(σ )σY)H(|σ | − σY)/η, (2.25)

where H is the Heaviside function.
Suppose a filament of this material has rectangular cross-section with initial

thickness h0 and out-of-plane width D0. The stretching of the filament causes the
cross-section to shrink according to the previous assumptions, i.e. h = h0/

√sx0,D =
D0/
√sx0 . In this geometry we have A = hD and I = h3D/12. Using (2.23), we write

σ(z) = (1/Dh)T + (12/Dh3)Mz. At each x0, we first use this stress profile to solve
directly for the positions zH and zL that characterize the boundaries of yielding zones,
with the filament yielding in −h/2 < z < zL and zH < z < h/2. It is often the case that
−h/2= zL (i.e. no yielding at the bottom edge), or zH = h/2 (i.e. no yielding at the the
top edge). Substituting (2.25) into (2.24) yields

Pt = 1
η

[(
1+ zL − zH

h

)
T + 6M

z2
L − z2

H

h3
+
(

zH − h

2

)
DσYsign(6M + hT)

+
(

zL + h

2

)
DσYsign(6M − hT)

]
, (2.26)

Ct = 1
η

[(
1− 4(z3

H − z3
L)

h3

)
M + T

z2
L − z2

H

2h
+
(

z2
H

2
− h2

8

)
DσYsign(6M + hT)

+
(

z2
L

2
− h2

8

)
DσYsign(6M − hT)

]
. (2.27)

Using (2.26), (2.27) in place of (2.12), together with (2.4), (2.5), (2.9), (2.11), and
the initial/boundary conditions, we now have a closed system for the evolution of an
elasto-viscoplastic filament with yield criterion.

3. Comparison of low-dimensional model with three-dimensional finite
element simulations

We non-dimensionalize time and space by (x̃, ỹ, x̃0) = (x, y, x0)/L and t̃ =
(t/L)
√

E/ρ. To compute solutions of the one-dimensional reduced model, we encode
the final equations in MATLAB, discretizing x0 using N ∼ 40 grid points to model
half of the filament span. On each grid point we store six variables: x, y, xt, yt,P,
and C. Centered first and second spatial derivatives are utilized and the system
evolves as a 6N degree-of-freedom dynamical system, implemented using a fourth-
order Runge–Kutta method.

The software ABAQUS/Explicit is used to perform the 3D finite element method
(FEM) computations. For consistency, the FEM simulations use an end-clamping
condition that keeps the cross-sectional plane vertical and fixes the location of its
centre. We also mesh the filament with a one-element depth to capture the plane stress
limit. For numerical reasons, we turn the gravity on in a non-abrupt fashion using a
smooth ramp-up function that brings the gravity to its stated value over the time range
t̃ = 0 to some small value t̃ = gon.

3.1. Three-dimensional constitutive law
The constitutive law used in the finite-element simulations has a rigorous, three-
dimensional, tensorial, finite-deformation, elasto-viscoplastic framework (Gurtin, Fried
& Anand 2010). Under simple tension, the law reduces to the one-dimensional law
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described in (2.25) with linear elastic response given by (2.8). The law enforces
frame-indifference, material isotropy, and non-negative dissipation.

With σ the Cauchy stress tensor, X the initial (i.e. reference) position of a material
point, x the current position, and the motion function χ providing the correspondence
between the two configurations – i.e. x = χ(X, t) – the Bingham–Norton constitutive
law is expressed as

F = ∂χ
∂X

deformation gradient, (3.1)

F = F eF p Kroner–Lee decomposition of elasticity and plasticity, (3.2)

Ee = log(
√

F eTF e) elastic (Hencky) strain tensor, (3.3)

M = (detF e)F e−1σF e Mandel stress tensor, (3.4)

τ =√0.5M ′ : M ′ equivalent shear stress, (3.5)

M = E

3(1− 2ν)
tr(Ee)1+ E

1+ νEe′ elasticity relation, (3.6)

Lp = 3
η

H

(
τ − σY√

3

)(
τ − σY√

3

)
M ′

|M ′| constitutive law for Bingham viscoplasticity,

(3.7)
Ḟ p = LpF p−1 evolution of plastic deformation gradient. (3.8)

In the above, primes denote the deviatoric part of a tensor and A : B =∑AijBij. The
quantities σY , E, and η are, as before, the tensile yield stress, the Young’s modulus,
and the tensile flow viscosity. In addition, we take the elastic Poisson ratio ν = 0.45.
The plastic part of the deformation is assumed to be incompressible. These equations
are augmented by the three-dimensional equation of motion ∇ · σ + ρg= ρ(Dv/Dt) to
close the system.

3.2. Comparisons
Before we compare the results of our slender-body theory with that of three-
dimensional simulations, it is useful to qualitatively identify the range of behaviours
of a drooping viscoplastic filament. There are four natural parameters that describe the
evolution of the filament:

slenderness δ = h0

L
, yield strain εY = σY

E
, (3.9)

gravity number G= gρL

σY
, viscous number V = η

ρ
√

gL3
. (3.10)

We note there are two parameters that characterize the loading on the filament: a
gravity number G, which defines the ratio of the self-stress on the filament due to its
weight relative to the yield stress, and the viscous number V , which characterizes the
ratio of a viscous ‘velocity’ η/ρL to a gravitational velocity

√
gL.

To understand the different regimes that can result during the sag of such a filament,
we first consider the small deflection regime when we might assume a fully elastic
solution where no part of the filament yields. We can understand this using scaling
estimates. Letting H be the midpoint deflection, we balance the elastic bending
energy of the filament Eh4

0H2/L3 with the gravitational energy ρgh2
0LH to find that

H ∼ ρgL4/Eh2
0. The maximum strain in the filament due to curvature then scales

as h0H/L2 ∼ ρgL2/Eh0. For the filament not to yield anywhere, this strain must be less
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than the yield strain, so that

2δ > G, (3.11)

where the prefactor arises from solving the linearized problem exactly.
In the opposite case, δ 6 G/2, the filament yields at some location along its

periphery. However, if the yield boundary does not penetrate all the way to the
centre, the filament eventually stops flowing. To understand how a filament that
experiences stress levels beyond σY can first flow and then stop, settling into a
sagged geometry, we consider the dynamics of the filament when it resembles
that for a standard catenary with ends held at (±L/2, 0), having the well-known
form y = a(cosh(x/a) − cosh(L/2a)) parametrized by a length a, and negligible
bending moments. The total deflection H obeys H = a(cosh(L/2a) − 1), which
in the small deflection limit yields a ≈ L2/8H. The maximum tensile stress
σmax = ρga cosh(L/2a) = ρg(H + a) ≈ ρg(H + L2/8H) decreases to an approximate
minimum of ρgL/

√
2 at H = L/

√
8. Accordingly, a filament sagging plastically should

eventually come to a stop if σY > ρgL/
√

2, or in dimensionless terms, G <
√

2.
Combining this relation with the criterion for initial yielding gives us some bounds on
the regime of arrested descent,

2δ < G<
√

2. (3.12)

Furthermore, by equating σmax to σY , we can compute the approximate deflection at
which the filament should stop descending plastically, Hstop, by

Hstop/L= 1/2G− ((1/2G)2−1/8)
1/2
. (3.13)

From a dynamical perspective, the arrested descent regime has two qualitative
subcases corresponding to overdamped and underdamped limits. In the overdamped
case, the inertia of the filament during the plastic descent is small compared to the
viscous effects of the viscoplastic flow law so that the filament has an ever-decreasing,
though non-zero, plastic flow rate that causes it to gradually approach a limiting static
state. In the underdamped case, the filament has enough inertia to carry it a distance
somewhat further than the limiting static configuration, leading to long-term elastic
oscillations. Although it is difficult to derive an analytical expression to predict which
of the over- and under-damped subcases will occur, it is clear that decreasing the
value of the viscous number V will lead to a change from the overdamped to the
underdamped case.

Lastly, in the regime of continual descent, the pull of gravity induces internal
stresses persistently above yield and the filament droops continually for all time. The
parameter range for continual descent is precisely that which lies outside the transient
descent and no-yielding range, i.e.

max(2δ,
√

2) < G. (3.14)

In figure 3(a), we show a phase diagram that characterizes these different phases.
We now examine numerical results of the full system in each regime. We fix

δ = 0.03, g = 9.81 m s−2, L = 20 cm, ρ = 1900 kg m−3, and E = 4 MPa. We vary
G, εY,V by varying σY and η.

In the no-yielding regime, a comparison of the one-dimensional model to FEM
provides a consistency check that the reduced-dimensional model is reasonable.
To uphold inequality (3.11), we use G = 0.01. We simulate using εY = 0.07 and
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FIGURE 3. (Colour online) (a) Approximate phase diagram for qualitative behaviour of
a catenary of viscoplastic material. (b) The vertical position of the filament midpoint
as a function of time for parameters (δ,G, εY,V) = (0.03, 0.01, 0.07,−) (no yielding),
(0.03, 0.4, 0.002, 26) (transient descent, overdamped), (0.03, 0.4, 0.002, 0.4) (transient
descent, underdamped), (0.03, 1.9, 0.0005, 26) (continual descent). The results of the
reduced-dimensional one-dimensional model and the corresponding results under the fully
meshed FEM simulation are simultaneously displayed.

arbitrary V . Both the one-dimensional and FEM simulations are dynamic with non-
dissipative elastic response. As a result, after gravity ramps up, both solutions
show long-term oscillations, demonstrating the reduced scheme’s ability to correctly
represent elastodynamics (see figure 3b, ‘no yielding’). Moreover, as can be seen
in figure 4(b), neither simulation indicates that any plastic deformation occurs, as
predicted.

To compare results in the transient descent range, we choose G = 0.40 following
inequality (3.12), and choose εY = 2 × 10−3. We perform tests using V = 26 and
V = 0.40 to explore both the over- and under-damped cases respectively. As can be
seen in figure 3, the one-dimensional model does an adequate job of modelling both
subcases. Equation (3.13) predicts Hstop/L= 0.05, which, according to figure 3, is seen
to be very close to the overdamped value and slightly above the underdamped value,
as expected.

To compare behaviours in the continual descent regime, we choose G = 1.9
per (3.14), and use V = 26 and εY = 500× 10−6. Figures 3 and 4(d) show a significant
level of agreement between the results of the one-dimensional model and the full FEM
simulation in this case. This example offers a stringent test of whether the model can
accurately handle large deformations; as indicated in figure 4(d), the filament deflects
about a quarter of its original length by the end of the run, and we find local strains
over 23 % near the clamp. Accounting for thinning of the filament cross-section (2.9)
and use of (2.6) rather than a small-strain linear formula (i.e. sx0 − 1) are both
necessary for this level of agreement; otherwise the prediction diverges early on from
the FEM solutions, as we have verified with additional numerical tests.

4. Discussion
We have derived a simple one-dimensional model for thin filaments of complex

fluids, valid for finite stretches and large rotations, and thus large planar deformations,
by assuming a simple additive form for the decomposition of elastic and plastic strains,
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1D Model
Centreline/top/bottom
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(c) (d)

FIGURE 4. (Colour online) In each of (a)–(c), we compare snapshots of the finite element
simulations (left half) to those of the reduced one-dimensional model (mirrored right half)
during the initial stages of deformation where flow behaviour undergoes the most variation.
The material parameters are chosen to span the regimes of (a) no yielding, (b) arrested
descent (overdamped shown), and (c) continual descent. All finite element solutions show the
field of normalized plastic shear rate ˜̇γ = |Lp|L√ρ/E plotted in greyscale from 0 = white
to 4.4 × 10−4 = black. The solutions of the one-dimensional model show the curve of
the centreline and corresponding top and bottom filament surfaces, and are also shaded in
wherever the linear-in-z stress field estimate utilized by (2.24) predicts the material to be
exceeding σY . In each, α = 46. (d) Comparison of the deformed FEM mesh to the one-
dimensional model prediction at t̃ = 10α in the continual descent case.

led by previous work on the viscous and viscoelastic catenary. The resulting theory
takes the form of coupled partial differential equations in one space dimension and
time for the evolution of the position and plastic state fields. This is advantageous in
two ways: it allows us to see transparently the various processes coupling geometry
and flow, and from a computational perspective the solution of the partial differential
equations represents a considerable savings over the solution of multi-dimensional bulk
equations with free boundaries.

To test our theory, we considered the descent of a catenary made of a Maxwell
fluid, using a combination of numerical simulation of the reduced equations and some
analytical estimates. A particular outcome of this was a simple expression for the
evolution of the midpoint that might be of some use in experimental rheology. We
also considered the case of a yield-stress material, and identified a phase diagram for
the regimes of behaviour such as the arrested and continual descent of a filament. A
comparison of the simulations of our one-dimensional model to FEM solutions of fully
meshed three-dimensional filaments showed that the simplified theories can capture all
the different phenomena quantitatively.

A natural next step is to extend our theory to account for out-of-plane filament
deformation and/or torsion for a bent, twisted filament. Furthermore, since the
integrated plastic strain field variables arise naturally in our approach, we can also
extend our theory to consider a viscoplastic plate theory with appropriate modifications
to represent phenomena such as growth or inherent curvature. As in the filament case,
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a reduced-dimensional model could provide a simplified approach for analytical and
numerical studies.
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Appendix. Higher-order spatial approximations for plastic flow
As shown in the body of this paper, the linear-order approximation used for the z

dependence of the stress when evolving P and C appears to offer sufficient accuracy.
However, there are circumstances where a more precise spatial description may be
necessary, as in situations of repeated and asymmetric loading and unloading under
combined bending and stretching. Such actions tend to induce complex through-
thickness stress and strain distributions. In these cases, the following higher-order
scheme can be used, which requires additional state variables.

Letting pn(z) be the nth-order Legendre polynomial, we define the scaled
functions Ln(z) = √(2n+ 1/h)pn(2z/h), which form a complete orthonormal set over
[−h/2, h/2], i.e.

∫ h/2
−h/2 LnLm dz = δmn. For a filament of rectangular cross-section with

z-thickness h, the distributions of plastic strain and stress can thus be written as

εp(z, x0, t)=
∞∑

n=0

an(x0, t)Ln(z), σ (z, x0, t)=
∞∑

n=0

bn(x0, t)Ln(z). (A 1)

Given a non-Newtonian flow rule ε̂p
t (σ ), we use (2.8) and orthogonality to derive

∂an(x0, t)

∂t
=
∫ h/2

−h/2
ε̂p

t (E log(sx0)− Eθx0z− E
∞∑

m=0

am(x0, t)Lm(z)) Ln(z) dz. (A 2)

Keeping terms up to n = k and truncating the sum at the kth term, the above
gives a system of evolution laws for {a0, . . . , ak} that provides a kth-order spatial
approximation for the plastic strain and stress. The terms we called P and C in
§ 2.3 are proportional to a0 and a1 respectively, and their evolution laws (2.12) are
identically defined by the zeroth- and first-order formulae from (A 2). Thus, the case of
k = 1 is equivalent to our original system from § 2.3. For every order of accuracy
desired above first order, an additional a variable must be added to the system
and evolved at all x0 positions using the corresponding law from (A 2). This is not
surprising: a better description of the plastic strain field ought to require more stored
information.
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