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When Climate Models Agree: The
Significance of Robust Model

Predictions*

Wendy S. Parker†‡

This article identifies conditions under which robust predictive modeling results have
special epistemic significance—related to truth, confidence, and security—and considers
whether those conditions hold in the context of present-day climate modeling. The
findings are disappointing. When today’s climate models agree that an interesting
hypothesis about future climate change is true, it cannot be inferred—via the arguments
considered here anyway—that the hypothesis is likely to be true or that scientists’
confidence in the hypothesis should be significantly increased or that a claim to have
evidence for the hypothesis is now more secure.

1. Introduction. There is now a broad scientific consensus—underwritten
by a substantial and growing body of evidence—that the earth’s climate
warmed significantly over the last century, that increased atmospheric
concentrations of greenhouse gases due to human activities are a major
cause of this warming, and that the earth’s climate will be still warmer
by the end of the twenty-first century (Solomon et al. 2007). Less clear
are the quantitative details, especially regarding future climate change.
How much will the earth’s average surface temperature increase by the
end of the twenty-first century if greenhouse gas concentrations continue
rising as they have in recent decades? Under that scenario, will the central
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United States experience much drier summers as the century unfolds?
What will climatic conditions in various locales be like late in the twenty-
first century if instead greenhouse gas concentrations are stabilized at 450
parts per million by 2025?

Current scientific understanding suggests that answers to questions like
these, about long-term changes in global and regional climate, may depend
on the details of complex interactions among many climate system pro-
cesses—details that cannot be tracked without the help of computer sim-
ulation models. Numerous simulation models have been developed, dif-
fering in their spatiotemporal resolution, the range of climate system
processes that they take into account, and the ways in which they represent
those processes. When collections—or ensembles—of these models are
used to simulate future climate, it sometimes happens that they all (or
nearly all) agree regarding some interesting predictive hypothesis.1 For
instance, two dozen state-of-the-art climate models might agree that, un-
der a particular greenhouse gas emission scenario, the earth’s average
surface temperature in the 2090s would be more than 2�C warmer than
it was in the 1890s.2 Such agreed-on or robust findings are sometimes
highlighted in articles and reports on climate change, but what exactly is
their significance?3 For instance, are they likely to be true?

The discussion that follows has two main goals. First, it aims to identify
conditions under which robust predictive modeling results—not just from

1. By an interesting predictive hypothesis, I mean a hypothesis about the future that
scientists (i) do not already consider very likely to be true or very likely to be false
and (ii) consider a priority for further investigation. In climate science today, these are
typically, but not always, quantitative hypotheses about changes in global or regional
climate on the timescale of several decades to centuries.

2. What does it mean for an ensemble to agree that a hypothesis is true? Assume that
modelers have decided on rules for translating statements about (some) model variables
into statements about (some) target system properties, so that the values of those
variables during a simulation can be understood as indications regarding target system
properties. Then a simulation indicates the truth (falsity) of some hypothesis H about
a target system if a statement of what the simulation indicates about one or more
properties of the target system entails that H is true (false). For example, if H says
that temperature will increase by between 1�C and 1.5�C, and each of the simulations
in an ensemble indicates an increase between 1.2�C and 1.4�C, then each of those
simulations indicates the truth of H, and the ensemble is in agreement that H is true.

3. I take agreement among modeling results to be synonymous with robustness, as is
common in the climate-modeling literature. For Pirtle et al. (2010), by contrast, ro-
bustness seems to involve agreement plus some sort of independence among models
that warrants increased confidence in the agreed-on result. Reasons for preferring one
definition/characterization of robustness to the other will not be pursued here; either
way, similar conclusions about the significance of agreement among predictions from
today’s climate models can be reached.
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climate models but from scientific models in general—have special epi-
stemic significance. Classic discussions of robustness include Levins (1966)
and Wimsatt (1981/2007), and connections between robustness and pre-
diction have been touched on recently by some authors (e.g., Weisberg
2006; Woodward 2006; Muldoon 2007; Pirtle et al. 2010), but there has
been little detailed analysis of the conditions under which robust predictive
modeling results have special epistemic significance. Having identified
some of these conditions, a second goal is to investigate whether they
currently hold in the context of ensemble climate prediction, as a first
step toward evaluating the significance of robust predictions from today’s
climate models.

Section 2 gives a brief introduction to ensemble climate prediction,
explaining how and why multiple models are used to investigate future
climate change. The next three sections investigate the prospects for in-
ferring from robust modeling results, and from robust climate-modeling
results in particular, that

i) an agreed-on predictive hypothesis H is likely to be true (sec. 3),
ii) significantly increased confidence in H is warranted (sec. 4),

iii) the security of a claim to have evidence for H is enhanced (sec. 5).

The findings are disappointing. When today’s climate models agree that
an interesting hypothesis about long-term climate change is true, it cannot
be inferred—via the arguments considered here anyway—that the hy-
pothesis is likely to be true or that scientists’ confidence in the hypothesis
should be significantly increased or that a claim to have evidence for the
hypothesis is now more secure. In closing, section 6 reflects on these
findings.

2. Ensemble Climate Prediction. A computer simulation model is a com-
puter-implemented set of instructions for repeatedly solving a set of equa-
tions in order to produce a representation of the temporal evolution of
selected properties of a target system. In the case of global climate mod-
eling, the target system is the earth’s climate system—encompassing the
atmosphere, oceans, sea ice, and land surface—and the equations are ones
that describe in an approximate way the local rate of change of temper-
ature, wind speed, humidity, and other quantities of interest in response
to myriad processes at work in the system. When it comes to formulating
such equations, considerable uncertainty remains for several reasons. Al-
though a theory of large-scale atmospheric dynamics (grounded in fluid
dynamics) has long been in place and provides the foundation for some
parts of today’s climate models, some other important climate system
processes are less well understood. In addition, for processes that are
believed to influence climate in important ways but that occur on scales
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finer than those resolved in today’s models (e.g., on spatial scales smaller
than ∼100 km in the horizontal dimension or on time scales shorter than
∼1/2 hour), rough representations in terms of larger-scale variables must
be developed, and it is rarely obvious how this can best be done. The
upshot is that multiple climate models, which differ in various ways in
their equations and in the methods they use to estimate solutions, are
nevertheless judged to have approximately equal prima facie plausibility
as tools for predicting future climate (Parker 2006). Indeed, even after
examining how well these different models simulate past and present cli-
mate, it is often unclear which would be best for a given predictive task.4

Given this uncertainty, how should climate scientists proceed? If it is
unclear which of several models will turn out to give the best prediction
in a particular case, then it would be unwise to select just one of the
models and rely on its prediction, unless all of the models are expected
to be so accurate that any would be good enough. Since the latter cannot
be expected of today’s climate models, ensemble studies present a better
option. These studies involve running each of several climate models (or
model versions) with the same (or similar) initial conditions and under
the same (or similar) emission scenarios (see, e.g., Stainforth et al. 2005;
Tebaldi et al. 2005; Murphy et al. 2007). Ensemble studies acknowledge
that there is uncertainty about how to represent the climate system and
explore how much this uncertainty matters when it comes to predictions
of interest (Parker 2006).

There are two main types of ensemble climate prediction studies today.
Multimodel ensemble studies produce simulations of future climate using
models that differ in a number of ways—in the form of some of their
equations, in some of their parameter values, and often in their spatio-
temporal resolution, their solution algorithms, and their computing plat-
forms as well. A typical multimodel study requires the participation of
research groups at various modeling centers around the world, each run-
ning its “in-house” models on local supercomputers, and delivers a total
of a few dozen simulations of future climate under a given emission sce-
nario (see, e.g., Meehl et al. 2007). Perturbed-physics ensemble studies
employ multiple versions of a single climate model whose best parameter
values remain uncertain. The model is run repeatedly, leaving the structure
of its equations unchanged but allowing its uncertain parameters to take
different values on each run. The selection of these parameter values can
be made using formal sampling methods or in more informal ways; usually

4. In part, this is because it is difficult to determine what a model’s performance in
simulating past and present climate indicates about its accuracy in predicting various
quantities of interest (see Randall et al. 2007; Gleckler, Taylor, and Doutriaux 2008;
Parker 2009).
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values are chosen from a range identified by expert judgment. A single
perturbed physics study may produce a large number of simulations of
future climate, depending on how computationally intensive it is to run
a single simulation. Studies carried out by the climateprediction.net pro-
ject, for example, rely on donated idle processing time on ordinary home
computers to produce thousands of simulations using different versions
of a (relatively) complex climate model (Stainforth et al. 2005; BBC 2010).

The discussion that follows will focus on results from multimodel en-
semble studies. This is because perturbed-physics studies explore such a
broad range of parameter values that they deliver a very wide range of
results—so wide that the results are not in unanimous (or even near
unanimous) agreement regarding interesting predictive hypotheses. It
tends to be multimodel ensemble studies, rather, in which such agreement
occurs. For instance, in a recent multimodel study that investigated a
“high” emission scenario using 17 state-of-the-art climate models, each
of the models indicated that, by 2050, global mean surface temperature
would be between 1�C and 2�C warmer than during 1980–99 (see Meehl
et al. 2007, 763).5 Likewise, virtually all of the models agreed that, under
a “medium” emission scenario, summer rainfall in east Africa would be
greater in the late twenty-first century than it was in the late twentieth
century (Christensen et al. 2007, 869). The question is whether agreed-on
multimodel results like these have special epistemic significance and, if
so, what that significance is.6

3. Robustness and Truth. Can it be argued that robust predictions from
today’s multimodel ensembles are likely to be true? More generally, under
what conditions can an inference from robustness to likely truth be jus-
tified? Consider the following argument, inspired by more general dis-
cussions of robustness given by Orzack and Sober (1993) and Woodward
(2006):

1. It is likely that one of the models in this collection is true.
2. Each of the models in this collection logically entails hypothesis H.
∴ It is likely that H.

5. More precisely, average results for individual models were in agreement regarding
the hypothesis; some models were run more than once with different initial conditions,
and only average results for each model were shown in the main body of the report.

6. Whether the average of results produced by a given multimodel ensemble should
be considered current science’s “best guess” is a separate matter that will not be ad-
dressed here, but see Knutti et al. (2010) for cautionary analysis. Note, however, that
an ensemble average can indicate a hypothesis to be true, even when there is substantial
discord among individual modeling results, whereas in the case of robust findings, the
evidence under consideration is especially concordant regarding the hypothesis.
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While its logic is unobjectionable, this argument seems largely inapplicable
in science; insofar as a scientific model can be identified with a complex
hypothesis about the workings of a target system, there is usually good
reason to believe that such a hypothesis is (strictly) false since most sci-
entific models are known from the outset to involve idealizations, sim-
plifications, or outright fictions. So 1 will rarely hold.7

Nevertheless, a similar argument with greater potential for applicability
might be constructed as follows:

1′. It is likely that at least one simulation in this collection is indicating
correctly regarding hypothesis H.

2′. Each of the simulations in this collection indicates the truth of H.
∴ It is likely that H.

Here, reference to the truth of models has been replaced by reference to
simulations’ indicating correctly regarding a hypothesis. A simulation in-
dicates correctly regarding a hypothesis H if it indicates the correct truth
value for H. A model producing such a simulation, while it may rest on
various simplifications and idealizations, is nevertheless adequate for the
purpose of interest—namely, for indicating whether H is true.8 Call 1′ the
likely adequacy condition.

Is there good evidence that the likely adequacy condition is met in
today’s multimodel climate prediction studies? The answer might be yes
in some cases and no in others, depending on the ensembles and the
hypotheses. How could climate scientists argue that the condition is met
in a particular case? At least two approaches are possible: one that focuses
on ensemble construction and one that focuses on ensemble performance.

Taking the former approach, one would argue that an ensemble of
models samples so much of current scientific uncertainty about how to
represent the climate system (for purposes of the predictive task at hand)
that it is likely that at least one simulation produced in the study is
indicating correctly regarding H.9 Can this argument be made for today’s
multimodel ensembles? It cannot. For these ensembles are ensembles of

7. Woodward (2006) notes the limited applicability of a related analysis.

8. An adequate model is one that is sufficient for the purposes of interest not just as
a matter of accident (e.g., a one-off accurate prediction) but because the model has
properties that make it suitable for those purposes. One way to cash out this suitability
is in terms of relevant similarities between the model and the target system, but other
approaches are possible too. In the case of climate models, scientists might describe
an adequate model as one that “captures enough of the relevant physics” for the
purposes at hand.

9. This is reminiscent of Michael Weisberg’s claim: “The key comes in ensuring that
a sufficiently heterogeneous set of situations is covered in the set of models subjected
to robustness analysis” (2006, 739).
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opportunity, assembled from existing climate models and only insofar as
research groups are willing to participate (Meehl et al. 2007; Tebaldi and
Knutti 2007); they are “not designed to span an uncertainty range” (Knutti
et al. 2008, 2653). For instance, while each state-of-the-art model in an
ensemble includes some representation of clouds, no attempt is made to
ensure that the ensemble as a whole does a good job of sampling (or
spanning) current scientific uncertainty about how to adequately represent
clouds, and likewise for various other subgrid processes and phenomena.
Indeed, when it comes to discerning the truth/falsity of quantitative hy-
potheses about long-term climate change, climate scientists today are not
in a position to specify a small set of models that can be expected to
include at least one adequate model. In part, this is because it remains
unclear whether processes and feedbacks that will significantly shape long-
term climate change have been overlooked (so-called unknown un-
knowns). But it also reflects the challenge of anticipating how recognized
simplifications, approximations, and omissions will affect the accuracy of
predictions produced by complex, nonlinear models (see also Parker 2009).

On a performance approach to justifying the likely adequacy condition,
an ensemble is viewed as a tool for indicating the truth/falsity of hy-
potheses of a particular sort, of which the predictive hypothesis H is an
instance; the ensemble’s past reliability with respect to H-type hypotheses
is cited as evidence that it is likely that at least one of its simulations is
indicating correctly regarding this particular H.10 Assuming that H con-
cerns the value of a given variable, this is tantamount to arguing that it
is likely that the range of values spanned by the ensemble’s predictions
will either include the true value of that variable or else come within some
specified distance of that value. For instance, consider H: under this emis-
sion scenario, global mean surface temperature (GMST) for 2080–89
would be between 1.5�C and 2.0�C warmer than GMST for 1980–89.
Suppose that all of the climate models in an ensemble indicate the truth
of this hypothesis and, specifically, that their predicted changes all fall
between 1.6�C and 1.9�C. Then the likely adequacy condition will be met
only if it is likely that the range of predictions delivered by the ensemble
will either include the true temperature change or else come within 0.1�C
of doing so (extending just to the edges of the hypothesized range).

Does the performance of today’s multimodel ensembles up to now
provide good evidence that, for a given climate variable of interest, it is
likely that the range of values predicted by those ensembles will either
include the true value of the variable or else come within some specifiable,

10. So while we may not know which member(s) of the ensemble will indicate correctly
regarding a given H-type hypothesis, we have evidence that there is usually at least
one such member.
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Figure 1. Anomalies in global mean surface temperature (GMST) over the twen-
tieth century as obtained from observations (black) and from 58 simulations pro-
duced by 14 different climate models (thin light gray). Anomalies for a given
simulation are relative to that simulation’s average GMST for 1901–50. Observed
anomalies are relative to observed average GMST for 1901–50. Average values
for the simulated anomalies are also shown (dark gray). Adapted from Climate
Change 2007: The Physical Science Basis. Working Group I Contribution to the
Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
figure 9.5 (a). Cambridge University Press. See Solomon et al. (2007).

small distance of it? That is, is there good evidence that today’s ensembles
reliably “capture truth”—or come close enough to capturing it—when it
comes to the predictive variables that interest scientists and decision mak-
ers?11

In practice, careful investigation of the truth-capturing performance of
today’s ensembles has been carried out for rather few variables thus far.
A striking example, however, is shown in figure 1. Glancing at the figure,
it appears that, for almost every year in the twentieth century, the observed
global temperature anomaly for the year is within the range of values
spanned by the ensemble.12 Nevertheless, it can be difficult to determine
what findings like those depicted in figure 1 indicate about the future
truth-capturing abilities of today’s ensembles, in part because of the com-
plicated model-data relationships that often obtain in this context; as

11. The “capturing truth” terminology is taken from Judd, Smith, and Weisheimer
(2007), who include a related technical definition of the “bounding box” of an ensemble.

12. Temperature anomalies are differences from some reference temperature. In the
case of fig. 1, the reference temperature is different for each time series (see caption).
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discussed below, climate data sets are often model filtered, and climate
models are often data laden (Edwards 1999, 2010).

It is widely recognized that scientific analysis often appeals not to raw
observational data but to cleaned-up depictions of those data, known as
data models (Suppes 1962; Harris 2003). This is certainly true in climate
science. However, the production of data models in climate science often
goes beyond the sort of correcting for instrumental error and noise that
is typical in other sciences. In particular, cleansed observational data may
be synthesized with output from weather-forecasting models. This is done
in part to fill in gaps—to provide values for locations in the atmosphere
(or even entire fields/variables) for which few if any raw observations are
available—and delivers data sets that include values for chosen variables
on a regular spatial grid and at regular time intervals. Known as reanalysis
data sets, they often are used to evaluate climate model performance.13

But interpreting the results of such model-data comparisons is complicated
since weather-forecasting models include a number of assumptions about
the physics of the atmosphere that are similar, if not identical, to those
included in state-of-the-art climate models—assumptions that to varying
degrees involve idealization and simplification. This raises the worry that
the fit between reanalysis data sets and simulations of past climate, and
thus the frequency with which ensembles are found to capture truth, will
be artificially inflated. So far, however, evaluations of climate models have
not been accompanied by estimates of the extent to which this inflation
may be occurring for different variables and time periods.14

A climate model can become data laden in several ways, most notably
via tuning. Tuning a climate model involves making ad hoc changes to
its parameter values or to the form of its equations in order to improve
the fit between the model’s output and observational/reanalysis data. Tun-
ing of models occurs in many scientific fields and is not necessarily bad
since after a model has been tuned to a data set it may perform better
with respect to as-yet-unseen data as well. But given the ad hoc nature
of the tuning process, and the fact that today’s climate models are far
from perfect in their representation of the climate system, it cannot be
assumed that the performance of a tuned climate model with respect to
as-yet-unseen data will be similar to its performance with respect to the

13. Gleckler et al. (2008) investigate the performance of climate models in simulating
approximately two dozen fields (e.g., wind speeds at a particular atmospheric level,
latent heat flux at the ocean surface), and data sets for about half of those fields are
reanalysis data sets.

14. Detailed discussion of how data can be processed legitimately vs. illegitimately if
they are to be used for model evaluation is beyond the scope of this article, but the
topic is clearly worth pursuing.
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data to which it is tuned.15 Moreover, when today’s climate models are
tuned, it is often difficult to adequately test their out-of-sample perfor-
mance, both because reliable observations of past climate are limited and
because most observations that are available are for time periods in which
greenhouse gas concentrations were significantly lower than they are ex-
pected to be in the future.

Do these complications arise in the case of figure 1 in particular? The
values plotted as “observations” in figure 1 were calculated from a data
set (Brohan et al. 2006) whose production did not involve synthesizing
observational data with output from weather-forecasting models, so the
concern about model-filtered data does not seem to be in play here.16

However, because accounting for twenty-first-century changes in GMST
has been a major focus of modeling efforts in recent decades, it seems
very likely that for most of today’s state-of-the-art climate models, in-
cluding those in the figure 1 ensemble, at least some tuning has been done
with these temperature changes in mind.17 This makes it harder to discern
what figure 1 says about the future truth-capturing ability of its ensemble,
even with respect to future GMST anomalies, much less other predictive
variables.

A closer look at the simulations from which figure 1 was produced
complicates matters further. It turns out that the temperature anomalies
plotted in figure 1 were derived from simulated temperature values with
biases of several degrees Celsius in many regions (see Randall et al. 2007,
supplementary material; Knutti et al. 2010). So while the models roughly
track the way estimated GMST has changed over the last century, some
of them show significant errors when it comes to the temperatures from
which those changes are calculated. From the point of view of dynamical
systems theory, this means that the trajectories of those simulations
through a high-dimensional state space (defined by the models’ variables)
differ substantially from the trajectory of the real climate system as es-
timated from observations. Given nonlinear feedback in the climate sys-

15. If a model is thought to provide a very accurate representation of (relevant) aspects
of a target system, with parameters that have clear physical correlates, then scientists
might justifiably expect that the model will perform best when its parameters are set
to values very near their measured values, with the optimal values found via tuning.
But this is not the situation in climate modeling today; because of significant errors
elsewhere in the model, parameter values that give the best model performance might
be noticeably different from measured values—if a clear physical interpretation of the
parameter can be given at all.

16. Edwards (1999) notes that other types of models, such as models of instruments,
are also (at least implicitly) relied on in producing climate data sets. The data set of
fig. 1 is model filtered in this broader sense, but so is virtually every data set in science.

17. Knutti (2008) suggests something similar.
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tem, this raises concern that model trajectories for the twenty-first-century
climate (and beyond) might rapidly diverge from the observed trajectory
for a given emission scenario. This is yet another reason why it is risky
to assume that the frequency with which an ensemble captures truth in
simulations of recent climate is representative of how frequently it will
do so in the future.

In summary, whether ensemble construction or ensemble performance
is considered, there is not yet good evidence that today’s multimodel
ensembles meet the likely adequacy condition for interesting hypotheses
about future climate change. So it is not yet possible to make the argument
(presented above) from robustness to likely truth.18

4. Robustness and Confidence. Even if an inference from robustness to
the likely truth of an agreed-on predictive hypothesis cannot be justified
in a particular case, it still might be argued that robustness warrants
significantly increased confidence in the hypothesis. Indeed, a recent anal-
ysis by Pirtle et al. (2010) suggests that climate scientists often do assume
that agreement warrants this. In what follows, three general approaches
to providing an argument from robustness to significantly increased con-
fidence are identified, but each runs into problems in the context of en-
semble climate prediction.

4.1. A Bayesian Perspective. Within a standard Bayesian framework,
one’s confidence (or degree of belief) in a hypothesis H is the subjective
probability that one assigns to H, and Bayes’ Theorem provides a rule
for updating that assignment in light of new evidence e. According to the
rule, one’s new probability assignment, , should be set as follows:p(HFe)

, where is one’s probability assignmentp(HFe) p p(H ) # p(eFH )/p(e) p(H )
for H before obtaining e, is the probability that one assigns to ep(eFH )
under the assumption that H is true, and is the probability that onep(e)
assigned to e before actually encountering e. Given this updating rule,
confidence in H should increase in light of evidence e if and only if (iff)

18. This is fully compatible with there being some hypotheses about future climate
that scientists can, with justification, consider likely to be true. For example, the ex-
pectation that the global climate will continue to warm in the twenty-first century is
grounded not just in agreement among predictions from complex climate models but
also in basic understanding of physical processes, theoretical analysis, observational
data, and results from simpler models. When it comes to discerning the truth/falsity
of relatively precise quantitative hypotheses about long-term changes in global and
regional climate, however, complex simulation models are the primary means of in-
vestigation since only they are intended to track in significant detail the complex
interactions among climate system processes (see sec. 1).
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.19 That is, e will increase confidence in H iff the oc-p(eFH ) 1 p(eF∼H )
currence of e is more probable if H is true than if H is false. Similarly,
e will significantly increase confidence in H iff the occurrence of e is
substantially more probable if H is true than if H is false, that is, iff

, where what counts as “significant” and “substantial”p(eFH ) k p(eF∼H )
is context relative.

Thus, a Bayesian argument from robustness to significantly increased
confidence might go as follows:

1. e warrants significantly increased confidence in predictive hypothesis
H if .p(eFH ) k p(eF∼H )

2. e p all of the models in this ensemble indicate H to be true.
3. The observed agreement among models is substantially more prob-

able if H is true than if H is false; that is, .p(eFH ) k p(eF∼H )
∴ e warrants significantly increased confidence in H.

The argument has a valid form. But are its premises true in the case of
ensemble climate prediction?

Premise 1 is part and parcel of the Bayesian framework, as just dis-
cussed; 2 is simply a statement of robustness/agreement; 3 is where the
real action of the argument will be in any particular case and also where
the potential weakness of this Bayesian approach becomes clear. For 3
concerns the probability assignments made by a particular epistemic agent
(individual or group), and if those assignments do not reflect substantial
evidence, then the move from robustness to increased confidence in H
could come very cheaply. If the argument above is to have much persuasive
force, 3 should be given some substantive justification.

Once again, at least two justificatory approaches are possible, focusing
on ensemble construction and ensemble performance, respectively. Taking
the former approach, scientists might argue that, given the conditions
under which the individual models in the ensemble can be expected to
err—inferred from information about how the models are constructed,
such as the sorts of idealizations that they include—the models are sub-
stantially more likely to agree that H is true when it is true than when it
is false. A performance-based justification, by contrast, might demonstrate
that, in a large set of trials up to now, the requisite agreement among
ensemble members’ indications regarding H-type hypotheses occurred

19. From the updating rule, we see that iff . Butp(HFe) 1 p(H) p(eFH)/p(e) 1 1
iff . When is ? By the law of total probability,p(eFH)/p(e) 1 1 p(e) ! p(eFH) p(e) ! p(eFH)

. Since , is in effectp(e) p p(eFH) # p(H) � p(eF∼H) # p(∼H) p(H) � p(∼H) p 1 p(e)
a weighted average of and ; it takes a value between andp(eFH) p(eF∼H) p(eFH)

. So will be smaller than iff . Sop(eF∼H) p(e) p(eFH) p(eFH) 1 p(eF∼H) p(HFe) 1 p(H)
iff .p(eFH) 1 p(eF∼H)
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much more often when H-type hypotheses were true than when they were
false.

Unfortunately, neither sort of justification is readily supplied in the
case of ensemble climate prediction today, for reasons already discussed
in section 3. Current understanding (of today’s models and of the climate
system itself) is not extensive enough to allow for a construction-based
justification. Performance data are limited (because observational data
are limited) and, in addition, are generally difficult to interpret due to
tuning, model-filtered data, and so on. Moreover, there are reasons to
worry that simulations from today’s state-of-the-art climate models might
not so infrequently agree that a predictive hypothesis of interest is true,
even though it is false.20 First, there are climate system features and pro-
cesses—some recognized and perhaps some not—that are not represented
in any of today’s models but that may significantly shape the extent of
future climate change on space and time scales of interest. In addition,
when it comes to features and processes that are represented, different
models sometimes make use of similar idealizations and simplifications.
Finally, errors in simulations of past climate produced by today’s models
have already been found to display some significant correlation (see, e.g.,
Knutti et al. 2010; Pennell and Reichler 2011). Thus, in general, the pos-
sibility should be taken seriously that a given instance of robustness in
ensemble climate prediction is, as Nancy Cartwright once put it, “an
artifact of the kind of assumptions we are in the habit of employing”
(1991, 154).21 Perhaps with additional reflection and analysis, persuasive
arguments for can be developed in some cases, but atp(eFH ) k p(eF∼H )
present such arguments are not readily available.

4.2. Condorcet’s Jury Theorem. Another possible approach draws on
Condorcet’s Jury Theorem. According to the traditional version of this
theorem, if each of voters has the same probability of votingn 1 1 p 1 .5
correctly regarding which of two options is “better” (on some criterion)
and if the votes are statistically independent, then the probability that at
least a majority of voters will choose the “better” option exceeds p and,
moreover, exceeds p to a greater extent with increasing n (see, e.g., Ladha
1995). Treating the indications of individual simulations regarding the

20. The reasons given here are discussed independently by Tebaldi and Knutti (2007).

21. Wimsatt (1981/2007) discusses a case in biology in which an apparently robust
modeling result turned out to be grounded in erroneous assumptions shared by the
models. See also Orzack and Sober (1993, 539).

https://doi.org/10.1086/661566 Published online by Cambridge University Press

https://doi.org/10.1086/661566


592 WENDY S. PARKER

truth of a predictive hypothesis as votes, an argument from robustness
to increased confidence might be made as follows:22

1. The probability that the majority of simulations in a collection in-
dicates correctly regarding hypothesis H exceeds the probability that
any given individual simulation indicates correctly if (a) the indi-
cations are statistically independent and (b) each simulation has the
same probability of giving the correct indication regardingp 1 .5
H.23

2. a and b hold for this collection of simulations.
3. If the probability that the majority of simulations in this collection

indicates correctly regarding hypothesis H exceeds the probability
that any given individual simulation indicates correctly, then if all
of the simulations in the collection indicate that H is true, increased
confidence in H (beyond the confidence had in light of just one of
the simulations’ indicating H) is warranted.

4. All of the simulations in this collection indicate that H is true.
∴ Increased confidence in H is warranted.

When it comes to ensemble climate prediction, the most obvious diffi-
culties with this argument arise in connection with 2. First, while including
a model in an ensemble study aimed to discern the truth/falsity of a
particular predictive hypothesis would presumably imply a belief that

for that model, in many cases (i.e., for many predictive hypothesesp 1 .5
of interest) the basis for such a belief may not be very strong, for reasons
already discussed. Second, while climate scientists often do assume that
the predictions of different state-of-the-art climate models carry approx-
imately equal evidential weight, it is doubtful that all of these models
would have the same probability of indicating correctly regarding the
predictive hypothesis of interest.

In addition, the assumption of independence is clearly questionable.
In traditional applications of Condorcet’s Jury Theorem, independence
is assumed to require that voters do not confer with one another, do not
base their votes on shared information, do not have similar training and
experience, and are not influenced by opinion leaders (see Ladha 1995,
354). How independence should be evaluated in the context of climate

22. For the sake of simplicity, the argument given here targets increased confidence,
rather than significantly increased confidence. It is relatively easy to imagine how an
analogous argument for significantly increased confidence might be given, once what
counts as “significant” is defined in the case of interest.

23. Note that when a and b obtain, it follows that , so a Bayesianp(eFH) 1 p(eF∼H)
argument from robustness to increased confidence (similar to that of sec. 4.1) can also
be made.

https://doi.org/10.1086/661566 Published online by Cambridge University Press

https://doi.org/10.1086/661566


WHEN CLIMATE MODELS AGREE 593

modeling is still a matter of some discussion (see, e.g., Abramowitz 2010;
Pirtle et al. 2010). But many modeling groups do have similar training
and experience, and predictions from today’s climate models clearly are
based on substantial shared information, including but not limited to
previously published predictions, which may influence modeling groups
as they develop and fine-tune their models (see also Tebaldi and Knutti
2007, 2067–68). Moreover, as noted above, recent investigations have
found that errors in simulations of past and present climate produced by
today’s state-of-the-art climate models show significant correlation (see
Knutti et al. 2010; Pennell and Reichler 2011).

There are generalizations of Condorcet’s Jury Theorem that have more
relaxed assumptions about the competence of voters (e.g., Owen et al.
1989) or that allow certain kinds of dependence among votes (e.g., Ladha
1992, 1995). For instance, while still assuming that voters have the same
probability of voting correctly, Ladha (1992) argues that the prob-p 1 .5
ability that the majority vote is correct exceeds p if the average correlation
among the voters’ choices remains small enough. Perhaps these gener-
alized versions of the theorem hold some promise when it comes to de-
veloping a sound argument from robust climate-modeling results to sig-
nificantly increased confidence in agreed-on predictive hypotheses.24 But
once again, such arguments will require information that is not so easy
to come by, such as information about how reliably today’s models in-
dicate correctly the truth/falsity of hypotheses of a relevant class.

4.3. A Sampling-Based Perspective. Although it is commonly assumed
that ensemble studies somehow involve sampling, it is not obvious how
a sampling-based argument from robust model predictions to significantly
increased confidence might best be constructed. What follows is one good-
faith attempt.

Let q be a set of criteria that can be used to rate any given model’s
perceived quality as a tool for correctly indicating the truth/falsity of some
particular predictive hypothesis H. Assume that today’s scientists con-
struct this quality metric q in light of current scientific understanding and
computing power—it might take into account whether a model includes
particular physical assumptions, how it performs in simulating the be-
havior of the target system up to now, its spatiotemporal resolution, and
so on. Let MB be the collection of all models, whether already constructed
by scientists or not, whose score on q would exceed some chosen threshold;

24. Odenbaugh (forthcoming) considers how a relaxed version of the Condorcet Jury
Theorem might be used to analyze the significance of scientific consensus (among
experts, rather than models) regarding the existence and causes of global climate
change. He too finds that further investigation of (in)dependence is needed.
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the models in MB have features such that they are considered to be, at
present, the best models for the predictive purposes at hand. Then the
following argument from robustness to increased confidence might be
given (see n. 22):

1. In the absence of other overriding evidence, the degree of confidence
assigned to predictive hypothesis H should equal f, the fraction of
models in MB whose simulations indicate that H is true.

2. If all of the simulations produced by models in a random sample
from MB are found to agree in indicating that H is true, then an
increase in the current estimate of f—and correspondingly an in-
crease in the confidence assigned to H—is warranted.

3. This collection of today’s models is a random sample from MB.
4. The simulations produced by models in this collection all indicate

that H is true.
∴ Increased confidence in H is warranted.

Compared to previous arguments, the logic of this one is less tight. While
a number of concerns about the argument might be raised, in the context
of ensemble climate prediction the most obvious problem is 3, which
asserts that some particular ensemble of today’s models is a random
sample from MB. This suggests that the scope of some MB has been
identified—that scientists have some sense of the space of models that it
encompasses—and that a randomizing procedure was employed when
selecting today’s models from MB. But this is not so.

As noted in section 3, today’s multimodel ensembles are widely ac-
knowledged to be ensembles of opportunity; any “sampling” by which
they are assembled “is neither systematic nor random” (Tebaldi and
Knutti 2007, 2068). In fact, according to some climate scientists, “it is
not clear how to define a space of possible model configurations of which
[today’s multimodel ensemble] members are a sample” (Murphy et al.
2007, 1995; see also Parker 2010). Given current uncertainty about how
to adequately represent the climate system, any reasonable quality metric
that today’s climate scientists might specify would allow that many climate
models that differ significantly (in their construction) from today’s models
would qualify for inclusion in MB. Indeed, today’s models may well differ
from one another much less than random samples from MB typically
would, which in turn might make them biased estimators of f.25

To sum up, various arguments from robustness to significantly in-
creased confidence in an agreed-on predictive hypothesis of interest are
possible, but none of the arguments considered above are readily appli-

25. This is assuming that f can be defined for MB; this issue is not addressed here. If
f cannot be defined, then premise 1 is also problematic.
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cable in the context of ensemble climate prediction today. Arguments
invoking a Bayesian perspective or a generalized version of the Condorcet
Jury Theorem show some promise, but further information is needed
before these arguments can be advanced.

5. Robustness and Security. A third view regarding the significance of
robustness can be found in recent work by Kent Staley (2004). He sets
aside the question of whether robustness can increase the strength of
evidence for a hypothesis and instead focuses on the security of evidence
claims—the degree to which an evidence claim is immune to defeat when
there is a failure of one or more auxiliary assumptions relied on in reaching
it (468). Staley argues that robust test results can increase the security of
evidence claims in several ways, one of which will be developed in greater
detail here.26

Suppose that in light of the results of some test procedure, such as a
laboratory experiment or a computer simulation, scientists arrive at an
evidence claim, E: “We have evidence of at least strength S for hypothesis
H.” The strength S might be expressed qualitatively (e.g., weak, strong,
conclusive) or perhaps quantitatively.27 In order to arrive at E, the sci-
entists rely on a set of auxiliary assumptions, A, which includes assump-
tions about the test procedure (e.g., that the apparatus involved did not
malfunction, that the test procedure is of a moderately reliable kind).
These auxiliary assumptions are ones that the scientists believe to be true.28

If any one of the assumptions turns out to be mistaken, the inference
from the results of the test procedure to E will need to be reconsidered.
Now suppose the scientists conduct a second test of H, and the results
of the second test, in conjunction with a set of auxiliary assumptions, A′,
lead the scientists to the same evidence claim E. That is, as with the first
test results, the scientists consider the second test results to provide evi-
dence of at least strength S for hypothesis H. Then as long as A′ is at
least partially logically independent of A—that is, as long as there is at
least one assumption in A such that, even if that assumption is false, all
assumptions in A′ could still be true—then the security of the scientists’
evidence claim E will be enhanced since in effect they will have discovered

26. The current analysis expands on the insightful but brief discussion given by Staley
(2004, 474–75).

27. Important questions about how the strength of evidence is defined and determined
remain to be addressed; for the sake of discussion, it is assumed here that some rea-
sonable and coherent analysis can be given.

28. In fact, scientists may only believe that these assumptions are true enough. For
the sake of simplicity, this is ignored in the discussion above; including it would com-
plicate but not undermine the argument.
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that there is a “backup route” to E that might remain intact, even if their
original inference to E turns out to involve a mistaken assumption (see
also Staley 2004, 474–75).29

A generalized version of this argument for the case of robust model
predictions is as follows:

1. A modeling result rn enhances the security of an evidence claim E
if

a) E is derivable from rn in conjunction with a set of auxiliary as-
sumptions, An, and

b) E is derivable from each of modeling results , respec-r . . . r1 n�1

tively, in conjunction with sets of auxiliary assumptions A1 . . .
An�1, respectively, and

c) An is partially logically independent of each of .A . . . A1 n�1

2. 1a–1c are met in the present case.
∴ The security of E is enhanced.

If 1 is accepted as an analysis of the minimal conditions for increasing
security, then the question is whether 1a–1c are met in the context of
ensemble climate prediction today.30

Working backward, it seems that 1c often is met. In reaching an evidence
claim E from any given simulation result, climate scientists will make use
of a number of auxiliary assumptions. Assuming that these concern the
appropriateness of the model’s physical assumptions and numerical so-
lution techniques, the absence of significant programming errors, the re-
liability of the computing platform on which the model is run, and so
on, then the sets of auxiliary assumptions used in conjunction with dif-
ferent simulation results can be expected to differ from one another in
various ways since the models producing the simulations will not all reflect
the same assumptions about the climate system, will not all be run on
the same computing platform, and so on. It seems clear that each set of
auxiliary assumptions will be at least partially logically independent of
each of the other sets.

29. The mathematical logician typically uses a somewhat different notion of logical
independence.

30. Security can be enhanced more or less. Ceteris paribus, the closer the sets of
auxiliary assumptions come to being fully logically independent of one another, the
more security is enhanced. A set of assumptions A′ is fully logically independent of
another set A iff every assumption in A is such that, if that assumption is false, all of
the assumptions in A′ could still be true. Security is also enhanced more, ceteris paribus,
to the extent that it is not only possible that all of the assumptions in A′ could be true,
even while some assumption in A is false, but likely that all of the assumptions in A′

will be true if some assumption in A is false. Due to space constraints, the discussion
above does not consider this quantitative aspect of enhanced security.
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For 1a and 1b, the situation is less clear. In practice, it is often assumed
that results from different state-of-the-art climate models each constitute
weak (positive) evidence regarding the truth/falsity of interesting predictive
hypotheses. (Only together might they even possibly provide strong evi-
dence.) This suggests that, when results from these climate models agree
that predictive hypothesis H is true, climate scientists might conclude on
the basis of each result, in conjunction with various auxiliary assumptions,
that E: there is weak evidence for H.

Unfortunately, it is not clear that the key underlying assumption—that
each simulation result has positive evidential relevance—can be given solid
justification.31 The reasons are by now familiar: uncertainty about the
importance of various climate system processes, constraints on model
construction due to limited computing power, relatively few opportunities
to test climate model performance, and difficulty in interpreting the sig-
nificance of model-data fit in cases where comparisons can be made. While
it is true that today’s state-of-the-art climate models are constructed using
an extensive body of knowledge about the climate system and that they
generally deliver results that are (from a subjective point of view) quite
plausible in light of current scientific understanding, their individual re-
liability in indicating the truth/falsity of quantitative predictive hypotheses
of the sort that interest today’s scientists and decision makers remains
significantly uncertain; indeed, it is in part because of this uncertainty
that the move to ensembles is made in the first place (see sec. 2).32 So in
the end, even claims of enhanced security seem out of reach in the context
of ensemble climate prediction today.

6. Concluding Remarks. The foregoing analysis revealed that, while there
are conditions under which robust predictive modeling results have special
epistemic significance, scientists are not in a position to argue that those
conditions hold in the context of present-day climate modeling; in general,
when today’s climate models are in agreement that an interesting hy-
pothesis about future climate is true, it cannot be inferred—via the ar-
guments considered here anyway—that the hypothesis is likely to be true

31. Note that even if results from each climate model in an ensemble do have positive
evidential relevance, this is not necessarily enough for the argument of sec. 4.1 to work.
That argument also depends on the correlations among erroneous indications from the
models, and even models that individually are more reliable than chance may never-
theless be more likely to agree that H is true when it is false than when it is true.
Thanks to Dan Steel for reminding me to attend to connections between the discussion
here and in sec. 4.1.

32. The claim here is not that individual modeling results have negative evidential
relevance but that their evidential status (with regard to interesting hypotheses about
long-term climate change) is largely unknown.
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or that confidence in the hypothesis should be significantly increased or
that a claim to have evidence for the hypothesis is now more secure. This
is disappointing.

Nevertheless, the analysis did reveal goals for the construction and
evaluation of ensembles—whether in the study of climate change or in
any other context—such that robust results will have desired epistemic
significance. One goal, for instance, is the identification of a collection or
space of models that can be expected to include at least one model that
is adequate for indicating the truth/falsity of the hypothesis of interest;
sampling from this collection (in order to construct the ensemble) should
then be exhaustive, if possible, or else aimed to produce maximally dif-
ferent results. In other cases, when ensembles are not carefully constructed
in this way, the goal might be to obtain extensive error statistics regarding
the past performance of an ensemble in indicating the truth/falsity of
hypotheses of the relevant sort; this in turn will require careful consid-
eration of which hypotheses are relevant.

When it comes to ensemble climate prediction, the prospects for reach-
ing these goals in the near future seem slim. Certainly the design of mul-
timodel ensemble studies could be improved, aiming to better sample
recognized uncertainty about how to adequately represent the climate
system for a given predictive task, but the specification and deployment
of ensembles that can (with justification) be expected to include adequate
models—while still giving robust results—seems likely to remain beyond
scientific understanding for some time. Likewise, in the near term it will
be difficult to obtain desired error statistics for climate ensembles, given
the long-term nature of the predictions of interest, the limited time span
for which reliable observational data are available, the lack of compre-
hensiveness of these data (leading to reanalysis), and the prior practice
of tuning.33

That said, prospects seem substantially brighter in some other predictive
modeling contexts. For instance, when it comes to hypotheses about the
next opportunities to see solar eclipses from various locations on earth,
today’s physicists might well have sufficient background knowledge to
design ensemble studies that can be expected to meet the likely adequacy
condition (e.g., studies that explore parameter and initial condition un-
certainty, perhaps even using a single model structure). Likewise, today’s
weather forecasters might collect extensive error statistics on the perfor-
mance of ensemble weather-forecasting systems, providing good evidence

33. Of course, it does not follow that climate policy decisions should be put on hold.
Expectations of a warmer world are well founded; the challenge is rather to make
sensible decisions despite remaining uncertainties about the details of future climate
change.
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that for quantitative hypotheses about next-day highp(eFH ) k p(eF∼H )
temperatures in a given locale. In cases like these, robust model predictions
may well have special epistemic significance.
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