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Abstract

We prove a new irreducibility result for polynomials over Q and we use it to construct new infinite families
of reciprocal monogenic quintinomials in Z[x] of degree 2n.
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1. Introduction

Throughout this paper, for f (x) ∈ Z[x], when we say that ‘ f (x) is irreducible’ without
reference to a particular field, we mean that ‘ f (x) is irreducible over Q’. We say
that f (x) is reciprocal if f (x) = xdeg( f ) f (1/x). We let Δ( f ) and Δ(K) denote the
discriminants over Q, respectively, of f (x) and a number field K. If f (x) is irreducible,
with f (θ) = 0 and K = Q(θ), then

Δ( f ) = [ZK : Z[θ]]2Δ(K), (1.1)

where ZK is the ring of integers of K [1]. We say that f (x) is monogenic if f (x)
is irreducible and ZK = Z[θ], or equivalently from (1.1), that Δ( f ) = Δ(K). In this
situation, {1, θ, θ2, . . . , θdeg f−1} is a basis for ZK , often referred to as a power basis.
The existence of a power basis makes computations in ZK easier, as in the case of the
cyclotomic polynomials Φn(x) [12]. We see from (1.1) that if Δ( f ) is squarefree, then
f (x) is monogenic. However, the converse is false in general. Indeed, when Δ( f ) is not
squarefree, it can be quite difficult to determine whether f (x) is monogenic.

Reciprocal monogenic quintinomials are scarce in the literature. One such infinite
family of quartics can be found in [4]. More recently [9], infinite families of reciprocal
monogenic quintinomials of degree 2n, for every integer n ≥ 2, were constructed by
perturbing the middle coefficient of certain cyclotomic polynomials. In this paper, we
take a different approach to construct new infinite families of reciprocal monogenic
quintinomials of degree 2n, for every integer n ≥ 2.
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438 L. Jones [2]

THEOREM 1.1. Let n, A, B ∈ Z, with n ≥ 2 and AB � 0 (mod 2). Define the reciprocal
quintinomial

Fn,A,B(x) := x2n
+ Ax3·2n−2

+ Bx2n−1
+ Ax2n−2

+ 1.

Suppose thatD := (2A + B + 2)(2A − B − 2)(A2 − 4B + 8) is squarefree, and that

(Â, B̂) ∈ C := {(1, 3), (3, 1), (3, 3)},

where ∗̂ ∈ {0, 1, 2, 3} is the reduction modulo 4 of ∗. Then Fn,A,B(x) is monogenic for all
n ≥ 2.

COROLLARY 1.2. Let C be as defined in Theorem 1.1. Then there exist infinitely many
prime pairs (p, q) with (p̂, q̂) ∈ C, such that Fn,p,q(x) is monogenic for all n ≥ 2.

2. Preliminaries

DEFINITION 2.1 [1]. Let R be an integral domain with quotient field K and let K be an
algebraic closure of K. Let f (x), g(x) ∈ R[x], with the respective factorisations f (x) =
a
∏m

i=1(x − αi) ∈ K[x] and g(x) = b
∏n

i=1(x − βi) ∈ K[x]. Then the resultant R( f , g) of f
and g is

R( f , g) = an
m∏

i=1

g(αi) = (−1)mnbm
n∏

i=1

f (βi).

THEOREM 2.2. Let f (x) and g(x) be polynomials in Q[x], with respective leading
coefficients a and b and respective degrees m and n. Then

Δ( f ◦ g) = (−1)m2n(n−1)/2 · an−1bm(mn−n−1)Δ( f )nR( f ◦ g, g′).

REMARK 2.3. As far as we can determine, Theorem 2.2 is originally due to Cullinan
[2]. A proof of Theorem 2.2 can be found in [6].

The following theorem, known as Dedekind’s index criterion, or simply Dedekind’s
criterion if the context is clear, is a standard tool used in determining the monogeneity
of a polynomial.

THEOREM 2.4 (Dedekind; see [1]). Let K = Q(θ) be a number field, T(x) ∈ Z[x] the
monic minimal polynomial of θ and ZK the ring of integers of K. Let q be a prime
number and let ∗ denote reduction of ∗ modulo q (in Z, Z[x] or Z[θ]). Let

T(x) =
k∏

i=1

τi(x)ei

be the factorisation of T(x) modulo q in Fq[x] and set

g(x) =
k∏

i=1

τi(x),
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where the τi(x) ∈ Z[x] are arbitrary monic lifts of the τi(x). Let h(x) ∈ Z[x] be a monic
lift of T(x)/g(x) and set

F(x) =
g(x)h(x) − T(x)

q
∈ Z[x].

Then

[ZK : Z[θ]] � 0 (mod q)⇐⇒ gcd(F, g, h) = 1 in Fq[x].

The next theorem follows from [10, Corollary 2.10].

THEOREM 2.5. Let K and L be number fields with K ⊂ L. Then

Δ(K)[L:K] | Δ(L).

THEOREM 2.6. Let G(t) ∈ Z[t], and suppose that G(t) factors into a product of distinct
irreducibles, such that the degree of each irreducible is at most 3. Define

NG(X) = |{p ≤ X : p is prime and G(p) is squarefree}|.

Then

NG(X) ∼ CG
X

log(X)
,

where

CG =
∏
� prime

(
1 − ρG(�2)
�(� − 1)

)

and ρG(�2) is the number of z ∈ (Z/�2Z)∗ such that G(z) ≡ 0 (mod �2).

REMARK 2.7. Theorem 2.6 follows from the work of Helfgott [7], Hooley [8] and
Pasten [11]. For more details, see [9].

DEFINITION 2.8. In the context of Theorem 2.6, for G(t) ∈ Z[t] and a prime �, if
G(z) ≡ 0 (mod �2) for all z ∈ (Z/�2Z)∗, we say that G(t) has a local obstruction at �.

The following immediate corollary of Theorem 2.6 is used to establish Corol-
lary 1.2.

COROLLARY 2.9. Let G(t) ∈ Z[t] and suppose that G(t) factors into a product of
distinct irreducibles, such that the degree of each irreducible is at most 3. To avoid
the situation where CG = 0, we suppose further that G(t) has no local obstructions.
Then there exist infinitely many primes q such that G(q) is squarefree.

We make the following observation concerning G(t) from Corollary 2.9 in the
special case where each of the distinct irreducible factors of G(t) is of the form ait + bi
with gcd(ai, bi) = 1. In this situation, it follows that the minimum number of distinct
factors required in G(t) so that G(t) has a local obstruction at the prime � is 2(� − 1).
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More precisely, in this minimum scenario,

G(t) =
2(�−1)∏

i=1

(ait + bi) ≡ C(t − 1)2(t − 2)2 · · · (t − (� − 1))2 (mod �),

where C � 0 (mod �). Then each zero r of G(t) modulo � lifts to the � distinct zeros

r, r + �, r + 2�, . . . , r + (� − 1)� ∈ (Z/�2Z)∗

of G(t) modulo �2 [3, Theorem 4.11]. That is, G(t) has exactly �(� − 1) = φ(�2) distinct
zeros z ∈ (Z/�2Z)∗. Therefore, if the number of factors k of G(t) satisfies k < 2(� − 1),
then there must exist z ∈ (Z/�2Z)∗ for which G(z) � 0 (mod �2), and we do not need to
check such primes � for a local obstruction. Consequently, only finitely many primes
need to be checked for local obstructions. They are precisely the primes � such that
� ≤ (k + 2)/2.

The following proposition, which follows from a generalisation of a theorem of
Capelli, is a special case of the results in [5], and gives simple necessary and sufficient
conditions for the irreducibility of polynomials of the form w(x2k

) ∈ Z[x], when w(x)
is monic and irreducible.

PROPOSITION 2.10 [5]. Let w(x) ∈ Z[x] be monic and irreducible, with deg(w) = m.
Then w(x2k

) is reducible if and only if there exist S0(x), S1(x) ∈ Z[x] such that either

(−1)mw(x) = (S0(x))2 − x(S1(x))2

or

k ≥ 2 and w(x2) = (S0(x))2 − x(S1(x))2.

3. Proof of Theorem 1.1

For the proof of Theorem 1.1, we require some special cases of the following lemma,
which is of some interest in its own right.

LEMMA 3.1. Let n, A, B ∈ Z, with n ≥ 2, and let

Fn,A,B(x) = x2n
+ Ax3·2n−2

+ Bx2n−1
+ Ax2n−2

+ 1. (3.1)

Then Fn,A,B(x) is irreducible for all n ≥ 2 if and only if

(Â, B̂) ∈ Γ = {(0, 0), (0, 3), (1, 3), (2, 0), (2, 1), (3, 1), (3, 3)},

where ∗̂ ∈ {0, 1, 2, 3} is the reduction modulo 4 of ∗.

PROOF. Suppose first that (Â, B̂) ∈ Γ. Since the methods required in all cases of (Â, B̂)
are similar, we assume that (Â, B̂) = (1, 3) and give details only for this particular case.

We begin by showing that F2,A,B(x) is irreducible. Observe that F2,A,B(1) � 0 since
F2,A,B(1) = 2A + B + 2 ≡ 1 (mod 2). Similarly, F2,A,B(−1) � 0. Thus, F2,A,B(x) has no
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zeros by the rational zero theorem. Suppose then that

F2,A,B(x) = (x2 + ax + b)(x2 + cx + d)

= x4 + (c + a)x3 + (d + ac + b)x2 + (ad + bc)x + bd,

where a, b, c, d ∈ Z. Equating coefficients yields the system of equations

a + c = A,
ac + b + d = B,

ad + bc = A,
bd = 1.

Letting b = d = 1 and reducing this system modulo 4, we arrive at the system of
congruences

a + c ≡ 1 (mod 4),
ac ≡ 1 (mod 4),

which produces the insoluble congruence c2 ≡ 3 (mod 4). The situation b = d = −1 is
also easily seen to be impossible. Hence, F2,A,B(x) is irreducible.

Observing that Fn,A,B(x) = F2,A,B(x2n−2
) for n ≥ 2, we apply Proposition 2.10 with

w(x) = F2,A,B(x) and m = 4. We treat separately the case n = 3, which corresponds
to k = 1 in Proposition 2.10. By way of contradiction, we assume that F3,A,B(x) =
F2,A,B(x2) is reducible. Then, by Proposition 2.10, there exist S0(x), S1(x) ∈ Z[x] such
that

F2,A,B(x) = (S0(x))2 − x(S1(x))2.

Since deg(F2,A,B) = 4, it follows that

S0(x) = x2 + ax + b and S1(x) = cx + d

for some a, b, c, d ∈ Z. Then

(S0(x))2− x(S1(x))2 = x4 + (2a− c2)x3 + (2b+a2 −2cd)x2 + (2ab−d2)x+b2. (3.2)

Equating the coefficients of (3.2) and F2,A,B(x), we arrive at the three solutions:

(1) {b = −1, 4a = c2 − d2, 2A = −c2 − d2, 16B = c4 − 2c2d2 + d4 − 8cd − 32},
(2) {b = 1, c = d, A = 2a − d2, B = a2 − 2d2 + 2},
(3) {b = 1, c = −d, A = 2a − d2, B = a2 + 2d2 + 2}.

In (1), reduction modulo 4 of the second and third equations implies that both c and
d are odd. But then the fourth equation yields the contradiction

16B = c4 − 2c2d2 + d4 − 8cd − 32 ≡ 8 (mod 16).

In both (2) and (3), the third and fourth equations produce the system of congruences

2a − d2 ≡ 1 (mod 4),

a2 + 2d2 ≡ 1 (mod 4),
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from which it is straightforward to derive the insoluble congruence a2 ≡ 3 (mod 4).
Therefore, F3,A,B(x) is irreducible.

Now suppose that n ≥ 4, which corresponds to k ≥ 2 in Proposition 2.10. Assume,
by way of contradiction, that Fn,A,B(x) is reducible. Then, by Proposition 2.10, there
exist S0(x), S1(x) ∈ Z[x] such that

F3,A,B(x) = F2,A,B(x2) = (S0(x))2 − x(S1(x))2, (3.3)

where

S0(x) = x4 +

3∑
j=0

cjxj and S1(x) =
3∑

j=0

djxj.

Equating coefficients in (3.3) on x and x2, along with the constant term, yields the
system of equations

x : 2c0c1 − d2
0 = 0,

x2 : c2
1 − 2d0d1 + 2c0c2 = A,

constant term : c2
0 = 1.

Examination of the equation corresponding to the coefficient on x reveals that
d0 ≡ 0 (mod 2). Then reduction modulo 4 of this same equation implies that c1 ≡
0 (mod 2), since c0 = ±1 from the constant-term equation. Consequently, we arrive
at a contradiction in the equation corresponding to x2, since then the left-hand side
is even, while the right-hand side is odd. We deduce, by Proposition 2.10, that
Fn,A,B(x) = F2,A,B(x2n−2

) is irreducible, for all n ≥ 2.
Finally, for the other direction of the proof, suppose that (Â, B̂) � Γ. That is, assume

(Â, B̂) ∈ {(0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 2), (2, 3), (3, 0), (3, 2)}. (3.4)

For each of these cases of (Â, B̂) � (1, 1), we provide in Table 1 an explicit example
of (A, B) such that Fn,A,B(x) is reducible, not only for some n, but for all n ≥ 2. For
the special case of (Â, B̂) = (1, 1), the example in Table 1 is irreducible for n = 2, but
reducible for all n ≥ 3. We let ΦN(x) denote the cyclotomic polynomial of index N in
Table 1. �

PROOF OF THEOREM 1.1. Since C ⊂ Γ, it follows from Lemma 3.1 that Fn,A,B(x) is
irreducible for all n ≥ 2. A computation in Maple yields

Δ(F2,A,B) = −(2A + B + 2)(2A − B − 2)(A2 − 4B + 8)2. (3.5)

Making the observation that Fn,A,B(x) = F2,A,B(x2n−2
) for n ≥ 2, we then use Theorem

2.2 and Definition 2.1 to calculate

Δ(Fn,A,B) = Δ(F2,A,B ◦ x2n−2
)

= (−1)2n+1(2n−2−1)Δ(F2,A,B)2n−2
R(Fn,A,B, 2n−2x2n−2−1)

= 22n(n−2)Δ(F2,A,B)2n−2

= 22n(n−2)(−(2A + B + 2)(2A − B − 2)(A2 − 4B + 8)2)2n−2
. (3.6)
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TABLE 1. Examples for (3.4) and their factorisations.

(Â, B̂) (A, B) Factorisation of Fn,A,B(x)

(0, 1) (4, 5) (x2n−1
+ 3x2n−2

+ 1)Φ3(x)Φ2·3(x) · · ·Φ2n−2·3(x)
(0, 2) (4, 2) (x2n−1

+ 4x2n−2
+ 1)Φ2n (x)

(1, 0) (5, 8) (x2n−1
+ 3x2n−2

+ 1)(Φ2n−1 (x))2

(1, 1) (1, 1) Φ5(x)Φ2·5(x) · · ·Φ2n−2·5(x)
(1, 2) (1, 2) Φ2n (x)Φ3(x)Φ2·3(x) · · ·Φ2n−2·3(x)
(2, 2) (2, 2) Φ2n (x)(Φ2n−1 (x))2

(2, 3) (2, 3) (Φ3(x)Φ2·3(x) · · ·Φ2n−2·3(x))2

(3, 0) (3, 4) (Φ2n−1 (x))2Φ3(x)Φ2·3(x) · · ·Φ2n−2·3(x)
(3, 2) (3, 2) (x2n−1

+ 3x2n−2
+ 1)Φ2n (x)

To establish that Fn,A,B(x) is monogenic, we begin with the case n = 2. Suppose
that F2,A,B(θ) = 0. We use Theorem 2.4 to show that [ZK : Z[θ]] � 0 (mod q), for
every prime q dividing D, where ZK is the ring of integers of K = Q(θ). Because
D is squarefree, it follows from (3.5) that no prime dividing (2A + B + 2)(2A − B − 2)
can divide the index [ZK : Z[θ]]. Hence, we only need to focus on primes dividing
A2 − 4B + 8. Suppose then that q is such a prime. We apply Theorem 2.4 to q with
T(x) := F2,A,B(x). Since B ≡ (A2 + 8)/4 (mod q), we have

T(x) = (x2 + (A/2)x + 1)2 = τ(x)2.

Then, using the quadratic formula, we see that there are three cases to consider:

(i) τ(x) ≡ (x + A/4)2 (mod q);
(ii) τ(x) is irreducible over Fq;
(iii) τ(x) ≡ (x − (−A + w)/4)(x − (−A − w)/4) (mod q), where w2 ≡ A2 − 16 (mod q).

We claim first that case (i) cannot happen. In this case, we see from the quadratic
formula that A2 − 16 ≡ 0 (mod q). Then B ≡ 6 (mod q) since

−4(B − 6) ≡ −4B + 24 ≡ A2 − 4B + 8 ≡ 0 (mod q).

Consequently,

(2A + B + 2)(2A − B − 2) = 4A2 − B2 − 4B − 4 ≡ 0 (mod q),

which contradicts the fact thatD is squarefree. Therefore, case (i) is vacuous.
Suppose next that we are in case (ii). Since A ≡ 1 (mod 2), we can let

g(x) = h(x) = τ(x) = x2 + ((A + q)/2)x + 1.

Then

F(x) =
g(x)h(x) − T(x)

q
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=
(x2 + ((A + q)/2)x + 1)2 − F2,A,B(x)

q

= x
(
x2 +

( A2−4B+8
q + 2A + q

4

)
x + 1

)
,

so that

F(x) = x
(
x2 +

( (A2−4B+8
q

)
+ 2A

4

)
x + 1

)
. (3.7)

If gcd(g, F) > 1, then, since g(x) is irreducible over Fq, it follows that F(x) is divisible
by g(x). Thus, equating coefficients on g(x) and the quadratic factor of F(x) in (3.7)
yields

A
2
≡

(
A2−4B+8

q

)
+ 2A

4
≡
(A2 − 4B + 8

4q

)
+

A
2

(mod q),

so that

(A2 − 4B + 8
4q

)
≡ 0 (mod q).

Hence, A2 − 4B + 8 ≡ 0 (mod q2), which contradicts the fact that A2 − 4B + 8 is
squarefree. Therefore, gcd(g, F) = 1, which implies that [ZK : Z[θ]] � 0 (mod q) by
Theorem 2.4, and F2,A,B(x) is monogenic in this case.

Finally, suppose that we are in case (iii). Without loss of generality, assume that
w ≡ 0 (mod 2). Then

−A + w + εq ≡ −A − w + εq ≡ 0 (mod 4) for some ε ∈ {−1, 1},

where the value of ε depends on the congruence classes of A and q modulo 4. Since
both of these possibilities for ε are handled identically, we give details only for ε = 1.
Thus, we can let

g(x) = h(x) = (x − (−A + w + q)/4)(x − (−A − w + q)/4).

Therefore, to prove that gcd(F, g) = 1, we only have to show F((−A ± w + q)/4) � 0.
Because the methods are the same, we give details only for x = (−A + w + q)/4.
Noting that F((−A + w + q)/4) � 0 if and only if qF((−A + w + q)/4) � 0 (mod q2),
we examine qF((−A + w + q)/4). Since w2 ≡ A2 − 16 (mod q), we can write w2 =

A2 − 16 + qk, for some k ∈ Z. Using this substitution for w2 and the fact that q divides
A2 − 4B + 8, a straightforward calculation in Maple reveals that
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256qF((−A + w + q)/4) = −q4 − (4w + 6k)q3 + (96 − k2 − 4kw − 16B)q2

− 4(2A − 2w − k)(A2 − 4B + 8)q

+ 8(A2 − Aw − 8)(A2 − 4B + 8)

≡ 8(A2 − Aw − 8)(A2 − 4B + 8) (mod q2).

If A2 − Aw − 8 ≡ 0 (mod q), then, since q ≡ 1 (mod 2), we see that A � 0 (mod q).
Thus, w ≡ (A2 − 8)/A (mod q). But w2 ≡ A2 − 16 (mod q), so that

(A2 − 8
A

)2
≡ A2 − 16 (mod q),

which yields the impossible congruence 64 ≡ 0 (mod q). Since A2 − 4B + 8 is
squarefree, we conclude that qF((−A + w + q)/4) � 0 (mod q2), completing the proof
that F2,A,B(x) is monogenic.

For n ≥ 2, define

θn := θ1/2
n−2

and Kn := Q(θn),

noting that θ2 = θ and K2 = K. Furthermore, observe that Fn,A,B(θn) = 0 and that
[Kn+1 : Kn] = 2. Thus, if Fn,A,B(x) is monogenic, then Δ(Fn,A,B) = Δ(Kn), and we
deduce from Theorem 2.5 that

Δ(Kn+1) ≡ 0 (mod Δ(Fn,A,B)2).

By (3.6),

Δ(Fn+1,A,B)/Δ(Fn,A,B)2 = 22n+1
.

Hence, to show that Fn+1,A,B(x) is monogenic, we only have to show that

[ZKn+1 : Z[θn+1]] � 0 (mod 2). (3.8)

We apply Theorem 2.4 with

T(x) := Fn+1,A,B(x) = x2n+1
+ Ax3·2n−1

+ Bx2n
+ Ax2n−1

+ 1.

Then

T(x) = (x4 + x3 + x2 + x + 1)2n−1
= Φ5(x)2n−1

,

where Φ5(x) is easily seen to be irreducible over F2. Therefore, we can let

g(x) = Φ5(x) and h(x) = Φ5(x)2n−1−1.

A straightforward induction argument shows that

g(x)h(x) ≡ x2n+1
+ 2x7·2n−2

+ 3x3·2n−1
+ x2n

+ 3x2n−1
+ 2x2n−2

+ 1 (mod 4)
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for n ≥ 2. Thus,

g(x)h(x) − T(x)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
2x2n−2

(x6·2n−2
+ x5·2n−2 − x3·2n−2

+ x2n−2
+ 1) + 4E1(x) if (Â, B̂) = (1, 3),

2x2n−2
(x6·2n−2

+ 1) + 4E2(x) if (Â, B̂) = (3, 1),

2x2n−2
(x6·2n−2 − x3·2n−2

+ 1) + 4E3(x) if (Â, B̂) = (3, 3),

for some Ei(x) ∈ Z[x]. It follows that

F(x) =
g(x)h(x) − T(x)

2
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x2n−2

(x2 + x + 1)3·2n−2
if (Â, B̂) = (1, 3),

x2n−2
(x + 1)2n−1

(x2 + x + 1)2n−1
if (Â, B̂) = (3, 1),

x2n−2
(x6 + x3 + 1)2n−2

if (Â, B̂) = (3, 3).

It is then apparent that gcd(F, g) = 1 in each case of (Â, B̂) ∈ C, from which we
conclude by Theorem 2.4 that (3.8) holds. Hence, Fn+1,A,B(x) is monogenic, and
consequently, Fn,A,B(x) is monogenic for all n ≥ 2 by induction. �

4. Proof of Corollary 1.2

We conclude with the proof of Corollary 1.2.

PROOF. Let p be a prime with p ≡ 3 (mod 4) and define the polynomial

G(t) := (t + 2p + 2)(t − 2p + 2)(4t − p2 − 8) ∈ Z[t].

We wish to apply Corollary 2.9 to G(t). According to the discussion following
Corollary 2.9, we only need to check for local obstructions at the primes � satisfying
� ≤ (k + 2)/1 = 5/2. That is, we only need to check the prime � = 2. Since G(1) ≡
3 (mod 4), we see that there is no local obstruction at � = 2. Hence, by Corollary 2.9,
there exist infinitely many primes q such that G(q) is squarefree. Thus, for any such
prime q, we deduce from Theorem 1.1 that Fn,p,q(x) is monogenic for all n ≥ 2. �
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