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MULTIPLE TESTING FOR OUTPUT
CONVERGENCE
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This paper tests for output convergence across n = 51 economies, employing the
definition of Pesaran [Journal of Econometrics 138, 312–355 (2007)]. The definition
requires output gaps to be stationary around a constant mean. But when all n(n − 1)/2
pairs of log per capita output gaps are considered, this results in more than 1,000 unit root
tests to be conducted. Hence, because of the ensuing multiplicity of the testing problem, a
nontrivial number of output gaps will be falsely declared to be stationary when each of the
n(n − 1)/2 hypotheses is tested at some conventional level like 5%. To solve the problem,
we employ recent multiple testing techniques that allow us to bound the expected fraction
of false rejections at a desired level. Monte Carlo results illustrate the usefulness of the
techniques. The empirical results show that the data do not support the notion of output
convergence after controlling for multiplicity.
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1. INTRODUCTION

A topic extensively researched in growth econometrics is output convergence of
economies [Papageorgiou and Perez-Sebastian (2004)] or industries [Inklaar and
Timmer (2009)]. A prominent notion of convergence across economies using a
time-series definition is that of Pesaran (2007a). There, two economies converge
only if a unit root test on the output gap of two economies, i.e., the difference of log
per capita incomes, rejects. These pairwise tests with the null of no convergence are
conducted for all different combinations of n countries. This results in n(n− 1)/2
simultaneous tests. Given the large number of simultaneous tests, even if no
country pair converges, one is bound to falsely reject the null of no convergence
for many pairs.
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When performing many simultaneous hypothesis tests, researchers often still
rely on traditional significance tests. That is, one evaluates each hypothesis test
individually at the same level α. Given some α, the probability of committing at
least one type I error then is arbitrarily larger than α. To see this, note that the event
of a rejection is a Bernoulli random variable with “success” probability α if the null
is true. Assume (for illustration only) that all hypotheses are true and independent.
Then Pl , the probability of finding l rejections in m tests (corresponding to, e.g., m
country pairs), is the probability mass function of a binomial random variable,

Pl =
(

m

l

)
αl(1 − α)m−l .

Therefore, the probability of at least one erroneous rejection for α = 0.05 and
m = 100 equals

Pl≥1 =
100∑
j=1

(
100

j

)
0.05j (1 − 0.05)50−j = 0.994.

Hence, the null of no convergence will be falsely rejected for several country pairs
only because of the large number of tests performed.

We propose to tackle this problem using multiple testing techniques. These take
the multiplicity of tests performed into account explicitly. One way to achieve
such multiplicity control is to reject a hypothesis test only if its p-value satisfies
pj ≤ αj for some suitably chosen cutoff αj ≤ α. Such multiple testing techniques
are routinely applied in many areas of applied statistics that involve multiple
hypothesis testing, such as genomics [e.g., Dudoit and van der Laan (2007)]. The
econometrics literature has so far paid little attention to solving the problem of
multiplicity. For recent exceptions, see Hanck (2009), Moon and Perron (2009),
or our companion paper [Deckers and Hanck (2011)], which deals with variable
selection in cross-sectional growth regressions.

We focus on controlling the false discovery rate (FDR) (Benjamini and
Hochberg, 1995). The FDR is defined as the expected number of falsely rejected
hypotheses (here, falsely rejecting the null of no convergence) divided by the
overall number of rejections. It is thus an extension of the notion of a type I
error to the multiple testing situation. The power of different FDR controlling
procedures might vary substantially [Romano et al. (2008a)]. A Monte Carlo
study demonstrates the effectiveness of some popular procedures under different
settings relevant to the present testing problems.

The empirical results show that output convergence between countries using a
time series definition with the necessary condition of no unit root in the output gap
of two economies does not seem to hold. This strengthens the findings of Pesaran
(2007a).

Section 2 sketches the model used here and briefly surveys the literature. Section
3 describes the FDR-controlling procedures we employ. Section 4 assesses their
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quality in a Monte Carlo study. Section 5 conducts FDR-controlling pairwise tests
for output convergence. Section 6 concludes.

2. MODELS AND BACKGROUND

The literature discusses different definitions for output convergence and resulting
tests; see, e.g., Islam (2003) for a survey. We study pairwise output convergence
across countries and work with the time series model of Pesaran (2007a), to whom
we refer for a more detailed exposition of the model. He assumes a common-factor
model for the GDP of country i at time t ,

yit = ci + git + θ′
ift + εit + ηit for i = 1, 2, . . . , n, (1)

where ηit ∼ I (0), but ft and εit could be I (1). His definition of convergence is
based on the idea that for two countries i and j to converge, the output gap dijt =
yit − yjt should not fall outside a prespecified interval C with high probability π ,

Pr
{|yi,t+s − yj,t+s | < C|It

}
> π, (2)

for all s = 1, 2, . . . ,∞, where It is the information set at time t . For (2) to hold,
the GDPs of two countries i and j should cointegrate and cotrend with vectors
(1,−1)′. Pesaran (2007a) demonstrates that this condition can be checked by
testing each output gap for a unit root and a linear trend. The absence of a unit root
then becomes a necessary condition and the additional absence of a linear trend a
sufficient one.

Pesaran tests for a unit root for all possible n(n−1)/2 country pairs. For large n

and T , if no pair converges, the null of no convergence will be rejected for a fraction
of pairs roughly equal to the level α of the individual tests. On the other hand, if
all pairs converge, the fraction of pairs found convergent should tend to 1 for large
n and T . Using Penn World Tables data, he only rejects the null for a fraction
approximately equal to α. Hence, he finds no evidence for overall convergence.
However, his approach does not make it possible to say whether the fraction of
rejections consists entirely of type I errors or possibly does contain some correct
rejections. Unlike Pesaran, through controlling the FDR, we can make statements
about all individual country pairs rather than fractions of rejections.

Other studies using similar time series definitions of convergence also largely
disfavor the overall convergence hypothesis. Bernard and Durlauf (1995) apply
cointegration tests to a panel of 15 OECD countries. They fail to find conver-
gence when testing for the cointegration vector (1,−1)′. Nevertheless they find
cointegration relationships of the form (1,−a)′. This indicates, following their
definition, conditional convergence, a concept less strict than the one employed
here. Pesaran (2007a) shows that this approach can only handle a limited number
of countries simultaneously. Earlier studies using univariate time series techniques
[e.g., Campbell and Mankiw (1989); Quah (1990)] also fail to find evidence for
overall convergence. A problem inherent in their approaches is the choice of
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TABLE 1. Number of decisions made when testing m null hypothe-
ses

Declared Declared
nonsignificant significant Total

True null hypotheses U F m0

Nontrue null hypotheses T S m − m0

m-R R m

a “reference country” to which convergence of the other economies is tested.
Investigating convergence of states within one country, Mello (2011) does find
evidence for convergence for the more homogenous set of U.S. states.

3. CONTROLLING THE FALSE DISCOVERY RATE

The FDR as a desirable measurement of type I errors in multiple testing situations
is introduced by Benjamini and Hochberg (1995). Adapting a notation similar to
Benjamini and Hochberg (1995) and referring to Table 1, there are m = n(n−1)/2
hypotheses to be tested simultaneously, out of which m0 are true. R is an observable
random variable, whereas U, F, S, and T are unobservable random variables. The
proportion of falsely rejected null hypotheses can be described by Q = F/(F+S).
Naturally, if F + S = 0, we take Q = 0. The FDR is then defined as E(Q) =
E[F/(F + S)] = E(F/R).

We now sketch the FDR-controlling procedures from Benjamini and Hochberg
(1995) and Romano et al. (2008a) to be used later. We frequently refer to these as
the BH method and the bootstrap method.

3.1. The BH Method

One first chooses a level γ at which to control the FDR. Let p̂(1) ≤ . . . ≤ p̂(m)

be the sorted p-values and H(1), . . . , H(m) the corresponding null hypotheses. For
1 ≤ j ≤ m, let γj = j

m
γ . Then BH rejects H(1), . . . , H(j∗), where j ∗ is the largest

j such that p̂(j) ≤ γj . If no such j exists, no hypothesis is rejected. This is a
“step-up” method that considers the hypotheses sorted from most significant to
least significant. It begins with the least significant hypothesis, accepts hypotheses
up to a certain point, and rejects the remaining ones. Benjamini and Yekutieli
(2001) show control of the FDR if positive regression dependency holds for the
test statistics used for H1, . . . , Hm. Positive regression dependency describes very
general forms of dependency of random variables. It includes, for example, but
is much broader than and hence not limited to, multivariate normal distributions
with nonnegative correlations, specific absolute-valued multivariate normal, mul-
tivariate gamma, and F distributions. Hence, crucially, the procedure can deal
with the empirically relevant situation that test statistics and p-values are not
independent. The Monte Carlo study in Section 4 shows that the FDR is also
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controlled under plausible assumptions about the data-generating process (DGP)
described in Section 2.

3.2. The Bootstrap Method

The bootstrap method is a step-down rather than a step-up procedure. Assume
without loss of generality that a hypothesis Hi is rejected for large values of its
test statistic Ti . Arrange the test statistics from smallest to largest, i.e., T1 ≤ T2 ≤
. . . ≤ Tm, and let H(1), H(2), . . . , H(m) be the corresponding hypotheses. A step-
down procedure then compares the largest test statistic Tm with a suitable critical
value cm. If Tm < cm the procedure rejects no hypothesis; otherwise it rejects H(m)

and steps down to Tm−1. The procedure continues until it either rejects H(1) or
does not reject the current hypothesis. Hence, a step-down procedure rejects the
hypotheses

H(m),H(m−1), . . . , H(m−j∗),

where j ∗ is the largest integer j satisfying

Tm ≥ cm, Tm−1 ≥ cm−1, . . . , Tm−j ≥ cm−j .

If no such j exists, the method does not reject any hypotheses.
The intuition behind the procedure is as follows. For any step-down procedure

the FDR is

FDR = E

[
F

max {R, 1}
]

=
∑

1≤r≤m

1

r
E[F|R = r]P {R = r}

=
∑

1≤r≤m

1

r
E[F|R = r]

×P (Tm ≥ cm, . . . , Tm−r+1 ≥ cm−r+1, Tm−r < cm−r ) , (3)

where the event Tm−r < cm−r is defined to be true when r = m.
Of course, (3) depends on m0 through the number of falsely rejected hypotheses

F. Because m0 is unknown, one has to ensure that (3) is bounded above by γ for
every possible m0. That is exactly the condition used to recursively determine
the critical values. It is quite straightforward [refer to Romano et al. (2008b) for
details] to show that for m0 = 1, for example, (3) simplifies to

FDR = 1

m
P (T1:1 ≥ c1) ,

where Tr:m0 denotes the rth smallest test statistic of the m0 true hypotheses. Hence,
one can calculate the first critical value from

c1 = inf

{
x ∈ R :

1

m
P (T1:1 ≥ x) ≤ γ

}
.
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If mγ > 1, c1 is set to −∞. The remaining critical values c2, . . . , cm can be found
using further steps of the recursion.

In practice these critical values are not available, because the measure P is
unknown. We therefore approximate P using a bootstrap measure P̂ . Here, P̂ is
to estimate P such that T ∗

j , the bootstrapped test statistic, is a good approximation
of Tj whenever the corresponding null hypothesis is true [Romano et al. (2008a)].
Details on an appropriate bootstrap for the present problem are given in the
Appendix. The key goal is to deal with unit roots under the null and to properly
preserve the dependence structure of the series in order provide valid inference
under correlation.

Note that neither multiple testing approach, unlike Pesaran’s, requires n → ∞
for valid inference. This is useful in and of itself, but also important because the
resampling method we employ (see the Appendix) is only known to be valid for
finite n.

Clearly, the active multiple testing literature has proposed other extensions of
the type I error, such as the familywise error rate (FWER, defined as the probability
of one or more false rejections, a stricter criterion than the FDR), as well as other
FDR- and FWER-controlling procedures. We also studied the procedures of Storey
et al. (2004) and Benjamini et al. (2006). For the latter, we find results very similar
to those to be reported later, whereas Storey et al. (2004) often proved to be too
liberal. Further examples include Storey (2002), Sarkar (2006), and Finner et al.
(2009). We shall focus on the procedures described earlier, as these arguably are
among the most popular ones, but also for brevity.

4. MONTE CARLO STUDY

We now shed some light on the performance of the FDR-controlling techniques
described previously. We compare the procedures with each other and with the
classical approach to hypothesis testing (i.e., rejecting Hi if pi ≤ α). The first per-
formance criterion is the average of the proportion of falsely rejected hypotheses.
This will, as the number of simulations grows, converge to the FDR. The second
criterion is the average number of right rejections divided by the number of false
hypotheses, i.e., convergent pairs, times 100, or “power.” As in Pesaran (2007a),
we use the following DGP:

yit = γift + εit ,

where

ft = ft−1 + vt , vt = ρvvt−1 + et , et ∼ i.i.d. N
(
0, 1 − ρ2

v

)
and

εit = ρiεi,t−1+νit , νit ∼ i.i.d. N
(
0, σ 2

νi

(
1 − ρ2

i

))
, σ 2

νi ∼ i.i.d. uniform[0.5, 1.5],

for i = 1, 2, . . . , n and t = 1, 2, . . . , T . We consider n = 10, and set T = 50,
T = 100, and T = 200.1 When generating the autoregressive processes we start
at t = −49 and discard the first 50 draws. As in Pesaran (2007a), we take ρv = 0.6
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and ρi ∼ i.i.d. uniform[0.2, 0.6]. We only consider one single pool of convergent
countries; i.e., all countries within the pool converge with each other and all others
do not. For all converging pairs we set γi = γj = 1. For all others, γi ∼ i.i.d. χ2

κi
,

where κi is drawn with replacement from integers 1 to 10. We consider three
scenarios:

1. For 3/10 of all countries γi = 1. For n = 10 this amounts to 3 convergent pairs.
2. For 1/2 of all countries γi = 1. For n = 10 this amounts to 10 convergent pairs.
3. For all countries γi ∼ i.i.d. χ 2

κi
. This amounts to no convergent pairs.

When running the ADF unit root test regressions, we use deterministic lag length
choices p = 
5(T /100)1/4�, p = 
6(T /100)1/4�, and p = 
12(T /100)1/4� as
suggested in Schwert (1989). These rules are shown to work well in Demetrescu
et al. (2011). To save computation time, we do not use model selection criteria such
as the AIC here. [Also, Leeb and Pötscher (2008) show that data-driven lag-length
selection may distort subsequent inference, although some unreported simulations
suggest small differences in the present application.] We employ both OLS and
GLS correction for deterministics in the ADF test (for details, see the Appendix),
and consider both the cases of demeaning and detrending. To get accurate finite-
sample p-values, we simulate MacKinnon-type finite sample distributions for both
the OLS and GLS statistics.

Table 2 shows the results for n = 10, so 45 hypotheses are tested and 10
pairs are convergent, i.e., contain no unit root (scenario 2). For all p, as expected,
classical testing severely violates the FDR for both OLS or GLS tests. The multiple
testing procedures control the FDR for sufficiently high p (we even find that all
FDR-controlling procedures also control the FWER). A large number of lags is
plausible for this DGP, as the dijt are sums of AR(1) processes, which generally
follow an ARMA(2, 1) [Granger and Morris (1976)], or AR(∞), process, which
has to be approximated with a large number of lags.2 Moreover, that FDR control
can only be attained for high p is in line with Pesaran (2007a), who finds size
distortions of the individual tests when p < 4. Given the required p for each FDR-
controlling procedure, the bootstrap is most powerful. For the BH method, GLS
yields somewhat higher power. As the power properties of the univariate unit root
tests translate into the multiple testing procedures, their power is unsurprisingly
higher under demeaning than under detrending.

Varying T and the number of false hypotheses leaves the results qualitatively
the same as regards FDR control. Classical testing results in a violation of the
FDR in all scenarios. The main difference for T = 100 and T = 200 is that FDR
control of the BH and bootstrap procedure is only attained for sufficiently large
choices of p, i.e., for the rules p = 
6(T /100)1/4� and p = 
12(T /100)1/4�.
Unsurprisingly, the procedures become more powerful with T .3

The third scenario only considers the “size,” i.e., FDR control of the procedures.
Table 3 reports some results for T = 50 and demeaned tests. We find that both the
bootstrap method and BH control the FDR for sufficiently high p, which is then
equivalent to the FWER.
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TABLE 2. Simulation results

OLS demeaning GLS demeaning OLS detrending GLS detrending

FDR FDR FDR FDR
×100 Power ×100 Power ×100 Power ×100 Power

T = 50
p = 4
Classical 15.8 51.0 17.2 49.4 20.7 32.3 20.8 30.2
BH 5.1 8.7 6.4 10.8 3.0 2.1 2.8 2.1
Bootstrap 4.5 9.9 4.8 9.8 3.7 3.7 3.1 3.5
p = 5
Classical 17.5 42.4 18.3 42.4 22.7 25.8 22.4 23.8
BH 4.7 5.6 6.4 7.7 2.1 1.5 2.5 1.5
Bootstrap 3.9 6.5 2.8 5.9 2.4 2.1 2.5 2.1
p = 10
Classical 21.6 15.9 23.2 17.3 24.8 7.7 27.7 8.1
BH 2.9 0.7 5.0 1.5 1.1 0.2 1.9 0.3
Bootstrap 7.8 1.1 0.9 0.8 1.1 0.2 1.3 0.2

T = 100
p = 5
Classical 11.4 92.5 12.7 70.3 14.5 76.8 15.6 69.0
BH 7.4 61.6 7.6 41.0 6.4 28.7 7.1 22.2
Bootstrap 6.7 65.5 7.7 44.2 7.5 37.2 8.0 28.7
p = 6
Classical 11.1 84.8 12.7 62.8 13.7 65.4 14.6 57.6
BH 6.6 41.2 6.9 28.6 4.4 14.6 4.7 12.0
Bootstrap 6.8 46.9 5.0 30.3 5.5 22.5 5.4 16.9
p = 12
Classical 11.1 42.5 15.2 31.5 15.8 2.3 17.8 18.5
BH 2.2 4.9 4.8 4.4 0.6 1.1 1.6 0.8
Bootstrap 1.5 5.5 1.1 3.2 1.3 2.2 1.3 1.1

T = 200
p = 5
Classical 11.6 100.0 12.2 86.8 13.3 99.9 13.7 95.1
BH 7.6 99.9 7.4 70.9 8.8 98.7 8.5 84.4
Bootstrap 8.8 99.9 8.6 74.4 10.2 99.3 9.8 87.2
p = 7
Classical 10.1 99.8 11.1 75.4 13.0 98.9 13.5 8.9
BH 6.0 97.9 6.5 54.4 7.6 89.2 7.5 62.5
Bootstrap 7.4 98.9 7.1 58.2 9.3 93.6 8.5 68.0
p = 14
Classical 7.7 87.7 11.5 45.0 9.4 66.6 11.2 43.5
BH 3.2 42.2 3.9 17.4 2.0 14.8 2.0 6.5
Bootstrap 4.1 55.2 3.9 19.9 2.9 24.8 2.5 9.7

Note: Monte Carlo results for the DGP from Section 4, with 1,000 replications. Power is defined as the number
of right rejections divided by the number of false hypotheses, i.e., convergent pairs, times 100. Tests were
conducted for α = γ = 0.05. p is chosen according to the rules p = 
5(T /100)1/4�, p = 
6(T /100)1/4�, and
p = 
12(T /100)1/4�. The FDR-controlling procedures applied are described in Section 3. The bootstrap method
uses 500 resamples.
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TABLE 3. Size study: For all i, γi ∼ i.i.d. χ2(κi) (κi is drawn with replace-
ment from the integers 1 to 10), hence no pair converges

OLS demeaning GLS demeaning

p = 4 p = 5 p = 10 p = 4 p = 5 p = 10

Classical 0.509 0.455 0.366 0.540 0.494 0.402
BH 0.047 0.037 0.027 0.072 0.039 0.036
Bootstrap 0.067 0.049 0.027 0.079 0.039 0.018

Note: The FDR is equivalent to the FWER in this size study. Thus, the procedures also control the FWER
whenever they control the FDR at the indicated levels. We set T = 50 and n = 10, so there are 45 hypothesis
tests to conduct, of which no hypothesis is false. See also notes to Table 2.

5. OUTPUT CONVERGENCE REVISITED

We now employ the FDR-controlling techniques described in Section 3 to a data set
of n = 51 countries ranging from 1950 to 2003, so T = 54. The resulting number
of different country pairs of output gap series dijt is 1,275. The data is from the
Penn World Tables, Version 6.2 [Heston et al. (2006)] and includes all countries
for which data on per capita output were available for the indicated time span,
cf. Table 4. We apply standard ADF tests and ADF-GLS tests to dijt . We choose
the lag length p according to p = 
5(T /100)1/4� and p = 
6(T /100)1/4�, as those
yielded the largest number of right rejections although still controlling the FDR
for the bootstrap procedure when T = 50, which is close to the actual T . For the
present data this results in p = 4 and p = 5. (Results are similar for other choices
of p.) We additionally select p with the modified AIC criterion of Ng and Perron
(2001). An explorative data analysis shows that nearly all output gap series show a
trending pattern. Therefore, we include time trends in the unit root tests, also fol-
lowing Pesaran (2007a). Critical values and p-values are adjusted to sample size.

Table 5 shows the results of the pairwise convergence tests. We corroborate the
results of Pesaran (2007a) that the null of no convergence is only rejected for a
fraction of pairs less than or equal to the individual significance level of the tests.
This result is robust over all selection procedures for p, with the MAIC finding
fewer rejections than the rules of thumb. It may be surprising that OLS rejects more

TABLE 4. Countries included

Argentina Costa Rica Honduras Luxembourg Norway Sri Lanka United States
Australia Denmark Iceland Mauritius Pakistan Sweden Uruguay
Austria Egypt India Mexico Panama Switzerland Venezuela
Belgium El Salvador Ireland Morocco Peru Thailand
Bolivia Ethiopia Israel Netherlands Philippines Trinidad & Tobago
Brazil Finland Italy New Zealand Portugal Turkey
Canada France Japan Nicaragua South Africa Uganda
Colombia Guatemala Kenya Nigeria Spain United Kingdom
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TABLE 5. Pairwise tests for output convergence

OLS detrending GLS detrending

# pairs % of pairs # pairs % of pairs

p = 4
α = γ = 0.01
Classical approach 2 0.16 3 0.24
BH 0 0 0 0
Bootstrap 0 0 0 0
α = γ = 0.05
Classical approach 40 3.13 23 1.80
BH 0 0 0 0
Bootstrap 0 0 0 0
α = γ = 0.1
Classical approach 83 6.51 47 3.68
BH 0 0 0 0
Bootstrap 0 0 0 0

p = 5
α = γ = 0.01
Classical approach 10 0.78 8 0.63
BH 0 0 0 0
Bootstrap 0 0 0 0
α = γ = 0.05
Classical approach 45 3.53 39 3.06
BH 0 0 0 0
Bootstrap 0 0 0 0
α = γ = 0.1
Classical approach 96 7.53 73 5.49
BH 0 0 0 0
Bootstrap 0 0 0 0

p(MAIC)

α = γ = 0.01
Classical approach 9 0.71 0 0
BH 0 0 0 0
Bootstrap 0 0 0 0
α = γ = 0.05
Classical approach 40 3.13 9 0.71
BH 0 0 0 0
Bootstrap 0 0 0 0
α = γ = 0.1
Classical approach 83 6.51 27 2.12
BH 0 0 0 0
Bootstrap 0 0 0 0

Note: “# pairs” shows the number of country pairs for which the null of a unit root is rejected. “% of
pairs” shows the proportion of rejected pairs compared to the total number of pairs. The procedures are
described in Section 3. We use 5,000 bootstrap resamples.
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frequently than the GLS-based test, as some conventional wisdom has it that the
latter is more powerful. However, Müller and Elliott (2003) show that the power
ranking reverses when the process under investigation has a large initial condition,
i.e., is far away from the deterministic part of the series at the beginning of the
sample. The present results suggest this is the case for many output gap series.
This is intuitive, as large deviations from the output gap at the beginning of the
sample are quite plausible for many country pairs, in particular when developing
countries are considered.

When we account for the multiplicity of tests performed, for no level γ do we
find any rejection of the null; this also holds in particular for the most powerful
FDR-controlling procedure, the bootstrap method using either OLS or GLS de-
trending.4 This also implies that all rejections found with classical testing are to
be attributed to multiple type I errors, not convergence. This possibly surprising
finding clarifies the results in Pesaran (2007a). His approach does not address
whether rejection of the null for some individual pairs might be an indication of
“true convergence.” From finding no converging pairs when employing a suitable
testing framework for individual tests (rather than for fractions of rejections), the
confidence in Pesaran’s no time series–convergence finding is strengthened.5

Some authors argue that many time series encountered in international macroe-
conomics are better described by nonlinearly adjusting processes under H1; see,
e.g., Kim and Moh (2010) or Norman (2010) for recent applications to real ex-
change rates, and Chong et al. (2008) and Ucar and Omay (2009) for studies
investigating the present topic of income convergence. Linear ADF-type tests are
potentially less powerful against such deviations from the null hypothesis. We
therefore also test for income convergence using the nonlinear unit root test of
Kapetanios et al. (2003), again controlling the FDR using the BH and bootstrap
method. We again use detrended series. Our results are, however, qualitatively
very similar to those reported previously. Specifically, the bootstrap method still
identifies no pair to be convergent, whereas the BH method finds 0, 1, and 1
converging pairs at γ = 0.01, γ = 0.05, γ = 0.10 for p = 4, and 0, 3, and
13 converging pairs for p = 5. Hence, evidence of stationary output gaps is still
very weak at best, with at most 1% (≈ 100 × 13/1,275) of the pairs found to be
convergent. We therefore view our results as robust to the presence of possibly
nonlinear adjustment to output gaps.

We stress that convergence was tested using a strict definition [Islam (2003)].
Hence, our findings should not be read as ruling out convergence, using for example
conditional definitions, nor do we make any statements about convergence of
single countries to a steady state output. We do claim that the data do not support
the notion of convergence across economies, using a time series definition with
the necessary condition of no unit root in the log per capita output gap of two
economies. Clearly, several factors contribute to this finding. On one hand, output
gaps may simply not converge, according to the present notion employed. On the
other hand, the procedures used here may not be able to detect the convergent pairs,
i.e., lack power. As shown in Section 4, the procedures are indeed only capable of
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identifying a fraction of the stationary series. This is because the multiple testing
procedures inevitably inherit the often weak power properties of the underlying
unit root tests. That said, Section 4 does reveal the procedures to be capable of
finding at least some stationary series when they are present in the panel under
study, and the fact that none are found in this section casts substantial doubt on
the prevalence of the convergence notion used here for the data investigated.

Before concluding, we remark (we thank an anonymous referee for raising
this point) that it may prove valuable to exploit the logical dependence structure
among the hypotheses in other applications. Concretely, suppose we had found that
y1,t −y2,t ∼ I (0) and y1,t −y3,t ∼ I (0). This implies that y2,t −y3,t ∼ I (0), so that
conducting the third test is redundant. Hence, the total number of comparisons to be
performed can be reduced, with potential advantages for the power of the multiple
testing procedures. Some progress in this direction might be achieved by extending
results from Shaffer (1986). She considers modifying further rounds of the Holm
(1979) procedure for comparing n means to remove redundant hypotheses after an
initial rejection has been found. This is not an issue for the present application, as
we do not find an initial rejection. It is hence—and also because extending her idea
would likely be challenging to our case of more than 1,000 tests—beyond the scope
of the present paper. We believe, however, that it does deserve further attention.

6. CONCLUSION

This paper highlights the importance of accounting for the multiplicity of tests
performed when testing for output convergence. Multiplicity control was achieved
by controlling the expected fraction of erroneously rejected hypotheses to the total
number of rejections, i.e., the FDR. Among others, this was done using a bootstrap
approach that takes the dependence structure of the test statistics into account and
thus has high power. We investigate cross-country convergence using pairwise unit-
root tests. Controlling the FDR, we find no evidence of this type of convergence.
This strengthens the results of Pesaran (2007a), whose framework considers only
the fraction of rejected pairs and is not concerned with single-country pairs.

There are more literatures in applied econometrics where accounting for mul-
tiplicity is important. For example, some forecasting exercises involve a large
number of candidate explanatory variables. Relatedly, Lim and Brooks (2010)
compare deviations from the random walk benchmark of stock indices from many
countries. As we have shown in our application, classical significance tests pro-
duce a non-negligible number of hypothesis tests that appear to be only spuriously
significant because of the large number of tests performed. Thus, the techniques
studied here may prove fruitful in many other literatures.

NOTES

1. Because of the large computation time required to find the bootstrap critical values in the
Algorithm from the Appendix we only conduct limited experiments for larger n, for which we find
a qualitatively similar pattern. Results are available upon request. Note, however, that the empirical
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application of Section 5, for which n = 51 and hence n(n − 1)/2 = 1,275, runs in a few minutes
on a standard PC and hence does not suffer from a serious curse of dimensionality. We moreover
experimented with a version of Pesaran’s DGP in which the common factor is stationary and the factor
loadings γi are heterogeneous. Detailed results, which were qualitatively similar, are available.

2. As unreported but available in a results document, choosing a lower p resulted in some upward
size distortion.

3. Results for scenario 1 are available upon request.
4. Like Pesaran (2007a), we also perform analogous exercises for subgroups such as European or

American countries. Again, our findings coincide with his in that we do not find individual converging
country pairs.

5. As we have shown in the Monte Carlo study, we also control the FWER at γ . Hence, the
probability of even a single false rejection is bounded by γ .

6. Some exploratory simulations suggested a similar performance as for the procedure described
below, provided certain block lengths were used. We here advocate the sieve in view of well-established
guidelines to choose p in practice.
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APPENDIX: BOOTSTRAP PROCEDURES
Previous applications of the Romano et al. (2008a) approach tested stationary variables. We
now describe how to extend their approach to the present testing problem on nonstationary
time series. We apply the following semiparametric sieve bootstrap unit root test procedure
developed in Smeekes (in press). Other resampling schemes that properly mimic the null
distribution of the unit root tests statistics, such as the block bootstrap [see, e.g., Paparoditis
and Politis (2003)] may be used here, too.6

1. Calculate the output gap dijt = yit −yjt for each country pair, i.e., for i = 1, . . . , n−1,
j = 2, . . . , n, and t = 1, . . . , T . Do the next steps simultaneously for all i =
1, . . . , n − 1 and j = 2, . . . , n.

2. Following Pesaran (2007a), detrend the output gap dijt . We consider two detrending

schemes. One is to calculate dd
ij t = dijt − φ̂

′
zt , where zt = (1, t)′. Here, φ̂ is the

usual OLS estimator, φ̂ = (
∑T

t=1 ztz
′
t )

−1× (
∑T

t=1 zt dij t ). We also consider GLS
detrending. Elliott et al. (1996) show that GLS detrending may result in higher power
of the ADF test against local alternatives of the form ρ = 1 + c̄T −1. Let z1c̄ = z1

and zt c̄ = zt − (1 + c̄T −1)zt−1 for t = 1, 2, . . . , T . Likewise, define dij1c̄ = dij1 and
dijt c̄ = dijt − (1 + c̄T −1)dij,t−1 for t = 1, 2, . . . , T . Then the other is to calculate

φ̂c̄ =
(

T∑
t=1

zt c̄z
′
t c̄

)−1 (
T∑

t=1

zt c̄dij t c̄

)
.

Finally, we obtain dd
ij t = dijt − φ̂

′
c̄zt .

3. Estimate an ADF regression of order p for dd
ij t and calculate the residuals as

ε̂ij t = �dd
ijt − α̂dd

ij,t−1 −
p∑

j=1

ψ̂j�dd
ij,t−j .

If the estimated AR process is explosive, we impose a root bound as in Burridge and
Taylor (2004). Demean the residuals, ε̃ij t = ε̂ij t − 1

n−p−1

∑
t ε̂ij t . Also calculate the

ADF statistic tα̂ and ADF−1 = (−1)tα̂ , in order to reject for large values as assumed
in the derivation of critical values (following).

4. Resample ε̃ij t nonparametrically with replacement to obtain the bootstrap residuals
ε∗
ij t . Here, the ε̃ij t are resampled jointly across country pairs in order to suitably

preserve the cross-sectionality in the panel.
5. Build u∗

ij t recursively as u∗
ij t = ∑p

j=1 ψ̂ju
∗
ij,t−j + ε∗

ij t . Then build d∗
ij t = d∗

ij,t−1 +u∗
ij t .

[Following Smeekes (in press), we do not add deterministic components to the
bootstrapped series, for simplicity.]

6. Detrend d∗
ij t as in step 2 to obtain dd∗

ij t .
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7. Estimate by OLS the ADF regression

�dd∗
ij t = α̂∗dd∗

ij,t−1 +
p∑

j=1

ψ̂j�dd∗
ij,t−j + ε̂∗

ij t

and calculate the ADF test statistic for α̂∗ and ADF∗
−1. Repeat steps 2–7 B times.

8. Given P̂ , the critical values are defined recursively as follows: Having determined
ĉ1, . . . , ĉj−1, the j th critical value is determined using the minimization rule [Romano
et al. (2008a)]:

ĉj = inf

{
c ∈ R :

∑
m−j+1≤r≤m

r − m + j

r

× P̂
(
T ∗

j :j ≥ c, . . . , T ∗
m−r+1:j ≥ ĉm−r+1, T

∗
m−r:j < ĉm−r

) ≤ γ

}
. (A.1)

Note the meaning of T ∗
r:t . The index t stems from the ordering of the original test

statistics, whereas r corresponds to the bootstrapped test statistics. So T ∗
r:t says: Out

of the t smallest original test statistics, pick the rth smallest of the corresponding
bootstrap test statistics.

9. Apply the rule (A.1) with m = n(n−1)/2 and ADF∗
−1 to calculate the critical values.

10. Use the critical values from (8) and compare them to ADF−1 from (3) using the
procedure (A.1).

The bootstrap method is consistent, i.e., satisfies lim supT →∞ FDR � α under a set of weak
conditions [see Romano et al. (2008a, Theorem 1)]. These are (i) continuous marginal
distributions of the test statistics, (ii) connected support of the joint distribution of the test
statistic, (iii) test statistics forming an exchangeable sequence, (iv) availability of consistent
estimators of the standard errors of coefficient estimators, e.g., α̂, and (v) weak convergence
of bootstrap distributions to the true one as T → ∞. We do not provide a formal proof of the
validity of these conditions in the present application. However, some heuristics are useful.
Conditions (i) and (iv) are well known to hold in the unit root literature [Phillips (1987)],
whereas (ii) is a regularity condition [see Romano et al. (2008a, Remark 6)]. Pesaran
(2007b) shows (iii) to hold in a very similar panel unit root–testing framework. Bootstrap
consistency results for nonstationary panels (v) follows from extending the univariate setup
of Smeekes (in press) to the joint distribution of the m test statistics along the lines of,
e.g., Chang (2004) and Palm et al. (2011), who provide bootstrap panel consistency results
for the sieve and block bootstrap, respectively.
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