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SUMMARY

This paper is organized in two parts. In Part I, the wrench
polytope concept is presented and wrench performance
indices are introduced for planar parallel manipulators
(PPMs). In Part II, the concept of wrench capabilities
is extended to redundant manipulators and the wrench
workspace of different PPMs is analyzed. The end-effector
of a PPM is subject to the interaction of forces and moments.
Wrench capabilities represent the maximum forces and
moments that can be applied or sustained by the manipulator.
The wrench capabilities of PPMs are determined by a linear
mapping of the actuator output capabilities from the joint
space to the task space. The analysis is based upon properly
adjusting the actuator outputs to their extreme capabilities.
The linear mapping results in a wrench polytope. It is shown
that for non-redundant PPMs, one actuator output capability
constrains the maximum wrench that can be applied (or
sustained) with a plane in the wrench space yielding a
facet of the polytope. Herein, the determination of wrench
performance indices is presented without the expensive task
of generating polytopes. Six study cases are presented and
performance indices are derived for each study case.

KEYWORDS: force/moment capabilities; planar parallel
manipulators; polytopes; wrench performance indices; screw
theory.

1. Introduction

1.1. Instantaneous twist and wrench capabilities
The instantaneous twist and wrench capability analyses
are essential for the design and performance evaluation of
serial and parallel manipulators. An instantaneous twist is a
screw quantity that contains both angular and translational
velocities of the end-effector; whereas, a wrench is a screw
quantity that contains the forces and moments acting on the
end-effector. For a given pose, the end-effector is required
to move with a desired twist and to sustain (or apply) a
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specified wrench. Thus, the information of the joint velocities
and joint torques that will produce such conditions could
be investigated. These studies are referred to as the inverse
velocity and static force problems and are described in
Appendix A. In addition, an extended problem can be
formulated as the analysis of the maximum twist or wrench
that the end-effector can perform in the twist or wrench
spaces, respectively. The knowledge of maximum twist and
wrench capabilities is an important tool for achieving the
optimum design of manipulators. In Part I of this paper, the
wrench capabilities are analyzed for a specific manipulator
pose and wrench performance indices are derived. In Part II,
this analysis is extended to the overall workspace of the
manipulator and is represented with plots of force and
moment capabilities. By being able to graphically visualize
the twist and wrench capabilities, comparisons between
different design parameters, such as the actuator torque
capabilities and the dimensions of the links, can be explored.
Also, the performance of an existing manipulator can be
improved by identifying the optimal capabilities based on
the configuration of the branches and the pose of the end-
effector.

This work focuses on the wrench capabilities of planar
parallel manipulators (PPMs), the geometric interpretation
of their wrench polytopes, the derivation of wrench
performance indices, and how the inclusion of redundancy
affects the performance of PPMs.

The wrench capability analysis of a manipulator depends
on its design, posture, and actuator torque capabilities. To
date, the study of wrench capabilities has been approached
in three different forms: constrained optimization, wrench
ellipsoids, and wrench polytopes.

1.2. Constrained optimization
Early works on wrench capabilities dealt with the problem
of force distribution of two serial manipulators handling a
common payload. Zheng and Luh1 developed an algorithm
that incorporates maximum torque capabilities. Two analyses
were presented. The first analysis ensured that the forces
applied by the branches were in the same direction as the
required force. The second analysis ensured that the load
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792 Wrench capabilities of planar parallel manipulators-part I

was evenly distributed between the two serial arms. Kumar
and Waldron2 investigated force distribution in redundantly-
actuated closed-loop kinematic chains and concluded that
there would be zero internal forces using the Moore–
Penrose pseudo-inverse solution. Tao and Luh3 developed
an algorithm that determines the minimum torque required
to sustain a common load between two joint-redundant
cooperating manipulators. Nahon and Angeles4 described
the problem of a hand grasping an object as a redundantly-
actuated kinematic chain. The problem was formulated with
both equality and inequality constraints and the torques
were found by minimizing the internal forces in the
system using Quadratic Programming (QP). Kwon and Lee5

modelled the joint torque limits and the exerting force of
each cooperating manipulator as quadratic constraints. This
allowed them to implement the dual method, which is based
on combining nonlinear programming with QP, resulting in
a more efficient algorithm than the one proposed by Nahon
and Angeles.4 Buttolo and Hannaford6 analyzed the force
capabilities of a redundant PPM. Torques were optimized
using the ∞-norm resulting in higher force capabilities when
compared to the pseudo-inverse solution. Nokleby et al.7

developed a methodology to optimize the force capabilities
of redundantly-actuated PPMs using an n-norm, for large
values of n, and a scaling factor. Garg et al.8 implemented
this approach to spatial parallel manipulators.

The wrench of a PPM is referred to as the two components
of the forces on the plane (fx and fy) and the moment normal
to the plane (mz). Finding the wrench capabilities of a planar
manipulator as a constrained optimization problem is subject
to the forward static force equation and the actuator output
capabilities, i.e.,

maximizef or maximize mz (1)

subject to:
[$′D]τ = F

τimin ≤ τi ≤ τimax

(2)

where [$′D] is a known numerical matrix defined by the
geometry and the pose of the manipulator (details of its
formulation can be found in Appendix A). This matrix
is also referred to in the literature as [J]-T, with [J]
being the kinematic Jacobian matrix. The output wrench
for the planar case is denoted as F = {fx, fy ; mz}T =
{f cos α, f sin α; mz}T, with f and α defining the magnitude
and direction of the vector force, and τ is the vector of
actuator torques. The actuator torque of the ith branch is
defined as τi ; this torque is bounded by the actuator output
capabilities, i.e., τimax and τimin , referred to as extremes. In
general, a revolute actuator provides the same torque in both
directions, i.e., |τimin | = |τimax |.

The optimization approach is usually computationally
expensive and may not yield the correct solution because
the optimization algorithm may encounter a local minimum
rather than the desired global minimum due to the non-linear
nature of the problem.

1.3. Wrench ellipsoid
For serial manipulators, Yoshikawa9,10 introduced manip-
ulability measurements which quantify the twist and wrench

capabilities of the end-effector. Let the actuator torque vector
be bounded by a unit hypersphere in the joint force space,
i.e.,

τ Tτ ≤ 1 (3)

Then, since

τ = [J]TF

a mapping of the task wrench space is derived as follows

FT[J][J]TF ≤ 1 (4)

The above equation is the representation of the manipulating-
force (wrench) ellipsoid. A similar analysis can be carried out
to find the manipulability (twist) ellipsoid.

Assuming the singular value decomposition (SVD) of [J]
yields

[J] = [U][�][V]T = [U]

[
S 0

0 0

]
[V]T (5)

where [U] ∈ �n×n and [V] ∈ �m×m are orthogonal matrices,
[�] ∈ �n×m, and [S] = diag(σ1, σ2, . . . , σn) is a diagonal
matrix that contains the singular values in decreasing
magnitude or numerical order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.
The principal axes of the wrench ellipsoid are given by u1/σ1,
u2/σ2, . . . , and un/σn; where ui , the ith column of matrix
[U], and 1/σi define the direction and magnitude of the ith

principal axis, respectively.
For cooperating manipulators, Chiacchio et al.11 presented

a complete analysis of wrench ellipsoids for multiple-arm
systems, which involves external and internal forces. Lee
and Kim12 (velocity problem) and Chiacchio et al.13,14

(static force problem) proposed to normalize the joint space
variables (joint velocities and joint torques, respectively)
when the actuators do not produce the same output. As a
result, the resulting ellipsoid is defined as the pre-image of
the unit sphere in the scaled joint variable space.

The concept of manipulability has also been extended to
manipulator dynamics, where the acceleration ellipsoid has
been investigated.15,16

Nevertheless, the ellipsoid approach presents an important
drawback due to an improper use of the Euclidean metric
in the wrench and twist screw spaces.17 Any change of the
scale, physical units, or reference frame will affect quantities
derived from the Jacobian matrix. Doty et al.18 showed that
even though Eq. (4) has consistent units, the characterizing
matrix [J][J]T is ill defined because it is not invariant to
the selection of origin or scaling. Therefore, any quantity
resulting from the orthogonal complements of Eq. (5)
will produce incongruent results. Doty et al.18 proposed a
manipulability measure that is invariant to reference frame
transformations and scaling. Melchiorri19 presented some
examples where the implementation of the wrench ellipsoid
approach fails when applied to cooperating manipulators
with less than 6-DOF (degree-of-freedom) per cooperating
branch. Bicchi et al. addressed the twist ellipsoid problem20
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Fig. 1. Mapping of ellipsoids and polytopes from the joint space to the task space.

and the wrench ellipsoid problem21 to general cooperating
manipulators with an arbitrary number of joints per branch.

1.4. Wrench polytope
The feasible region in �m of joint velocities/torques may
be modeled with either the Euclidean norm yielding a
hypersphere using the ellipsoid approach or with the ∞-norm
yielding a hypercube using the polytope approach. Kokkinis
and Paden22 introduced the concept of twist and wrench
convex polytopes. The analysis was applied to a single serial
manipulator and to two cooperating manipulators, and led
to an accurate representation of the actuator constraints.
Polytopes are an exact representation of the joint capabilities
in the task space (�n). Polytopes are generated by mapping
the range of joint velocities/torques (hypercubes, polytopes
themselves) to the twist/wrench space by means of the
Jacobian matrix. Thus, a polytope results from a linear
transformation from a hypercube, while an ellipsoid results
from the same linear transformation of a hypersphere.

The volume defined by either the ellipsoid or the polytope
represents feasible twists or wrenches. This is, a vector from
the origin of the twist/wrench space to the surface of the
ellipsoid or polytope represents the maximum twist/wrench
that can be reached. Nevertheless, the difference between
the two approaches is that the hypersphere is fully inscribed
within the hypercube; consequently, the ellipsoid is fully
inscribed within the polytope. Thus, the region of the
polytope that is not contained by the ellipsoid may be seen
as unreachable. Therefore, if the objective is to maximize the
twist or wrench capabilities, the model of joint velocities and
torque limits is better represented by a hypercube (polytope
approach) than by a hypersphere (ellipsoid approach).

A comparison between the ellipsoid and polytope
approaches is shown in Fig. 1. Assume a manipulator with
two actuated revolute joints whose extreme capabilities are
τiext

= ±1 Nm, for i = 1, 2. Figure 1a shows the generation
of an ellipse (in general, an ellipsoid) as a result of mapping
a circle (hypersphere). Figure 1b shows the generation
of a polygon (polytope) as a result of mapping a square
(hypercube). Each plot contains two coordinate systems. The
inner circle of Fig. 1a and the inner square of Fig. 1b describe

the torque limits in the torque space (bottom and left axes);
whereas, the outer ellipse and polygon describe the wrench
capabilities in the wrench space (top and right axes). The
lines that connect the inner to the outer shapes illustrate the
linear transformation. Note how the edges and vertices of the
square and polygon correspond in both spaces.

The areas comprised by these geometrical shapes represent
the feasible capabilities in their corresponding spaces. The
square is an exact representation of the torque capabilities;
while, the circle is an approximation. For example, the upper-
right vertex of the square is τ1 = τ2 = 1 [Nm]; although this
torque combination is feasible, the circle does not include it.
Thus, modeling the torque capabilities as a square is better
than as a circle. Figure 1c shows how the circle and ellipse
are inscribed within the square and polygon, respectively. It
is important to mention that the principal axes of the ellipse
are directed toward the vertices of the polygon.

A polytope is a convex region, i.e., any two points inside
the polytope can be connected by a line that completely fits
inside the polytope. An n-dimensional convex polytope is
bounded by (n − 1)-dimensional facets or hyperplanes, e.g.,
linear edges in �2 bounding a polygon or planar facets in �3

bounding a polyhedron. Finding the vertices of the polytope
can be computationally expensive. Bicchi et al.20 presented
an algorithm that involves slack variables that transform the
inequality constraints of the actuator limits into equality
constraints. Lee23 proposed a method for determining the
vertices of twist polytopes using vector algebra. Hwang
et al.24 developed an algorithm that generates the twist
polytope of redundant serial manipulators.

Further studies on kinetostatic polytopes have been made.
Chiacchio et al.13,14 analyzed the wrench polytopes of
redundant serial manipulators. Finotello et al.25 introduced
two sets of indices that can be implemented to twist and
wrench polytopes: the maximum isotropic value (MIV) and
the maximum available value (MAV). These indices will
be discussed in detail in Section 3. For 6-DOF manipulators,
Finotello et al.25 proposed to analyze these indices with force
and moment as separate entities.

Gallina26 analyzed the manipulability of a 3-DOF wire
driven planar haptic device using polytopes. Lee and Shim27

expanded the concept to dynamic manipulability of multiple
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cooperating manipulators resulting in acceleration polytopes.
Krut et al.28 analyzed twist ellipsoids and polytopes in
redundant parallel manipulators and established performance
indices. They showed that there is another ellipsoid, besides
the one derived with SVD, which is larger in volume and is
fully inscribed within the polytope. Krut et al.29 also studied
force performance indices of redundant parallel manipulators
and determined the isotropic wrench workspaces of planar
wire-driven manipulators with multiple actuated limbs.

2. Wrench Polytope Analysis

The differences between the ellipsoid and the polytope
approaches can be summarized with two arguments. First,
a polytope represents the exact mapping of the joint
capabilities in the wrench or twist space, while the ellipsoid
approach only provides an approximation of such mapping.
Furthermore, the ellipsoid approach is more susceptible to
errors when implemented on redundantly actuated parallel
manipulators, as shown by Krut et al.28 Second, the ellipsoid
approach can be implemented easily and the required
computation is immediate, while the polytope approach may
be considered less efficient because it requires two steps:
determination of potential vertices and the construction of
the polytope. The vertices are formed from a set of potential
vertices which can be internal or external points, the latter
being the vertices of the polytope.

Most of the papers that have dealt with wrench or
twist polytopes have usually attempted to improve the
computational efficiency of the construction of convex
polytopes. In this paper, it is shown that the determination of
wrench performance indices using the polytope approach is
actually very efficient because they can be determined with
the knowledge of potential vertices, and no construction of
the polytope is required.

Let n be the DOF of the task space coordinates and m be the
number of actuated joints. The ith joint torque variable, which
is bounded by τimin and τimax , can be represented in the joint
torque space as two parallel planes in �m. With m joints, there
are 2m planes or m pairs of parallel planes. The combination
of all the parallel planes that constrain the joint torque limits
form an m-dimensional parallelepiped. If all the torque limits
were equal, the m-dimensional parallelepiped would result
in a hypercube. If the magnitude of the extreme torques
were equal, the parallelepiped would be centro-symmetric;
otherwise, skewed.

For example, assume three actuators, i.e., m = 3. Each
actuator torque defines an axis in �3. The extremes of each
torque constrain the torque space with a pair of parallel
planes. The feasible region of the actuator torques is bounded
by the three pairs of parallel planes, i.e., a three-dimensional
parallelepiped. If the torque magnitudes and extremes were
equal a centro-symmetric cube would result.

The vertices are generated with the intersection of m

extreme torque planes, one for each actuator. The total
combination of m intersecting extreme torque planes yields
the number of vertices. In general, vertices are formed as a
combination of the extreme values, i.e.,

νi = [
τ1ext

τ2ext
. . . τmext

]T
(6)

where τiext denotes the extreme capabilities of the ith actuator,
i.e., τimin or τimax . Thus, the total number of vertices in the
m-dimensional parallelepiped14 is νTm

= 2m. For the case
when m = 3, there are νTm

= 23 = 8 vertices.
A linear transformation, such as the equation of the

forward static force in Eq. (27), maps vector τ from �m

(joint torque space) to �n (wrench space). Rockafellar30

studied the properties of convex polyhedral sets. From his
analysis, the following relationship is held through a linear
transformation: Let C be the m-dimensional parallelepiped
(a convex set) and [$′D] be the linear transformation from
�m to �n. Then the resulting transformation [$′D]C leads to
another convex polyhedral set in �n and it contains a finite
number of facets.

Visvanathan and Milor31 investigated the problems in
analog integrated circuits while accounting for the tolerance
variations of the principal process parameters. The problem
involved the mapping of a parallelepiped under a linear
transformation. Their mathematical formulation is similar to
the one used for analyzing wrench capabilities in this work.

Assume a parallelepiped in �m centered at the origin
of the torque space and let the coordinates of its vertices
be νi , i = 1, . . . , 2m. Under a matrix transformation [$′D]
from �m to �n, the m-dimensional parallelepiped becomes a
centro-symmetric31 polytope P . Thus, P can be completely
characterized by mapping all the vertices and enclosing them
in a convex hull, i.e.,

P = convh{[$′D]νi, i = 1, . . . , 2m} (7)

where “convh” denotes a convex hull operator which encloses
all the extreme points (or vertices of the polytope) forming
the feasible region of the torque space in the wrench space. A
closed bounded convex set is the convex hull of its extreme
points.30

The total number of vertices in the polytope, νTn
, will

depend on the dimension of the two spaces. If n = m, the
number of vertices in the polytope equals the number of
vertices in the m-dimensional parallelepiped, i.e., νTn

= νTm
.

This similarity is given by the linear transformation between
the two spaces. Thus, vertices, edges, and facets of the
polytope are the corresponding image of the vertices, edges,
and facets of the m-dimensional parallelepiped, respectively,
i.e.,

pi = [$′D]νi (8)

for i = 1, . . . , 2m, where pi and νi are the vertices of the
polytope and parallelepiped, respectively.

If n < m, as in a redundantly actuated manipulator, then
νTn

< νTm
. In this case, the vertices of the polytope are

formed with the mapping of some of the vertices of the
m-dimensional parallelepiped, i.e.,

pj ⊂ [$′D]νi (9)

with j < i. The points that do not form the vertices of the
polytope are internal points in P . The characteristics of these
internal points are considered in Part II of this work.

The generation of a polytope through a convex hull
has been studied thoroughly in the field of computational
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geometry and the goal has been to make a more efficient
algorithm. Chand and Kapur32 proposed the so-called gift
wrapping algorithm, where the facets of a polytope are found
by determining the angles between one vertex and the rest of
the points. The minimum and maximum angles correspond to
the hyperplanes passing through that point. Visvanathan and
Milor31 proposed an algorithm that searches in the directions
that are orthogonal to each of the known hyperplanes. New
vertices and hyperplanes are formed and the process is
repeated. Hwang et al.24 developed a recursive algorithm
that removes all the internal points when first encountered.
Hwang et al. also showed that even though the number of
potential vertices grows exponentially (2m), the number of
external points increases linearly. The scope of this paper
is not to develop a new algorithm for determining polytope
facets, although some of the concepts that will be described
in this work may be used to generate an even more efficient
algorithm.

3. Wrench Performance

3.1. Methodology
In order to analyze the wrench capabilities of PPMs,
Zibil et al.33 proposed four study cases and elaborated a
methodology to explicitly identify wrench capabilities. The
methodology was based upon properly adjusting the actuator
outputs to their extreme capabilities. Herein, the previously
developed method is explained, the formulation is improved,
and two additional study cases are presented. The wrench
performance indices that can be derived from each study case
are also presented. In addition, a focal point of this work is
to present a geometric interpretation of the wrench polytopes
and the wrench performance indices for both non-redundant
(Part I) and redundant (Part II) PPMs.

In this section six studies of wrench capabilities will be
presented and applied to the 3-RRR PPM. The characteristics
of this manipulator are described in Appendix B. The mobile
platform will be located at the center of the workspace.
The force coordinate system is coincident with the center
of the mobile platform and with a constant orientation of
zero degrees.

Since n = m for the 3-RRR PPM, the forward static force
equation is

F = [$′D]τ⎡
⎢⎣

fx

fy

mz

⎤
⎥⎦ =

⎡
⎢⎣

sd1,1 sd1,2 sd1,3

sd2,1 sd2,2 sd2,3

sd3,1 sd3,2 sd3,3

⎤
⎥⎦

⎡
⎢⎣

τ1

τ2

τ3

⎤
⎥⎦ (10)

while the vertices of the polytope are determined with Eq. (8),
i.e.,

pi = [$′D]νi for i = 1, 2, 3.

⎡
⎢⎣

fx

fy

mz

⎤
⎥⎦ =

⎡
⎢⎣

sd1,1 sd1,2 sd1,3

sd2,1 sd2,2 sd2,3

sd3,1 sd3,2 sd3,3

⎤
⎥⎦

⎡
⎢⎣

τ1ext

τ2ext

τ3ext

⎤
⎥⎦ (11)

For a PPM, the resulting polytope described in �3 has the
following characteristics:

(i) Any point outside the polytope is a wrench that cannot
be applied or sustained;

(ii) Any point inside the polytope is achieved with actuators
that are not working at their extreme capabilities;

(iii) Any point on a facet of the polytope has one actuator
working at an extreme capability;

(iv) Any point on an edge of the polytope has two actuators
working at their extremes;

(v) Any vertex of the polytope has all three actuators
working at their extremes.

In the following study cases, performance indices are
identified. These indices represent points of the polytope.
To determine a particular performance index, Eq. (10) is
rearranged as a linear system of three equations of the form
Ax = b; where x is a vector that contains all of the unknown
variables, either wrench or torque space coordinates, A is a
coefficient matrix, and b is a vector that contains the torques
that are set to their extreme capabilities. For different study
cases, Zibil et al.33 presented a comprehensive explanation
of the arrangements of Ax = b. An important improvement
of the new approach is that varying the direction of the force
α from 0 to 2π by assuming small increments, as in Zibil
et al.,33 is not required. In this work α is an unknown variable
and is determined analytically. This makes the new approach
more computationally efficient and more accurate because
the results no longer depend on the precision of the increment
used for α.

If the performance index value lies on a vertex of the
polytope, all three actuators will be set to their extreme
capabilities. Eight possible combinations exist due to the two
extreme magnitudes of the torque outputs τimin or τimax . If the
performance index value lies on an edge of the polytope, two
actuators are set to their extreme output capabilities, while
the third actuator will be working within its output range
and will be referred to as being in transition (τt ). Torques
that are not at their extreme capabilities are said to be in
transition because they will transfer from one torque limit
to the opposite limit, e.g., from τimin to τimax . A torque in
transition is an unknown variable in x. Twelve combinations
exist for this case, i.e., three combinations of torques at their
extreme values (two out of three output torques) and four
combinations of the extreme magnitudes (τimin or τimax ). If the
performance index value lies on a facet of the polytope, one
actuator is set to an extreme capability and the other two
torques will be in transition. Six combinations exist, one out
of three torques is set to an extreme magnitude (τimin or τimax ).

Once all the combinations are evaluated, the performance
index can be determined as the maximum f or mz, as
formulated in Eq. (1). If the problem involves finding a torque
in transition, it is important to verify that this torque does not
exceed its torque output capabilities.

3.2. Maximum force with a prescribed moment
(pmFapp and pmFiso)
This study provides the information of the maximum force
that can be applied (or sustained) by the mobile platform for
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Fig. 2. Generation of a force capability polygon.

a prescribed (specified) moment mz. Assume the case when
mz = 0 yielding a pure force analysis. The force capability of
a PPM can be illustrated with a force polygon. The hexagon
shown in Fig. 2a illustrates the force polygon. For an arbitrary
direction α, the distance from the center of the force space
to the polygon is proportional to the magnitude of the force
that can be applied or sustained.

The sets of parallel lines in Fig. 2b represent the cross
section of the parallel planes that constrain an actuator torque
at mz = 0. Since the polytope is centro-symmetric when
the extreme magnitudes are equal, the force polygon will
show elements of symmetry at mz = 0. The area between
these parallel lines represents the force that one actuator
can sustain in any direction. The area enclosed by all the
lines, a polygon, represents the force capabilities of the
system pmF for that prescribed moment. When mz 
= 0,
the polygon is usually irregular. Figure 2b also shows pmFapp

and pmFiso, the maximum applicable force and the maximum
isotropic force, respectively. Forces pmFapp and pmFiso may
be seen as the radii of the circle that encloses the force
polygon and the circle that is inscribed in the force polygon,
respectively. These forces can be used as performance indices
of the manipulator. Finotello et al.25 defined these indices as
maximum available value (MAV) and maximum isotropic
value (MIV), respectively.

The vertices of the force polygon are generated with the
intersection of two lines. Thus, vertices can be found by
setting two actuators to their extreme output capabilities. The
third actuator will be in transition. Mathematically, Eq. (10)
contains five unknown variables, i.e., fx , fy , and τi for
i = 1, 2, 3. By assuming two actuator torques to be evaluated
at their extreme output capabilities, a fully constrained
system results (three variables in three equations). Therefore,
Eq. (10) can be rearranged as a linear system of equations of
the form Ax = b, where x =[fx fy τt ]T, i.e.,

[$′D]τ = F ⇒ Ax = b (12)⎡
⎢⎣

sd1,1 sd1,2 sd1,3

sd2,1 sd2,2 sd2,3

sd3,1 sd3,2 sd3,3

⎤
⎥⎦

⎡
⎢⎣

τ1

τ2

τ3

⎤
⎥⎦ =

⎡
⎢⎣

fx

fy

mz

⎤
⎥⎦

⇒

⎡
⎢⎣

1 0 −sd1,t

0 1 −sd2,t

0 0 −sd3,t

⎤
⎥⎦

︸ ︷︷ ︸

⎡
⎢⎣

fx

fy

τt

⎤
⎥⎦

︸ ︷︷ ︸
A x

=

⎡
⎢⎣

sd1,m1 sd1,m2

sd2,m1 sd2,m2

sd3,m1 sd3,m2

⎤
⎥⎦

[±τm1

±τm2

]
−

⎡
⎢⎣

0

0

mz

⎤
⎥⎦ .

︸ ︷︷ ︸
b

All possible combinations of torques at their extreme
capabilities and their magnitudes are considered. There are
twelve combinations in total. All combinations are evaluated
and the force polygon is generated by enclosing feasible
solutions; i.e., solutions where the torque in transition does
not exceed its torque output capabilities. Figure 2b shows
twelve intersections: six intersection points occur outside
the polygon (one actuator would have to work over its
limits) and six intersection points define the vertices of the
polygon.

The performance index pmFapp corresponds to the
combination of torques that yields the maximum force

f , where f =
√

f 2
x + f 2

y . While, pmFiso is determined by

finding the shortest distance between the origin of the force
space and the polygon.

Shown in Fig. 3a is the polytope of this manipulator formed
by stacking polygons at different mz. Figure 3b shows the top
view of the polyhedron. The dark hexagon in Figs. 3a and
3b illustrates the force polygon at mz = 0. Geometrically,
pmFapp will be a point on an edge of the polytope and pmFiso

will be a point on a facet of the polytope.

3.3. Maximum reachable force (mrFapp and mrFiso)
This study provides the information of the maximum forces
that can be applied or sustained. The maximum reachable
force that can be applied by the manipulator has an associated
moment. There are six unknown variables, i.e., fx , fy ,
mz, and τi for i = 1, 2, 3, in Eq. (10). Thus all three
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Fig. 3. Wrench polytope and force polygon at mz = 0.

actuator outputs can be set to their extreme capabilities.
This yields a linear system of the form Ax = b, where
x =[fx fy mz]T . Through the linear transformation of
Eq. (11), each extreme magnitude combination leads to a
vertex of the polytope. A force polygon may be generated
by projecting these vertices on the force plane as shown
in Fig. 4. This polygon represents the maximum reachable
force, mrF . Performance indices mrFiso and mrFapp can also
be determined. Geometrically, mrFapp will be a vertex of the
polytope and mrFiso will be a point on an edge of the polytope.

3.4. Maximum moment with a prescribed force (pf Mz)
This study provides the information of the range of mz that
can be used for a completely prescribed force. Since fx and

Fig. 4. Wrench polytope and absolute force polygon.

fy are known quantities, there are four unknown variables,
mz and τi for i = 1, 2, 3. Therefore, Eq. (10) will be
constrained if one joint torque is at an extreme value.
Thus, two actuator outputs will be in transition (τta and
τtb ). This yields a linear system of the form Ax = b, where
x =[mz τta τtb ]T . There are six combinations for the 3-
RRR PPM to evaluate (the six facets of the polytope) but
only two combinations will keep the torques in transition
within their actuator capabilities. The larger and smaller
solutions represent the upper (upf Mz) and lower (lpf Mz)
bound moments, respectively. Figure 5 shows the vector
of an arbitrary force. The range of moments can be seen as a
vertical line. upf Mz and lpf Mz are points located on facets of
the polytope.

Fig. 5. Maximum moment with a prescribed force.
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Fig. 6. Similar triangle analysis of the maximum moment with an isotropic force.

3.5. Maximum moment with a prescribed maximum
isotropic force (ifMz)
This study provides the information of the range of mz that
can be used for a prescribed maximum isotropic force. This
can be seen as the largest cylinder of radius f that can be fully
contained within the polytope. This constraint yields another
equation; i.e., four in total. There are five unknown variables,
mz, α (direction of the force), and τi for i = 1, 2, 3. Thus,
only one actuator torque can be set to an extreme capability,
while two will be in transition. Since two torques will be
in transition, the intersection of the isotropic force cylinder
with the polytope will occur at one facet of the polytope.

This problem cannot be solved by simply rearranging
Eq. (10). As an alternative, a geometrical analysis of the
problem is considered. For non-redundant manipulators, the
polytope is generated with three sets of parallel planes.
The maximum moment with a prescribed isotropic force
(if Mz) of the manipulator can be determined by comparing
the resulting isotropic moment associated with every plane.
Isotropy is ensured with the plane that yields the minimum of
the maximum moment, if Mz = min(if mz), i.e., the cylinder
would be fully inscribed in the polytope. Let the kth plane
(Pk) be generated with one of the torques acting at an extreme
capability, e.g.,

Pk = {[
$′D

]
τ |τ = [

τ1max τta τtb

]T
, τ2min ≤ τta ≤ τ2max,

τ3min ≤ τtb ≤ τ3max

}
(13)

Shown in Fig. 6a is a half-section of the isotropic force
cylinder (radius fiso) intersecting Pk . The goal is to determine
the height of this cylinder (if mz).

Let pmfiso be the isotropic force at mz = 0. Geometrically,
this force represents the radius of a circle tangent to Pk .
If the moment is varied, the corresponding isotropic forces
will form circles of different radii. The intersection points
between each circle and Pk will form a line as shown in
Fig. 6a. When the axis of the cylinder intersects Pk the
magnitude of the force will be zero. As a consequence,
a triangle results and if mz can be determined, for any
prescribed isotropic force, as a similar triangle problem as

illustrated in Fig. 6b. Thus, the problem requires finding the
base (pmfiso) and the height (pf mz) of the triangle.

To find pmfiso set mz = 0. The third row of Eq. (10) yields,

a0τta + a1τtb + a2 = 0 (14)

where a0 = sd3,2, a1 = sd3,3, and a2 = sd3,1τ1max . Solve for
τtb and substitute it back in the first two rows of Eq. (10).
This yields two equations in terms of fx and fy , i.e.,

b11τta + b12 = fx (15a)

b21τta + b22 = fy (15b)

Hence, τta is eliminated yielding,

Lk = c0fx + c1fy + c2 = 0 (16)

This equation describes the line generated by the
intersection of Pk with the plane mz = 0, denoted as Lk .
The shortest distance from the origin of the force space to
the line is

pmfiso = |c2|√
c2

0 + c2
1

(17)

The direction of the force pmfiso, at mz = 0, can be found
with Eq. (16), i.e.,

α = tan−1(c1/c0) (18)

This angle is used to locate the exact intersection of the
isotropic cylinder with Pk . The plane of the triangle described
in Fig. 6b is perpendicular to the horizontal plane and
therefore pmfiso will have the same direction at any mz.

To find pf mz set f = 0. With f = 0, Eq. (10) yields

a1τta + b1τtb + c1 = 0 (19a)

a2τta + b2τtb + c2 = 0 (19b)

a3τta + b3τtb + c3 = mz (19c)
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Fig. 7. Maximum moment of a prescribed maximum isotropic force.

where ai = sdi,2, bi = sdi,3, and ci = sdi,1τ1max . The first two
equations lead to a linear problem and the torques in transition
can be found. Substitute τta and τtb into the third equation
and find pf mz at f = 0. Finally, if mz is found using similar
triangles.

Repeat the same process with all the planes and find
the minimum if mz among all the planes, i.e., if Mz. Due
to the symmetry of the polytope, the same moment will
constrain the cylinder in the negative direction. Figure 7a
shows an example of if Mz for an isotropic force at f = 20 N.
Figure 7a illustrates the isotropic cylinder intersecting the
wrench polytope in two points. Figure 7b is a side view of
the polytope.

3.6. Maximum moment with a prescribed maximum
reachable force (rf Mz)
This study investigates the maximum moment mz that can be
achieved for a prescribed force magnitude. This study can be
seen as the intersection of a cylinder of radius f with a point

on the polytope which is the farthest away from the mz = 0
plane. Depending on the location of the intersection, different
cases must be considered. The intersection can occur either
on a facet, on an edge, or on a vertex of the polytope.

Assume the case where the cylinder crosses a plane Pk .
The intersection between the cylinder and the plane yields
an ellipse, as shown in Fig. 8a. The minimum moment
represents the moment associated with an isotropic force as
shown in the previous study, whereas the maximum moment
rf mz is located at the opposite side of the major axis of the
ellipse. Thus, rf mz is determined based on the methodology
presented in the previous study. The maximum value of all
rf mz yields rf Mz.

If plane Pk is intersected by another plane, say plane Pj ,
rf mz is determined with the intersection of the cylinder with
a line (or an edge of the polytope), as shown in Fig. 8b. In
this case, there are five unknown variables, mz, α (direction
of the force), and τi for i = 1, 2, 3. Thus, two actuators are
set at their extreme values and one will be in transition, i.e.,

Fig. 8. Intersection of the wrench cylinder with geometrical entities.
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Fig. 9. Maximum moment of a prescribed maximum applicable
force.

there are twelve combinations. Given that α is unknown, a
non-linear system of equations results with Eq. (10), i.e.,

fx = f cos(α) = a11 + a12τt (20a)

fy = f sin(α) = a21 + a22τt (20b)

mz = a31 + a32τt (20c)

where aij are numerical values.
Eliminate α by squaring and adding Eq. (20a) and

Eq. (20b) yielding a quadratic polynomial in τt , i.e., there
are two intersection points. Find the roots and substitute
the larger root that does not exceed its output limits into
Eq. (20c). The intersection point where the height of the
cylinder is the largest among all feasible solutions yields
rf Mz.

If three planes intersect, rf mz lies on a vertex. This case is
unlikely to happen because the vertex must lie on the circle
of the cylinder.

Due to the symmetry of the polytope, rf Mz can be either
positive or negative, as shown in Fig. 9.

3.7. Maximum reachable moment (mrMz)
This study provides the information of the maximum mz that
can be achieved. The maximum reachable moment has an
associated force. In this case, all variables are unknown, i.e.,
fx , fy , mz, and τi for i = 1, . . . , 3. Thus, all actuator outputs
can be set to their extreme capabilities yielding an equation
of the form

sd3,1
(
τ1ext

) + sd3,2
(
τ2ext

) + sd3,3
(
τ3ext

) = mz (21)

The maximum positive moment, mrMz, will be obtained by
making all the monomials positive. Similarly, the maximum
negative moment occurs when all the monomials are
negative. Thus, only a single evaluation is required in this
study case.

4. Discussion

The proposed performance indices can be also derived for
redundantly-actuated PPMs. In Part II of this paper, the
authors will analyze the wrench capabilities of revolute-
jointed PPMs with additional actuated branches (4-RRR
PPM) and in-branch redundancy (3-RRR PPM). In addition,
these performance indices will be analyzed throughout their
workspace and compared with the non-redundant 3-RRR
PPM. Indices associated with the wrench capabilities of the
overall workspace will be derived allowing a comparison
among these layouts.

5. Conclusion

The wrench capabilities of PPMs are determined by properly
adjusting the actuator outputs to their extreme capabilities.
This is carried out by mapping the actuator output capabilities
from the joint space to the task space. This linear mapping
transforms a hypercube into a polytope. The wrench
capabilities of the 3-RRR PPM are presented. Six study cases
are presented and for each study case performance indices are
derived. The evaluation of these performance indices does
not require the computationally expensive task of generating
graphical polytopes making the performance indices an
attractive tool for the design of parallel manipulators.
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A. Appendices: A Force Analysis

A screw ($) is a line in space having an associated pitch.
A screw quantity can be represented with the Plücker
coordinates of a line summed with a term related to the
screw direction multiplied by the pitch of the screw.34 The
angular velocity ω and the translational velocity v of a point
of a moving body may be represented by three-dimensional
vectors that can be assembled into a screw quantity V called
an instantaneous twist, V = {ωT ; vT }T .35 The pitch of the
twist is the ratio of the translational velocity to the angular
velocity. The pitch of a twist is zero if there is pure rotational
velocity about the screw axis, while the pitch of the twist is
infinite if there is pure translational velocity along the screw
axis.

On the other hand, the resultant force f and the moment
m acting at a point on the body can be assembled into a
similar screw quantity F called a wrench, F = {fT ; mT }T .35

The pitch of a wrench is the ratio of the moment to the force.
A pure force is a wrench of zero pitch and a pure moment is
a wrench of infinite pitch.

In general, the twist and the wrench are composed of
six elements, i.e., for a twist, there are three instantaneous
rotations about and three instantaneous translations along
the axes of a reference frame; while for a wrench there are
three pure forces along and three moments about the axes
of a reference frame. For a manipulator with n − DOF ,
where n < 6, such as planar manipulators, the same 6 − n

coordinates of the joint twists and the output twist will be zero
at any configuration.36 For planar manipulators, the screw
system of planar velocity can be spanned by a rotation and
two translations. Therefore, the twist and the wrench will
have only three non-zero coordinates. The twist is based on
one angular velocity ωz and two linear velocities vx and
vy , i.e., V = {ωT; vT}T = {ωz; vx, vy}T. While the wrench is
comprised of two forces fx and fy and one moment mz, i.e.,
F = {fT; mT} T = {fx, fy ; mz}T. Another way to express the
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wrench is F = {f cos α, f sin α; mz}T, where f and α are the
magnitude and direction of the force, respectively.

The forces that can be applied (sustained) by a branch
can be modelled with associated reciprocal screws.36 The
force exerted by the kth actuated joint of the ith branch
is characterized by a screw, $′

ki
= {($′

ki
)z; ($o′

ki
)x, ($o′

ki
)y}T,

reciprocal to all joints of the ith branch except for the actuated
joint k, i.e.,

$ji
©∗ $′

ki
= (

$ji

)
x

(
$o′

ki

)
x
+ (

$ji

)
y
($o′

ki
)y

+ (
$oji

)
z

(
$′

ki

)
z
= 0, for j 
= k (22)

where $ji
= {($ji

)x, ($ji
)y ; ($oji

)z}T denotes the screw
coordinates of all joints j 
= k of the ith branch and ©∗
denotes the reciprocal product between two screws.

The wrench applied by a parallel manipulator is the sum of
wrenches applied by all m actuated joints of the manipulator.
In matrix form, the static force solution is:

F3×1 = [$′]3×mwm×1 (23)

where [$′] is referred to as the associated reciprocal screw
matrix and w the vector of wrench intensities. The torque
applied by the kth actuated joint of the ith branch is

τki
= wki

(
$ki

©∗ $′
ki

)
(24)

Therefore, the wrench intensity is

wki
= τki(

$ki
©∗ $′

ki

) (25)

The relationship among all the wrench intensities in the
system yields:

w = [D]τ (26)

where [D] is a diagonal matrix whose entries are
1/($ki

©∗ $′
ki

).
Combining Eq. (26) with Eq. (23) results in the forward

static force solution, i.e.,

[$′D]3×mτm×1 = F3×1 (27)

where [$′D] = [$′][D].
An alternative formulation of the static force analysis

is obtained by differentiating the loop-closure equations
which involve the input q (joint displacements) and output x

(position and orientation) of the end-effector with respect to
time.

Gosselin and Angeles37 presented the relationship between
the input q̇ (joint rates) and output ẋ (end-effector’s velocity)
speeds as:

[A]3×m ẋ3×1= [B]m×m q̇m×1 (28)

where

[A] = ∂f (q, x)

∂x
and [B] = ∂f (q, x)

∂q

This leads to the inverse velocity problem, i.e.,

q̇= [J]-1 ẋ (29)

where [J]-1 = [B]-1[A].
Under static conditions the conservation of power

relationship is defined as:

Pin = Pout

τ Tq̇ = FTẋ (30)

By combining Eq. (30) with Eq. (29) the following static
force relationship results:

[J]-T

3×mτm×1= F3×1 (31)

where τ is referred to as the vector of articular forces (torques
or forces) and F is referred to as the vector of generalized
forces (wrenches).

Notice that both formulations are equivalent, i.e.,
[$′D]3×m = [J]-T

3×m.

B. Description of the Manipulator

The dimensions and the actuator capabilities of the 3-
RRR PPM are modelled after the Reconfigurable Planar
Parallel Manipulator (RPPM) designed by Fisher et al.38 This
manipulator is comprised of two platforms (base and mobile)
that are connected by three branches, as shown in Fig. 10. The
base and the mobile platforms of the RPPM are equilateral
triangles. The base and mobile platform edge lengths are
0.5 m and 0.2 m, respectively. Each branch contains two links
and three revolute joints. The lengths of the first and second
links of each branch are 0.2 m. The first joints are actuated
(solid circles), while the second and third joints are passive
joints (empty circles). The extreme output torque capabilities
of the actuators (based on the existing actuators of the RPPM)
are ±4.2 Nm.

Fig. 10. 3-RRR planar parallel manipulator.
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