
The Journal of Agricultural
Science

cambridge.org/ags

Crops and Soils Research
Paper

Cite this article: Steidle Neto AJ, Lopes DC,
Toledo JV, Zolnier S, Silva TGF (2018).
Classification of sugarcane varieties using
visible/near infrared spectral reflectance of
stalks and multivariate methods. The Journal
of Agricultural Science 156, 537–546. https://
doi.org/10.1017/S0021859618000539

Received: 21 February 2018
Revised: 12 June 2018
Accepted: 3 July 2018
First published online: 26 July 2018

Key words:
Chemometrics; Saccharum officinarum L.;
spectroscopy

Author for correspondence:
D. C. Lopes, E-mail: danielalopes@ufsj.edu.br

© Cambridge University Press 2018

Classification of sugarcane varieties using
visible/near infrared spectral reflectance of
stalks and multivariate methods

A. J. Steidle Neto1, D. C. Lopes1, J. V. Toledo2, S. Zolnier2 and T. G. F. Silva3

1Federal University of São João del-Rei, Campus Sete Lagoas, Rodovia MG 424, km 47, Sete Lagoas, 35701-970,
Minas Gerais, Brazil; 2Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Viçosa, 36570-000, Minas Gerais, Brazil
and 3Federal Rural University of Pernambuco, Unidade Acadêmica de Serra Talhada, Serra Talhada, 56900-000,
Pernambuco, Brazil

Abstract

The use of fast and non-destructive techniques for identifying sugarcane varieties enables the
development of automatic sorting systems, contributing towards improving pre-processing
steps in the alcohol and sugar industries. In this context, principal component analysis
(PCA), factorial discriminant analysis (FDA), stepwise forward discriminant analysis (SFDA)
and partial least-squares discriminant analysis (PLS-DA) were used to classify four Brazilian
sugarcane varieties based on visible/near infrared (Vis/NIR) spectral reflectance measure-
ments (450–1000 nm range) of stalks. All wavelengths contributed towards discriminating
the sugarcane varieties, but the 600–750 nm range was most relevant. When evaluating
PCA results considering the four sugarcane varieties, two of them overlapped and it was
only possible to use classifiers of three varieties. Factorial discriminant analysis, PLS-DA
and SFDA reached correct classifications of 0.81, 0.82 and 0.74, respectively, when considering
the external validation data and the four sugarcane varieties evaluated. Results showed
that Vis/NIR spectroscopy combined with discriminating methods is a promising tool for
non-destructive and fast sugarcane variety classification, which can be used in the agro-food
industry or directly in the field.

Introduction

The demand for renewable energy sources to reduce the use of fossil fuels and to diversify
the energy generation matrix is an aspect of fundamental importance for sustainability and
economic growth (Silva et al., 2016).

Sugarcane (Saccharum officinarum L.) constitutes one of the most important crops in Brazil
(Martini et al., 2018), due to its value for sugar production and as a renewable energy source
for ethanol production (biofuel), as well as for co-generation of electricity. For these reasons,
sugarcane cultivation is expanding to new frontiers and there is a constant demand for higher
yields. In this context, the breeding programme for genetic improvement of sugarcane from
the Interuniversity Network for the Development of the Sugar-Alcohol Sector (RIDESA,
2010) has developed Republic of Brazil (RB) varieties for the cultivation characteristics
found in Brazil, increasing agri-business revenue (Santos et al., 2012).

Current methods for identification of specific sugarcane varieties are limited to genomic
analyses and visual discrimination. Although only small samples are typically required for gen-
omic analyses, the analytical equipment and expertise needed are considerable, and genomic
assessment of intron variability can lead to further complications in the discrimination process
(Johnson et al., 2008; Santiago et al., 2018). On the other hand, visual discrimination is pos-
sible with trained staff, but the results vary with personnel and location due to differences
between plants of different ages and to distinct agricultural practices associated with, among
others, soil fertilization and irrigation, sun exposure and dry leaf removal.

Visible/near infrared (Vis/NIR) spectroscopy, coupled with multivariate methods, has
allowed the development of fast and reliable routine analyses in many fields, including agricul-
ture, food, petrochemicals and pharmaceuticals. In general, these analyses have considerable
advantages over traditional methodologies including cost, throughput, non-destructive sample
preparation and analysis, as well as risk reduction where potentially dangerous chemicals
and/or procedures are involved (Su et al., 2017).

Past studies have investigated the use of Vis/NIR hyperspectral data acquired using satellites
to discriminate sugarcane varieties (Galvão et al., 2005; Fortes and Demattê, 2006; Everingham
et al., 2007). With the same purpose, Johnson et al. (2008) evaluated the potential of
hyperspectral reflectance and pigment data by proximal sensing of leaves. Despite combining
multivariate methods and spectral indices, most of these studies reported difficulties in differ-
entiating sugarcane varieties and evaluating the spectral signatures of whole plants and leaves.
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More recently, spectroscopic techniques have been applied for
estimating sugarcane yields and mapping sugarcane planting
areas (Zhou et al., 2015; Carvalho et al., 2016; Verma et al.,
2017).

The present work aimed to classify four Brazilian sugarcane
varieties using Vis/NIR spectral reflectance measurements of
stalks and multivariate statistical methods (principal component
analysis (PCA), factorial discriminant analysis (FDA), stepwise
forward discriminant analysis (SFDA) and partial least-squares
discriminant analysis (PLS-DA)) not yet evaluated in previous
studies. The sugarcane stalk was selected due to its importance
for varietal identification (Wagih et al., 2004; Cheavegatti-
Gianotto et al., 2011) and has not been used in previous scientific
studies.

Materials and methods

Sugarcane cultivation

Sugarcane plants (S. officinarum L.) were cultivated inside a non-
acclimatized greenhouse located at the Agricultural Meteorology
Experimental Station (20°45′45′′S, 42°52′04′′W, 690 m a.s.l.),
which is part of the Agricultural Engineering Department at the
Federal University of Viçosa, State of Minas Gerais, Brazil.
According to Köppen classification, the local climate is Cwa
(warm temperate –mesothermal), with dry winter and rainy sum-
mer (Kottek et al., 2006).

The greenhouse structure was a Quonset frame (7 × 15 m floor
area and 3.5 m height) built with galvanized structural steel tub-
ing and covered with a transparent polyethylene film (150 µm).
The arches were spaced 2.5 m on centre and supported on con-
crete posts 2 m high at the sidewalls. The greenhouse was oriented
with the ridge running east to west. A white plastic insect screen
made from high-density polyethylene (thread and opening sizes
of 0.28 and 1.00 mm, respectively) was used on the sidewalls to

allow natural ventilation while protecting the plants from insects,
enabling pesticide-free production.

The experiment was carried out with four Brazilian sugarcane
varieties: RB867515, RB855453, RB928064 and RB92579 (Fig. 1).
The agronomic and morphological features of the sugarcane var-
ieties, adapted from RIDESA (2010), are presented in Table 1.

Visual inspection does not allow reliable discrimination
between RB867515, RB855453 and RB92579, since these varieties
all present purplish stalks under exposure to sunlight (Fig. 1), as
well as similar morphological and agronomic features (Table 1).
Although RB928064 presents green-yellowish stalks when
exposed to solar radiation, visual confusion can occur when the
other three varieties have not been exposed to solar radiation or
when they present stalk wax.

Billets of the four varieties were planted in a substrate com-
posed of pine bark, wood sawdust, coconut fibre, rice hulls and
vermiculite (Bioplant Prata, Bioplant, Nova Ponte, Minas
Gerais, Brazil). Plastic pots with volumetric capacity of 15 litres
were used to accommodate the substrate, whose physical proper-
ties were 5.7 pH, 0.8 dS/m electrical conductivity and 260 g/l dry
apparent density. A hole was drilled in the bottom of each pot to
allow leachate drainage and the pots placed over polypropylene
troughs with longitudinal slope of 4%. The superior surface of
the troughs had holes spaced 0.5 m apart to receive leachate
from the pots. Two billets of the same variety were germinated
in each pot, but only the vigorous and healthy plant was culti-
vated. During the sugarcane growth period, all young emerging
shoots were pruned.

Sugarcane plants were fertigated with a nutrient solution pre-
pared by diluting two stock solutions A and B (50 times concen-
trated) in equal proportions (1:1) into a 100 litres water reservoir
to obtain an electrical conductivity of 3 dS/m. Stock solution A
was prepared with calcium nitrate and potassium nitrate. Stock
solution B was prepared with monoammonium phosphate,
magnesium sulphate and potassium chloride, as well as

Fig. 1. (Colour online) Stalks of the Brazilian sugarcane
varieties (from left to right: RB867515, RB855453,
RB928064 and RB92579).
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micronutrients (copper sulphate, zinc sulphate, manganese
sulphate, boric acid, sodium molybdate and iron chelate). The
nutrient solution concentration was monitored by a portable con-
ductivity meter (CDH-42, Omega, Stamford, Connecticut, USA)
with temperature compensation.

The nutrient solution was applied to the crop by a drip irriga-
tion system with 32 W fertigation pumps commanded by a micro-
controller board (Duemilanove, Arduino, Ivrea, Turin, Italy)
connected to an electromechanical relay board (LRT-R04DR,
LR Informática Industrial, Porto Alegre, Rio Grande do Sul,
Brazil). In this experiment, fertigation events were established to
maintain the water matrix potential in the substrate between
field capacity and −10 kPa.

The experiment consisted of 192 plants disposed in 32 rows.
Each plant row was composed of six pots spaced 0.5 m apart.
However, 80 plants were effectively evaluated as experimental
units according to a completely randomized design in a double
factorial arrangement. The other plants were cultivated for
boundary effects. The number of plants of each variety was
identical.

Stalk reflectance measurements

At 163 days after planting, 12 experimental units of each variety
were randomly selected for field spectroscopy measurements,
totalizing 48 sugarcane stalks.

Spectral reflectance was measured with a portable spectrom-
eter (JAZ-EL350, Ocean Optics, Dunedin, Florida, USA) coupled
to a tungsten–halogen light source. The spectrometer was pre-
configured to acquire and store reflectance data (450–1000 nm
range) into a memory card, with a spectral resolution of
1.3 nm. A reflection probe (R400-7-VIS-NIR, Ocean Optics)
was used to emit light onto the sugarcane stalks and collect the
reflected light. This probe is a bifurcated optical fibre assembly
(Y type) composed of two fibres of same diameter (400 µm), con-
nected to the spectrometer and light source. The other extremity
of the probe was inserted in a holder of anodized aluminium and

vertically positioned at 90° in relation to the stalks. A high-
reflectivity specular reflectance standard (STAN-SSH, Ocean
Optics) was used as a reference to measure spectral reflectance.

The reference standard measurements were made before the
spectral reflectance measurements in sugarcane stalks and after
the light source warmed up. Reflectance values were calibrated
by a software (OceanView, Ocean Optics) and expressed as a rela-
tive percentage of the reference standard (Steidle Neto et al.,
2017):

Rcal
l = Rleaf

l − Rdark
l

Rref
l − Rdark

l

( )
100

where Rcal
l is the calibrated spectral reflectance from the stalks (%),

Rleaf
l is the original spectral reflectance from the stalks (dimen-

sionless), Rdark
l is the spectral reflectance considering light absence

(dimensionless) and Rref
l is the spectral reflectance from the dif-

fuse reflectance standard (dimensionless). The spectral reflectance
considering light absence was obtained by obstructing the light
input at the holder.

Before spectral reflectance measurements were taken, two
marks were made along each stalk length (dividing it into three
equal areas) with the purpose of standardizing the data acquisi-
tion. Three measurements were performed in the centre of each
divided area, totalizing 432 spectral signatures when considering
the 48 stalks. Data were transferred and processed by an electronic
worksheet and an average spectral signature was obtained for each
sugarcane stalk area, totalizing 144 spectra that were used in the
spectral analysis.

Multivariate methods

Principal component analysis, FDA, SFDA and PLS-DA were
used to classify the sugarcane stalks according to the variety.
Ballabio and Todeschini (2009) and Misaki et al. (2010) affirmed
that many different techniques can be used for classification pur-
poses, but the discriminant and multivariate methods are more

Table 1. Agronomic and morphological features of the Brazilian sugarcane varieties

Feature

Variety

RB867515 RB855453 RB928064 RB92579

Crop yield High High High High

Plant size High Medium High High

Growing type Erect Erect Erect Sprawling (decumbent)

Development rate Fast Fast Moderate Slow

Leaf pilosity (leaf sheath hair) Little Little Little None

Stalk colour Intense purple when exposed
to the sun and green-purplish
under straw

Purplish when
exposed to the
sun

Green and
green-yellowish when
exposed to the sun

Purplish when exposed to the
sun and yellow-greenish
under straw

Stalk wax Little waxy Very waxy None Little waxy

Difficult to remove bottom
dry and green leaves

Moderate Moderate Moderate High

Maturity Middle-late Early Middle-late Middle-late

Sugar content High Very high Moderate High

Fibre content Moderate Moderate Moderate Moderate
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attractive due to their simplicity and lower computational efforts.
Each of these methods has its own algorithm tuned for best
discrimination.

Principal component analysis was performed before super-
vised discriminant analysis to derive the first principal compo-
nents from the spectral data and to examine the possible
grouping of samples, also detecting spectral outliers. Principal
component analysis is an unsupervised pattern recognition
method that transforms the original data into new variables,
called principal components, which are orthogonal and uncorre-
lated (Bro and Smilde, 2014). This statistical multivariate method
is useful for separating samples according to their common spec-
tral characteristics, which is achieved by determining a smaller
dimension hyperplane on which the points will be projected
from the higher dimension (Berrueta et al., 2007). It has been
used widely to observe similarities among different samples, redu-
cing the data dimensionality while keeping most of the original
information (Karoui et al., 2007; Li and He 2008).

In the current study, PCA was performed on the sugarcane
spectral reflectance values following procedures proposed by
Saporta (2006), where the original data matrix was decomposed
into score, loading and residual matrices. Loading matrix repre-
sented the correlation of the original variables with the principal
components, while residuals meant the part of data that were not
explained by the PCA model. Score matrix represented the rela-
tionship between the principal components and the original
data, indexing the magnitude of principal components for each
observed sample value.

Factorial discriminant analysis, SFDA and PLS-DA are super-
vised methods, meaning that the number of categories and the
samples that belong to each category are defined previously
(Ballabio and Todeschini, 2009).

Among the objectives that can be assigned to FDA method are
the determination of the most discriminative variables with regard
to specific category and the determination of the category of a
sample based on its spectral signature (Bourennane et al., 2014).
According to Berrueta et al. (2007), this is the most frequently
used supervised pattern recognition method, differing from the
PCA in that FDA selects a direction that achieves maximum
separation among the given classes. In the current study, FDA
assessed new variables (discriminant factors) that were linear
combinations of selected principal components resulting from
the PCA analysis, allowing a better separation of the centres of
gravity of the considered classes (Devaux et al., 1988).

Stepwise forward discriminant analysis has also been adopted
for spectrometer-driven discrimination in different research fields
(Martínez-Pinilla et al., 2013; Giambanelli et al., 2014). The main
difference between SFDA and the other methods is that its algo-
rithm applies a threshold to add a new discriminant factor based
on the PCA analysis (Bertrand et al., 1990), which in the current
study was one divided by the number of classes. Wanitchang et al.
(2011) affirmed that SFDA selects the discriminant factors by
retaining statistically significant variables and removing insignifi-
cant ones.

Partial least-squares discriminant analysis is another well-
known method that assigns an unknown sample to one of the
available classes based on its spectral signature. Berrueta et al.
(2007) noted that this method is suitable for data sets with high
degree of inter-correlation between the independent variables.
In the current study, PLS regular regression methods were used
for performing discriminant analysis, as proposed by Ballabio
and Consonni (2013). For this, a Y matrix was constructed,

consisting of four columns associated with the sugarcane varieties
and many lines as there were spectra. Each spectrum was consid-
ered an observation and had the value 1 for the class it belongs to
and 0 for the others. Another matrix, called X, consisted of the
original data. In contrast to PCA, both X and Y matrices were
decomposed in score, loading and residual matrices. Thus, a
model was developed for each class and the closer an observation
of a certain column in Y was to 1, the more likely it was consid-
ered a member of a particular variety. This procedure guaranteed
that observations were always classified in one of the available
classes. During the model development, data reduction was con-
ducted seeking discriminant factors, which were linear combina-
tions of the original variables, and were calculated in a way to
maximize the covariance with the available classes.

Spectra were pre-treated by centring, normalization and
second-order derivative prior to PCA, FDA, SFDA and PLS-DA
analyses. Preliminary tests indicated that these pre-treatments
were best for obtaining lower discrimination errors, also improv-
ing the accuracy of the models. According to Moscetti et al.
(2015), centring is capable of improving classification accuracy
for most of the discriminant methods by enhancing the differ-
ences between spectra. Normalization was performed for adjust-
ing the spectral data from the different groups (varieties) to an
identical baseline. Yuan et al. (2014) reported that this pre-
treatment facilitates subsequent spectral analysis and comparisons
in discrimination purposes. Centring and normalization were cal-
culated following the procedures recommended by Martens and
Naes (1992). The second-order derivative allowed the correction
of additive and multiplicative effects in the spectral data, which
appear due to physical effects and result in non-uniform scatter-
ing throughout the spectrum (Cozzolino et al., 2011). The deriva-
tive was calculated by the Savitzky–Golay method (Savitzky and
Golay, 1964) with 25 derivative points (window for calculation).
The algorithms of the pre-treatments were included in the
SCILAB software (Scilab Enterprises, Versailles, France), which
was also employed for all calculations required by the multivariate
and discriminant methods.

Two-thirds of the samples (24 spectra of each variety, totalling
96 spectra) were used as the calibration and cross-validation data
set and one-third (12 spectra of each variety, totalling 48 spectra)
as the external validation data set. This sampling plan followed
the recommendation by Kramer (1998) to ensure data set repre-
sentativeness. The number of samples used in the calibration pro-
cess corresponded to more than ten times the number of variable
components in the experiment (variety). Each component was
considered as an independent source of variation in the data.

During the calibration with cross-validation, some samples
were left out from the model fit and used for discriminating the
varieties based on the calibrated model. Then, prediction residuals
were calculated and the process was repeated with another sub-set
of the calibration data set, until every sub-set was left out once. All
prediction residuals were combined, so that the final model was
that with the lower prediction residual. This model was then
used with the external validation data set, and independent discri-
minations were performed.

The PCA results were visualized with the score plot of the first
two principal components aiming to provide the most efficient
two-dimensional representation of the sugarcane variety informa-
tion contained in the data set. The performances of the supervised
models were evaluated by confusion matrices and percentile clas-
sification errors. The confusion matrices represented the numbers
of observations attributed to each variety compared with the
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reference labels. The diagonals of the confusion matrices
contained the correct classifications, and their numbers were
compared with the total number of observations. Confusion
matrices were processed with both calibration/cross-validation
and external validation data sets. Loading plots were also used
to identify which wavelengths were more relevant to the sugar-
cane variety discrimination.

Results

The PCA score plot of the first two principal components (PC1
and PC2), considering the four sugarcane varieties analysed in

the current study, is presented in Fig. 2; PC1 and PC2 represented
57 and 30% of the data variance, respectively.

Since PCA scores overlapped between RB867515 and
RB855453 varieties when considering the four sugarcane varieties,
classifiers of only three varieties were tested. These sugarcane
classifiers may be useful in growing regions or industries where
the RB867515 and RB855453 are not cultivated simultaneously
or when only the RB928064 and RB92579 require to be discrimi-
nated. When analysing the PCA score plots of the two well-
discriminated varieties (RB928064 and RB92579) and one of
the overlapped ones (RB867515 or RB855453), it is possible to
clearly distinguish all varieties (Figs 3 and 4), but the PC1 and

Fig. 3. Score plot of the first two principal compo-
nents of principal component analysis (PCA)
model built with the spectra of the calibration
set of RB867515, RB928064 and RB92579 sugar-
cane varieties.

Fig. 2. Score plot of the first two principal compo-
nents of principal component analysis (PCA)
model built with the spectra of the calibration
set of RB867515, RB855453, RB928064 and
RB92579 sugarcane varieties.
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PC2 thresholds were changed depending on the third variety used
in the analysis. In the first case, the first principal component
(PC1) explained 53.2% of the original variance (Fig. 3). The com-
bination of PC1 and PC2 (representing a total of 88.9% of the
original variance) showed an excellent differentiation of the
sugarcane varieties, with positive PC2 values always describing
RB928064 variety, positive PC1 and negative PC2 values describ-
ing RB92579 variety, and negative PC1 and PC2 values describing
RB867515 variety. In the second case, the first two PCs explained
55.5% (PC1) and 37.2% (PC2) of the data variance, which
accounted for 92.7% of the total variance (Fig. 4). In this case,
the RB928064 resulted in PC2 values higher than five, the
RB92579 was associated with positive PC1 values and PC2 smal-
ler than five, and RB855453 resulted in negative PC1 and PC2
values smaller than five.

Principal component analysis is an unsupervised pattern rec-
ognition method. That is, samples are grouped into a number
of classes without initial qualification of their class assignment.
Thus, PCA comprises an exploratory procedure, seeking inherent
similarities of data and comprising the first step of analyses for
detecting patterns in different measured data. As quantitative
discrimination cannot be achieved in the PCA and two varieties
overlapped when analysing the four sugarcane varieties, FDA,
SFDA and PLS-DA were applied in an attempt to improve
the classification procedure of sugarcanes considering the
RB867515, RB855453, RB928064 and RB92579 varieties. These
are supervised methods, which group data into predefined classes
(varieties) during training procedures, allowing the computation
of the classification accuracy.

Models for one to eight discriminant factors were investigated
while building the models. For all supervised methods, the opti-
mal classifications occurred with two discriminant factors,
which are linear combinations of the initial selected data that
maximize the discrimination among the varieties. This choice
was based on the evolution of the calibration and cross-validation
errors, as more discriminant factors were considered in each
model. That is, the number of discriminant factors was

incremented until calibration and cross-validation errors did not
vary or were greater than the previous analysis. It is important
to note that models with fewer discriminant factors tend to be
less complex and present a faster processing.

Table 2 summarizes the results of FDA, SFDA and PLS-DA
models for calibration with cross-validation in terms of correct
classifications and confusion matrices. Correct classifications of
RB92579 and RB928064 varieties were observed for 100% of the
calibration with cross-validation data set when using the three
studied methods. Considering the other studied varieties, correct
classifications varied between the methods, with PLS-DA reaching
87.5% of correct classifications for both RB867515 and RB855453
varieties. The overall correct classification of each method was
calculated by averaging the individual classification percentiles
of each variety, resulting in accuracies of 93.7, 92.8 and 90.6%
for PLS-DA, FDA and SFDA, respectively.

Discrimination results for external validation using FDA,
SFDA and PLS-DA methods are presented in Table 3. After veri-
fying the validation with independent data set, it is possible to
confirm that the PLS-DA method was most effective for classify-
ing the four sugarcane varieties, reaching overall correct classifica-
tion of 82.0%, followed by FDA and SFDA with 81.4 and 73.6%,
respectively.

The loading plots (Figs 5–7) provide an additional interpret-
ation of the results reached with the supervised methods, indicat-
ing the spectral regions which most influenced the sugarcane
discrimination. This is shown by the peaks and valleys of the
curves.

Discussion

The PCA scores overlapped between RB867515 and RB855453
varieties when considering the four sugarcane varieties analysed
in the current study. In this case, both varieties presented negative
PC1 values. However, good discrimination was observed between
this group and the other two varieties, with RB928064 resulting in
positive PC1 and PC2 values, while RB92579 was associated with

Fig. 4. Score plot of the first two principal compo-
nents of principal component analysis (PCA)
model built with the spectra of the calibration
set of RB855453, RB928064 and RB92579 sugar-
cane varieties.
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positive PC1 and negative PC2 values. Further, no outlier samples
were observed.

There was no overlapping when considering the PCA method
applied for two well-discriminated varieties (RB928064 and
RB92579) and one of the overlapped ones (RB867515 or
RB855453). In these cases, discrimination among the varieties
occurred mainly along the first principal component (PC1),
which accounted for a significant portion of the total variance.
According to Serranti et al. (2013), this fact confirms that spectral
pre-treatments were able to effectively filter out a significant part

of the signal variability not associated with the variety belonging
to a specific class.

Sugarcane varieties RB928064, RB92579, RB867515 and
RB855453 were well discriminated during the calibration with
cross-validation and external validation when using the super-
vised methods. The best accuracy was achieved with PLS-DA
when jointly analysing the four varieties.

These results confirm that PLS-DA combines the virtues of
other supervised methods with noise reduction and variable selec-
tion advantages of traditional PLS method. Conclusions of the

Table 3. Confusion matrices resulting from FDA, SFDA and PLS-DA analyses for the external validation considering the four sugarcane varieties

Varieties RB867515 RB855453 RB928064 RB92579 % correct

FDA

RB867515 7 5 0 0 61.46

RB855453 4 8 0 0 64.21

RB928064 0 0 12 0 100.00

RB92579 0 0 0 12 100.00

SFDA

RB867515 5 7 0 0 47.12

RB855453 7 5 0 0 47.87

RB928064 0 0 12 0 100.00

RB92579 0 0 0 12 100.00

PLS-DA

RB867515 8 4 0 0 66.40

RB855453 5 7 0 0 61.40

RB928064 0 0 12 0 100.00

RB92579 0 0 0 12 100.00

Table 2. Confusion matrices resulting from FDA, SFDA and PLS-DA analyses for the calibration with cross-validation considering the four sugarcane varieties

Varieties RB867515 RB855453 RB928064 RB92579 % correct

FDA

RB867515 20 4 0 0 80.65

RB855453 2 22 0 0 90.63

RB928064 0 0 24 0 100.00

RB92579 0 0 0 24 100.00

SFDA

RB867515 21 3 0 0 90.32

RB855453 6 18 0 0 71.88

RB928064 0 0 24 0 100.00

RB92579 0 0 0 24 100.00

PLS-DA

RB867515 21 3 0 0 87.50

RB855453 3 21 0 0 87.50

RB928064 0 0 24 0 100.00

RB92579 0 0 0 24 100.00
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studies by Pholpho et al. (2011) and Monakhova et al. (2014) are
in agreement with the results found in the present study, with
PLS-DA yielding the best accuracies. Pholpho et al. (2011) studied
the potential of visible spectroscopy combined with multivariate
methods for classifying non-bruised and bruised longan fruits,
verifying that PLS-DA showed better classification accuracy in
comparison with PCA. Monakhova et al. (2014) developed mod-
els to improve the prediction of grape variety, geographical origin
and year of vintage of wine based on spectroscopy fused with
stable isotope data and multivariate method: results demonstrated
that PLS-DA performed better than FDA.

During model development, it was observed that using only
one or more than two discriminant factors did not improve
sugarcane variety classification when applying the three super-
vised methods. Large positive and negative loadings resulted
from the use of PLS-DA, with discriminant factors 1 and 2
presenting similar behaviours and weights for the different wave-
lengths. This indicates that both discriminant factors equally
contributed for classifying the sugarcane varieties. On the other
hand, FDA loadings showed that discriminant factor 1 had
more influence on classifying sugarcane varieties than factor 2,
presenting higher peaks and lower valleys for all wavelengths.

Fig. 6. Loading plot of the first two discriminant
factors of the factorial discriminant analysis
(FDA) model built with the spectra of the four
sugarcane varieties.

Fig. 5. Loading plot of the first two discriminant
factors of the partial least-squares discriminant
analysis (PLS-DA) model built with the spectra
of the four sugarcane varieties.
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However, it cannot be considered alone, since the best discrimin-
ation between the four sugarcane varieties was achieved by a
combination of factors 1 and 2 when applying this method.
Observing the SFDA loadings, discriminant factors 1 and 2
equally influenced the classification of the sugarcane varieties,
presenting similar weights for all wavelengths. However, factor
1 presented comparatively more evident peaks and valleys than
factor 2.

Loadings of the three supervised methods showed that all
wavelengths contributed for discriminating the sugarcane var-
ieties. But the spectral region from 600 to 750 nm was more
relevant, showing higher peaks and lower valleys. This spectral
region is mainly affected by the various pigments of sugarcane
stalk, in which chlorophyll and anthocyanin play a leading role.
According to Wagih et al. (2004), sugarcane stalk colour depends
upon environmental variables, where red and blue anthocyanins
are predominant in epidermal cells and green chlorophyll in
deeper tissue. The presence of wax also affects the colour of stalks,
as it adds a whitish to dark-yellowish coating on the surface of
sugarcane. Another important factor is exposure to sunlight,
which makes the stalks of some varieties purplish and other
green-yellowish. Gitelson and Merzlyak (2004) proved that the
wavelength range from 695 to 735 nm is one of the sensitive spec-
tral bands for detecting chlorophyll and anthocyanin in plants.
The spectral range, which includes peaks and valleys with greater
potential for discriminating the sugarcane varieties, is also close to
the range of 560–720 nm found by Johnson et al. (2008) as appro-
priate for differentiating seven sugarcane varieties (LCP85-384,
HoCP96-540, L97-128, TUCCP77-042, Ho95-988, MPTH97-216
and LA-Purple) based on spectral reflectance values of the leaves.

When discriminating three sugarcane varieties, the best results
were also found by using two factors for all supervised methods.
As expected, when applying FDA, SFDA and PLS-DA for classi-
fying the RB928064, RB92579 and one of the PCA overlapped
varieties (RB867515 or RB855453), 100% of all the groups were

correctly classified, both for calibration with cross-validation
and external validation data sets.

Based on the results, spectroscopy coupled with discriminant
methods showed potential to reduce analytical time and cost of
traditional methods used for classifying sugarcane varieties.
Future studies will comprise an expansion of the wavelength
range, including middle infrared (1000–2500 nm) and the cultiva-
tion of more sugarcane varieties under field conditions to verify
whether the observed results remain, considering also a larger num-
ber of sugarcane stalks for spectral measurements. Non-destructive
techniques to assess sugarcane varieties may provide an opportun-
ity to compare these results with more detailed genomic or pro-
duction yield studies in real time, or target-specific crosses
demonstrating desired traits.

Conclusion

Visible/near infrared spectral reflectance coupled with multivari-
ate statistical methods (PCA, FDA, SFDA or PLS-DA) was shown
to be a promising tool for non-destructive and fast sugarcane
variety discrimination and can be used in the agro-food industry
or directly in the field. Based on the results, the PLS-DA method
showed potential to be used as a basis for the development of
automatic sorting systems of sugarcane varieties, contributing
for improving the pre-processing steps in the alcohol and sugar
industries.

Financial support. The authors are grateful to the Foundation for Research
Support of the State of Minas Gerais (FAPEMIG) in Brazil, which provided
funding to acquire the spectrometer with accessories (Process Number:
CAG-APQ-01715-13), as well as environmental sensors and equipment for
the experimental setup (Process Number: CAG-APQ-00408-14).

Conflict of interest. None.

Ethical standards. Not applicable.

Fig. 7. Loading plot of the first two discriminant
factors of the stepwise forward discriminant ana-
lysis (SFDA) model built with the spectra of the
four sugarcane varieties.
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