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Here, we discuss the stochastic comparison of residual lifetimes of parallel systems
and inactivity times of series systems by means of the reversed hazard rate order
when the components of the systems are independent but not necessarily identically
distributed. We also establish some monotonicity properties of such residual lifetimes
of parallel systems and inactivity times of series systems. These results extend some
of the recent results in this direction due to Zhao, Li, and Balakrishnan [21], Kochar
and Xu [12], and Saledi and Asadi [16].
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1. INTRODUCTION

Order statistics have received considerable attention in theoretical and applied lit-
erature since they play an important role in reliability, data analysis, statistical
inference, quality control, and applied probability. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be
the order statistics from random variables X1, X2, . . . , Xn. For example in the context
of reliability, the lifetime of the k-out-of-n system corresponds to the (n − k + 1)

th-order statistic Xn−k+1:n. In particular, the lifetimes of series and parallel sys-
tems are just the smallest order statistic X1:n and the largest order statistic Xn:n,
respectively.

The residual life of a unit with lifetime X at time t,

Xt = X − t | (X > t),

describes the lifetime of the used unit with age time t > 0. In some situations, the
times of failures of components of a system might not be available, but only the
information on the number of failed components might be available. For this rea-
son, many authors have studied the residual life of a k-out-of-n system under the
condition that the number of failures by time t is greater than some fixed positive
integer l < k; for example, one may refer to Bairamov, Ahsanullah, and Akhundov
[3], Asadi and Bairamov [2], Li and Zhao [14], and Goliforushani, Asadi, and Bal-
akrishnan [9]. It is of interest to mention here that Hu, Jin, and Khaledi [10], Zhao
and Balakrishnan [20], and Balakrishnan, Belzunce, Hami, and Khaledi [5] have all
discussed some stochastic ordering properties of the conditional distributions of gen-
eralized order statistics, which include the residual lifetimes of k-out-of-n systems
as a special case, whereas Khaledi and Shaked [11] have studied the residual life
of a coherent system given that at least (n − k + 1) components of the system are
working. All of the above developments, however, are based on the critical assump-
tion that the components in the system are all independent and identically distributed
(i.i.d.). However, it might be more realistic to consider a reliability system consist-
ing of independent and heterogeneous components. Due to the complicated nature
of distributions of order statistics arising from independent and nonidentical compo-
nents (see Balakrishnan [4]), not much work has been done on stochastic properties
of reliability systems with heterogeneous components. In this regard, Sadegh [15]
was the first to obtain some properties of the mean residual life function of a par-
allel system with independent but not necessarily identical (i.ni.d.) components.
Zhao and Balakrishnan [21] subsequently considered the residual lifetime of an
(n − k + 1)-out-of-n system given that there are exactly l failures by time t (i.e.,
the lth failure occurred by time t and the (l + 1)th failure has not occurred by time
t > 0), given by

Xk:n − t | (Xl:n ≤ t < Xl+1:n) for 1 ≤ l < k ≤ n. (1)
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Recently, Kochar and Xu [12] further investigated the residual lifetime of the
(n − k + 1)-out-of-n system with heterogeneous components under the condition that
at least (n − l + 1) components of the system are working at time t; that is,

Xk:n − t | (Xl:n > t) for 1 ≤ l < k ≤ n. (2)

They also considered another interesting situation of the residual lifetime of the
(n − k + 1)-out-of-n system that is working at time t, but with at least l failed
components, given by

Xk:n − t | (Xl:n ≤ t, Xk:n > t) for 1 ≤ l < k ≤ n. (3)

They then showed that all these three types of residual lifetimes of an (n − k + 1)-
out-of-n system stochastically decreases in l in the sense of the usual stochastic order
(which will be formally defined at the end of this section).

Another reliability characteristic that is of great interest in reliability and life-
testing studies is the inactivity time of a unit with lifetime X at time t, given by

X(t) = t − X | (X ≤ t) ,

which is simply the time that has elapsed since the failure of the unit. For a sys-
tem that can be regarded as a black box in the sense that the exact failure times
of its components cannot be observed, it is often of great importance for engineers
and reliability analysts to make inference on the inactivity times of failed compo-
nents in the system. For a system with i.i.d. components, Khaledi and Shaked [11]
investigated the stochastic properties of the inactivity time of a coherent system,
including

t − Xk:n | (Xl:n ≤ t) for 1 ≤ k ≤ l ≤ n (4)

as a special case. Recently, Saledi and Asadi [16] generalized the results of Khaledi
and Shaked [11] under the assumption that the components of system are non-i.i.d..
In addition, for systems with heterogeneous components, Zhao et al. [21] considered
the inactivity time of an (n − k + 1)-out-of-n system given by

t − Xk:n | (Xl:n ≤ t < Xl+1:n) for 1 ≤ k < l < n (5)

and established that the above two types of inactivity times stochastically increase in
l in the sense of the usual stochastic order. For more details, one may also refer to
Asadi [1] and Tavangar and Asadi [18].

In the present work, we consider the three types of residual lifetimes of parallel
systems defined in (1)–(3) and the two types of inactivity times of series systems
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defined in (4) and (5), and then prove some new stochastic comparison results.
Moreover, analogous to the concept of the residual lifetime in (3), we can also consider

t − Xk:n | (Xk:n ≤ t, Xl:n > t) for 1 ≤ k < l ≤ n (6)

which corresponds to the inactivity time of an (n − k + 1)-out-of-n system given that
the system had failed by time t but with at least (n − l + 1) components still working.

The rest of this article is organized as follows. In Section 2, we present some results
on the stochastic comparison of the three types of residual lifetimes of parallel systems
and the three types of inactivity times of series systems in the sense of reversed hazard
rate order. Then in Section 3, we establish some monotonicity results with respect to
the time elapsed.

Note that throughout this article, “increasing” stands for “nondecreasing” and
“decreasing” stands for “nonincreasing.” Before proceeding to the main results, we
now recall some stochastic orders that are most pertinent to subsequent developments.
For more details, one can refer to Shaked and Shanthikumar [17].

Let X and Y be two random variables with absolutely continuous cumulative
distribution functions F and G, probability density functions f and g, and survival
functions F̄ = 1 − F and Ḡ = 1 − G, respectively.

Definition 1: X is said to be smaller than Y in the

(i) usual stochastic order, denoted by X ≤st Y, if F̄(x) ≤ Ḡ(x) for all x;

(ii) hazard rate order, denoted by X ≤hr Y, if Ḡ(x)/F̄(x) is increasing in x;

(iii) reversed hazard rate order, denoted by X ≤rh Y, if G(x)/F(x) is increasing
in x.

2. MONOTONICITY WITH RESPECTTO NUMBER OF FAILURES

Let x = (x1, . . . , xn), with n ≥ 2, be a real vector of positive components. For j ∈
{1, 2, . . . , n}, let

Sj(x) =
∑

1≤i1≤···≤ij≤n

xi1 xi2 · · · xij

be the jth elementary symmetrical function of x1, x2, . . . , xn. Now, for comparing
elementary symmetrical functions of two different vectors, we introduce the following
lemma, which will play a key role in proving our main results.

Lemma 2 (Bon and Păltănea [7]): Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two
vectors such that 0 < pi ≤ qi for all i = 1, . . . , n. Then

Sr+1(p)

Sr(p)
≤ Sr+1(q)

Sr(q)
for any r ∈ {0, 1, . . . , n − 1}.

Moreover, the inequality is strict whenever pi < qi for some i ∈ {1, . . . , n}.
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As a consequence of Lemma 2, we obtain the following result concerning the
lifetime of a parallel system conditioned on the number of working components at
time t ≥ 0; that is, Nt(X) ≡ ∑n

i=1 I(Xi > t) with I(A) taking 1 and 0 according to the
occurrence of A and Ā, respectively.

Theorem 3: Suppose nonnegative random variables X1, . . . , Xn are i.ni.d. Then for
any t > 0 and r = 0, 1, · · · , n − 1, we have

Xn:n − t | (Nt(X) = r + 1) ≥rh Xn:n − t | (Nt(X) = r) ;

that is,

P
(
Xn:n ≤ t + x, Nt(X) = r + 1

)

P
(
Xn:n ≤ t + x, Nt(X) = r

)

is increasing in x ≥ 0.

Proof: Note that for any t > 0 and x ≥ 0, we can express

P
(
Xn:n ≤ t + x, Nt(X) = r + 1

)

P
(
Xn:n ≤ t + x, Nt(X) = r

)

=
∑

Cr+1

∏
i∈Cr+1

(
Fi(t + x) − Fi(t)

) ∏
j �∈Cr+1

Fj(t)∑
Cr

∏
i∈Cr

(
Fi(t + x) − Fi(t)

) ∏
j �∈Cr

Fj(t)

=
∑

Cr+1

∏
i∈Cr+1

(
Fi(t + x)/Fi(t) − 1

)

∑
Cr

∏
i∈Cr

(
Fi(t + x)/Fi(t) − 1

) , (7)

where the summation Cr extends over all subsets of {1, 2, . . . , n} with cardinality r
and C0 ≡ ∅.

Now, let

pi(x) = Fi(t + x)

Fi(t)
− 1 for i = 1, 2, . . . , n.

Then whenever y ≥ x ≥ 0, we have

pi(x) ≤ pi(y) for i = 1, 2, . . . , n,
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and, consequently, it follows from Lemma 2 that for y ≥ x ≥ 0 and
r = 0, 1, . . . , n − 1,

P
(
Xn:n ≤ t + x, Nt(X) = r + 1

)

P
(
Xn:n ≤ t + x, Nt(X) = r

) ≤ P
(
Xn:n ≤ t + y, Nt(X) = r + 1

)

P
(
Xn:n ≤ t + y, Nt(X) = r

) .

This completes the proof of the theorem. �

The next main result presents the reversed hazard rate ordering of the lifetime of
a parallel system conditioned on the partial information on the number of observed
working components.

Theorem 4: Suppose nonnegative random variables X1, · · · , Xn are i.ni.d. Then for
n > k ≥ 1 and t ≥ 0, we have

Xn:n − t | (Xk:n > t) ≥rh Xn:n − t | (Xk+1:n > t) .

Proof: Given that at least n − k + 1 components are surviving at time t ≥ 0, the
residual lifetime of the parallel system with components X1, · · · , Xn has its distribution
function as

P(Xn:n − t ≤ x | Xk:n > t)

= P(Xn:n ≤ t + x, Xk:n > t)

P(Xk:n > t)

= P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k + 1

)

P
(
Nt(X) ≥ n − k + 1

) . (8)

According to Theorem 3, for any t ≥ 0 and k = 1, 2, . . . , n,

P
(
Xn:n ≤ t + x, Nt(X) = n − k + 1

)

P
(
Xn:n ≤ t + x, Nt(X) = n − k

)

is increasing in x ≥ 0. Thus, for any t ≥ 0 and 1 ≤ n − k < j ≤ n, we have

P
(
Xn:n ≤ t + x, Nt(X) = j

)

P
(
Xn:n ≤ t + x, Nt(X) = n − k

)

= P
(
Xn:n ≤ t + x, Nt(X) = n−k + 1

)

P
(
Xn:n ≤ t + x, Nt(X) = n − k

)
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× P
(
Xn:n ≤ t + x, Nt(X) = n−k + 2

)

P
(
Xn:n ≤ t + x, Nt(X) = n − k + 1

)

...

× P
(
Xn:n ≤ t + x, Nt(X) = j

)

P
(
Xn:n ≤ t + x, Nt(X) = j−1

)

is increasing in x ≥ 0. As a result, for any t ≥ 0,

∑n
j=n−k+1 P

(
Xn:n ≤ t + x, Nt(X) = j

)

P
(
Xn:n ≤ t + x, Nt(X) = n − k

)

is increasing in x ≥ 0.
In view of (8), we have for any t ≥ 0,

P(Xn:n − t ≤ x | Xk+1:n > t)

P(Xn:n − t ≤ x | Xk:n > t)

∝ P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k

)

P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k + 1

)

= 1 + P
(
Xn:n ≤ t + x, Nt(X) = n − k

)

P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k + 1

)

= 1 + P
(
Xn:n ≤ t + x, Nt(X) = n − k

)
∑n

j=n−k+1 P
(
Xn:n ≤ t + x, Nt(X) = j

)

is decreasing in x ≥ 0. This completes the proof of the theorem. �

Theorem 3 of Li and Lu [13] claimed the hazard rate ordering between the parallel
system of used components and a used parallel system, and this seems to be incorrect,
as shown later in Example 6. The following corollary serves as a correction for this
result.

Corollary 5: Suppose nonnegative random variables X1, . . . , Xn are i.ni.d. Then,

(X(t))n:n ≥rh
(
Xn:n

)
(t) for any t ≥ 0.

Proof: From Theorem 4, we have for any t ≥ 0,

Xn:n − t | (X1:n > t) ≥rh Xn:n − t | (X2:n > t)

...

≥rh Xn:n − t | (Xn:n > t) .
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Due to the independence among X1, . . . , Xn, we have

(X(t))n:n = max
1≤i≤n

{Xi − t | (Xi > t)} = Xn:n − t | (X1:n > t) ,

from which we readily obtain (X(t))n:n ≥rh
(
Xn:n

)
(t)

for any t ≥ 0, as required. �

Theorem 4 shows that the residual lifetime of a parallel system with indepen-
dent but heterogenous components stochastically increases with respect to number of
components surviving at some time point in terms of the reversed hazard rate order.
This incidentally extends Theorem 4.2 of Kochar and Xu [12] from the usual stochas-
tic order to the reversed hazard rate order for parallel systems. Naturally, one may
wonder whether the hazard rate order actually holds, and, unfortunately, Example 6
below reveals that the answer is, in general, negative.

Example 6: Consider a parallel system with two independent components having their
survival functions as

F̄1(x) = e−x and F̄2(x) = 1

1 + x
for x ≥ 0,

respectively. Then it is easy to verify that the ratio of the survival function of X2:2 − t |
(X1:2 > t) to that of X2:2 − t | (X2:2 > t) is given by

gt(x) = P(X2:2 − t > x | X1:2 > t)

P(X2:2 − t > x | X2:2 > t)

∝ 1 + (t + x)e−(t+x)

1 + t + xe−x
.

As depicted in Figure 1, when t = 10, for example, gt(x) is not monotone. This
means that there exists no hazard rate order and consequently no likelihood ratio
order between X2:2 − t | (X1:2 > t) and X2:2 − t | (X2:2 > t).

In the context of non-i.i.d. components, Zhao et al. [21] showed that for 2 ≤ k <

r ≤ n and t ≥ 0,

Xr:n − t | (Xk−1:n < t ≤ Xk:n) ≥st Xr:n − t | (Xk:n < t ≤ Xk+1:n) .

Subsequently, Kochar and Xu [12] showed that for 2 ≤ k < r ≤ n and t ≥ 0,

Xr:n − t | (Xk−1:n ≤ t, Xr:n > t) ≥st Xr:n − t | (Xk:n ≤ t < Xr:n) .

In Theorems 7 and 8, we improve these two results by strengthening the usual
stochastic order to the reversed hazard rate order for parallel systems, respectively.
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FIGURE 1. The ratio gt(x) with t = 10.

Theorem 7: Suppose nonnegative random variables X1, . . . , Xn are i.ni.d. Then for
1 ≤ k < n − 1 and t ≥ 0, we have

Xn:n − t | (Xk:n ≤ t, Xn:n > t) ≥rh Xn:n − t | (Xk+1:n ≤ t, Xn:n > t) .

Proof: We may present a proof along lines similar to those for Theorem 4. To begin,
we find for any t, x ≥ 0, and 1 ≤ k < n,

P(Xn:n − t ≤ x | Xk:n ≤ t, Xn:n > t)

P(Xn:n − t ≤ x | Xk+1:n ≤ t, Xn:n > t)

∝ P
(
Xn:n ≤ t + x, 1 ≤ Nt(X) ≤ n − k + 1

)

P
(
Xn:n ≤ t + x, 1 ≤ Nt(X) ≤ n − k

)

= 1 + P
(
Xn:n ≤ t + x, Nt(X) = n − k + 1

)
∑n−k

j=1 P
(
Xn:n ≤ t + x, Nt(X) = j

) . (9)

It then suffices to prove that for 1 ≤ s ≤ n − k and t ≥ 0,

P
(
Xn:n ≤ t + x, Nt(X) = s + 1

)

P
(
Xn:n ≤ t + x, Nt(X) = s

)

is increasing in x ≥ 0. This is actually guaranteed by Lemma 3, which completes the
proof. �

Theorem 8 below can be established in an analogous manner and therefore is
presented here without a proof for the sake of brevity.
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Theorem 8: Suppose nonnegative random variables X1, . . . , Xn are i.ni.d. Then for
1 < k < n and t ≥ 0, we have

Xn:n − t | (Xk−1:n < t ≤ Xk:n) ≥rh Xn:n − t | (Xk:n < t ≤ Xk+1:n) .

In concluding this section, we present the dual versions for the inactivity times
of series systems, and the basic idea of the proof comes from Zhao et al. [21].

Corollary 9: Suppose nonnegative random variables X1, . . . , Xn are i.ni.d. Then we
have the following:

(i) for 1 ≤ k < n and t ≥ 0,

t − X1:n | (Xk:n ≤ t) ≤rh t − X1:n | (Xk+1:n ≤ t) ;

(ii) for 2 ≤ k < n and t ≥ 0,

t − X1:n | (X1:n ≤ t, Xk:n > t) ≤rh t − X1:n | (X1:n ≤ t, Xk+1:n > t) ;

(iii) for 1 < k < n and t ≥ 0,

t − X1:n | (Xk−1:n ≤ t < Xk:n) ≤rh t − X1:n | (Xk:n ≤ t < Xk+1:n) .

Proof: We only prove part (i); the other two parts can be proved in a similar manner.
Although the random variables discussed in this article are all taken to be nonnegative,
all results also hold for any random variables on the real line. Denote by (−X)k:n

the k-th order statistic among −X1, −X2, . . . , −Xn. Then it is clear that (−X)k:n =
−Xn−k+1:n. So, by Theorem 4, we have for 1 ≤ k < n and x ≤ 0,

(−X)n:n − x | ((−X)k:n > x) ≥rh (−X)n:n − x | ((−X)k+1:n > x) ,

which is equivalent to

−X1:n − x | (−Xn−k+1:n > x) ≥rh −X1:n − x | (−Xn−k:n > x) .

Now, setting t = −x, we obtain

t − X1:n | (Xn−k+1:n ≤ t) ≥rh t − X1:n | (Xn−k:n ≤ t)),

which implies the required result. �

Clearly, parts (i) and (iii) of Corollary 9 strengthen Theorem 2.9 of Saledi and
Asadi [16] and Corollary 2.2(i) of Zhao et al. [21], respectively, by extending the usual
stochastic order to the reversed hazard rate order.
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3. MONOTONICITY WITH RESPECTTOTIME ELAPSED

The reversed hazard rate as well as the reversed hazard rate order are rather useful
in autopsy data analysis wherein, following the failure of a reliability system, one
will be interested in inferring about failures of the components. Recall that X with
distribution function F is said to have a decreasing reversed hazard rate (DRHR)
if F(x) is log-concave. As a dual notion, increasing reversed hazard rate (IRHR) is
defined as the log-convexity of F(x). One may refer to Block, Savits and Singh, [6]
and Chandra and Roy [8] for more on this aging property.

Now, we establish some monotonicity results for the conditional inactivity times.

Theorem 10: Suppose X1, . . . , Xn are i.ni.d. random variables. If Xi is DRHR for all
i = 1, . . . , n, then

P
(
t − Xk:n < x | Xn:n ≤ t

)

P
(
t − Xk+1:n < x | Xn:n ≤ t

)

is decreasing in t, for any x > 0.

Proof: In (7), let us set

qi(t) = Fi(t + x)

Fi(t)
− 1, i = 1, 2, . . . , n.

Since Xi is DRHR, we have qi(t) to be decreasing with respect to t ≥ 0 for any x ≥ 0
and i = 1, 2, . . . , n. Consequently, it follows from Lemma 2 once again that for any
x ≥ 0 and r = 0, 1, . . . , n − 1,

P
(
Xn:n ≤ t + x, Nt(X) = r + 1

)

P
(
Xn:n ≤ t + x, Nt(X) = r

)

=
∑

Cr+1

∏
i∈Cr+1

qi(t)∑
Cr

∏
i∈Cr

qi(t)

≤
∑

Cr+1

∏
i∈Cr+1

qi(s)∑
Cr

∏
i∈Cr

qi(s)

= P
(
Xn:n ≤ s + x, Ns(X) = r + 1

)

P
(
Xn:n ≤ s + x, Ns(X) = r

) ,

whenever t ≥ s ≥ 0.

https://doi.org/10.1017/S0269964811000234 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964811000234


72 W. Ding, X. Li, and N. Balakrishnan

As a result, for any x ≥ 0, we find

P
(
Xk+1:n > t | Xn:n ≤ t + x

)

P
(
Xk:n > t | Xn:n ≤ t + x

)

= P
(
Xn:n ≤ t + x, Xk+1:n > t

)

P
(
Xn:n ≤ t + x, Xk:n > t

)

= P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k

)

P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k + 1

)

= 1 + P
(
Xn:n ≤ t + x, Nt(X) = n − k

)

P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k + 1

)

= 1 + P
(
Xn:n ≤ t + x, Nt(X) = n − k

)
∑n

j=n−k+1 P
(
Xn:n ≤ t + x, Nt(X) = j

)

to be increasing in t ≥ 0, from which the required result follows readily. �

Remark 11: Quite interestingly, in the special case when Xi’s are i.i.d. DRHR random
variables, the ratio of the conditional probabilities considered in Theorem 10 can be
shown to be equivalent to 1/(1 + hn−k(t)), where hn−k(t) is the hazard rate function at
n − k of Binomial (n, 1 − F(t − x)/F(t)), with fixed x. Here, the hazard rate function
at n − k of Binomial(n, p) distribution is defined as

( n
n−k

)
pn−k(1 − p)k

∑n
i=n−k+1

(n
i

)
pi(1 − p)n−i

.

It can be readily verified that hn−k(t) is increasing in t, for t ≥ x, when the com-
mon distribution F is DRHR. This fact, together with its connection to the quantity
considered in Theorem 10, provides an additional insight into the result.

Theorem 12: Suppose X1, . . . , Xn are independent but not necessarily identically
distributed variables. If Xi is IRHR for all i = 1, . . . , n, then for n > k ≥ 1 and x > 0,

P(Xn:n − t ≤ x | Xk+1:n > t)

P(Xn:n − t ≤ x | Xk:n > t)

is decreasing in t.

Proof: In a manner analogous to the proof of Theorem 10, the IRHR property of all
Xi’s can be shown to imply that for any x > 0 and k = 1, 2, . . . , n,

P
(
Xn:n ≤ t + x, Nt(X) = n − k + 1

)

P
(
Xn:n ≤ t + x, Nt(X) = n − k

)
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is increasing in t. So, for any x > 0 and 1 ≤ n − k < j ≤ n,

P
(
Xn:n ≤ t + x, Nt(X) = j

)

P
(
Xn:n ≤ t + x, Nt(X) = n − k

)

is also increasing in t. Accordingly, for any x > 0,

∑n
j=n−k+1 P

(
Xn:n ≤ t + x, Nt(X) = j

)

P
(
Xn:n ≤ t + x, Nt(X) = n − k

)

is increasing in t. As a result, for any x > 0, we find

P
(
Xn:n ≤ t + x, Xk+1:n > t

)

P
(
Xn:n ≤ t + x, Xk:n > t

)

= P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k

)

P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k + 1

)

= 1 + P
(
Xn:n ≤ t + x, Nt(X) = n − k

)

P
(
Xn:n ≤ t + x, Nt(X) ≥ n − k + 1

)

= 1 + P
(
Xn:n ≤ t + x, Nt(X) = n − k

)
∑n

j=n−k+1 P
(
Xn:n ≤ t + x, Nt(X) = j

) (10)

to be decreasing in t.
On the other hand, according to Theorem 1.B.26 of Shaked and Shanthikumar

[17], Xk+1:n ≥hr Xk:n for any k = 0, 1, . . . , n − 1; that is,

P(Xk:n > t)

P(Xk+1:n > t)
(11)

is decreasing in t.
Now, by taking (8), (10), and (11) into account, we can conclude that for any

k = 0, 1, . . . , n − 1,

P(Xn:n − t ≤ x | Xk+1:n > t)

P(Xn:n − t ≤ x | Xk:n > t)
= P

(
Xn:n ≤ t + x, Xk+1:n > t

)

P
(
Xn:n ≤ t + x, Xk:n > t

) · P(Xk:n > t)

P(Xk+1:n > t)

is decreasing in t, as required. �

Remark 13: In the special case when Xi’s are i.i.d. IRHR random variables, the ratio of
the conditional probabilities considered in Theorem 12 can be shown to be equivalent
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to (1 + r1,k(t))/(1 + r2,k(t)), where r1,k(t) and r2,k(t) are the reversed hazard rate
functions at k of Binomial (n, F(t)/F(x + t)) and Binomial (n, F(t)) distributions,
respectively, with fixed x. Here, the reversed hazard rate function at k of Binomial(n, p)

distribution is defined as (n
k

)
pk(1 − p)n−k

∑k−1
i=0

(n
i

)
pi(1 − p)n−i

.

It is evident that r2,k(t) is increasing in t for any distribution F, whereas r1,k(t) is
decreasing in t when the parent distribution F is IRHR. These interesting facts, together
with their connection to the quantity considered in Theorem 12, gives an additional
insight into the result.
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