
J. Fluid Mech. (2016), vol. 805, pp. 171–187. c© Cambridge University Press 2016
doi:10.1017/jfm.2016.564

171

Spectra of energy transport in turbulent channel
flows for moderate Reynolds numbers
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To reveal the scale dependence of the transport of turbulent kinetic energy in a channel
flow, the constituents of a spectral energy budget equation are evaluated using direct
numerical simulations. At each height in the buffer and overlap layers, the upward
turbulent transport provides energy to the fluctuations at small scales, but removes it
from those at large scales. Energy removed from the large scales in the overlap layer
is carried upward to the centre of the channel and also downward to the vicinity of
the wall. The downward energy fluxes at the large scales result in the well-known
anomaly of turbulence intensity and the constituents of the budget equation near the
wall. In the overlap layer the cospectrum of the spatial turbulent transport is scaled
well by the mixing length. It shows that the structure of fluctuations involved in
turbulent transport is self-similar in this layer, supporting the classical assumption.
The cospectra of pressure–strain correlations are also evaluated. They are not scaled
by the wall unit near the wall, but no symptom of the influence of large-scale
structures is observed in the cospectra, at least for the present range of Reynolds
numbers. Above the buffer layer the cospectra of the pressure–strain correlations are
almost isotropic, and their relevant length scale is given by the mixing length in the
overlap layer. The pressure–strain correlations are therefore rather local quantities.

Key words: turbulent boundary layers, turbulent flows, turbulence simulation

1. Introduction
Transport of turbulent kinetic energy is a fundamental process in turbulence. It

distributes the energy from the scale and location where it is injected to other
scales and locations. This interscale transport results in a broad and continuous
energy spectrum. The inhomogeneity of energy injection leads to a net spatial energy
transport and determines the spatial profile of turbulence intensity. Wall-bounded
turbulent flows are characterised by inhomogeneity in the wall-normal direction, and
the turbulent flow region is conventionally divided into two parts. The near-wall
region, where the viscosity of the fluid is important, is called the inner layer. The
scales obtained using the kinematic viscosity ν and density ρ of the fluid, and friction
velocity uτ ≡

√
τw/ρ, where τw is the mean shear stress on the wall, are called wall

units. They yield relevant scales of flow in the inner layer. In the region away from
the wall, called the outer layer, the viscosity has no role, and the relevant length scale
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corresponds to that of the flow geometry, for example, the boundary layer thickness
or the half-width in channel flows. The turbulent kinetic energy is generated by the
interaction of mean shear and tangential Reynolds stresses. It is intense in the inner
layer, and some of the injected energy, not dissipated at the location, is delivered
toward and away from the wall mainly by turbulent transport. Two important types
of turbulent energy transport arise in wall-bounded turbulent flows. One is spatial
transport directed away from the wall and the other is interscale transport from large
to small scales at each wall distance (Jiménez 1999). An early attempt to resolve the
scale dependence of turbulent energy transport is traced back to the work by Lumley
(1964), who discussed budget equations for the two-point correlation functions of
velocity fluctuations in wall-bounded flows. He assumed that flow structures involved
in turbulent transport are self-similar in the logarithmic layer. A model in which
spatial and interscale transport and production resulted from the mean shear balance
was suggested. Domaradzki et al. (1994) evaluated nonlinear transport in the spectral
energy budget equation using a few instantaneous velocity fields obtained by direct
numerical simulations of wall-bounded turbulent flows. They discussed the energy
transfer between wall-parallel scales in Fourier space. Their analysis focused on
individual short-time events of energy transfer rather than its statistical nature. A
statistical study of energy transfer in a channel flow was carried out by Bolotnov
et al. (2010). They evaluated the averaged constituents of the spectral energy budget
equation using a direct numerical simulation for a marginally low Reynolds number,
and revealed the structure of energy transfer in the buffer layer. Orthogonal wavelets
were also employed to analyse the spatial and interscale energy transfer in a channel
flow (Dunn & Morrison 2003, 2005). They showed that interscale energy transfer
occurs both in the forward and backward directions in scale, and is highly intermittent.
While in these studies a spectral technique is applied to the two-dimensional fields
on the homogeneous wall-parallel plane in order to extract the scale dependence of
energy transport on it, the two-point correlations or second-order structure functions
of velocity fluctuations may be utilised. Marati, Casciola & Piva (2004) showed
that in the logarithmic layer, production and dissipation balance, and upward spatial
energy fluxes neither provide nor remove energy at each scale. Following the same
direction, Cimarelli, Angelis & Casciola (2013) extracted spiral-like ascending energy
fluxes in the composite space of the wall-parallel scales and wall-normal distance,
exhibiting inverse (small to large) and then forward (large to small) energy transfer.

An intriguing aspect of wall-bounded turbulent flows is the interaction between the
inner and outer layers. The structures of fluctuations in the inner layer may behave
autonomously without any interaction with those in the outer layer (Hamilton, Kim &
Waleffe 1995; Jiménez & Pinelli 1999), while statistical properties in the outer layer
are independent of the details of the inner layer (Flores & Jiménez 2006; Mizuno
& Jiménez 2013). On the other hand, it is also well known that the flow in the
inner layer is not closed for high Reynolds numbers. For example, the intensities
of wall-parallel velocity fluctuations near the wall are not scaled well by the wall
unit, and increase with the increase in Reynolds number (DeGraaff & Eaton 2000).
This is due to the invasion of large-scale structures of fluctuations in the logarithmic
layer into the inner layer (Bradshaw 1967; del Álamo et al. 2004). The outer large-
scale structures also affect the dynamics of velocity fluctuations in the vicinity of
the wall (Mathis, Hutchins & Marusic 2009). These observations imply the existence
of downward energy fluxes at large scales, but they have not been discussed until
now. The influence of outer large-scale fluctuations on the inner layer has not been
clarified in terms of energy transport, though Cimarelli et al. (2015) suggested that
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the confinement of the inner layer results in the failure of wall scaling of turbulence
intensity in the vicinity of the wall. Our present approach is rather classical. We
start from a spectral energy budget equation, and represent the contributions as the
cospectra of Fourier modes of velocity and pressure fluctuations and Reynolds stresses
(Bolotnov et al. 2010; Lee 2015; Lee & Moser 2015b). One of the objectives of this
paper is to reveal the scale dependence of turbulent energy transport.

Pressure–strain correlations in the budget equation for normal Reynolds stresses
represent the intercomponent energy transfer. They are actual energy sources for
the wall-normal and spanwise components, and their details are important for
turbulence modelling. Kim (1989) showed that the pressure–strain near the wall
takes its contribution mostly from the near-wall region, whereas that away from
the wall takes its contribution from a wide range of the wall distances, that is,
globally. These correlations are not scaled by the wall unit near the wall, but are
scaled fairly well when the pressure is normalised by the root mean square of
the pressure fluctuations (Hoyas & Jiménez 2008). It seems that the failure of the
wall scaling of the pressure–strain correlations near the wall is due to that of the
pressure fluctuations, but a model for the pressure-related quantities has not been
built yet. Spectral information on the pressure–strain correlations will be helpful for
the modelling, and will be discussed in the paper as well.

The paper is organised as follows. The spectral energy budget equation is described
in § 2. The numerical simulations used to evaluate the constituents of the equation
are described in § 3. Turbulent energy transport and pressure–strain correlations are
respectively discussed in §§ 4 and 5 and § 6 concludes the paper.

2. Spectral energy budget equation in a channel flow

We consider a pressure-driven incompressible turbulent flow in a channel. The
coordinate system used here is the Cartesian system, which consists of the x-axis
in the streamwise, y-axis in the wall-normal and z-axis in the spanwise direction.
Two solid walls parallel to the x–z plane are placed at y = 0, 2h. The velocity
and pressure are decomposed into their means and fluctuations. The x, y and z
components of velocity fluctuation u are denoted by u, v and w, respectively, and
pressure fluctuation by p. Owing to the symmetry of the system, the mean velocity
has a non-zero component only in the streamwise direction, which depends on y and
is denoted by U(y) hereafter. For convenience of notation, (u, v, w) and (x, y, z) are
sometimes replaced by (u1, u2, u3) and (x1, x2, x3), respectively, in the following.

From the Navier–Stokes equation, one may derive the budget equation for the
turbulent kinetic energy e= (u2

+ v2
+w2)/2 as follows:

∂e
∂t
= P+ Tp

+Π + ε+D, (2.1)

where t is the time and the overline stands for the averaging over the two
homogeneous directions and time. The terms on the right-hand side of the preceding
equation are identified as follows:

P(y)=−uv
dU
dy
, Tp(y)=−

dev
dy
, Π(y)=−

1
ρ

dpv
dy
,

ε(y)=−ν
(
∂uj

∂xk

)2

, D(y)= ν
d2e
dy2

,

 (2.2)
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where the repeated indices imply summation over 1, 2 and 3. If the flow is statistically
steady, the left-hand side of (2.1) vanishes, and the terms on the right-hand side
balance each other. The first term P(y) of the right-hand side is the production rate
of the turbulent kinetic energy. The energy is first injected to the streamwise velocity
component, and then delivered to the other components through the pressure–strain
correlations. The second Tp(y) is the spatial turbulent transport. The third term Π(y)
represents the transport of energy by the turbulent pressure gradient. The fourth and
fifth, ε(y) and D(y), are respectively the dissipation rate and viscous diffusion. Owing
to the homogeneity in the wall-parallel directions, the net spatial transport appears
only in y, as presented by Tp, Π and D.

We here consider the spectra of the constituents of (2.1) in each homogeneous wall-
parallel plane. The budget equation of the energy spectra is usually obtained by the
Fourier transform of the equation of the two-point correlation function of the velocity
fluctuation, as in Lumley (1964). However, we may omit this procedure and start
from the Navier–Stokes equation of the Fourier modes of the velocity and pressure
fluctuations, (û(k, y), v̂(k, y), ŵ(k, y)) and p̂(k, y), where k= (kx, kz) is the wavenumber
vector, assuming periodicity in the stream- and spanwise directions. Here ̂ stands for
the Fourier coefficients that have been transformed only in the x and z directions. To
eliminate the effect of the finiteness of the numerical domain on the internal flow
dynamics the periods in the homogeneous directions must be large enough. The budget
equation of the energy spectrum ẽ = 〈|û|2 + |v̂|2 + |ŵ|2〉/2 may then be derived as
follows:

∂ ẽ
∂t
= P̃+ T̃p

+ Π̃ + ε̃+ D̃+ T̃ s, (2.3)

where

P̃(k, y)=Re
{
−
〈
ûv̂∗
〉 dU

dy

}
, (2.4)

T̃p(k, y)=Re

{
−

1
2

d
〈
ûj(ûjv)

∗
〉

dy

}
, (2.5)

Π̃(k, y)=Re

{
−

1
ρ

d
〈
v̂p̂∗
〉

dy

}
, (2.6)

ε̃(k, y)=−2ν(k2
x + k2

z )ẽ− ν

〈∣∣∣∣∂ ûj

∂y

∣∣∣∣2
〉
, (2.7)

D̃(k, y)= ν
d2ẽ
dy2

, (2.8)

T̃ s(k, y)=Re

{〈
∂kûj(ûjuk)

∗
〉
−

1
2

d
〈
ûj(ûjv)

∗
〉

dy

}
, (2.9)

and (∂1, ∂2, ∂3)= (ikx, ∂/∂y, ikz). The superscript ∗ denotes the complex conjugate, and
the brackets 〈 〉 denote averaging in time. The constituents (2.4)–(2.8) of the spectral
budget equation (2.3) correspond to the decompositions into the spectra or cospectra
of the terms on the right-hand side of (2.1), respectively. The last term T̃ s defined
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by (2.9) represents turbulent energy transport between scales, which does not make
any contribution to the total budget (2.1); that is,∑

k

T̃ s(k, y)= 0, (2.10)

for any y. It should be noted that there are multiple ways to split the nonlinear
transport terms into spatial and interscale parts, such as (2.5) and (2.9). For example,
Tp may also be decomposed differently from (2.5) as

∑
k

Re

{
−

1
2

d
〈
(ûjuj)v̂

∗
〉

dy

}
, (2.11)

leading to an expression different from (2.9) for the interscale transport.
All the spectra and cospectra in (2.4)–(2.9) retain an explicit y-dependence, and

yield no information on the scales in the wall-normal direction. In general, the energy
distribution on the scales in the wall-normal direction and the energy transfer between
these scales are also important for understanding the physics of wall-bounded turbulent
flows, but they will not be discussed here as they are outside the scope of the present
work. An attempt to resolve the energy distribution on the wall-normal scales is found
in Cimarelli et al. (2016).

3. Direct numerical simulation (DNS) and validation
The constituents of the budget (2.1) as functions of the wall distance in a channel

flow have been evaluated by numerical data since the pioneering work of DNS (Kim,
Moin & Moser 1987; Mansour, Kim & Moin 1988), and are now accessible for a
wide range of Reynolds numbers (Hoyas & Jiménez 2008; Lee & Moser 2015a), but
not for their spectral version (2.3). To evaluate (2.4)–(2.9), DNSs of fully developed
turbulent channel flows for several Reynolds numbers were carried out. The size
of the numerical domain is Lx × Ly × Lz = 32πh × 2h × 2πh in common to all the
simulations. For spatial discretisation, the Fourier spectral method is employed for
the wall-parallel directions and an eighth-order compact finite difference scheme on a
non-uniform grid for the wall-normal direction. A semi-implicit three-step third-order
Runge–Kutta scheme was used for time marching. Other parameters of the simulations
are summarised in table 1. For Reτ approximately above 500, a self-similar overlap
layer can be identified even if an actual logarithmic layer is not observed. The
relevant length scale in this layer is given by the mixing length `m≡ (dU+/dy)−1 that
tends to κy, where κ is the Kármán constant, for sufficiently high Reynolds numbers
(Mizuno & Jiménez 2011). We will also discuss the scaling of the constituents in
the overlap layer as a putative logarithmic layer for high Reynolds numbers. The
spanwise dimension must be larger than 3h to prevent the spatial periodicity from
affecting the internal flow dynamics (Flores & Jiménez 2010). Long structures of
streamwise velocity fluctuations are typically observed in the logarithmic layer for
high Reynolds numbers in wall-bounded flows. The typical length of these structures
are known to be O(10h) (del Álamo et al. 2004; Hutchins & Marusic 2007; Monty
et al. 2007), but the longest ones could be ≈100h (Lozano-Durán & Jiménez 2014a).
The computational domain of the present channels is so long that it can capture such
very long structures. The present channel is large enough to eliminate the artefact
arising from the finiteness of the numerical domain.
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FIGURE 1. Turbulent energy transport in the wall-normal direction Tp(y) in (a) inner and
(b) outer scales. The symbols are the present channels as in table 1. The lines are DNS
for Reτ = 180 (— · —), 550 (— —) and 950 (——) by del Álamo et al. (2004).

Nx ×Ny ×Nz ∆+x , maxy(∆y/η) Reτ Tuτ/h Symbol

C200 4096× 129× 256 5.07, 1.23 207 210 u
C500 8192× 257× 512 6.08, 1.17 496 34 p
C900 16 384× 513× 1024 5.60, 0.914 912 7.3 q

TABLE 1. Parameters of the present simulations. Nx and Nz are respectively the numbers
of the collocating points in the streamwise and spanwise directions, and Ny is the
number of grid points in the wall-normal direction. η is Kolmogorov’s length scale and
Reτ ≡ uτh/ν = h+ is the friction Reynolds number, where the superscript stands for the
normalisation by a wall unit. The statistics are compiled during the time T . ∆x is the
spatial resolution in terms of Fourier modes and ∆y is the grid spacing of the compact
finite difference. The spanwise resolution is the same as the streamwise one.

Figure 1(a) shows the profiles of spatial turbulent transport Tp(y) in the wall
unit, focussing on its behaviour in the inner layer. The profiles for the two higher
Reynolds numbers agree quite well up to y+ ≈ 200, except for y+ = O(1), where Tp

increases with the Reynolds number. As is already known, the spatial energy fluxes
are bifurcated into upward and downward directions at the location y+ ≈ 15, where
production is most intense. In the figure, the present cases are also compared with
a database from another series of DNS of channel flows (del Álamo et al. 2004),
and are found to agree with them. The long numerical domain in the present cases
makes no difference in these one-point statistics in the inner layer, as discussed by
Lozano-Durán & Jiménez (2014a). Figure 1(b) highlights the outer scaling of Tp(y).
In this figure Tp is multiplied by y to emphasise its profile in the outer layer. This
shows that C500 and C900 agree well above y/h ≈ 0.5. In particular, the present
cases show that the profile is scaled well in the outer layer with uτ and h. As well as
turbulence intensity, the inner and outer scaling works well for the spatial turbulent
transport Tp(y), except for the vicinity of the wall.

4. Turbulent energy transport
By turbulent transport, the energy is distributed to different scales and locations

from where it is injected. In this section, turbulent energy transport is discussed with
an emphasis on its scale dependence.
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FIGURE 2. (a) Premultiplied two-dimensional cospectra of the energy flux in the
wall-normal direction, Θ̃p, at y+ = 15. Shaded, C900; ——, C500; — —, C200.
Bright (dark) colour indicates positive (negative) levels. (b) Premultiplied one-dimensional
cospectra of the flux as functions of λz. The symbols indicate the Reynolds number as
shown in table 1.

4.1. Inner layer
In the viscous sublayer where y+ =O(1), the main contribution to the energy budget
is the viscous effects. Because the energy production from the mean shear is weak,
the viscous and turbulent transport from the upper locations are the source of energy
in this region. The provided energy is dissipated at the same scales as those of the
transport (Marati et al. 2004). It is known that the total dissipation rate in this region
in the wall unit increases with the Reynolds number. This effect of Reynolds number
is due to the penetration of large-scale structures in the logarithmic layer into the
vicinity of the wall (Hoyas & Jiménez 2008). This will be discussed later in the
context of turbulent energy transport.

At y+ ≈ 15, the energy production from the mean shear is most intense. Some of
the generated energy is carried to slightly smaller scales and dissipated at this location.
The remaining energy is carried to upper and lower locations mainly by turbulent
transport, as seen in figure 1(a). Figure 2(a) shows the two-dimensional cospectra of
the wall-normal turbulent fluxes

Θ̃p(k, y)=−
∫ y

0
T̃p(k, y′) dy′ (4.1)

at y+ = 15 as functions of the wavelengths λx = 2π/kx and λz = 2π/kz for the three
present cases. The cospectrum of downward fluxes for higher Reynolds numbers has
a longer tail extending toward larger scales up to λx=O(10h) and λz≈ h. Figure 2(b)
compares the one-dimensional cospectra of the fluxes,

∑
kx
Θ̃p, at y+=15 for the same

cases. It shows that the cospectrum up to λ+z ≈ 300 is universal. The flow structures
driving these energy fluxes are commonly observed for all the Reynolds numbers. In
contrast, the tail on the larger side grows wider with increasing Reynolds number.

The upward and downward energy fluxes whose scales are independent of Reynolds
number compensate for the energy excess at y+ ≈ 15 and λ+z ≈ 100, while the
downward energy fluxes at large scales carry energy from further upper locations
toward the vicinity of the wall. All the downward fluxes end in the viscous sublayer,
approximately around y+ ≈ 5 (see figure 3a). As the Reynolds number increases, the
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FIGURE 3. Contours of the premultiplied one-dimensional cospectra of (a) kz
∑

kx
Θ̃p and

(b) contribution of kz
∑

kx
T̃p, as functions of the spanwise wavelength λz and the wall

distance y. Shaded, C900; ——, C500; — —, C200. Bright (dark) colour indicates positive
(negative) levels. On the contrary, black (white) lines indicate positive (negative) levels.
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FIGURE 4. Premultiplied two-dimensional cospectra of (a) Θ̃p and (b) T̃p at y+ = 54 for
C900. White (black) indicates positive (negative) magnitude.

fluxes supply more energy at larger scales, as shown in figure 3(b). As will be shown
later, this accumulation of energy at large scales causes the failure of the wall scaling
of Tp(y) near the wall seen in figure 1(a), the enhancement of dissipation rate beside
the wall (Bradshaw 1967; Hoyas & Jiménez 2008) and turbulence intensity (DeGraaff
& Eaton 2000; Metzger & Klewicki 2001; del Álamo et al. 2004) with increasing
Reynolds number. As expected, the outer large-scale motions affect the dynamics of
velocity fluctuations at this location as well (Mathis et al. 2009).

Above y+≈20 in the inner layer, the main contributors to the budget are production,
turbulent transport and dissipation, although spatial turbulent transport is relatively
weaker than the other contributors. The relevant length scales of production start
separating from those of dissipation, and interscale transport carries energy from the
former to the latter. Figure 4(a) shows the premultiplied two-dimensional cospectrum
of Θ̃p at y+ = 54, as a representative in the buffer layer. As indicated by this figure,
the energy fluxes are directed upward at almost all the scales, except at very long
and wide scales. As seen from figure 4(b), which places the cospectrum of T̃p at
the same location as 4(a), fluctuations at narrower scales receive energy from the
lower fluctuations at the same scales through these upward fluxes, while fluctuations
at wider scales lose energy, giving to the upper ones.
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FIGURE 5. Premultiplied one-dimensional cospectra at y+= 60 as functions of (a) λx and
(b) λz. — —, production rate; · · · · · ·, dissipation rate; — · —, spatial transport; ——,
interscale transport. The symbols indicate the Reynolds number as shown in table 1.

The downward fluxes at large scales are located upstream of those observed at
y+ = 15 in figure 2(a). These downward fluxes do not provide or drain energy in the
buffer layer, but they just carry energy toward the vicinity of the wall. As expected
from figure 2, the total intensity of these downward fluxes is weaker for lower
Reynolds numbers.

Figure 5 gives the premultiplied one-dimensional cospectra of the main contributors
to the budget equation in the buffer layer. If they are plotted as functions of λx, as in
figure 5(a), the contribution from the spatial transport is quite weak compared to the
other contributions. The reason for this is clear from the two-dimensional cospectrum
shown in figure 4(b), which shows that the positive and negative contributions cancel
out when summed along the spanwise wavenumber kz for each λx. It is also observed
that the profiles for the two higher Reynolds numbers C500 and C900 agree for each
constituent. This implies that these cospectra in the wall unit are independent of the
Reynolds number in the buffer layer. When plotted as functions of λz, the role of
spatial turbulent transport is visible, as seen in figure 5(b). The cospectrum of the
spatial turbulent transport is scaled well by the wall unit. That is consistent to that
only the upward fluxes contribute to the budget. The large-scale downward fluxes do
not contribute to the budget, but activate production at large scales. Therefore, the
cospectrum of the production rate broadens toward larger wavelengths as the Reynolds
number increases, and the interscale turbulent transport has wider spectra as well to
compensate the energy production at large scales. The streamwise length of the large-
scale motions probably does not depend on the Reynolds number, which leads to the
weak Re dependence of the one-dimensional cospectrum of the production rate as a
function of λx in figure 5(a). At each level, the upward fluxes provide energy at λ+z ≈
100, which is the typical spanwise length scale of flow structures in the buffer layer.

4.2. Outer and overlap layers
Around the centre of the channel, the mean shear and energy production become
weak, and spatial turbulent transport supplies energy instead. Above y/h'0.7 the total
production and spatial transport are comparable, and at the centre of the channel the
gain from spatial transport and dissipation balance, being connected in scales by the
interscale turbulent transport.
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FIGURE 6. Premultiplied one-dimensional cospectra kz
∑

kx
T̃p as functions of λ+z and y+

for (a) C200, (b) C500 and (c) C900. They are normalised by the total production at each
height. Dashed lines are the contours of

∑
kx
Θ̃p
= 0, and the arrows indicate the direction

of the flux. White (black) indicates positive (negative) magnitude. Two white lines in each
figure are contours of the energy spectrum, enclosing energy-containing scales.

With the increase in the Reynolds number, the inner and outer length scales
separate more from each other. A region where the inner and outer layers overlap
then arises, and the so-called logarithmic layer appears in the core of that region for
high Reynolds numbers. The present Reynolds numbers are not sufficiently high, but
a self-similar intermediate layer still exists for, at least, the higher two cases (Mizuno
& Jiménez 2011). Figure 6 shows the rise of the overlap layer where the similarity
of spatial turbulent transport is expected. The spatial energy fluxes emanate from
the ‘watershed’ on which the fluxes are zero, shown by dashed lines in the figure.
The highest location of the watershed is y≈ 0.2h at λ+z =O(103) independent of the
Reynolds number, and above that all the fluxes are directed upward, carrying energy
toward the centre of the channel. The large-scale downward fluxes observed in the
inner layer originate in this watershed in the overlap layer.

4.2.1. Scaling
The overall picture of the energy budget in the overlap layer is qualitatively similar

to that in the buffer layer, but the relevant length scales of the constituents vary with
the wall distance y. As already known for high Reynolds numbers, the scale of the
structures of uv is proportional to y in the logarithmic layer (Lozano-Durán, Flores &
Jiménez 2011), while that of dissipation is proportional to the Kolmogorov’s length
scale ∼ y1/4 (Tennekes & Lumley 1972). These scales therefore separate more as they
move further away from the wall, and the interscale turbulent transport bridges these
separating scales (Jiménez 2012).

Figure 7(a) shows the one-dimensional cospectra of the production rate, and spatial
and interscale turbulent transport for C900 in the range of y+ > 100 and y/h < 0.3,
which an overlap layer is assumed to span. As indicated by the arrows in this figure,
the relevant length scales of all these contributions increase with the wall distance,
while the larger side y≈ h collapses in the outer length scale h. In the overlap layer,
the length scale of the energy-containing eddies is given by `m (Mizuno & Jiménez
2011). As shown in figure 7(b), the scales, at which those contributions are intense,
indeed collapse well if the wavelength is normalised by `m. Only the smaller side
of the interscale turbulent transport shifts toward the smaller wavelength because it
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FIGURE 7. Premultiplied one-dimensional cospectra as functions of λz in the overlap layer
y+ > 110 and y/h< 0.3 for C900. The arrows indicate the direction of the increase in y.
— —, production rate; ——, spatial transport; — · —, interscale transport.

is scaled by Kolmogorov’s length scale, which increases more slowly compared to
`m. The magnitude of the contribution in the overlap layer is scaled well by the total
production rate at each height. As shown in figure 7(b), the contribution of the spatial
transport is weaker than the contributions of the production, dissipation and interscale
transport. Though the downward spatial fluxes have a large impact on the budget in
the vicinity of the wall, these three contributions almost complete the budget at each
height in the overlap layer, at least in the sense of average for the presented range of
Reynolds numbers.

It is observed that the scales of spatial turbulent transport are given by `m in the
overlap layer, which supports the classical assumption of the linearity of y in the
logarithmic layer because `m→ κy for high Reynolds numbers. This implies that its
structures are self-similar, as are those of momentum transport. Spatial transport is
active in the energy-containing range, and its length scale separates more from the
dissipation range for higher y in the logarithmic layer. Kolmogorov’s law for the
energy spectrum would be observed for a much higher Reynolds number where these
two scales show sufficient separation.

The structures of momentum transport are invariant against the Reynolds number
(Lozano-Durán et al. 2011), and this also seems true for spatial turbulent transport.
Figure 8 compares the cospectra of spatial turbulent transport and spatial energy fluxes
for C500 and C900 in the overlap layer. The cospectra for different Reynolds numbers
agree fairly well except at large scales, approximately for λ+z > 103, in the present
cases.

5. Pressure–strain correlations
Though the contribution from transport by pressure, dpv/dy, to the energy budget is

weak, except for the near-wall region (Mansour et al. 1988; Hoyas & Jiménez 2008),
the role of pressure in energy transport is important because it redistributes energy
from u to v and w. Energy is first fed into u from the mean shear, and approximately
half of that is distributed to the other components. The budget equations for the
normal Reynolds stresses u2

i include pressure–strain correlations p(∂ui/∂xi), which
represent the rate of energy exchange between the components. The terms p(∂v/∂y)
and p(∂w/∂z) are actual energy sources for the wall-normal and spanwise components.
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FIGURE 8. Premultiplied one-dimensional cospectra of (a) spatial turbulent transport and
(b) spatial flux as functions of λz at y+ = 110 (——) and 150 (— —) for C500 and
C900. The symbols indicate the Reynolds number as shown in table 1. The magnitudes
are normalised by the wall unit.

The root mean square of the pressure fluctuations on the wall is not scaled by
the wall unit (Hu, Morfey & Sandham 2006). This may be explained by the fact
that the Green functions of the Poisson equation for low wall-parallel wavenumbers
have a long tail in the wall-normal direction. The effect of the source away from
the wall is global, and reaches the vicinity of the wall (Kim 1989). The spectrum
of the time sequence is not scaled well by a single representative time scale, but
is scaled well by the inner (outer) scale for high (low) frequency modes (Hu et al.
2006). It is also found that the mean-squared pressure fluctuation exhibits logarithmic
dependence on the wall distance (Jiménez & Hoyas 2008). These observations may
imply that pressure fluctuations consist of Re-dependent and -independent motions
as well as u and w components of velocity fluctuations. In contrast, the spectra of
pressure fluctuations in the logarithmic layer are rather isotropic, and the peak of the
intensity near the wall is scaled well in the unit given by the local Reynolds shear
stress, which suggests that the structures of pressure fluctuations are rather local in
the wall-normal direction (Jiménez & Hoyas 2008).

It is also known that pressure–strain correlations are not scaled well near the wall
(Hoyas & Jiménez 2008). As shown in figure 9(a), these correlations in the wall unit
increase with the Reynolds number. The failure of wall scaling is significant in the
viscous sublayer, where the energy is transferred from v to w. The cospectrum of
pressure–strain correlations

Π̃ s
j (k, y)=Re{〈(∂jûj)p̂∗〉}, (5.1)

for j=1, 2 and 3 give us the scale dependence of the rate of energy exchange between
the velocity components. These three cospectra balance; that is,

3∑
i=1

Π̃ s
i (k, y)= 0, (5.2)

for all k and y because of the continuity,
∑

j ∂jûj = 0. Figure 9(b) shows the
premultiplied two-dimensional cospectrum Π̃ s

2 at y+ = 2. No clear indication of
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FIGURE 9. (a) Total pressure–strain correlations near the wall in the wall unit. The
symbols indicate the Reynolds number as shown in table 1. Filled and open symbols
are respectively p(∂v/∂y) and p(∂w/∂z). Lines are the numerical data for Reτ = 180, 550
and 950 (Hoyas & Jiménez 2008). The arrows indicate the increase in Reynolds number.
(b) Premultiplied two-dimensional cospectra of pressure–strain Π̃ s

2 at y+ = 2. Shaded,
C900; ——, C500; — —, C200.

the invasion of large-scale structures into the viscous sublayer is observed in the
cospectrum, at least for the present range of Reynolds numbers. The cospectra do
not have a tail extending toward larger scales as the Reynolds number increases, but
the magnitude just increases at all the scales.

Above y+ ≈ 50, the structure of the cospectra of pressure–strain correlations does
not change qualitatively and is almost isotropic. In the buffer layer, their characteristic
length scale is approximately λ+x ≈ λ

+

z ≈ 200, which is independent of the Reynolds
number. The relevant length scale of the correlations increases with the wall distance
in the overlap layer, as seen in figure 10(a). The cospectra at different heights
perfectly collapse when the wavelength is normalised by `m and the magnitude is
normalised by the production rate at each height, as shown in figure 10(b). Because
the length scale is represented well by `m, the structures involved in the energy
exchange between the velocity components are localised in the wall-normal direction,
and are not affected by large-scale structures.

The cospectra of the pressure–strain correlations are characterised by the aspect ratio
in the wall-parallel dimensions. We here define the one-dimensional cospectra as a
function of the modified aspect ratio a≡ log λz/ log λx,

Π̃ s
i (a, y)=

∑
λa

x=λz

Π̃ s
i (k, y). (5.3)

The structure of the redistribution near the wall is distinguished because the energy is
transferred from v to w, as seen in the one-point budget in figure 9(a). The balance
as a function of a is given by figure 11(a). Energy transfer from v to w is involved in
the flow structures elongated in x, satisfying λz= λ

0.7
x or λ0.8

x . The cospectra drastically
evolve within a short range in y. At y+= 15, energy is provided from u mainly to w
for a ≈ 0.9 that is almost isotropic. The wall-normal component v receives a little
energy from w through elongated structures, approximately λz = λ

0.6
x or λ0.7

x . The two
cases for higher Reynolds numbers agree well. As mentioned earlier, the cospectra
in the buffer layer are universal. Above the overlap layer, the energy is redistributed
from u to the other components around a= 1. As in the case of y+ = 15, v receives
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FIGURE 10. Premultiplied one-dimensional cospectra of pressure–strain correlations as
functions of (a) λz/h and (b) λz/`m at y+= 110, 150 and 220 for C900. ——, kz

∑
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Π̃ s

1;
— · —, kz

∑
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Π̃ s

2; — —, kz
∑
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Π̃ s

3 . The magnitude is normalised by (a) the wall unit
and (b) the total production rate at each height. The arrows in (a) indicate the increase
in Reynolds number.

energy from w as well through elongated structures. The total energy provided to v
and w is approximately the same, but the aspect ratio of the fluctuations gained for
v is wider than that for w. In addition, at this height, the two higher cases collapse
fairly well. In the outer layer, the structure of redistribution is qualitatively same, but
the magnitude is scaled by the outer unit u3

τ/h.

6. Conclusions
The constituents of the spectral energy budget equation have been evaluated by DNS

data to examine their scale dependence. In the buffer layer, downward fluxes emerge at
large scales. These fluxes originate in the overlap layer and carry energy to the vicinity
of the wall. The range of the scales at which these downward fluxes are intense
become wider for larger Reynolds numbers. The accumulated energy carried by the
fluxes leads to Re dependence of the intensity of wall-parallel velocity fluctuations and
the dissipation rate near the wall.

The upward energy fluxes above the buffer layer provide energy to narrower scales
but remove it from wider scales. In the overlap layer, the cospectrum of the spatial
turbulent transport is scaled well by the mixing length. This shows that the structures
of fluctuations involved in turbulent transport are self-similar. In addition, they do not
depend on the Reynolds number.

To understand the overall structure of the energy budget requires considering spatial
transport (Tuerke & Jiménez 2013). Spatial transport plays an important role, as has
been discussed, but the intensity of its contribution to the budget at each height is
weak compared to production and dissipation in the overlap region. Because interscale
turbulent transport carries only large to small scales on average, a net supply of energy
to the scales larger than the scales of production is not available. On the other hand,
the individual dynamics of structures may imply the evolution from small to large
scales (Lozano-Durán & Jiménez 2014b). In accordance with this dynamics, energy
transport from small to large scales occurs, but it is always cancelled by another event
that causes large-scale structures to break down to smaller-scale ones. Unfortunately,
such individual events sustaining the energy spectra are hidden in the present analysis,
where only the net energy transfer is visible.
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FIGURE 11. Cospectra of pressure–strain correlations as functions of the aspect ratio
a= log λ+z / log λ+x at (a) y+ = 1, (b) 15, (c) 110 and (d) y/h= 0.5. ——, Π̃ s

1; — · —,
Π̃ s

2; — —, Π̃ s
3 . The symbols indicate the Reynolds number as shown in table 1.

The cospectra of the pressure–strain correlations are also evaluated. They are not
scaled by the wall unit near the wall, but no indication of the influence of large
scales is observed in the cospectra, at least for the present range of Reynolds numbers.
Above the buffer layer the cospectra of the pressure–strain correlations are almost
isotropic, and their relevant length scale is given by the mixing length in the overlap
layer. The pressure–strain correlations are therefore rather local quantities.
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