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Abstract Using a local construction from a previous paper, we exhibit a numerical invariant, the
differential Swan conductor, for an isocrystal on a variety over a perfect field of positive characteristic
overconvergent along a boundary divisor; this leads to an analogous construction for certain p-adic and
�-adic representations of the étale fundamental group of a variety. We then demonstrate some variational
properties of this definition for overconvergent isocrystals, paying special attention to the case of surfaces.
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Introduction

This paper is a sequel to [15], which defines a numerical invariant, called the differential
Swan conductor, for certain differential modules on a rigid analytic annulus over a p-
adic field. In that paper, the key application of the construction is the definition of a
sensible numerical invariant for Galois representations with finite local monodromy over
a complete discretely valued field of equal characteristic, without any assumption of
perfectness of the residue field.

In this paper, we adopt a more geometric viewpoint, taking the construction back to
its roots in the theory of p-adic cohomology. We define differential Swan conductors for
an overconvergent isocrystal on a variety over a perfect field of positive characteristic.
The definition depends on the choice of a boundary divisor along which one measures the
conductor; we are particularly interested in understanding how the conductor can vary as
a function of this boundary divisor. We give special attention to the case of surfaces; one
of the variational properties loosely resembles subharmonicity for functions on Berkovich
analytic curves, in the sense of Thuillier [29]. Another resembles a semicontinuity prop-
erty of étale cohomology [23].

The variational properties of differential Swan conductors seem analogous to proper-
ties of the irregularity of a holomorphic differential module on a complex surface along
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a boundary divisor; indeed, a complex analogue of the semicontinuity property men-
tioned above has recently been proved by André [3], extending an old result of Deligne
(see [25]). Variation of the boundary divisor has been studied in that setting by Sab-
bah [27]; our study was motivated by questions in the p-adic realm analogous to Sabbah’s
questions about Stokes decompositions. These arise in the study of semistable reduction
for overconvergent F -isocrystals, which is the subject of an ongoing series of papers by
the author [14,16–18]; in fact, some of the constructions used in [15] and in this paper
already appear in [17]. We have begun carrying these techniques over to Sabbah’s set-
ting [19].

As in [15], there is a mechanism for converting certain p-adic representations of the
étale fundamental group of a smooth variety into F -isocrystals. This makes it possi-
ble to define differential Swan conductors, and (with some effort) to prove some of the
corresponding properties, also for lisse �-adic étale sheaves.

We end this introduction by cautioning that this paper is not intended to be read
independently from [15]. In particular, we freely use notation and terminology introduced
in [15], without explicit reintroduction except in a few places for emphasis.

1. Relative annuli

In this section, we gather some facts about the rigid geometry of relative annuli (products
of annuli with other spaces), in the vein of [14, § 3].

Hypothesis 1.0.1. Throughout this paper, let K be a complete nonarchimedean field
of characteristic 0 equipped with m commuting continuous derivations ∂1, . . . , ∂m, for
some nonnegative integer m. Assume that K is of rational type in the sense of [22,
Definition 1.5.3], i.e. there exist elements u1, . . . , um ∈ K such that

• for i, j ∈ {1, . . . , m} with i �= j, ∂i(ui) = 1 and ∂i(uj) = 0;

• for n a positive integer, i ∈ {1, . . . , m}, and x ∈ K, |un
i ∂n

i (x)/n!| � |x|.

Let k be the residue field of K, and assume that k is of characteristic p > 0. Let oK

denote the valuation subring of K, let mK denote the maximal ideal of oK , and let Γ ∗

be the divisible closure of |K×|. Let K0 be the joint kernel of ∂1, . . . , ∂m on K.

Remark 1.0.2. Hypothesis 1.0.1 differs from the running hypothesis [15, Hypothe-
sis 2.1.3] from the previous paper, which required one of the following. (Beware that as
written, [15, Hypothesis 2.1.3(b)] is missing the hypothesis that k is separable over k0.)

(a) K is a finite unramified extension of the completion of K0(u1, . . . , un) for the
(1, . . . , 1)-Gauss norm.

(b) K0 and K are discretely valued with the same value group, k is separable over the
residue field k0 of K0, and k admits a finite p-basis over k0.

By [22, Remark 1.5.10], both of these are special cases of Hypothesis 1.0.1. On the other
hand, we can bypass most of the results of [15, § 2] which depend on [15, Hypothesis 2.1.3]
by citing results from [22] instead.
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Hypothesis 1.0.3. Throughout this section,

• let P denote a smooth affine irreducible formal scheme over Spf oK , with generic
fibre PK and special fibre Z = Pk;

• let L denote the completion of FracΓ (P,O) for the topology induced by the supre-
mum norm on PK ;

• let U denote an open dense subscheme of Z.

Notation 1.0.4. For Z ′ ↪→ Z an immersion, we denote by ]Z ′[P the inverse image of Z ′

under the specialization map PK → Z; we also refer to ]Z ′[P as the tube of Z ′ in PK .

Definition 1.0.5. We say a subinterval of [0, +∞) is aligned if each endpoint at which
it is closed belongs to Γ ∗ ∪ {0}. This is consistent with [15, Notation 2.4.1], which only
applied to intervals not containing 0, and with [14, Definition 3.1.1].

1.1. Relative annuli

Lemma 1.1.1. Let Y be a rigid subspace of PK ×AK [0, 1). Then the following conditions
are equivalent.

(a) There exists ε ∈ (0, 1) such that PK × AK(ε, 1) ⊆ Y .

(b) There exists an affinoid subspace V of PK × AK [0, 1) such that {Y, V } forms an
admissible covering of PK × AK [0, 1).

(c) There exist ρ ∈ (0, 1) ∩ Γ ∗ and an affinoid subspace V of PK × AK [ρ, 1) such that
{Y ∩ (PK × AK [ρ, 1)), V } forms an admissible covering of PK × AK [ρ, 1).

Proof. The implication (a) =⇒ (b) is clear: take V = PK × AK [0, ρ] for any ρ ∈
(ε, 1)∩Γ ∗. The implication (b) =⇒ (c) is trivial. For (c) =⇒ (a), note that the maximum
modulus principle [6, Proposition 6.2.1/4] implies that t achieves its supremum η on V ,
so η must be less than 1; we can thus satisfy (a) by choosing any ε ∈ (η, 1). �

Definition 1.1.2. Define a relative annulus over PK to be a subspace of PK × AK [0, 1)
satisfying one of the equivalent conditions of Lemma 1.1.1.

Definition 1.1.3. Given a coherent (locally free) sheaf E on a relative annulus X con-
taining PK × AK(ε, 1), there is a unique coherent (locally free) sheaf F on AL(ε, 1) such
that for each closed aligned subinterval I of (ε, 1), we have an identification

Γ (AL(I),F) ∼= Γ (PK × AK(I), E) ⊗Γ (PK×AK(I),O) Γ (AL(I),O),

and these identifications commute with restriction maps. We call F the generic fibre of
E . (See [17, Definition 5.3.3] for more details.)

The following lemma will be useful in consideration of generic fibres.
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Lemma 1.1.4. For ρ ∈ (0, 1) ∩ Γ ∗, suppose that f ∈ Frac Γ (PK × AK [ρ, ρ],O) can
be written as a ratio of two elements of Γ (PK × AK [ρ, ρ],O), neither of which has a
zero in AL[ρ, ρ]. Then the open dense subscheme U of Z can be chosen so that for any
x ∈ ]U [P ×AK [ρ, ρ], |f(x)| = |f |ρ.

Proof. It suffices to consider f ∈ Γ (PK × AK [ρ, ρ],O) having no zero in AL[ρ, ρ], since
by hypothesis we can write the original f as a quotient of two such functions. Since f

has no zero in AL[ρ, ρ], its Newton polygon (in the sense of Lazard [24]) has no segment
of the corresponding slope; that is, if we write f =

∑
i∈Z cit

i with ci ∈ Γ (PK ,O), then
there is a unique index i with |ci|ρi = |f |ρ. It thus suffices to check the given assertion
for f = cit

i, for which it is evident: choose a scalar λ ∈ K× such that λci belongs to
Γ (P,O) and has nonzero image in Γ (Z,O), then take U not meeting the zero locus of
said image. �

Definition 1.1.5. Let X be a relative annulus over PK containing PK × AK(ε, 1), let
E be a ∇-module on X relative to K0, and let F be the generic fibre of E . Then F
naturally admits the structure of a ∇-module on AL(ε, 1) relative to K0, in the sense
of [15, Definition 2.4.5]. We say that E is solvable at 1 if F is, in which case we define the
highest break, break multiset, and differential Swan conductor of E as the corresponding
items associated to F .

Remark 1.1.6. By the results of [15, § 2.6], the constructions in Definition 1.1.5 are
invariant under pullback along an automorphism of PK × AK [ε, 1) for ε ∈ (0, 1) ∩ Γ ∗,
even if the automorphism does not preserve PK or the projection onto PK .

1.2. Fringed relative annuli

We will have use for a variant of the concept of a relative annulus; the resulting
objects are related to relative annuli in the same way that the weak formal schemes of
Meredith [26] are related to ordinary formal schemes, or the dagger spaces of Grosse-
Klönne [9] are related to ordinary rigid spaces.

Definition 1.2.1. A strict neighborhood of ]U [P in PK is a rigid subspace W ⊆ PK such
that {W, ]Z \ U [P } is an admissible covering of PK .

Lemma 1.2.2. Suppose that Z \ U has pure codimension 1 in Z. Let W be a strict
neighborhood of ]U [P in PK . Then for each c ∈ (0, 1), there exists a strict neighborhood
W ′ ⊆ W of ]U [P in PK such that for each f ∈ Γ (W, O),

|f |sup,W ′ � |f |csup,W |f |1−c
L .

Proof. See [14, Proposition 3.5.2]. �

Definition 1.2.3. We say a subspace Y ⊆ PK × AK [0, 1) is a fringed relative annulus
over ]U [P (or better, over the inclusion ]U [P ↪→ PK) if Y satisfies the following property
for some ε ∈ (0, 1): for every closed aligned subinterval I of (ε, 1), there is a strict
neighborhood W of ]U [P in PK such that W × AK(I) ⊂ Y .
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Remark 1.2.4. We can use the same definition to define a fringed relative annulus over
]U [P for P smooth proper over Spf oK . We will have occasion to do this in § 4.1.

Definition 1.2.5. Let Y be a fringed relative annulus over ]U [P in PK . Then the inter-
section Y0 = Y ∩ (]U [P ×AK [0, 1)) is a relative annulus over ]U [P ; we call Y0 the core of
Y . We will extend various properties of relative annuli, or sheaves on relative annuli, to
fringed relative annuli by restriction to the core.

Lemma 1.2.6. Suppose that Z \ U has pure codimension 1 in Z. Let W be a strict
neighborhood of ]U [P . Let I be a closed aligned interval, let I ′ be a closed aligned subin-
terval of the interior of I, and choose ρ ∈ I ′ ∩Γ ∗. Then there exists a strict neighborhood
W ′ of ]U [P in PK such that within Γ (AL[ρ, ρ],O),

Γ (W × AK [ρ, ρ],O) ∩ Γ (AL(I),O) ⊆ Γ (W ′ × AK(I ′),O).

Proof. Write I = [a, b] and I ′ = [a′, b′], so that a < a′ � ρ � b′ < b. Note that for
c ∈ (0, 1) sufficiently close to 0, we have

ρca1−c < a′, b′ < ρcb1−c. (1.1)

Fix one such c; by Lemma 1.2.2, we can choose the strict neighborhood W ′ so that for
any f ∈ Γ (W, O),

|f |sup,W ′ � |f |csup,W |f |1−c
L . (1.2)

For f ∈ Γ (AL[ρ, ρ],O), we can write f =
∑

i∈Z fit
i with fi ∈ L. If f ∈ Γ (W ×

AK [ρ, ρ],O), then fi ∈ Γ (W, O) for each i, and |fi|sup,W ρi → 0 as i → ±∞; if
f ∈ Γ (AL(I),O), then for each η ∈ I, |fi|Lηi → 0 as i → ±∞. If both containments
hold, then by (1.2),

lim
i→±∞

|fi|sup,W ′(ρcη1−c)i = 0 (η ∈ I);

by (1.1), this implies that for any η ∈ I ′, |fi|sup,W ′ηi → 0 as i → ±∞. This proves the
claim. �

Lemma 1.2.7. Let
R ��

��

S

��
T �� U

be a commuting diagram of inclusions of integral domains, such that the intersection S∩T

within U is equal to R. Let M be a finite locally free R-module. Then the intersection
of M ⊗R S and M ⊗R T within M ⊗R U is equal to M .

Proof. See [22, Lemma 2.3.1]. �

Lemma 1.2.8. Suppose that Z \ U has pure codimension 1 in Z. Let Y be a fringed
relative annulus over ]U [K , choose ε ∈ (0, 1) as in Definition 1.2.3, choose ρ ∈ (ε, 1)∩Γ ∗,
and choose a strict neighborhood W of ]U [K in PK such that W × AK [ρ, ρ] ⊂ Y . Let
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E be a coherent locally free sheaf on Y , and let F be the generic fibre of E on AL(ε, 1).
Suppose that v ∈ Γ (AL[ρ, ρ],F) satisfies

v ∈ Γ (W × AK [ρ, ρ], E) ∩ Γ (AL(ε, 1),F).

Then there exists a fringed relative annulus Y ′ over ]U [K such that v ∈ Γ (Y ′, E).

Proof. It suffices to show that for each closed aligned subinterval I ′ of (ε, 1) containing
ρ, there exists a strict neighborhood W ′ of ]U [K in PK such that v ∈ Γ (W ′ ×AK(I ′), E).
Choose a closed aligned interval I of (ε, 1) containing I ′ in its interior; by Lemma 1.2.6,
we can choose W ′ so that within Γ (AL[ρ, ρ],O),

Γ (W × AK [ρ, ρ],O) ∩ Γ (AL(I),O) ⊆ Γ (W ′ × AK(I ′),O).

We may then apply Lemma 1.2.7 to deduce the claim. �

1.3. Globalizing the break decomposition

The main result of this subsection (Theorem 1.3.2) is a globalized version of [15,
Theorem 2.7.2]. To prove it, we use the following relative version of [15, Lemma 2.7.10].

Proposition 1.3.1. Suppose um+1, . . . , un ∈ Γ (P,O) are such that dum+1, . . . ,dun

freely generate Ω1
P/oK

over oK . Write ∂1, . . . , ∂n+1 for the basis of derivations on PK ×
AK [0, 1) over K0 dual to du1, . . . ,dun, dt. Let Y be a fringed relative annulus over ]U [P .
Let E be a ∇-module on Y which is solvable at 1. Let F denote the generic fibre of
E , viewed as a ∇-module relative to K0, and choose i ∈ {1, . . . , n + 1} such that ∂i

is eventually dominant for F . Suppose that there exist ρ ∈ (0, 1) arbitrarily close to 1
such that the scale multiset for ∂i on Fρ contains more than one element. Then after
shrinking U (to another open dense subscheme of Z) and Y (to a fringed relative annulus
over ]U [P ), E becomes decomposable.

Proof. We first treat the case i = n + 1. Let b be the highest break of F . By [22,
Theorem 2.3.9, Theorem 2.6.1] (replacing [15, Theorem 2.7.2, Remark 2.7.7]), we may
choose ε ∈ (0, 1) such that F admits a break decomposition over AL(ε, 1), and for all
ρ ∈ (ε, 1), ∂n+1 is dominant for Fρ and T (F , ρ) = ρb. Pick a closed aligned interval
I ⊂ (ε, 1) of positive length for which there exists a nonnegative integer m such that

|p|p−m+1/(p−1) < T (F , ρ) < |p|p−m/(p−1) (ρ ∈ I).

Let Fm be the ∇-module on AL(Ipm

) which is the m-fold Frobenius antecedent of F in
the t-direction, as produced by [12, Theorem 6.15], so that

T (Fm, ρpm

) = T (F , ρ)pm

< |p|1/(p−1).

Since the defining inequality for Frobenius antecedents is strict, Lemma 1.2.2 allows us
to correspondingly construct an m-fold Frobenius antecedent Em of E on W × AK(Ipm

)
for some strict neighborhood W of ]U [P in PK .
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Choose a cyclic vector for Em with respect to ∂n+1 over Frac Γ (W ×AK(Ipm

),O), and
let Q = T d +

∑d−1
i=0 aiT

i be the corresponding twisted polynomial. Pick ρ ∈ I ∩ Γ ∗ such
that each ai can be written as a ratio of two elements of Γ (W × AK(Ipm

),O), neither
having any zeroes in AL[ρpm

, ρpm

]; the restriction excludes only finitely many ρ. By
Lemma 1.1.4, after shrinking U , each of the ai becomes invertible on ]U [P ×AK [ρpm

, ρpm

],
and the norm of ai(x) for each x ∈ ]U [P ×AK [ρpm

, ρpm

] equals the supremum norm of ai

in AL[ρpm

, ρpm

].
Let aj be the coefficient at which the Newton polygon of Q with respect to the supre-

mum norm on ]U [P ×AK [ρpm

, ρpm

] has its first breakpoint (i.e. the one separating the
segment of least slope). By a suitable application of Lemma 1.2.2, we see that after
shrinking W , aj is also a breakpoint (though maybe not the first) when computing
slopes of Q using the supremum norm on W × AK [ρpm

, ρpm

]. Using Christol’s factoriza-
tion theorem [20, Theorem 2.2.2] for the supremum norm on W × AK [ρpm

, ρpm

] (and
otherwise arguing as in [20, Theorem 6.4.4]), we deduce that the factorization of Q

provided by [15, Proposition 1.1.10] that splits off the least d − j slopes (counting multi-
plicity) is defined over W ×AK [ρpm

, ρpm

]. By performing the same argument again in the
opposite twisted polynomial ring (as in the proof of [17, Proposition 3.3.10]), we obtain
a projector in E∨

m ⊗ Em on W × AK [ρpm

, ρpm

]. This pulls back to a projector in E∨ ⊗ E
on W × AK [ρ, ρ]; since the projector is already defined on AL(ε, 1), by Lemma 1.2.8 it
becomes defined on Y after shrinking Y . This proves the desired decomposability.

We now suppose i �= n + 1. By Lemma 1.2.7, we may check the claim after enlarging
the constant subfield of K; by adjoining an element of the same norm as ui and then
rescaling, we may reduce to the case |ui| = 1. In this case, we may perform rotation as
in the proof of [15, Lemma 2.7.10]; that is, first pull back along a map effecting t 
→ tp

N

for N a suitably large integer, then along a map effecting ui 
→ ui + t. (Note that both
of these extend to maps between suitable fringed relative annuli: by Lemma 1.2.2, the
series in [15, Definition 2.6.2] converges on some fringed relative annulus.) As in the
proof of [15, Lemma 2.7.10], the decomposition obtained after rotation descends back
to E . �

Theorem 1.3.2. Let Y be a fringed relative annulus over ]U [P . Let E be a ∇-module on
Y which is solvable at 1. Then after shrinking U (to another open dense subscheme of Z)
and Y (to a fringed relative annulus over ]U [P ), there exists a unique decomposition

E =
⊕

b∈Q�0

Eb

of ∇-modules on Y , such that Eb has uniform break b.

Proof. The claim is local on Z, so we may reduce to the case where there exist
um+1, . . . , un ∈ Γ (P,O) such that dum+1, . . . ,dun freely generate Ω1

P/oK
over oK . After

shrinking U and Y , we may reduce to the case where E remains indecomposable after
further shrinking of U and Y . In this case, E is forced to have a uniform break by
Proposition 1.3.1. �
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Definition 1.3.3. For z ∈ Z, we say that the break decomposition of E extends across z

if we can choose U in Theorem 1.3.2 to contain z.

We will need a criterion for detecting when the break decomposition extends across z.

Lemma 1.3.4. With notation as in Theorem 1.3.2, let Kρ, Lρ be the completions of
K(t), L(t) for the ρ-Gauss norm. Suppose that z ∈ U and that for each ρ ∈ (ε, 1)
sufficiently close to 1, the restriction of E to ]U [K×KKρ admits a decomposition whose
restriction to Lρ coincides with the restriction of the break decomposition of the generic
fibre of E . Then the break decomposition of E extends across z.

Proof. For each closed interval I ⊂ (ε, 1) containing ρ, inside Lρ we have

Γ (]U [K×KKρ,O) ∩ Γ (AL(I),O) = Γ (]U [K×AK(I),O).

We may thus deduce the claim from Lemma 1.2.7. �

2. Representations, isocrystals, and conductors

In this section, we define the differential highest break and Swan conductor associated to
an isocrystal on a k-variety X and a boundary divisor in some compactification of X along
which the isocrystal is overconvergent. We then show how a special class of overconvergent
isocrystals, those admitting unit-root Frobenius actions, relate closely to representations
of the étale fundamental group of X. This allows us to define differential ramification
breaks and Swan conductors for an appropriate class of p-adic representations, including
discrete representations (those with open kernel).

Convention 2.0.1. For the rest of this paper, a variety over k will be a reduced separated
(but not necessarily irreducible) scheme of finite type over k, and points of a variety will
always be closed points unless otherwise specified.

2.1. Convergent and overconvergent isocrystals

This is not the place to reintroduce the full theory of convergent and overconvergent
isocrystals; we give here merely a quick summary. See [14] for a less hurried review, or [5]
for a full development.

Definition 2.1.1. Let P be an affine formal scheme of finite type over Spf oK with
special fibre Y . Let X be an open dense subscheme of Y such that Z = Y \ X is of
pure codimension 1 in Y , and P is smooth over oK in a neighborhood of X; let Q be
the open formal subscheme of P with special fibre X. An isocrystal on X overconvergent
along Z is a ∇-module E relative to K0 on a strict neighborhood of ]X[P in PK , whose
formal Taylor isomorphism converges on a strict neighborhood of ]X[P×P in PK × PK ;
morphisms between these should likewise be defined on some strict neighborhood. This
definition turns out to be canonically independent of the choices of P , so extends to
arbitrary pairs (X, Y ) where X is an open dense subscheme of Y smooth over k, and
Y \ X is of pure codimension 1 in Y . (The codimension 1 condition can be eased with a
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bit more work.) If Y is proper, then the category of isocrystals on X overconvergent along
Y \ X is independent of the choice of Y ; we call such objects overconvergent isocrystals
on X. If on the other hand Y = X, we say E is a convergent isocrystal on X.

Remark 2.1.2. The usual definition of an isocrystal involves a ∇-module relative to K,
not K0. In fact, there is no harm in adding this extra data: the Taylor isomorphism is
determined by the connection relative to K, so it is harmless to carry the extra com-
ponents of the connection through the arguments in [5]. The construction relative to
a subfield is useful for certain arguments where one wants to reduce the dimension of
a variety without losing critical data about the connection. See Theorem 3.4.3 for an
argument of this form.

Definition 2.1.3. Let φK be a q-power Frobenius lift on K acting on K0; that is, φK is
an isometric endomorphism of K acting on K0, and its action on k is the q-power absolute
Frobenius. With notation as in Definition 2.1.1, a Frobenius structure on an isocrystal
E on X overconvergent along Z is an isomorphism F : φ∗E ∼= E , for φ a φK-semilinear
q-power Frobenius lift on Q; note that φ extends to a strict neighborhood of QK in PK ,
so that it makes sense to require F to be an isomorphism of overconvergent isocrystals.
The word F -isocrystal is shorthand for isocrystal with Frobenius structure.

Proposition 2.1.4. Assume that K is discretely valued. Let X ↪→ Y be an open immer-
sion of k-varieties with dense image, with X smooth and Y \X of pure codimension 1 in
Y . Then the restriction functor from the category of F -isocrystals on X overconvergent
along Y \ X to the category of convergent F -isocrystals on X is fully faithful.

Proof. It suffices to check relative to K, in which case this assertion becomes [16,
Theorem 4.2.1]. �

Definition 2.1.5. With notation as in Definition 2.1.3, we say that E is unit-root if
for each closed point x ∈ X, the pullback of E to x, which we may view as a finite-
dimensional K-vector space Vx equipped with a φK-semilinear endomorphism φ, admits
a oK-lattice T such that φ induces an isomorphism φ∗

K(T ) ∼= T .

2.2. Globalizing the Swan conductor

Much as the calculations on relative annuli in [14, § 3] were used later therein to define
notions of constant/unipotent local monodromy for overconvergent isocrystals, we can
define differential Swan conductors for overconvergent isocrystals as follows. (See [14, § 4]
for a similar construction.)

Definition 2.2.1. Let X̄ be a smooth k-variety, let Z be a smooth irreducible divisor
on X̄, and let E be an isocrystal on X = X̄ \ Z overconvergent along Z. Suppose for
the moment that there exists a smooth irreducible affine formal scheme Q over Spf oK

with Qk
∼= X̄; then E can be realized as a ∇-module on some strict neighborhood V of

]X[Q in QK , as in Definition 2.1.1. Moreover, ]Z[Q is a relative annulus by Berthelot’s
fibration theorem [5, Théorème 1.3.7], [14, Proposition 2.2.9], as then is W = V ∩ ]Z[Q
after appropriately shrinking V . The overconvergence property forces the restriction of
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E to W to be solvable at 1, so E admits a break multiset and Swan conductor (relative
to K0) via Definition 1.1.5.

Now go back and note that the construction persists under restricting from X to
an open neighborhood of any given point of Z. Moreover, by Remark 1.1.6, there is no
dependence on how ]Z[Q is viewed as a relative annulus. (This implies independence from
the choice of Q itself, since Q is unique up to noncanonical isomorphism by [4, Proposi-
tion 1.4.3].) Consequently, the definitions extend unambiguously even if X̄ is reducible or
does not lift globally. We write bi(E , Z) and Swan(E , Z) for the differential ramification
breaks (listed in decreasing order as i increases) and differential Swan conductor of E
along Z.

Remark 2.2.2. If k is perfect, X is a smooth irreducible k-variety, E is an overconvergent
isocrystal on X, and v is any divisorial valuation on the function field k(X) over k, then
we can also define the break multiset and Swan conductor of E along v, by blowing
up into the case where v is centered on a generically smooth divisor, then applying
Definition 2.2.1. If k is imperfect, then the previous discussion applies unless blowing up
gives a divisor which is geometrically nonreduced. If E is only overconvergent along the
boundary of some partial compactification X̄ of X, then the previous discussion applies
to divisorial valuations which are centered on X̄. (That is, there must exist some blowup
of X̄ on which the valuation corresponds to the order of vanishing along an irreducible
divisor.)

2.3. Étale fundamental groups and unit-root isocrystals

Hypothesis 2.3.1. Throughout this subsection, fix a power q of p, and assume that the
field k = k0 is perfect and contains Fq. Assume also that K = K0 is discretely valued,
and comes equipped with a q-power Frobenius lift φK . Let Kφ denote the fixed field of
K under φ; it is a complete discretely valued field with residue field Fq.

Hypothesis 2.3.2. Throughout this subsection, let X be a smooth irreducible k-variety
and let x̄ be a geometric point of X. We write π1(X, x̄) for the étale fundamental group
of X with basepoint x̄.

Convention 2.3.3. By a p-adic representation of π1(X, x̄), we will mean a continuous
homomorphism ρ : π1(X, x̄) → GL(V ) for V = V (ρ) a finite-dimensional Kφ-vector
space.

The following result is due to Crew [7, Theorem 2.1].

Theorem 2.3.4. There is a natural equivalence of categories (functorial in X) between
the category of p-adic representations of π1(X, x̄) and the category of convergent unit-
root F -isocrystals on X.

Crew also posed the question of identifying which p-adic representations correspond
to overconvergent unit-root F -isocrystals on X. For X a curve, this was answered by
Tsuzuki [30]; the hard work in the general case is already present in Tsuzuki’s work.
All we need to add is a bit of analysis of extendability for overconvergent isocrystals,
from [14].
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Definition 2.3.5. Let v be a divisorial valuation on the function field k(X) over k,
and let k(X)v be the completion of k(X) under v. Fix a separable closure k(X)sepv

of k(X)v and a perfect closure k(X)algv of k(X)sepv , and let x̄ be the geometric point
of X corresponding to the inclusion k(X) ↪→ k(X)algv . Put η = Spec k(X)v; then the
morphism η → X corresponding to the inclusion k(X) ↪→ k(X)v induces a homomor-
phism ι : π1(η, x̄) → π1(X, x̄), and the former group may be canonically identified with
Gal(k(X)sepv /k(X)v). Let Iv be the inertia subgroup of Gal(k(X)sepv /k(X)v), i.e. the sub-
group acting trivially on the residue field of k(X)sepv ; we refer to any subgroup of π1(X, x̄)
conjugate to ι(Iv) as an inertia subgroup corresponding to v.

Definition 2.3.6. We say a p-adic representation ρ of π1(X, x̄) is unramified if every
inertia subgroup of π1(X, x̄) lies in the kernel of ρ. If X admits a dense open immersion
into a smooth proper irreducible k-variety X̄ (as would be ensured by a suitably strong
form of resolution of singularities in positive characteristic), then by Zariski–Nagata
purity [10, Exposé X, Théorème 3.1], ρ is unramified if and only if ρ factors through
π1(X̄, x̄). We say ρ is potentially unramified if there exists a finite étale cover Y of
X such that for any geometric point ȳ of Y over x̄, the restriction of ρ to π1(Y, ȳ) is
unramified (it suffices to check for a single ȳ).

Theorem 2.3.7. The functor of Theorem 2.3.4 induces an equivalence between the
category of potentially unramified p-adic representations of π1(X, x̄), and the category
of overconvergent unit-root F -isocrystals on X.

Proof. We first show that every representation ρ corresponding to an overconvergent
unit-root F -isocrystal is potentially unramified. Choose a ρ-stable oKφ-lattice T in V =
V (ρ); then there is a unique finite étale Galois cover Y of X such that for any geometric
point ȳ of Y over x̄, π1(Y, ȳ) equals the kernel of the action of ρ on T/2pT . By [31,
Proposition 7.2.1], the intersection of π1(Y, ȳ) with any inertia subgroup of π1(X, x̄)
belongs to the kernel of ρ; hence ρ is potentially unramified.

We next show that every potentially unramified ρ corresponds to an overconvergent
unit-root F -isocrystal. Let E be the convergent unit-root F -isocrystal on X corresponding
to ρ. Choose a finite étale Galois cover f : Y → X such that for any geometric point
ȳ of Y over x̄, the restriction of ρ to π1(Y, ȳ) is unramified. By de Jong’s alterations
theorem [8, Theorem 4.1], there exists an open dense subscheme U of X and a finite
étale cover g : Z → f−1(U) such that Z admits a dense open immersion into a smooth
proper k-variety Z̄. There is no harm in moving the basepoints x̄ and ȳ so that x̄ ∈ U ;
then for any geometric point z̄ of Z over x̄, the restriction of ρ to π1(Z, z̄) is again
unramified, so factors through π1(Z̄, z̄).

By Theorem 2.3.4, this restriction of ρ corresponds to a convergent unit-root F -iso-
crystal F on Z̄. Since Z̄ is proper, there is no distinction between convergent and over-
convergent on Z̄, so we may restrict F to an overconvergent F -isocrystal on Z. Now put
G = f∗g∗F , which is an overconvergent unit-root F -isocrystal on U (see [31, § 5] for the
pushforward construction). Let σ be the p-adic representation of π1(U, x̄) corresponding
to G; then adjunction and trace give π1-equivariant maps V (ρ) → V (σ) → V (ρ) whose
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composition is the identity. Composing the other way gives a projector on V (σ), corre-
sponding to a projector on G in the category of convergent unit-root F -isocrystals on U .
By Proposition 2.1.4, this projector actually exists in the overconvergent category; its
image is an overconvergent unit-root F -isocrystal on U which becomes isomorphic to E
in the convergent category. By [14, Proposition 5.3.7], that isomorphism ensures that E
is the restriction to U of an overconvergent unit-root F -isocrystal on X, as desired. �

Theorem 2.3.7 can also be stated for partially overconvergent isocrystals.

Definition 2.3.8. Let X ↪→ X̄ be an open immersion of k-varieties with dense image,
with X smooth irreducible. We say a p-adic representation ρ of π1(X, x̄) is unramified on
X̄ if every inertia subgroup of π1(X, x̄) corresponding to a divisorial valuation centered
on X̄ lies in the kernel of ρ. We say ρ is potentially unramified on X̄ if there exists a
connected finite cover f : Ȳ → X̄ étale over X, such that for any geometric point ȳ of
Y = f−1(X), the restriction of ρ to π1(Y, ȳ) is unramified on Ȳ .

Theorem 2.3.9. The functor of Theorem 2.3.4 induces an equivalence between the cat-
egory of p-adic representations of π1(X, x̄) potentially unramified on X̄, and the category
of unit-root F -isocrystals on X overconvergent along X̄ \ X.

Proof. The proof is as in Theorem 2.3.7. Note that the case X = X̄ is Theorem 2.3.4
itself, while the case where X̄ is proper over k is Theorem 2.3.7. �

Remark 2.3.10. One can also use the construction of Abbes and Saito [1,2] to define
Swan conductors for p-adic representations. It has been shown recently by Xiao [32] that
this construction agrees with the differential Swan conductor. Consequently, the results
we obtain about differential Swan conductors will apply also to Abbes–Saito conduc-
tors. This agreement also occurs in the �-adic setting, as discussed in § 5. (In [33], Xiao
gives an analogue of differential Swan conductors in mixed characteristic, and obtains an
analogous comparison theorem with Abbes–Saito conductors.)

2.4. Normalization of conductors

When studying variation of differential Swan conductors, it will be useful to normalize
as follows.

Definition 2.4.1. Let X be a smooth irreducible k-variety, let X ↪→ X̄ be an open
immersion of k-varieties with dense image, and let E be an isocrystal on X overconvergent
along X̄ \X. As noted in Remark 2.2.2, we can define the differential ramification breaks
and the differential Swan conductor of E with respect to a suitable divisorial valuation
v on k(X) over k centered on X̄ (which may be arbitrary if k is perfect); we refer to
these as being in their natural normalization. For t ∈ k(X)∗ with v(t) �= 0, we define the
normalization with respect to t of the differential ramification breaks, or the differential
Swan conductor, with respect to v as the natural normalization divided by the index of
v(t)Z in the value group of v.

For an easy example, we return to the Dwork isocrystals of [15, Example 3.5.10], but
this time in a global setting.

https://doi.org/10.1017/S1474748010000137 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000137


Swan conductors for p-adic differential modules. II 203

Definition 2.4.2. Assume that K contains an element π with πp−1 = −p (a Dwork pi).
Let L be the ∇-module of rank 1 on A1

K with ∇-action given on a generator v by

∇(v) = πv ⊗ dt.

One shows by a direct calculation that L gives an overconvergent F -isocrystal on A1
k,

called the (standard) Dwork isocrystal ; it is in fact the image under the functor of Theo-
rem 2.3.7 of a nontrivial character of the Artin–Schreier cover Spec k[z, t]/(zp − z − t) →
Spec k[t] = A1

k. For X any variety over k and f ∈ Γ (X, O), we may identify f with a reg-
ular map X → A1

k, and define Lf as the pullback f∗L, as an overconvergent F -isocrystal
on X.

Example 2.4.3. Assume k = k0, let E be the Dwork isocrystal Lxy on A2
k, and compute

conductors using [15, Example 3.5.10]. For positive integers a, b with gcd(a, b) = 1, let
x−a ∼ y−b denote the exceptional divisor of the blowup of the ideal sheaf on P1

k × P1
k

concentrated at (∞,∞) generated by x−a, y−b. We extend this notation to the case
(a, b) = (1, 0), (0, 1), meaning the divisors on P1

k × P1
k cut out by y−1, x−1, respectively.

For r ∈ Q�0, write r = b/a in lowest terms and write x−1 ∼ y−r for x−a ∼ y−b. Along
x−1 ∼ y−r, the Swan conductor in its natural normalization is a + b, which behaves
erratically as r varies. However, the normalization with respect to y is 1 + r, which is an
affine function of r. This behavior will prove to be typical; see Theorem 4.2.7.

3. ∇-modules on polyannuli

The easiest setting in which to study the variation of differential highest breaks and
Swan conductors is on polyannuli, or more conveniently on the generalized polyannuli
of [17, § 4]. Using some analysis of differential modules on such spaces carried out in [22]
(jointly with Liang Xiao), we obtain a strong result on the variation of differential Swan
conductors (Theorem 3.4.6). In fact, all results in this section should be considered to be
joint work with Xiao, as explained in Remark 3.3.4.

3.1. Convex functions

We need some basic definitions and theorems about convex functions from [17, § 2]
and [22, § 3]. For stronger results along these lines, see [21].

Definition 3.1.1. Let C be a convex subset of Rn. A function f : C → R is convex if
for all x, y ∈ C and t ∈ [0, 1],

tf(x) + (1 − t)f(y) � f(tx + (1 − t)y);

such a function is continuous on the interior of C.

Definition 3.1.2. An affine functional on Rn is a function λ : Rn → R of the form
λ(x) = a1x1 + · · · + anxn + b for some a1, . . . , an, b ∈ R. We say λ is transintegral if
a1, . . . , an ∈ Z and integral if also b ∈ Z.
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Definition 3.1.3. A subset C of Rn is (trans)rational polyhedral, or (T )RP, if there
exist (trans)integral affine functionals λ1, . . . , λm such that

C = {x ∈ Rn : λi(x) � 0 (i = 1, . . . , m)}.

In particular, any TRP set is convex and closed (but not necessarily bounded).

Definition 3.1.4. Let C be a (T)RP subset of Rn. A function f : C → R is polyhedral
if there exist affine functionals λ1, . . . , λm such that

f(x) = sup
i

{λi(x)} (x ∈ C).

Such a function is continuous and convex. We say that f is (trans)integral polyhedral if
the λi can be taken to be (trans)integral.

The following result is [17, Theorem 2.4.2].

Theorem 3.1.5. Let C be a bounded RP subset of Rn. Then a continuous convex
function f : C → R is integral polyhedral if and only if

f(x) ∈ Z + Zx1 + · · · + Zxn (x ∈ C ∩ Qn). (3.1)

The following result is [22, Theorem 3.2.4].

Theorem 3.1.6. Let C be a TRP subset of Rn. Then a function f : C → R is trans-
integral polyhedral if and only if its restriction to the intersection of C with every one-
dimensional TRP subset of Rn is transintegral polyhedral.

3.2. Generalized polyannuli

We set notation as in [17, § 4].

Notation 3.2.1. For ∗ = (∗1, . . . , ∗n) and J = (J1, . . . , Jn), we interpret ∗J to mean
∗J1
1 · · · ∗Jn

n .

Definition 3.2.2. A subset S of (0, +∞)n is log-(T )RP if log(S) ⊆ Rn is a
(trans)rational polyhedral set. We say S is ind -log-(T )RP if it is a union of an increas-
ing sequence of log-(T)RP sets; for instance, any open subset of (0, +∞)n is covered by
ind-log-RP subsets.

Definition 3.2.3. For S an ind-log-TRP set, let AK(S) be the subspace of the rigid
analytic n-space with coordinates t1, . . . , tn defined by the condition

(|t1|, . . . , |tn|) ∈ S.

The elements of Γ (AK(S),O) can be represented by formal series
∑

J∈Zn cJ tJ ; for R =
(R1, . . . , Rn) ∈ S, write | · |R for the R-Gauss norm∣∣∣ ∑

cJ tJ
∣∣∣
R

= sup
J

{|cJ |RJ}.

https://doi.org/10.1017/S1474748010000137 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000137


Swan conductors for p-adic differential modules. II 205

Lemma 3.2.4. Let S ⊆ (0, +∞)n be an ind-log-TRP subset. For A, B ∈ S and c ∈ [0, 1],
put R = AcB1−c; that is, ri = ac

ib
1−c
i for i = 1, . . . , n. Then for any f ∈ Γ (AK(S),O),

|f |R � |f |cA|f |1−c
B .

Proof. See [14, Lemma 3.1.6(b)] or [17, Lemma 4.1.7]. �

The following corollary is loosely analogous to Lemma 1.2.6.

Corollary 3.2.5. Let S1, S2 be log-TRP subsets of (0, +∞)n with nonempty intersec-
tion, and let

S = {AcB1−c : A ∈ S1, B ∈ S2, c ∈ [0, 1]}

be the log-convex hull of S1, S2. Then inside Γ (AK(S1 ∩ S2),O), we have

Γ (AK(S1),O) ∩ Γ (AK(S2),O) = Γ (AK(S),O).

Definition 3.2.6. Let S be a log-TRP set, and let E be a ∇-module on AK(S) relative
to K0. For R ∈ S, let FR be the completion of FracΓ (AK(S),O) under | · |R, viewed as
a differential field of order m + n with respect to

∂1, . . . , ∂m+n =
∂

∂u1
, . . . ,

∂

∂um
,

∂

∂t1
, . . . ,

∂

∂tn
.

Put
ER = Γ (AK(S), E) ⊗Γ (AK(S),O) FR,

viewed as a differential module over FR. Let S(E , R) be the multiset of reciprocals of the
scale multiset of ER. Let T (E , R) be the least element of S(E , R), i.e. the reciprocal of
the scale of ER. These constructions are stable under shrinking S, so they make sense
even if S is only ind-log-TRP.

The main result we need about differential modules on generalized polyannuli is [22,
Theorem 3.3.8].

Theorem 3.2.7. Let S be an ind-log-TRP subset of (0, +∞)n, and let E be a ∇-module
of rank d on AK(S) relative to K0. For r ∈ − log S, write

S(E , e−r) = {e−f1(E,r), . . . , e−fd(E,r)}

with f1(E , r) � · · · � fd(E , r), and put Fi(E , r) = f1(E , r) + · · · + fi(E , r). Then the
following hold for i = 1, . . . , d.

(a) (Continuity.) The functions fi(E , r) and Fi(E , r) are continuous.

(b) (Convexity.) The function Fi(E , r) is convex.

(c) (Polyhedrality.) The functions d!Fi(E , r) and Fd(E , r) are transintegral polyhedral
on any TRP subset of − log S.
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3.3. Solvable modules on polyannuli

Hypothesis 3.3.1. Throughout this subsection, let S be an ind-log-RP set of the form
{Rc : R ∈ T, c ∈ (0, 1]} for T a log-RP set. Let E be a ∇-module of rank d on AK(S)
relative to K0.

Definition 3.3.2. We say that E is solvable at 1 if for each R ∈ T , we have T (E , Rc) → 1
as c → 0+. In case − log T is bounded, it is the log-convex hull of its vertices, which we
write as − log R1, . . . ,− log Rl for suitable R1, . . . , Rl ∈ T . Then by the convexity in
Theorem 3.2.7 (or an argument using Lemma 3.2.4, as in [17, Proposition 4.2.6]), to
check solvability, it suffices to do so for R = R1, . . . , Rl.

Theorem 3.3.3. Suppose that E is solvable at 1. Then there exist a constant ε ∈ (0, 1]
and functions b1(E , r) � · · · � bd(E , r) on − log T such that

S(E , e−cr) = {e−cb1(E,r), . . . , e−cbd(E,r)} (c ∈ (0, ε]; r ∈ − log T ). (3.2)

Moreover, the functions d!(b1(E , r)+ · · ·+ bi(E , r)) and b1(E , r)+ · · ·+ bd(E , r) are convex
and integral polyhedral.

Proof. Extend d!Fi(E , r) and Fd(E , r) to U = {cr : r ∈ − log T, c ∈ [0, 1]} by forcing
them to take the value 0 at 0 ∈ U . By Theorem 3.2.7, the functions are convex and
transintegral polyhedral on any one-dimensional TRP subset of U not containing 0. We
claim that the same is true for a one-dimensional TRP subset of U passing through 0;
the missing assertion is that the functions are affine in a neighborhood of 0 on any
line with rational slopes. This holds by virtue of [22, Theorem 2.6.1] (replacing [15,
Theorem 2.7.2]).

We may thus apply Theorem 3.1.6 to deduce that d!Fi(E , r) and Fd(E , r) are trans-
integral polyhedral on U . This gives the existence of ε and the bi, as well as the convexity
and polyhedrality of d!(b1(E , r) + · · · + bi(E , r)) and b1(E , r) + · · · + bd(E , r). We may
deduce the integral polyhedrality by then applying Theorem 3.1.5. �

Remark 3.3.4. In the original version of this paper, the results of this section were only
proved assuming that E admits a Frobenius structure. This was needed to ensure the
existence of ε such that (3.2) holds, as we were unable to prove this otherwise. It is the
more careful analysis of differential modules on p-adic polyannuli in the joint paper [22]
with Xiao that makes the stronger result possible; consequently, we consider all results
in this section to be joint work with Xiao.

Remark 3.3.5. One can also obtain a decomposition theorem in case one of the functions
b1(E , r) + · · · + bi(E , r) is affine, by using [22, Theorem 3.4.2]. However, the conclusion
will only hold on the interior of S.

3.4. Geometric interpretation

We now interpret the previous calculation in terms of Swan conductors.

Hypothesis 3.4.1. Let X̄ be a smooth irreducible k-variety. Let D1, . . . , Dn be smooth
irreducible divisors on X̄ meeting transversely at a closed point x. Choose local coordin-
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ates t1, . . . , tn at x such that ti vanishes along Di. Put D = D1∪· · ·∪Dn and X = X̄ \D.
Let E be an isocrystal of rank d on X overconvergent along D.

We next state an analogue of Theorem 3.2.7, with a similar proof.

Hypothesis 3.4.2. Assume Hypothesis 3.4.1, but suppose further that X̄ is affine and
that the common zero locus of t1, . . . , tn on X̄ consists solely of x. Let P be a smooth affine
irreducible formal scheme over Spf oK with Pk

∼= X̄, and choose t̃1, . . . , t̃n ∈ Γ (P,O)
lifting t1, . . . , tn. Realize E as a ∇-module relative to K0 on the space

{y ∈ PK : ε � |t̃i(y)| � 1 (i = 1, . . . , n)}.

For R ∈ [ε, 1]n, let | · |R be the supremum norm on the space

{y ∈ PK : |t̃i(y)| = Ri (i = 1, . . . , n)},

then define S(E , R) as in Definition 3.2.6.

Theorem 3.4.3. Under Hypothesis 3.4.2, for r ∈ [0,− log ε]n, write

S(E , e−r) = {e−f1(E,r), . . . , e−fd(E,r)}

with f1(E , r) � · · · � fd(E , r), and put Fi(E , r) = f1(E , r) + · · · + fi(E , r). Then the
following hold for i = 1, . . . , d.

(a) (Continuity.) The functions fi(E , r) and Fi(E , r) are continuous.

(b) (Convexity.) The function Fi(E , r) is convex.

(c) (Polyhedrality.) The functions d!Fi(E , r) and Fd(E , r) are transintegral polyhedral
on [0,− log ε]n.

Proof. By Theorem 3.1.6, it suffices to check that d!Fi(E , r) and Fd(E , r) are trans-
integral polyhedral on any transrational line segment L contained in [0,− log ε]n. Let L

be such a segment parallel to the vector a = (a1, . . . , an) ∈ Zn with gcd(a1, . . . , an) = 1.
For any indices i �= j, we may replace ai by ai ± aj by blowing up or down on X̄; we
may thus reduce to the case where a = (1, 0, . . . , 0).

We now reduce the problem to a corresponding problem in dimension 1, using an
analogue of the generic fibre construction of Definition 1.1.3. (Here it is important that
we are working relative to a subfield K0 of K; see Remark 2.1.2.) Let R be the Fréchet
completion of

Γ (P,O) ⊗K[t̃2,...,t̃n] K(t̃2, . . . , t̃n)

for the norms | · |e−r for r ∈ L. Let K ′ be the integral closure in R of the completion
of K(t̃2, . . . , t̃n) for the (e−r2 , . . . , e−rn)-Gauss norm for some r ∈ L. (This does not
depend on r because the elements of L only differ in their first components.) Then R

is an affinoid algebra over K ′ in which |t̃1|R � 1. Moreover, if we put Y = Maxspec R,
then the subspace {y ∈ Y : |t̃1(y)| < 1} is isomorphic to the open unit disc over K ′ with
coordinate t̃1.
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For some δ > 0, E gives rise to a ∇-module F relative to K0 on the space {y ∈ Y :
δ � |t̃1(y)| � 1}. On this space, we may carry out a computation analogous to [22,
Theorem 2.4.4] to deduce that d!Fi(E , r) and Fd(E , r) are transintegral polyhedral on L.

�

This in turn leads to an analogue of Theorem 3.3.3.

Definition 3.4.4. Under Hypothesis 3.4.1, let T be the simplex {(r1, . . . , rn) ∈ [0, 1]n :
r1 + · · · + rn = 1}. For r ∈ T , define the valuation vr on k(X̄) to be the restriction from
the (r1, . . . , rn)-Gauss valuation on Frac k[[t1, . . . , tn]]; this valuation is divisorial if and
only if r ∈ T ∩ Qn.

Theorem 3.4.5. Under Hypothesis 3.4.1, there exist ε ∈ (0, 1] and functions b1(E , r) �
· · · � bd(E , r) on − log T such that

S(E , e−cr) = {e−cb1(E,r), . . . , e−cbd(E,r)} (c ∈ (0, ε]; r ∈ − log T ). (3.3)

Moreover, for i = 1, . . . , d, the functions d!(b1(E , r) + · · · + bi(E , r)) and b1(E , r) + · · · +
bd(E , r) are convex and integral polyhedral.

Proof. Given Hypothesis 3.4.1, we can achieve Hypothesis 3.4.2 by shrinking X̄ to a
suitable open affine neighborhood of x. We then deduce the claim by replacing Theo-
rem 3.2.7 with Theorem 3.4.3 in the proof of Theorem 3.3.3. (The analogue of the solv-
ability hypothesis is the hypothesis that E arises from an isocrystal on X overconvergent
along D.) �

Reinterpreting Theorem 3.4.5 in terms of Swan conductors gives the following.

Theorem 3.4.6. Under Hypothesis 3.4.1, for i = 1, . . . , d and r ∈ T ∩ Qn, let bi(E , r)
denote the ith largest differential ramification break of E along vr, normalized with
respect to t1 · · · tn. Put Bi(E , r) = b1(E , r) + · · · + bi(E , r). Then the functions d!Bi(E , r)
and Bd(E , r) are continuous, convex, and integral polyhedral on T .

Proof. It suffices to check that the quantities bi(E , r) as defined in the statement of the
theorem coincide with those defined in Theorem 3.4.5, as then that theorem implies the
claims. For this, impose Hypothesis 3.4.2 as in the proof of Theorem 3.4.5. We may blow
up or down on X̄ as needed to reduce the claim for general r ∈ T ∩ Qn to the claim for
r = (1, 0, . . . , 0), in which case it is evident from Definition 1.1.5. �

Remark 3.4.7. It may be possible to use Theorem 3.4.6 to give a new proof of local
semistable reduction of overconvergent F -isocrystals at monomial valuations [17, Theo-
rem 6.3.1]. Such an argument would likely give some results without having to assume
that K is discretely valued, as is necessary in [17] due to the use of Frobenius slope
filtrations.

4. Variation near a surface divisor

We now make a more careful study of the variation of differential Swan conductors on a
surface, in the vicinity of a single irreducible divisor.
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4.1. A raw calculation

Hypothesis 4.1.1. Throughout this subsection,

• assume that k is algebraically closed and m = 0 (so K = K0);

• let P be a smooth irreducible formal scheme over Spf oK , such that Z = Pk is an
open dense subscheme of a curve of genus g = g(Z);

• let U denote an open dense affine subscheme of Z;

• let L be the completion of FracΓ (U,O) for the supremum norm on ]U [P (this does
not depend on U);

• let Y denote a fringed relative annulus over ]U [P (as in Remark 1.2.4);

• let E be a ∇-module on Y of rank d, which is solvable at 1.

Definition 4.1.2. Choose ε ∈ (0, 1) as in Definition 1.2.3. For a closed point z ∈ Z,
choose a local uniformizer x̄ ∈ OZ,z of Z at z. Choose a lift x of x̄ to Γ (Q,O) for some
open dense formal subscheme Q of P containing z. This choice gives an isomorphism
]z[P ×AK [0, 1) ∼= AK [0, 1)2; for each ρ ∈ (ε, 1), for r ∈ (0, +∞) in some neighborhood
of 0 (depending on ρ), we may then compute S(E , (ρr, ρ)) and T (E , (ρr, ρ)) in the sense
of Definition 3.2.6. To indicate the dependence on z, we write these as S(E , z, (ρr, ρ))
and T (E , z, (ρr, ρ)). We extend the definitions to r = 0 by putting S(E , (1, ρ)) = S(Fρ)
and T (E , (1, ρ)) = T (Fρ), for F the generic fibre of E .

Note that we have omitted the dependence on x̄ and x from the notation. That is
because we are only interested here in behavior as r approaches 0, in which limit the choice
of x (or x̄) does not matter. To see this, suppose x′ ∈ Γ (Q,O) also lifts a local uniformizer
of Z at z. We can then write x′ =

∑∞
i=0 cix

i with |c0| < 1, |c1| = 1, and |ci| � 1 for i > 1.
If ρr � |c0|, then |x|ρr = |x′|ρr . Hence for each ρ ∈ (0, 1), for r ∈ (0, +∞) sufficiently close
to 0, the quantities S(E , z, (ρr, ρ)) and T (E , z, (ρr, ρ)) are the same regardless of whether
we use x or x′ to define the isomorphism ]z[P ×AK [0, 1) ∼= AK [0, 1)2. (The definitions for
r = 0 visibly do not depend on this choice.)

Proposition 4.1.3. We can choose a subset R of (0, 1) of the form (ε, 1) \ R′, where R′

is a set with discrete limit points, such that the following statements hold.

(a) For each z ∈ Z and ρ ∈ R, there exist affine functions b1(ρ, r), . . . , bd(ρ, r) on [0, a],
for some a > 0, such that

S(E , z, (ρr, ρ)) = {ρb1(ρ,r), . . . , ρbd(ρ,r)} (r ∈ [0, a]).

(b) For z ∈ Z and ρ ∈ R, put

f(ρ, z, r) =
∑

α∈S(E,z,(ρr,ρ))

logρ α

and write f ′(ρ, z) for the right slope of f(ρ, z, r) at r = 0. Then there exist � ∈
{0, 1, . . . , d} (independent of ρ) and a choice of the open dense subscheme U of Z

(dependent on ρ) such that f ′(ρ, z) = −� for all z ∈ U .
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(c) Assume that Z is proper. With notation as in (b), we have∑
z∈Z

(f ′(ρ, z) + �) � (2 − 2g(Z))�. (4.1)

Proof. There is no harm in shrinking U or Y , so we may assume that E is indecompos-
able and remains so upon further shrinking of U or Y . We may also assume that we can
choose u ∈ (Frac Γ (P,O)) ∩ Γ (]U [,O) such that du freely generates Ω1

P/oK
over ]U [P ;

put

∂1, ∂2 =
∂

∂u
,

∂

∂t
.

Let si,1(ρ, z, r) � · · · � si,d(ρ, z, r) be the reciprocals of the elements (counted with
multiplicity) of the scale multiset of ∂i on E(ρr,ρ) in the bidisc ]z[P ×AK [0, 1). Choose
ε ∈ (0, 1) as in Definition 1.2.3, and also satisfying T (E , ρ) = ρb for all ρ ∈ (ε, 1), where
b is the highest break of E .

Set notation as in the proof of Proposition 1.3.1. Choose i such that ∂i is eventually
dominant for E . Then for all ρ ∈ I except for a discrete subset R′

I , we can read off
the si,j(ρ, z, r) from the Newton polygon of the twisted polynomial Q: for r = 0 they
are all equal to T (E , ρ) = ρb by the conclusion of Proposition 1.3.1, so for r close to
zero, we do not cross the threshold set by [15, Proposition 1.1.9] for reading off scales
from slopes of the Newton polygon. We deduce that for each ρ ∈ I \ R′

I , we can choose
a > 0 such that each function r 
→ log si,j(ρ, z, r) is affine for r ∈ [0, a]. (That is because
these functions measure the slopes of a Newton polygon whose vertices vary linearly in
r when r is sufficiently close to 0.) In particular, we may apply [15, Proposition 1.1.9]
or [22, Theorem 2.3.5] to perform a simultaneous scale decomposition of E for ∂i over
AK(S), for S = {(ρr, ρ) : r ∈ (0, a)}. Let mi,j(ρ, z) be the right slope of logρ si,j(ρ, z, r)
at r = 0.

Consider the case i = 2. Given h ∈ {0, . . . , d− 1}, write ah =
∑

j fjt
j ; by the choice of

ρ, there is a unique j = j(h) which minimizes |fj |Lρj . Choose λj ∈ K× with |λj | = |fj |L;
then if we shrink U so as not to meet the zero locus of the reduction of λ−1

j(h)fj(h) for any
h, then the m2,j(ρ, z) vanish for all z ∈ U by Lemma 1.1.4. Also,

∑d
j=1 m2,j(ρ, z) equals

the order of vanishing at z of the reduction of fj(0)λ
−1
j(0), so its sum over z ∈ Z equals 0

if Z is proper.
Consider the case i = 1. Rotate as in the proof of Proposition 1.3.1, i.e. first pull

back along t 
→ tp
N

for a large integer N , then along u 
→ u + t. The effect of the
first step is to pull back the action of ∂1 unchanged, while replacing the action of ∂2 by
the pullback action of ∂2 times pN tp

N −1. The effect of the second step is to pull back
the action of ∂1 unchanged, while replacing the action of ∂2 by the pullback action of
∂2 +∂1. Consequently, after rotation with N sufficiently large, for r sufficiently small the
reciprocals of the scale multiset of ∂2 on E(ρr,ρ) in the bidisc ]z[P ×AK [0, 1) consist of

ρrc+r−1s1,1(ρ, z, r), . . . , ρrc+r−1s1,d(ρ, z, r),

where c equals the order of vanishing of the differential du on Z at the point z. (The
factor ρr−1 comes from the change of normalization in measuring the scale of ∂2 rather
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than ∂1. The factor ρrc comes from the fact that for x a local parameter of Z at z,
∂1 equals x−c(∂/∂x) times a unit in OZ,z.) In particular, each m1,j(ρ, z) equals −1 for
all but finitely many z ∈ Z, and the sum of d +

∑d
j=1 m1,j(ρ, z) over all z ∈ Z equals

(2 − 2g(Z))d if Z is proper.
If ∂i is eventually dominant for only one i, then for each z, we have S(E , z, (ρr, ρ)) =

{si,1(ρ, z, r), . . . , si,d(ρ, z, r)} for r close to zero, so all the desired results follow with

� =

{
d (i = 1),

0 (i = 2).

(The excluded set R′ consists of those ρ not appearing in I \ R′
I for any I; the only limit

points of this set are those ρ for which T (E , ρ) = |p|p−m/(p−1) for some m ∈ Z.) Assume
hereafter that both ∂1, ∂2 are eventually dominant; we will again prove the claims with
� = 0.

To deduce (a), note that for each z, we can choose a > 0 such that for S = {(ρr, ρ) :
ρ ∈ I, r ∈ (0, a)}, we obtain a simultaneous scale decomposition of E for both ∂1 and ∂2

over AK(S). (Compare this with [22, Theorem 3.4.2].)
To deduce (b), note that by shrinking U , we can ensure that for all z ∈ U , s2,j(ρ, z, r)

is constant for small r, and m2,j(ρ, z) = 0; by rotation, we can also ensure that for all
z ∈ U , m1,j(ρ, z) = −1. Consequently, for z ∈ U , for r close to 0, S(E , z, (ρr, ρ)) consists
of T (E , ρ) with multiplicity d.

To deduce (c) if Z is proper, note that f ′(ρ, z) �
∑d

j=1 m2,j(ρ, z), and summing the
right-hand side over z yields 0. �

Remark 4.1.4. One might like to prove Proposition 4.1.3 directly by reading off the
Swan conductor from a twisted polynomial, without having to decompose into indecom-
posables. There are two reasons why this will not work. One is the fact that different
derivations may be dominant on different components of the break decomposition. The
other is the limitation on slopes in [15, Proposition 1.1.9]: the presence of some λ in a
radius multiset masks the presence of any λ′ > λ1/p when viewing Newton polygons. By
working in the indecomposable case, we fail to encounter this masking for r sufficiently
small because we have a uniform break at r = 0.

Remark 4.1.5. The arguments in [22, § 2.4] are in a similar spirit. Using ideas from
there, it should be possible to remove the restriction to the set R in Proposition 4.1.3.

4.2. Subharmonicity

We now obtain a subharmonicity theorem for differential Swan conductors on a surface.

Hypothesis 4.2.1. Assume that m = 0, so K = K0. Let X̄ be a smooth irreducible
projective surface over k, let Z be a smooth irreducible divisor on X̄, and let v0 be the
divisorial valuation on k(X̄) measuring order of vanishing along Z. Let W be a divisor
not containing Z, and put Y = X̄ \ W ; note that Y ∩ Z is open dense in Z. Let X be an
open dense subscheme of Y , and let E be an isocrystal of rank d on X overconvergent
along Y \ X.
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Definition 4.2.2. Let P be a smooth formal scheme over Spf oK with special fibre Z∩Y .
As in Definition 2.2.1, for any open affine subscheme Z0 of Z ∩ Y , we obtain from E a
∇-module on a fringed relative annulus over ]U [P , for some open dense subscheme U

of Z0. Moreover, any two such ∇-modules so obtained become isomorphic on a suitably
small fringed relative annulus, so the construction glues to give a ∇-module on a fringed
relative annulus over ]U [P , for some open dense subscheme U of Z ∩ Y ; we will also use
the symbol E to refer to this ∇-module.

Definition 4.2.3. Given z ∈ Z ∩ Y , choose x ∈ OX̄,z whose zero locus has a single
component at z, which is smooth of multiplicity 1 and meets Z transversely. For r ∈
Q ∩ [0, 1], let vr(z; x) be the valuation on k(X̄) corresponding to the divisor x ∼ tr (in
the sense of Example 2.4.3) on a suitable blowup of X̄ at z, for t a local parameter of
Z at z. If we identify the completion of the local ring OX̄,z with k[[x, t]], then vr(z; x) is
induced by the (r, 1)-Gauss valuation on k[[x, t]]. The latter valuation is invariant under
any continuous automorphism of k[[x, t]] of the form t 
→ ut, x 
→ λx+w where u is a unit
in k[[x, t]], λ ∈ k×, and w belongs to the ideal (t, x2). This allows replacing x by any other
x′ ∈ OX̄,z whose zero locus has a single component at z, which is smooth of multiplicity 1
and meets Z transversely. It also allows replacing t by another local parameter of Z at
z. Consequently, those replacements do not affect the definition of vr(z; x).

Let b1(E , z, x, r) � · · · � bd(E , z, x, r) and SwanZ(E , z, x, r) be the differential highest
breaks and Swan conductor of E along vr(z; x), normalized with respect to t. By Theo-
rem 3.4.6, the function r 
→ bj(E , z, x, r) is affine in a neighborhood of 0. It thus extends
continuously to all r ∈ [0, a] for some a > 0.

Lemma 4.2.4. With notation as in Definition 4.1.2, there exist ε ∈ (0, 1) and a > 0
(depending on z) such that for r ∈ [0, a] and ρ ∈ (ε, 1), S(E , z, (ρr, ρ)) is defined and

S(E , z, (ρr, ρ)) = {ρb1(E,z,x,r), . . . , ρbd(E,z,x,r)}.

Proof. Apply Theorem 3.4.5. �

The value of ε in Lemma 4.2.4 depends on the choice of z. However, we can use the
following argument to make a uniform choice.

Lemma 4.2.5. With notation as in Definition 4.1.2, suppose that for some ρ0 < ρ1 ∈
(ε, 1) and some c ∈ R,

S(E , z, (ρr
j , ρj)) = {ρ

b1(E,z,x,0)+cr
j , . . . , ρ

bd(E,z,x,0)+cr
j }

for j = 0, 1 and r ∈ [0, a]. Then there exists b > 0 such that for all ρ ∈ [ρ0, 1) and all
r ∈ [0, b], S(E , z, (ρr, ρ)) is defined and

S(E , z, (ρr, ρ)) = {ρb1(E,z,x,0)+cr, . . . , ρbd(E,z,x,0)+cr}.

Proof. Choose b ∈ [0, a] so that S(E , z, (ρr, ρ)) is defined for all ρ ∈ [ρ0, 1) and all
r ∈ [0, b]. For i = 1, . . . , d, and r ∈ [0, b] ∩ Q, the function Fi(E , (rs, s)) is convex for
s ∈ (0,− log ρ0] by Theorem 3.4.3, and extends continuously to s = 0 with the value 0
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because E is overconvergent. On the other hand, it agrees with a linear function at the
three values s = 0,− log ρ1,− log ρ0, so it must be linear on all of [0,− log ρ0]. This proves
the claim for r ∈ [0, b] ∩ Q; the full claim follows by continuity (Theorem 3.4.3). �

Corollary 4.2.6. In Lemma 4.2.4, the value of ε can be chosen independent of z ∈ Z∩Y .
Moreover, for all but finitely many z ∈ Z ∩ Y , either bi(E , z, x, r) or bi(E , z, x, r) + r

(depending on whether ∂2 is or is not eventually dominant on the corresponding compo-
nent of E) is constant for r in some neighborhood of 0 (depending on z).

Proof. By the proof of Proposition 4.1.3, the hypothesis of Lemma 4.2.5 holds for all but
finitely many z ∈ Z ∩ Y . The assertion is then clear from the proof of Proposition 4.1.3.

�

Theorem 4.2.7. Under Hypothesis 4.2.1, we have the following.

(a) For each z ∈ Z ∩Y , the functions bj(E , z, x, r) for j = 1, . . . , d and SwanZ(E , z, x, r)
are affine in a neighborhood of r = 0.

(b) Let Swan′
Z(E , z) be the right slope of SwanZ(E , z, x, r) at r = 0. Then there exists

� = �(E , Z) ∈ {0, 1, . . . , d} such that Swan′
Z(E , z) = −� for all but finitely many

z ∈ Z ∩ Y .

(c) Assume that Z ⊂ Y . With notation as in (b), we have
∑
z∈Z

(Swan′
Z(E , z) + �) � (2 − 2g(Z))� − Z2 Swan(E , Z), (4.2)

where g(Z) denotes the genus of Z, and Z2 denotes the self-intersection of Z on X̄.

Proof. We deduce (a) from Lemma 4.2.4 and (b) from Corollary 4.2.6. For (c), we must
account for the fact that we cannot necessarily choose the local parameter t uniformly
for all z ∈ Z. Pick t ∈ k(X̄) with v0(t) = 1, and let D denote the principal divisor defined
by t; then D · Z = 0, so (D − Z) · Z = −Z2.

For z ∈ Z, let tz be a local parameter for Z at z, and let cz be the order of vanishing at z

of the restriction of t/tz to Z. Then cz is equal to the local intersection multiplicity ((D−
Z) · Z)z, so

∑
z∈Z cz = −Z2. Let xz ∈ k(X̄) cut out a divisor with a single component

at z, which is smooth of multiplicity 1 and meets Z transversely. For s close to 0, the
valuation vs(z; xz) corresponds to the divisor xz ∼ tsz, or xz ∼ tr with r = s/(1 + scz).
(Again, the notation ∼ is used as in Example 2.4.3.)

Define f(ρ, z, r) as in Proposition 4.1.3; by Corollary 4.2.6, it is independent of ρ for r

in some neighborhood of 0 and ρ in some neighborhood of 1, so we may call the resulting
value f(z, r). This quantity is the Swan conductor along xz ∼ tr normalized with respect
to t; renormalizing with respect to tz, we obtain

SwanZ(E , z, x, s) = f(z, r)
vs(x; z)(t)
vs(x; z)(tz)

=
s

r
f(z, r) = (1 + scz)f(z, r).
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Differentiating with respect to s at r = s = 0 yields

Swan′
Z(E , z) = czf(z, 0) + f ′(z).

We now deduce (c) by summing over z ∈ Z and invoking Proposition 4.1.3 (c). �

Example 4.2.8. Here is a typical example where Theorem 4.2.7 holds with � �= 0: take
Z to be the x-axis in the x, t-plane A2

k ⊂ P2
k, take X = A2

k \ Z, and take E to be the
Dwork isocrystal Lxt−p .

Remark 4.2.9. As is apparent in the proof of Theorem 4.2.7, the self-intersection num-
ber in (4.2) is a side effect of normalizing with respect to a different parameter at each
point of Z; it drops out if one normalizes everything with respect to a single function.

Remark 4.2.10. It is reasonable to ask whether equality necessarily holds in (4.2) as
long as the ramification breaks along Z are all nonzero. Unfortunately, the proof of
Proposition 4.1.3 does not suffice to establish this; what is missing is a proof that if ∂/∂t

and ∂/∂x are both dominant on Eρ, then ∂/∂t is dominant on E(ρr,ρ) for r > 0 small.

4.3. Monotonicity

We now use some refined results on p-adic differential modules on discs, to gain some
further control over differential Swan conductors. In the original version of this paper,
this was done using results on rigid cohomology to imitate what one does in the �-adic
setting (compare Laumon’s proof of the semicontinuity theorem [23]); that method was
limited to fully overconvergent F -isocrystals, with K discrete.

Definition 4.3.1. Under Hypothesis 4.2.1, for i ∈ {1, . . . , d} such that either i = d or
bi(E , Z) > bi+1(E , Z), let �i(E , Z) be the sum of the ranks of the components of the break
decomposition of E contributing to b1(E , Z)+ · · ·+ bi(E , Z) on which ∂2 is not eventually
dominant. In particular, �d(E , Z) = �(E , Z).

Theorem 4.3.2. Assume Hypothesis 4.2.1. Suppose that z ∈ Z ∩Y is a smooth point of
Z∪(X̄ \X). Let b′

i(E , z) be the right slope of bi(E , z, x, r) at r = 0. Then for i ∈ {1, . . . , d}
such that either i = d or bi(E , Z) > bi+1(E , Z), we have b′

1(E , z)+· · ·+b′
i(E , z)+�i(E , Z) �

0, with equality for all but finitely many z.

The proof is again by rotation, but this time in the opposite direction from the argu-
ments of [15]: we use a result about ∂1 to prove something about ∂2.

Proof. The equality for all but finitely many z follows from Corollary 4.2.6, so it suffices
to check the inequality. We first treat the case i = d.

Take x, t as in Definition 4.2.3. Because z is a smooth point of X̄ \ X, we may restrict
E to a space of the form AK,x[0, 1) × AK,t(ε, 1) for some ε ∈ (0, 1). By Lemma 4.2.4, we
can choose a > 0 and ε ∈ (0, 1) so that for r ∈ (0, a) and ρ ∈ (ε, 1),

S(E , z, (ρr, ρ)) = {ρb1(E,z,x,r), . . . , ρbd(E,z,x,r)}.
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By Theorem 3.4.6, we can choose a so that each of b1(E , z, x, r), . . . , bd(E , z, x, r) is affine
in r for r ∈ [0, a].

Pick any ρ ∈ (ε, 1), and let Kρ be the completion of K(t) for the ρ-Gauss norm. We
may then restrict E to obtain a ∇-module F on AKρ,x[0, 1). As in the proof of [22,
Theorem 2.4.4], for a suitable choice of a, we may decompose F =

⊕
j Fj over AKρ,x(T )

for T = {ρr : r ∈ (0, a)}, so that for each h ∈ {1, 2}, either ∂h is not dominant on (Fj)ρr

for each r ∈ (0, a), or ∂h is dominant on (Fj)ρr for each r ∈ (0, a) with scale multiset
consisting of a single element. (We abbreviate this by saying that ∂h is or is not dominant
on Fj .)

Write the scale of (Fj)ρr as ρ−αr−β , where we write α = α(Fj) and β = β(Fj) if it is
necessary to disambiguate. Then∑

j

(α(Fj)r + β(Fj)) rank(Fj) = SwanZ(E , z, x, r)

and so ∑
j

α(Fj) rank(Fj) = Swan′
Z(E , z). (4.3)

Put �(Fj) = 0 if the limit of the scale of ∂2 on (Fj)ρr as r → 0+ equals ρ−β , and
�(Fj) = rank(Fj) otherwise. Then∑

j

�(Fj) = �(E , Z). (4.4)

Let K1 be the completion of Kρ(u) for the 1-Gauss norm. Let f : AK1 [0, 1) → AKρ
[0, 1)

be the K0-linear map of locally G-ringed spaces acting on global sections via f∗(x) = x,
f∗(t) = t(1 + ux). This has the effect

dx 
→ dx, dt 
→ (1 + ux) dt + ut dx.

Writing ∂′
1, ∂′

2 for the actions of ∂/∂x, ∂/∂t before pulling back, the actions of ∂1, ∂2 are
given by

∂′
1 + ut∂′

2, (1 + ux)∂′
2.

In particular, the scale of ∂1 on (f∗Fj)ρr is bounded below by the greater of the following
quantities: the scale of ∂′

1 on (Fj)ρr , and ρr times the scale of ∂′
2 on (Fj)ρr . We obtain

the reverse inequality from the interpretation of scales in terms of convergence of Taylor
series [15, § 2.2]. (See the appendix for a similar argument.)

Write the scale of ∂1 on (f∗Fj)ρr as ρ−g(r). Since F extends to an affinoid space
containing the annulus AKρ,x(T ), the proof of [20, Theorem 11.3.2] shows that each
g(r) extends continuously to [0, a), and is affine in a neighborhood of r = 0 (as in
Theorem 3.4.3). Let m = m(Fj) be the right slope of g at r = 0.

From the calculation of the scale of ∂1 on (f∗Fj)ρr above, we have the following.

• If ∂1 is dominant on Fj , then g(r) = αr + β, so m = α.

• If ∂1 is not dominant on Fj , then αr + β > g(r) � (α − 1)r + β, so α > m � α − 1.
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We say that Fj is negligible if α = β = 0. By [20, Theorem 11.3.2(d)] applied on
AK1 [0, 1 − ε] for some small ε > 0, we have∑

j

(m(Fj) + 1) rank(Fj) � 0, (4.5)

provided we take the sum over those j for which Fj is not negligible. For each such j,
we have the following.

• If �(Fj) = 0, then m � α − 1 whether or not ∂1 is dominant on Fj , so m + 1 � α.

• If �(Fj) = rank(Fj), then ∂2 cannot be dominant on Fj for r > 0 small, so ∂1 must
be dominant on Fj . We thus must have m = α.

In both cases, we have

(m(Fj) + 1) rank(Fj) � α(Fj) rank(Fj) + �(Fj),

so by (4.5) we have ∑
j

(α(Fj) rank(Fj) + �(Fj)) � 0 (4.6)

provided that we only sum over j for which Fj is not negligible. However, the left-hand
side of (4.6) does not change if we include summands for which Fj is negligible (as those
have α(Fj) = �(Fj) = 0), so (4.6) holds even if we sum over all j. By (4.3) and (4.4),
this yields the desired inequality in the case i = d.

We now treat the case where i < d but bi(E , Z) > bi+1(E , Z). Pick a rational number
c/m ∈ (bi+1(E , Z), bi(E , Z)) with denominator m coprime to p. Let F be the direct sum
of the Dwork isocrystals Ltc/m (in the sense of Definition 2.4.2) for tc/m running over all
of the mth roots of tc. This isocrystal is initially only defined on an m-fold cover of X,
but it descends to an overconvergent isocrystal of rank m such that for r near 0,

b1(F , z, x, r) = · · · = bm(F , z, x, r) =
c

m

by [15, Example 3.5.10]. Consequently,

b(j−1)m+1(E ⊗ F , z, x, r) = · · · = bjm(E ⊗ F , z, x, r) =

⎧⎪⎨
⎪⎩

bi(E , z, x, r), j � i,

c

m
, j > i.

Thus we may obtain the desired result for E by applying the previously shown case for
E ⊗ F . �

Equality in Theorem 4.3.2 has a special meaning.

Theorem 4.3.3. With notation as in Theorem 4.3.2, suppose that for each i ∈ {1, . . . , d}
such that bi(E , Z) > bi+1(E , Z), we have b′

1(E , z) + · · · + b′
i(E , z) + �i(E , Z) = 0. Then the

break decomposition of E along Z extends over z.
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Proof. Set notation as in the proof of Theorem 4.3.2; then we must have equality in
(4.5) for each i such that bi(E , Z) > bi+1(E , Z). By [20, Theorem 12.2.2], f∗F admits
a direct sum decomposition over all of AKρ [0, 1) such that over AKρ(T ), the Fj which
are grouped into the same summand all have the same value of β(Fj). Over AKρ(T ),
this decomposition coincides with the decomposition obtained by pulling back the break
decomposition of E ; in particular, it descends to a decomposition of F itself.

The projectors onto the summands in this decomposition of F are horizontal sections
of F∨ ⊗ F . Since these match the projectors over AKρ

(T ) defined by the break decom-
position, we may apply Lemma 1.3.4 to deduce that the break decomposition of E along
Z extends over z. �

4.4. Turning points

We investigate some potential notions of turning points, analogous to the correspond-
ing objects in the holomorphic setting. However, we stop short of giving a completely
satisfactory definition.

Hypothesis 4.4.1. Let X̄ be a smooth irreducible projective surface over k, and let KX̄

denote a canonical divisor on X̄. Let D be a strict normal crossings divisor on X̄, and
put X = X̄ \ D. Let E be an overconvergent isocrystal of rank d on X.

Definition 4.4.2. Let z be a nonsmooth point of D, and let Z1, Z2 be the components
of D containing z. Let t1, t2 be local parameters for Z1, Z2 at z. Define the functions
B1(E , r), . . . , Bd(E , r) as in Theorem 3.4.6; for s ∈ [0, 1], put fi(s) = Bi(E , (1− s, s)). We
say that z is a hidden turning point if fi(s) fails to be affine in s for some i ∈ {1, . . . , d}.

Proposition 4.4.3. In Definition 4.4.2, let f ′
i(0) denote the right slope of fi at s = 0.

Then f ′
i(0) � fi(1) − fi(0), with equality if and only if fi(s) is affine in s.

Proof. This is evident from the fact that fi is convex (Theorem 3.4.6). �

Definition 4.4.4. Let z be a smooth point of D, and let Z be the component of D

containing z. By Theorem 4.3.2, for each i ∈ {1, . . . , d} such that either i = d or bi(E , Z) >

bi+1(E , Z), we have b′
1(E , z)+ · · ·+ b′

i(E , z)+ �i(E , Z) � 0. We say z is an exposed turning
point if this inequality is strict for at least one i.

It is natural to mention a variant of Theorem 4.2.7 phrased in terms of intersection
theory rather than valuations.

Definition 4.4.5. For each component Z of D, let Swan(E , Z) denote the differential
Swan conductor of E along Z, and define �(E , Z) as in Theorem 4.2.7. Define the Swan
divisor of E on X̄ as the divisor

Swan(E) =
∑
Z∈D

Swan(E , Z)Z.
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Lemma 4.4.6. Under Hypothesis 4.4.1, for each component Z of D,

Z · (Swan(E) + �(E , Z)(KX̄ + D))

� (2g(Z) − 2)�(E , Z) + Z2 Swan(E , Z) +
∑
z∈Z

(Swan′
Z(E , z) + �(E , Z)).

Moreover, equality holds if E has no turning points on Z.

Proof. Rewrite the left-hand side as

Z2 Swan(E , Z) + �(E , Z)(Z · KX̄ + Z2) +
∑
Z′

(Swan(E , Z ′) + �(E , Z))(Z · Z ′),

where Z ′ runs over the components of D other than Z. By adjunction, Z · KX̄ + Z2 =
2g(Z) − 2.

Since we assumed D is a strict normal crossings divisor, Z ∩ Z ′ never contains more
than one point. For each z ∈ Z occurring as Z ∩ Z ′ for some Z ′, by Proposition 4.4.3,
we have Swan(E , Z ′) � Swan′

Z(E , z) with equality if z fails to be a hidden turning point.
More explicitly, if we identify Z, Z ′ with the divisors Z1, Z2 of Proposition 4.4.3, then
fd(s) = (1 − s) Swan(E , x, z, s/(1 − s)), so Swan′

Z(E , z) = f ′
d(0) + Swan(E , Z) � fd(1) −

fd(0) + Swan(E , Z) = Swan(E , Z ′).
For each z ∈ Z not occurring as Z ∩ Z ′ for any Z ′, we have by Theorem 4.3.2 that

Swan′
Z(E , z) + �(E , Z) � 0, with equality if z fails to be an exposed turning point. This

yields the claimed results. �

Theorem 4.4.7. Under Hypothesis 4.4.1, for each component Z of D,

Z · (Swan(E) + �(E , Z)(KX̄ + D)) � 0. (4.7)

Proof. This holds by combining Lemma 4.4.6 with Theorem 4.2.7. �

Remark 4.4.8. Our present notion of turning points has two unfortunate defects, which
suggest that a modified definition may be needed. One defect is that it does not quite
match the definition in characteristic 0, which can be formulated by imposing an affinity
condition on the Swan conductors of both E and E∨ ⊗ E [19]. A more serious defect
is that our definition does not line up with the notion of cleanness for abelian �-adic
characters introduced by Kato [11]. Namely, one expects E to be clean if and only if it
has no turning points. However, Kato’s notion of cleanness (defined using a refined Swan
conductor) is stable under introducing additional components into D, whereas ours is
not. We suspect that our definition includes too many points as turning points; fixing
this would require an analogue of refined Swan conductors for differential modules. Such
an analogue has been introduced very recently by Xiao [34].

Our next two questions refer to cleanness, even though we have not pinned this down
exactly. For concrete questions that are still reasonable, one may read ‘has no turning
points’ for ‘is clean’.

https://doi.org/10.1017/S1474748010000137 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748010000137


Swan conductors for p-adic differential modules. II 219

Question 4.4.9. If E is clean, can one assert an Euler characteristic formula for E analo-
gous to the Grothendieck–Ogg–Shafarevich formula for curves? (For the p-adic version
for curves, see for instance [13, Theorem 4.3.1].) Such a formula would involve not only
contributions from the components of D, but also from the pairwise intersections of
components.

Question 4.4.10. If E = f∗OY for f : Y → X a finite étale morphism, and E is
clean, can one form a finite cover f̄ : Ȳ → X̄ extending f such that Ȳ has only mild
singularities? For instance, if f is Galois and abelian, it should be possible to ensure that
Ȳ has only quotient singularities; something along these lines has been established by
Kato [11], although some work may be needed to compare our construction with his.

5. Results for lisse �-adic sheaves

In this section, we describe how to define differential ramification breaks and Swan con-
ductors for lisse �-adic étale sheaves, and how some of the variational results in the p-adic
case may be carried over. Throughout this section, retain Hypotheses 2.3.1 and 2.3.2.

Hypothesis 5.0.1. Throughout this section, let � be a prime different from p, and let
E be a finite extension of Q�.

5.1. Defining the ramification breaks

Definition 5.1.1. Let v be a divisorial valuation on k(X) over k, and let Iv be an inertia
subgroup of the absolute Galois group of k(X) corresponding to v. The wild inertia
subgroup Wv of Iv is the absolute Galois group of the maximal tamely ramified extension
of k(X)v. The group Wv is a pro-p-group, whereas the quotient Iv/Wv is congruent to∏

� �=p Z�.

Definition 5.1.2. Let ρ : π1(X, x̄) → GL(V ) be a continuous homomorphism for V =
V (ρ) a finite-dimensional E-vector space, corresponding to a lisse E-sheaf E on X. Filter
the inertia group Iv as in [15, Definition 3.5.12]. For ρ irreducible, define the differential
highest break b(ρ, v) of ρ along v to be the maximal r such that Ir

v �⊂ ker(ρ). For general ρ,
let ρ1, . . . , ρn be the irreducible constituents of ρ, and define the differential ramification
breaks b1(ρ, v) � · · · � bd(ρ, v) (or b1(E , v) � · · · � bd(E , v)) of ρ to be the elements of
the multiset consisting of b(ρi, v) with multiplicity dim(ρi). Define the differential Swan
conductor Swan(ρ, v) (or Swan(E , v)) of ρ along v to be the sum

∑d
i=1 bi(ρ, v).

As in Definition 2.4.1, the previous definition gives the differential ramification breaks
and differential Swan conductor in their natural normalization. If desired, we may instead
normalize with respect to any t ∈ k(X) for which v(t) �= 0.

Unlike in the p-adic case, the differential ramification breaks of an �-adic representa-
tion of π1(X, x̄) are not obtained by first constructing a corresponding isocrystal. Conse-
quently, it is not immediate that variational properties of differential ramification breaks
of representations can be transferred to the �-adic case. The remainder of this section is
devoted to making such transfers; we start with a few useful remarks.
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Remark 5.1.3. With notation as in Definition 5.1.2, choose a ρ-stable oE-lattice T of
V , and let ρ̄ : π1(X, x̄) → GL(T/mET ) be the resulting residual representation. Then
the image in GL(T ) of the pro-p-group Wv has trivial intersection with the pro-�-group
ker(GL(T ) → GL(T/mET )), and so injects into GL(T/mET ). Consequently, if we use
the same procedure as in Definition 5.1.2 to define the differential ramification breaks
and Swan conductor of a mod � representation of π1(X, x̄), then these quantities are the
same for a oE-representation as for its mod � reduction.

Remark 5.1.4. In Remark 5.1.3, if the representation ρ̄ lifts to a discrete representation
π1(X, x̄) → GL(T ) (i.e. a representation with open kernel), then we can generate an
overconvergent F -isocrystal which computes the differential ramification breaks of ρ̄,
using Theorem 2.3.7.

5.2. Integral polyhedrality

In this section, we establish an analogue of Theorem 3.4.6 for �-adic sheaves.

Theorem 5.2.1. Under Hypothesis 3.4.1, let E be a lisse étale E-sheaf on X. For i =
1, . . . , d and r ∈ T ∩ Qn, let bi(E , r) denote the ith largest differential ramification break
of E along vr, normalized with respect to t1 · · · tn. Put Bi(E , r) = b1(E , r)+ · · ·+ bi(E , r).
Then the functions d!Bi(E , r) and Bd(E , r) are continuous, convex, and integral poly-
hedral on T .

Proof. By Remark 5.1.3, we may replace E by a locally constant étale F-sheaf, where
F is the residue field of E, and prove the same result. Let G be the image of π1(X, x̄) in
GLd(F), and let H be a p-Sylow subgroup of G. Let f : Y → X be a finite étale cover
such that for some geometric point ȳ of Y over x̄, π1(Y, ȳ) = ρ̄−1(H). Put F = f∗f

∗E ,
which corresponds to the representation τ = IndG

H ResG
H ρ̄. Put m = [G : H]. Then for

each divisor Z on X,

b(m−1)i+1(F , Z) = · · · = bmi(F , Z) = bi(E , Z)

since the differential ramification breaks only depend on the action of H. On the other
hand, ResG

H ρ̄ is a mod � representation of the group H whose order is prime to �. It
is thus liftable to oE , as then is its induction τ . We may thus apply Remark 5.1.4 to
deduce from Theorem 3.4.6 that md!Bi(E , r) = d!Bmi(F , r) and mBd(E , r) = Bmd(F , r)
are continuous, convex, and integral polyhedral.

To conclude, note that on one hand, d!Bi(E , r) and Bd(E , r) are continuous, convex, and
polyhedral by the previous paragraph. On the other hand, for each r ∈ T ∩Qn, d!Bi(E , r)
and Bd(E , r) take values in Z + Zr1 + · · · + Zrn by the Hasse–Arf property of differential
Swan conductors [15, Theorem 2.8.2] (or [22, Theorem 2.6.1]). Hence by Theorem 3.1.5
(or an elementary argument), d!Bi(E , r) and Bd(E , r) are integral polyhedral. �

Remark 5.2.2. Although the above argument suffices for our purposes, it is worth men-
tioning another lifting construction that may occasionally be useful. Let E be a locally
constant étale F-sheaf on X, where F is the residue field of E. Let G be the image of
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π1(X, x̄) in GLd(F). For S any ring, let RS(G) denote the Grothendieck ring of finite
S[G]-modules. Then the canonical map RoE

(G) → RF(G) is surjective by [28, Chap-
ter 16, Theorem 33], so the given F-representation of G lifts to a virtual oE-representation
of G. We may then convert each factor of the virtual representation into an overconver-
gent F -isocrystal as in Remark 5.1.4. Unfortunately, since this representation is only
virtual, one cannot use this argument to deduce convexity or polyhedrality.

5.3. Subharmonicity and monotonicity

We may also obtain subharmonicity and monotonicity results for surfaces, by using the
same technique as in Theorem 5.2.1 to reduce to Theorems 4.2.7 and 4.3.2, respectively.
(Initially one only proves �(E , Z) ∈ Q∩[0, d] because of the division by m in the argument
of Theorem 5.2.1, but the integral polyhedrality of Theorem 5.2.1 forces �(E , Z) ∈ Z, so
there is no problem.)

Theorem 5.3.1. Assume that k is algebraically closed. Let X̄ be a smooth irreducible
projective surface over k, let Z be a smooth divisor on X̄, and let v0 be the divisorial
valuation on k(X̄) measuring order of vanishing along Z. Let X be an open dense sub-
scheme of X̄, and let E be a lisse étale E-sheaf on X. Define bj(E , z, x, r) for j = 1, . . . , d

and SwanZ(E , z, x, r) as in Definition 4.2.3.

(a) For each z ∈ Z, the functions bj(E , z, x, r) for j = 1, . . . , d and SwanZ(E , z, x, r) are
affine in a neighborhood of r = 0.

(b) Let Swan′
Z(E , z) be the right slope of SwanZ(E , z, x, r) at r = 0. Then there exists

�(E , Z) ∈ {0, 1, . . . , d} such that Swan′
Z(E , z) = −�(E , Z) for all but finitely many

z ∈ Z.

(c) With notation as in (b), we have

∑
z∈Z

(Swan′
Z(E , z) + �(E , Z)) � (2 − 2g(Z))�(E , Z) − Z2 Swan(E , Z),

where g(Z) denotes the genus of Z, and Z2 denotes the self-intersection of Z on X̄.

(d) If z is a smooth point of Z ∪ (X̄ \ X), then Swan′
Z(E , z) + �(E , Z) � 0.

Theorem 5.3.2. With hypotheses as in Theorem 5.3.1, for each component Z of D,

Z · (Swan(E) + �(E , Z)(KX̄ + D)) � 0.

Proof. This follows from Theorem 5.3.1 by the same argument as in Theorem 4.4.7. �

Remark 5.3.3. It should be possible to use Theorem 5.3.1 to give an independent
derivation of the semicontinuity theorem in étale cohomology [23]. We leave this as an
exercise for the interested reader.
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Appendix A. Errata for [15]

We take the opportunity here to record a few errata from [15].
As noted earlier (see Remark 1.0.2), [15, Hypothesis 2.1.3(b)] is missing the hypothesis

that k is separable over k0.
More seriously, the proof of [15, Proposition 2.7.11] is not correct as written. There

are two problems with the given proof. One is that the formulae given for the action of
∂/∂ui, ∂/∂vi, ∂/∂t are only valid on sections of E ′ which are pulled back from E , since
∂′
1, . . . , ∂

′
n+1 are only defined for such sections. The other is that the summands making

up ∂/∂t do not commute, so one cannot argue that the scale of the sum is bounded above
by the the maximum of the scales of the summands.

What is valid to deduce from the construction given is that the highest break of E ′

is at least pb − b + 1, and that if equality occurs, ∂/∂t is eventually dominant for E ′.
To complete the proof, we must argue another way that the highest break of E ′ is at
most pb − p + 1. Using the interpretation of scales in terms of convergence of Taylor
isomorphisms [15, § 2.2], this follows from the following fact: for ρ ∈ (0, 1) sufficiently
close to 1, if t, u1, . . . , un, v1, . . . , vn and t′, u′

1, . . . , u
′
n, v′

1, . . . , v
′
n satisfy

|t| = ρ, |ui| = 1, |vi| = 1,

|t − t′| � ρpb−p+2, |u′
i − ui| � ρpb−p+1, |v′

i − vi| � ρpb−p+1,

then∣∣∣∣ tp

1 − tp−1 − (t′)p

1 − (t′)p−1

∣∣∣∣ � ρp(b+1), |(up
i + vit

p−1) − ((u′
i)

p + v′
i(t

′)p−1)| � ρpb.

The proof of this is straightforward.
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