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This paper provides an overview of AMG methods for solving large-scale sys-
tems of equations, such as those from discretizations of partial differential
equations. AMG is often understood as the acronym of ‘algebraic multigrid’,
but it can also be understood as ‘abstract multigrid’. Indeed, we demonstrate
in this paper how and why an algebraic multigrid method can be better un-
derstood at a more abstract level. In the literature, there are many different
algebraic multigrid methods that have been developed from different per-
spectives. In this paper we try to develop a unified framework and theory
that can be used to derive and analyse different algebraic multigrid methods
in a coherent manner. Given a smoother R for a matrix A, such as Gauss–
Seidel or Jacobi, we prove that the optimal coarse space of dimension nc is the
span of the eigenvectors corresponding to the first nc eigenvectors R̄A (with
R̄ = R + RT − RTAR). We also prove that this optimal coarse space can
be obtained via a constrained trace-minimization problem for a matrix asso-
ciated with R̄A, and demonstrate that coarse spaces of most existing AMG
methods can be viewed as approximate solutions of this trace-minimization
problem. Furthermore, we provide a general approach to the construction of
quasi-optimal coarse spaces, and we prove that under appropriate assump-
tions the resulting two-level AMG method for the underlying linear system
converges uniformly with respect to the size of the problem, the coefficient
variation and the anisotropy. Our theory applies to most existing multigrid
methods, including the standard geometric multigrid method, classical AMG,
energy-minimization AMG, unsmoothed and smoothed aggregation AMG and
spectral AMGe.
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1. Introduction

Multigrid methods are among the most efficient numerical methods for solv-
ing large-scale systems of equations – linear and non-linear alike – arising
from the discretization of partial differential equations. These types of meth-
ods can be viewed as an acceleration of traditional iterative methods based
on local relaxation, such as Gauss–Seidel and Jacobi methods. For linear
systems arising from finite element or finite difference discretization of el-
liptic boundary value problems, local relaxation methods were observed to
converge very rapidly for the high-frequency part of the solution. The low-
frequency part of the solution, although slow to converge, corresponds to a
relatively smooth part of the function that can be well approximated on a
coarser grid. The main idea behind such multigrid methods is to project the
error obtained after applying a few iterations of local relaxation methods
onto a coarser grid. The projected error equations have two characteristics.
First, the resulting system is smaller. Second, part of the slowly conver-
ging low-frequency error on a finer grid becomes relatively high-frequency
on the coarser grid, and these frequencies can be further corrected via a
local relaxation method, but this time on the coarse grid. By repeating
this process via ever coarser grids, a multilevel iterative process is obtained.
Such algorithms have been proved to have uniform convergence with nearly
optimal complexity for a large class of linear algebraic systems arising from

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


Algebraic multigrid methods 593

the discretization of partial differential equations, especially elliptic bound-
ary problems of second and fourth order. One main component of this type
of multilevel algorithm is a hierarchy of geometric grids, typically a sequence
of nested grids obtained by successive refinement. The resulting algorithms
are known as geometric multigrid (GMG) methods.

Despite their extraordinary efficiency, however, GMG methods have lim-
itations. They depend on a hierarchy of geometric grids, which is often not
readily available, and it can be argued that the range of applicability of
GMG methods is therefore limited.

Algebraic multigrid (AMG) methods were designed in an attempt to ad-
dress such limitations. They were proposed as a means to generalize geomet-
ric multigrid methods for systems of equations that share properties with
discretized PDEs, such as the Laplacian equation, but potentially have un-
structured grids in the underlying discretization. The first AMG algorithm
in Brandt, McCormick and Ruge (1982) was a method developed under the
assumption that such a problem was being solved. The AMG algorithm was
later generalized using several heuristics to extend its applicability to more
general problems and matrices. As a result, a variety of AMG methods have
been developed in the past three decades, and they have been successfully
applied to many practical problems.

In this paper we give an overview of AMG methods from a theoretical
viewpoint. AMG methods have been developed via a combination of certain
theoretical considerations and heuristic arguments, and many AMG meth-
ods work, with varying efficiency, for different applications. We find it very
hard to give a coherent picture of the state of the art of AMG methods by
simply choosing to make a comprehensive list of existing algorithms without
digging into their theoretical foundations. Unfortunately, a good theoretical
understanding of how and why these methods work is still seriously lacking.

In preparing this paper, we have undertaken the task of making a thor-
ough investigation into the design and analysis of AMG from a theoretical
point of view. While there are many bits and pieces of ideas diffused in the
literature, we have managed to re-examine most of the existing results and
‘re-invent the wheel’ in trying to deliver a coherent theoretical description.
To do this, we have developed several tools for the design and analysis of
AMG.

With very few exceptions, most AMG algorithms have targeted the solu-
tion of symmetric positive definite (SPD) systems. In this paper we choose
to present our studies for a slightly larger class of problems, namely sym-
metric positive semi-definite (SPSD) systems. This approach is not only
more inclusive, but more importantly, the SPSD class of linear systems can
be viewed as more intrinsic to AMG ideas. For example, while the stand-
ard discretizations of the Laplacian operator with homogeneous Dirichlet
boundary conditions results in an SPD system, the design of AMG may be
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better understood by using local problems (defined on subdomains) with
homogeneous Neumann boundary conditions, yielding SPSD sub-systems.

In short, in this paper we consider AMG techniques for solving the linear
system of equations

Au = f, (1.1)

where A is a given SPSD operator or sparse matrix, and the problem is
posed in a vector space of large dimension. The starting point of an AMG
procedure is first to choose a smoother, which is often taken to be some local
relaxation iterative method such as pointwise Jacobi or Gauss–Seidel, or,
more generally, overlapping Schwarz methods. The use of pointwise smooth-
ers seems to encompass most of the efforts in the literature to construct and
implement most (if not all) AMG methods. More general smoothers based
on overlapping Schwarz methods are necessary for some problems, but we
shall not study them in detail in this paper. In any event, any chosen
smoother is expected to converge well only on certain components of the
solution, which will be known as algebraic high frequencies with respect to
the given smoother. With the smoother fixed, the main task of an AMG
method is then to identify a sequence of coarse spaces that would comple-
ment this smoother well. Roughly speaking, an ideal sequence of coarse
spaces is such that any vector (namely the solution to (1.1) for any f) in
the finest space can be well represented by a linear combination of all the al-
gebraic high frequencies on all coarse spaces. As a result, the AMG method
would converge well for problem (1.1).

It is hard to translate the above multilevel setting into a concise math-
ematical statement. Instead we will focus on first answering this question
for a two-level setting. For a two-level setting, the first theoretical question
is as follows: ‘Given a smoother, say R, what is the optimal coarse space
of given dimension such that the resulting AMG has the best convergence
rate?’ This question will be thoroughly addressed in Section 5. As it turns
out, the optimal coarse space will consist of the eigenvectors corresponding
to the lower end of the spectrum of a matrix such as RA. While our two-
level theory is theoretically pleasing, it does not offer a practical solution,
as finding these eigenvectors would be too expensive. Thus, the task of the
AMG design is to find a good but inexpensive approximation of this al-
gebraic low-frequency eigenspace that will still result in an AMG algorithm
with desirable convergence properties. We call such an approximation of an
optimal coarse space a ‘quasi-optimal’ coarse space.

In the design of all these AMG algorithms, one key component is the
coarsening of spaces via the graph associated with the matrix A. The two
main strategies are based on independent sets and on aggregation. We
will present several approaches to the construction of quasi-optimal coarse
spaces. We would especially advocate two approaches that have sound
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theoretical foundations. The first approach is outlined in Section 5 and later
on in Section 11. We will first prove that the optimal coarse space from the
theory in Section 5 can be characterized, in a mathematically equivalent
manner, by solutions to a trace-minimization problem. In a functional set-
ting, such a trace-minimization can be interpreted as minimization of the
sum of the energy norms of a set of coarse basis functions. These precise
equivalents give very clear guidance as to how some AMG methods can be
constructed. One practical approach based on such a theorem is to look
for energy-minimization basis functions among locally supported function
classes. The resulting algorithms are known as energy-min AMG. Other
AMG methods, such as classical AMG and aggregation-based AMG, can
be viewed as approximations to energy-min AMG. The second approach
is outlined in Section 6. The main idea is to construct a quasi-optimal
coarse space by piecing together the low-end eigenspaces of some appro-
priately defined local operators or matrices. This approach can be used to
provide quasi-optimal coarse spaces for various AMG methods, including the
standard geometric multigrid method, classical AMG, energy-minimization
AMG, unsmoothed and smoothed aggregation AMG, and spectral AMGe.
As a simple example, this method relies on the fact that an nc = Jm-
dimensional low-end eigenspace of an operator can be well approximated
by gluing together J-pieces of m-dimensional low-end eigenspaces, for some
carefully chosen local operators. Here m is a very small integer, for ex-
ample, m = 1 for the Laplacian operator and m = 3 (resp. m = 6) for the
two-dimensional (resp. three-dimensional) linear elasticity operator. This
important property of eigenspaces is closely related to Weyl’s lemma on the
asymptotic behaviour of eigenvalues for elliptic boundary value problems,
discussed in Section 2.3.

Most AMG methods are designed in terms of the adjacency graph of the
coefficient matrix of a given linear algebraic system. In Section 7 we give
a brief description of graph theory and the adjacency graph of a sparse
matrix. One highlight of Section 7 is the concept of M -matrix relatives.
This simple tool is instrumental in the design and analysis of the classical
AMG method.

One important step in the design of most AMG methods is to zero out
some entries of the coefficient matrix A by using the concept of connection
strength to construct a filtered matrix Ã, which is equivalent to omitting
weakly connected edges in the adjacency graph G(A) to obtain G(Ã). Sev-
eral possible strength functions are introduced in Section 8 to describe the
connection strength. In Section 9, the graph G(Ã) is then coarsened by
either keeping a maximal independent set (MIS) as a coarse vertex set C
and then dropping the rest of grid, or using aggregation/agglomeration. In
Section 9 we also give some technical details of the construction of a coarse
space by using degrees of freedom.
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By using the aforementioned general approaches and theoretical tech-
niques, we then motivate and present a number of AMG methods. Some of
the highlights of the paper are outlined below.

We first give an overview of GMG and its relationship with AMG in
Section 10. After describing some details of a typical GMG method for
linear finite element matrix, we argue that the geometric information used in
defining a GMG is essentially the graph information of the underlying finite
element grid (without using other geometric information such as coordinates
of the grid points). This is a strong indication that at least some GMG
methods can be realized in a purely algebraic fashion, using only the stiffness
matrix, an algebraic smoother, and the adjacency graph of the stiffness
matrix. On the other hand, we prove that a GMG method can also be
formally obtained via our general AMG approach, presented in Section 6.
Furthermore, we use the example of AMGe in Section 10.4 to demonstrate
that geometric information on the grid can be used effectively to construct
a geometry-based AMG.

In Section 11 we give a detailed account of AMG methods based on
energy-minimization. We first present our new theory that the optimal
coarse space shown in the two-level theory in Section 5 can actually be
obtained by trace-minimization (Section 11.1), after which we derive the
energy-min AMG method by seeking a set of locally supported coarse basis
functions for energy-minimization.

Classical AMG, as the first class of AMG algorithms studied in the liter-
ature, will be presented in Section 12. We derive and analyse this type of
method using the framework in Section 6 together with the notion of M -
matrix relatives introduced in Section 7.2. We further discuss how a classical
AMG method can be viewed as an approximation of the energy-min AMG
method.

Aggregation-based AMG will be presented in Section 13. Again we derive
and analyse this method using the framework in Section 6. One remark-
able feature of aggregation AMG methods is their ease at preserving multi-
dimensional near-null spaces, such as rigid body modes in linear elasticity.

To demonstrate how an AMG method addresses possible heterogeneous
properties in a given problem, we devote Section 14 to showing how classical
AMG is designed to address the difficulties arising from discretized elliptic
problems with strong discontinuous jumps, or anisotropy in the coefficients
of the underlying PDE.

In Section 15 we outline a class of AMG methods that attempt to choose
the coarse spaces in a bootstrap and adaptive fashion. This class of AMG
algorithms does not fall within the theoretical frameworks presented in this
paper, but they provide a practical approach to generalizing many existing
AMG techniques to more general problems. Finally we make some conclud-
ing remarks in Section 16.
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We conclude these introductory remarks with a brief summary of the ac-
ronyms used for the various AMG algorithms reviewed in this paper.

Aggregation-based AMG:

– unsmoothed aggregation UA-AMG

– smoothed aggregation SA-AMG

Bootstrap and adaptive AMG:

– classical αAMG

– smoothed aggregation αSA-AMG

– bootstrap AMG BAMG

Element-based AMG AMGe

Spectral AMGe ρAMGe

2. Model problems and discretization

While AMG has found applications to a wide range of linear algebraic sys-
tems, its development has been mainly motivated by the solution of systems
arising from the discretization of partial differential equations by finite ele-
ment, finite difference or other numerical methods. In this section we will
discuss a model of second-order elliptic boundary problems, their finite dif-
ference and finite element discretization, and relevant properties of the un-
derlying differential operators and their discretization.

2.1. Model elliptic PDE operators

We consider the boundary value problems

Lu = −∇ · α(x)∇u = f, x ∈ Ω, (2.1)

where α : Ω 7→ Rd×d is an SPD matrix function satisfying

α0‖ξ‖2 ≤ ξTα(x)ξ ≤ α1‖ξ‖2, ξ ∈ Rd, (2.2)

for some positive constants α0 and α1. Here d = 1, 2, 3, and Ω ⊂ Rd is a
bounded domain with boundary Γ = ∂Ω.

A variational formulation for (2.1) is as follows: find u ∈ V such that

a(u, v) = (f, v), for all v ∈ V. (2.3)

Here

a(u, v) =

∫
Ω

(α(x)∇u) · ∇v, (f, v) =

∫
Ω
fv,

and V is a Sobolev space that can be chosen to address different bound-
ary conditions accompanying equation (2.1). One case is that of mixed

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


598 J. Xu and L. Zikatanov

boundary conditions

u = 0, x ∈ ΓD,

(α∇u) · n = 0, x ∈ ΓN ,
(2.4)

where Γ = ΓD ∪ΓN . The pure Dirichlet problem is when ΓD = Γ, while the
pure Neumann problem is when ΓN = Γ. We thus have V as

V =

{
H1(Ω) = {v ∈ L2(Ω) : ∂iv ∈ L2(Ω), i = 1 : d},
H1
D(Ω) = {v ∈ H1(Ω) : v|ΓD = 0}.

(2.5)

When we consider a pure Dirichlet problem, ΓD = Γ, we denote the space
by V = H1

0 (Ω). In addition, for pure Neumann boundary conditions, the
following condition is added to ensure the existence of the solution to (2.3):∫

Ω
f = 0. (2.6)

One of the most commonly used model problems is when

α(x) = 1, x ∈ Ω, (2.7)

which corresponds to the Poisson equation

−∆u = f. (2.8)

This simple problem provides a good representative model for isotropic
problems.

There are two other cases that are of special interest. The first case is
when α is a scalar and has discontinuous jumps such as

α(x) =

{
ε x ∈ Ω1,

1 x ∈ Ω2.
(2.9)

The second case is when α is a diagonal matrix such as (for d = 2)

α(x) =

(
1 0
0 ε

)
, (2.10)

which corresponds to the operator

−uxx − εuyy = f. (2.11)

In both cases we assume that ε is sufficiently small to investigate the ro-
bustness of algorithms with respect to discontinuous jumps and anisotropy.

2.2. Examples of finite difference and finite element discretizations

As an illustrative example, we consider a finite difference discretization of
the Poisson equation (2.8) with pure Dirichlet boundary conditions on the
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(a) (b)

Figure 2.1. (a) Regular (uniform) triangulations for the unit square, and (b) un-
structured mesh approximating the unit disk.

unit square Ω = (0, 1) × (0, 1). We consider a uniform triangulation of Ω
(see Figure 2.1(a)), and we set

(xi, yj) =

(
i

n+ 1
,

j

n+ 1

)
, ui,j ≈ u(xi, yj), (i, j = 0, . . . , n+ 1).

We use the standard central difference approximation to the Laplacian
operator

(−∆u)(xi, yj) ≈
4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

h2
.

The finite difference scheme is then given by

4ui,j − (ui+1,j + ui−1,j + ui,j+1 + ui,j−1) = h2fi,j , (2.12)

where

fi,j = f(xi, yj) (2.13)

and ui,j ≈ u(xi, yj). The approximations ui,j are found by solving a linear
system. We order the points (xi, yj) lexicographically, and for k = 1, . . . , n2

we have

k = (j − 1)n+ i, xhk = (xi, yj), µk = ui,j , 1 ≤ i, j ≤ n, (2.14)

We can then write (2.12) as

Aµ = b, (2.15)

where

A = tridiag(−I,B,−I) and B = tridiag(−1, 4,−1). (2.16)

A slightly different scheme is obtained using more of the neighbouring points
of (xi, yj). We can build an approximation using 8 points (xi±1, yj±1) to-
gether with the ‘centre’ point (xi, yj). As a result we have the following
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9-point finite difference scheme:

8µi,j − µi−1,j − µi+1,j − µi,j−1 − µi,j+1 (2.17)

− µi−1,j−1 − µi+1,j−1 − µi−1,j+1 − µi+1,j+1 = 2h2fi,j .

Again, if we order (xi, yj) lexicographically, then (2.17) is the linear sys-
tem (2.15) corresponding to the 9-point finite difference discretization of
the Laplace equation, where

A = tridiag(−C,B,−C), B = tridiag(−1, 8,−1), C = tridiag(1, 1, 1).
(2.18)

We now give an example of finite element discretization. Given a trian-
gulation Th for Ω, such as that given in Figure 2.1, let Vh ⊂ V be a finite
element space consisting of piecewise linear (or higher-order) polynomials
with respect to the triangulation Th. The finite element approximation of
the variational problem (2.3) is: find uh ∈ Vh such that

a(uh, vh) = (f, vh), for all vh ∈ Vh. (2.19)

Assume {φi}Ni=1 is the nodal basis of Vh, namely φi(xj) = δij for any nodes

xj . We write uh(x) =
∑N

j=1 µjφj(x). Equation (2.19) is then equivalent to

N∑
j=1

µja(φj , φi) = (f, φi), j = 1, 2, . . . , N,

which is a linear system of equations:

Aµ = b, (A)ij = a(φj , φi) and (b)i = (f, φi). (2.20)

The matrix A is known as the stiffness matrix of the nodal basis {φi}Ni=1.
For d = 2 and the special uniform triangulation shown in Figure 2.1, this

stiffness matrix for the Laplacian operator turns out to be exactly the one
given by (2.12). This special case is an example of the close relationship
between finite difference and finite element methods.

We note that the finite element method is based on the variational formu-
lation (2.3), whereas the finite difference method is not. In the development
of the AMG method, however, the variational method is also used to derive
coarse level equations for finite difference methods.

For any T ∈ Th, we define

hT = diam (T ), hT = |T |1/d, hT = 2 sup{r > 0 : B(x, r) ⊂ T for x ∈ T}.
(2.21)

We say that the mesh Th is shape-regular if there exists a uniformly bounded
constant σ ≥ 1 such that

hT ≤ hT ≤ hT ≤ σhT , for all T ∈ Th. (2.22)

We call σ the shape-regularity constant.
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Let h = maxT∈Th hT , with hT defined as in (2.21). We say that the mesh
Th is quasi-uniform if there exists a uniformly bounded constant C > 0 such
that

h

hT
≤ C. (2.23)

2.3. Spectral properties

We now discuss the spectral properties of the partial differential operator L
given in (2.1).

We recall the well-known Courant–Fischer min-max principle (Courant
and Hilbert 1924) for eigenvalues of symmetric matrices.

Theorem 2.1. Let T be an n×n symmetric matrix with respect to (·, ·)∗,
and let {λj , ζj} be its eigenpairs with λ1 ≤ λ2 ≤ · · · ≤ λn. Then

λk = min
dimW=k

max
x∈W,x6=0

(Tx, x)∗
(x, x)∗

, (2.24)

where the minimum is achieved if

W = span{ζj : j = 1 : k}, (2.25)

and

λk = max
dimW=n−k+1

min
x∈W,x6=0

(Tx, x)∗
(x, x)∗

, (2.26)

where the maximum is achieved if

W = span{ζj : j = k : n}. (2.27)

Next, we recall Theorem 1 in Fan (1949), which is known as the Ky–Fan
trace-minimization principle.

Theorem 2.2. We assume T is symmetric with respect to (·, ·)∗, and
{λj , ζj} are its eigenpairs with λ1 ≤ λ2 ≤ · · · ≤ λn. Then

min
P∈Rn×k,P ∗P=I

trace(P ∗TP ) =

k∑
j=1

λj .

Furthermore, the minimum is achieved when

range(P ) = span{ζj}kj=1 and P ∗P = I.

Here P ∗ ∈ Rk×n is the adjoint of P with respect to the (·, ·)∗-inner product,
namely

(P ∗u, v) = (u, Pv)∗, for all u ∈ Rn, v ∈ Rk.

Finally, following Xu (1992), we use the notation a . b to represent the
existence of a generic positive constant C, which is independent of salient
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parameters, such as problem size or anisotropic ratio, and such that a ≤ Cb.
Furthermore, we write a ∼=b if and only if a . b and b . a.

Theorem 2.3. The PDE operator L has a complete set of eigenfunctions
(ϕk) and non-negative eigenvalues

0 ≤ λ1 ≤ λ2 ≤ · · ·

such that

Lϕk = λkϕk, k = 1, 2, 3 . . . ,

where

(a) limk→∞ λk =∞,

(b) (ϕi) forms an orthonormal basis of V as well as for L2(Ω).

Furthermore,

(c) for the pure Neumann problem, λ1 = 0, and ϕ1 is the constant function,

(d) for the pure Dirichlet problem, λ1> 0 is simple, and ϕ1 does not change
sign.

We have the well-known Weyl estimate for the asymptotic behaviour of
the Laplacian operator (Weyl 1911, Weyl 1912, Reed and Simon 1978).

Lemma 2.4 (Weyl’s law). Assume that Ω is ‘contented’, which means
that Ω can be approximated by unions of cubes in Rd; see Reed and Si-
mon (1978, p. 271) for the exact definition. For the homogeneous Dirichlet
boundary condition, the eigenvalues of the pure Laplacian operator satisfy

lim
k→∞

λk
k2/d

= wΩ, with wΩ =
(2π)2

[ωd Vol(Ω)]2/d
, (2.28)

where ωd is the volume of the unit ball in Rd, and the eigenvalues of the
operator L given in (2.1) satisfy

λk ∼=k2/d, for all k ≥ 1. (2.29)

Next, we extend Weyl’s law to discretized PDE operators. The following
theorem gives a discrete version of Weyl’s law for finite element discretiza-
tion. Further details of this result can be found in Xu, Zhang and Zikatanov
(2016b).

Theorem 2.5. Let Vh ⊂ H1
0 (Ω) be a family of finite element spaces on

a quasi-uniform mesh with dimVh = N . Consider the discretized operator
of (2.1),

Lh : Vh 7→ Vh, (Lhu, v) = a(u, v), for all u, v ∈ Vh,
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and its eigenvalues,

λh,1 ≤ λh,2 ≤ · · · ≤ λh,N .

Then, for all 1 ≤ k ≤ N , there exists a constant Cw > 0 independent of k
such that we have the estimates

λk ≤ λh,k ≤ Cwλk (2.30)

and

λh,k ∼=k2/d. (2.31)

2.4. Properties of finite element matrices

The main algebraic property for the stiffness matrices given by (2.20) is that
it is sparse with O(N) non-zeros, symmetric positive definite (for both Di-
richlet and mixed boundary conditions) and semi-definite for pure Neumann
boundary conditions. Its eigenvalues satisfy a discrete Weyl’s law.

For simplicity, we will only consider pure Dirichlet boundary conditions
in the rest of this section.

Lemma 2.6. The stiffness matrix A given by (2.20) has the following
properties.

(a) The condition number of A, defined by the ratio of the extreme eigen-
values of A,

κ(A) =
λmax(A)

λmin(A)
,

satisfies

κ(A) ∼=h−2.

Furthermore,

λmin(A) ∼=h2 and λmax(A) ∼=1.

(b) The discrete version of Weyl’s law holds:

λk(A) ∼=

(
k

N

)2/d

.

We next discuss some more refined spectral properties of finite element
stiffness matrices from uniform grids for the unit square domain Ω = (0, 1)×
(0, 1) for d = 2. We begin with the Poisson equation. It is easy to derive a
closed-form solution of the eigenpairs of A given by (2.15), and we have

λkl(A) = 4

(
sin2 kπ

2(n+ 1)
+ sin2 lπ

2(n+ 1)

)
(2.32)
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and

φklij = sin
kiπ

n+ 1
sin

ljπ

n+ 1
, 1 ≤ i ≤ n, 1 ≤ j ≤ n. (2.33)

Now consider the important case of anisotropic problem (2.11). We order
the vertices of the triangulation lexicographically, and, as before, denote
them by {(ih, jh)}ni,j=0. The stiffness matrix is then

A = tridiag(−I,B,−I) with B = tridiag(−ε, 2(1 + ε),−ε). (2.34)

Obviously,

A = I ⊗B + C ⊗ I with C = tridiag(−1, 0,−1),

and it is easily verified that

λi(B) = 2(1 + ε)− 2ε cos
iπ

(n+ 1)
, λj(C) = −2 cos

jπ

(n+ 1)
, 1 ≤ i, j ≤ N.

which leads to the expression

λij(A) = 4ε sin2 iπ

2(n+ 1)
+ 4 sin2 jπ

2(n+ 1)

for the eigenvalues, and

φk`ij = sin
kiπ

n+ 1
sin

`jπ

n+ 1

for the corresponding eigenvectors.

3. Linear vector spaces and duals

In this paper we will mainly consider linear systems of equations of the form

Au = f. (3.1)

Here

A : V 7→ V ′, (3.2)

f ∈ V ′,

where V is a finite-dimensional linear vector space and V ′ is the dual of V .
If we use the notation 〈·, ·〉 to denote the pairing between V ′ and V , we can
write (3.1) in a variational form: find u ∈ V such that

a(u, v) = 〈f, v〉, for all v ∈ V, (3.3)

where

a(u, v) = 〈Au, v〉. (3.4)
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3.1. Dual and inner product

For convenience of exposition, we will assume that V is equipped with an
inner product (·, ·). By the Riesz representation theorem, for any f ∈ V ′,
there is a unique u ∈ V such that

(u, v) = 〈f, v〉, for all v ∈ V. (3.5)

It is via the Riesz representation theorem that we identify the dual space
V ′ with V . In the rest of this paper, for convenience, we will always assume
that V ′ = V for any finite-dimensional vector space V . As a result, we have

V ′′ = (V ′)′ = V ′ = V. (3.6)

Thanks to the identification V ′ = V via (3.5), the identities in (3.6) are
clear.

We would like to point out that, in an abstract discussion of all iterative
methods for problem (3.1), it suffices to use the abstract dual pairing 〈·, ·〉
without having to introduce an inner product (·, ·) on V . However, we find
that using an inner product is convenient for exposition, as we shall see
later. We further point out that we will not use an inner product to identify
V ′ = V for any infinite-dimensional vector space in this paper.

If {φi}Ni=1 is a basis of V , we will always choose a basis {ψi}Ni=1 of V ′ that
is dual to the basis of V , namely

(ψj , φi) = δij , 1 ≤ i, j ≤ N. (3.7)

Such a dual basis will be used only for theoretical considerations and not
for the actual implementation of any algorithms.

We will consider two kinds of linear vector spaces. The first kind is
V = Rn and the inner product is just the dot product

(u, v)`2 =
n∑
i=1

uivi, for all u = (ui), v = (vi) ∈ Rn,

A canonical basis of RN is formed by the column vectors of the identity
matrix, {ei}Ni=1. It is easy to see that the dual basis of (RN )′ = RN is just
the original basis {ei}Ni=1 itself.

The second kind is a finite-dimensional functional subspace of L2(Ω) for
a given domain Ω ⊂ Rd (1 ≤ d ≤ 3), equipped with the L2-inner product

(u, v) =

∫
Ω
u(x)v(x).

One commonly used linear vector space is a finite element space Vh, and the
nodal basis functions {φi}Ni=1 are often used as a basis. In this case, the dual
basis functions {ψi}Ni=1 of V ′ are no longer the original nodal basis functions
but rather a set of functions (which are usually globally supported) that
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satisfy (3.7). This set of dual basis functions is usually needed to derive
the matrix representation of operators between various spaces and their
duals, but they are not needed for the actual implementation of relevant
algorithms.

For a linear operator

L : V 7→ V, (3.8)

its adjoint,

L′ : V 7→ V, (3.9)

is defined as follows:

(L′u, v) = (u, Lv), u, v ∈ V. (3.10)

Since V plays the role of both V and its dual V ′, (3.8) and (3.9) can have
four different meanings:

(i) if L : V 7→ V , then L′ : V ′ 7→ V ′,

(ii) if L : V 7→ V ′, then L′ : V 7→ V ′,

(iii) if L : V ′ 7→ V , then L′ : V ′ 7→ V ,

(iv) if L : V ′ 7→ V ′, then L′ : V 7→ V .

Thanks to the identification we made between V ′ and V via (3.5), definition
(3.10) is applicable to all four cases.

If V = Rn and (u, v) = (u, v)`2 , then L′ = LT , namely the matrix trans-
pose. We say that an operator A : V 7→ V ′ is symmetric positive definite
(SPD) if

A′ = A, (Av, v) > 0, for all v ∈ V \ {0}.

When A is SPD, it defines another inner product (·, ·)A on V ,

(u, v)A = (Au, v), u, v ∈ V,

and a corresponding norm,

‖v‖A = (v, v)
1/2
A , v ∈ V.

We use the superscript ‘*’ for the adjoint operator with respect to (·, ·)A,
that is,

(Bu, v)A = (u,B∗v)A.

It is easy to see that

(BA)∗ = B′A, (3.11)

and (BA)∗ = BA if and only if B′ = B.
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3.2. Matrix representation

Let Vc ⊂ V be a subspace and consider the inclusion operator ıc : Vc 7→ V .
Assume that {φci}

nc
i=1 and {φi}ni=1 are basis functions of Vc and V respect-

ively, and the matrix representation of ıc is the matrix

P : Rnc 7→ Rn satisfying (φc1, . . . , φ
c
nc) = (φ1, . . . , φn)P. (3.12)

Equation (3.12) is shorthand for the expansion of the basis in Vc via the
basis in V :

φck =

n∑
j=1

pjkφj , P = (pjk), k = 1, . . . , nc, j = 1, . . . , n. (3.13)

What is the matrix representation of ı′c : V ′ 7→ V ′c ? Although we have V ′ =
V and V ′c = Vc, we need to use dual bases {ψci }

nc
i=1 ⊂ V ′c and {ψi}ni=1 ⊂ V ′

respectively. With respect to these dual bases, the matrix representation of
ı′c is simply P T (the transpose of P ), since it is easy to verify that

(ı′cψ1, . . . , ı
′
cψn) = (ψc1, . . . , ψ

c
nc)P

T .

Now consider a linear operator

A : V 7→ V. (3.14)

There are two different ways to get a matrix representation of A, because
V plays two roles here: V is V itself, and V = V ′. For the first case, we use
the same basis {φi} for V as the domain of A and V as the range of A. In
this case, the matrix representation of A is the matrix

Â ∈ Rn×n satisfying (Aφ1, . . . , Aφn) = (φ1, . . . , φn)Â. (3.15)

In the second case, we use the basis {φi} for V as the domain space of A,
but use the dual basis {ψi} for V ′ = V as the range space of A. In this case,
the matrix representation of A is the matrix

Ã ∈ Rn×n satisfying (Aφ1, . . . , Aφn) = (ψ1, . . . , ψn)Ã. (3.16)

It is easy to see that

Ã = ((Aφj , φi)) (3.17)

and

Ã = MÂ, M = ((φj , φi)). (3.18)

The matrix Ã in (3.17) is often called the stiffness matrix of A and the
matrix M in (3.18) is called the mass matrix.

In the early multigrid literature, a discrete inner product equivalent to
the L2-inner product was often introduced for finite element spaces so that
the corresponding mass matrix becomes diagonal. However, if we view the
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underlying finite element operator (3.14) in a slightly different way,

A : V 7→ V ′, (3.19)

we will then see easily that the introduction of the discrete L2-inner product
is not necessary.

If V = Rn and we choose the canonical basis {ei} for V , we would not
encounter the mass matrix problem as in the functional space case, since
in this case {ei} is also the dual basis of V ′. This is certainly convenient,
but the convenience tends to mask some subtle but important difference
between various vectors and matrices in a given problem and the objects
(functions) that they represent.

Given a matrix A ∈ Rn×n, we can view it as either

A : Rn 7→ Rn (3.20)

or

A : Rn 7→ (Rn)′. (3.21)

As it turns out, when A is obtained from the discretization of partial dif-
ferential equations, (3.21) is more informative than (3.20). Hence we write
a matrix equation

Ax = b. (3.22)

It is sometimes helpful to regard x and b as living in two ‘different’ spaces,

x ∈ Rn and b ∈ (Rn)′. (3.23)

3.3. Eigenvalues and eigenvectors

Let us briefly discuss eigenvalues and eigenvectors for the symmetric oper-
ator T : V 7→ V . If (λ, φ) is an eigenpair of T ,

Tφ = λφ,

then it is easy to see that (λ, φ̃) is an eigenpair of the matrix representation
T̃ of T :

T̃ φ̃ = λφ̃.

Here φ̃ ∈ Rn is the vector representation of φ:

φ = (φ1, . . . , φn)φ̃.

For an operator A defined in (3.14), we need to be cautious when talking
about eigenvalues of A. Although we identify V ′ = V via (3.5), V ′ and V
play two different roles, so A is essentially a mapping between two ‘differ-
ent’ spaces V and V ′, and the spectrum of A should be defined carefully.
However, if we consider a symmetric operator

R : V ′ 7→ V, (3.24)
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then RA : V 7→ V is an operator that is symmetric with respect to the
A-inner product. In this case, if (λ, φ) is an eigenpair of RA, then (λ, φ̃) is
an eigenpair of R̃Ã (i.e. equal to the matrix representation of RA).

We consider the trivial identification operator

 : V ′ 7→ V such that ψi = ψi, for all i,

namely v = v for all v ∈ V ′ = V . It is easy to see that the matrix
representation of  is the inverse of the mass matrix M = ((φj , φi)), namely

̃ = M−1.

Using this identification operator, the operator A : V 7→ V is a symmetric
operator from V to V . We can then talk about its spectrum. For example,
if (λ, φ) is an eigenpair of A, then (λ, φ̃) satisfies

Ãφ̃ = λMφ̃.

This is often the generalized eigenvalue problem appearing in finite element
analysis.

Although, for all v ∈ V , Av = Av because of the identification introduced
above, A and A are, strictly speaking, two different operators: they have
two different ranges and their matrix representations are different.

The discussions above, although simple, may seem a little confusing at
first glance, but an unambiguous understanding and clarification of these
concepts and the underlying subtleties will be helpful for the presentation
of algebraic multigrid methods in the rest of this paper. For more detailed
discussions on relevant topics, we refer to Xu (2016).

3.4. Bibliographical notes

For a general reading on the basic linear algebra materials used here, we
refer to Halmos (1974) and Xu (1992, 2016). In particular, for a more
detailed discussion related to dual spaces and matrix representations, we
refer to Xu (1992, 2016).

4. Basic iterative methods

We now consider linear iterative methods for solving (2.20). We will fo-
cus on two of the most commonly used algorithms, namely the Jacobi and
Gauss–Seidel methods. Let us first give a brief introduction to linear iter-
ative methods in a more general setting. Recall the basic problem under
consideration. Given a finite-dimensional vector space V equipped with an
inner product (·, ·), we consider

Au = f, (4.1)
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where A : V 7→ V ′ is symmetric positive definite (SPD) and V ′ is the dual
of V . As mentioned in Section 3, we will identify V ′ = V via an inner
product (·, ·).

4.1. Basic iterative methods

A general linear iterative method for solving (4.1) can be written as follows.
Given u0 ∈ V , we define

um = um−1 +B(f −Aum−1), m = 1, 2, . . . , (4.2)

where B : V ′ 7→ V is a linear operator which can be thought of as an
approximate inverse of A.

Sometimes it is more desirable for the iterator B to be symmetric. If B
is not symmetric, there is a natural way to symmetrize it. Consider the
following iteration:{

um−1/2 = um−1 +B(f −Aum−1),

um = um−1/2 +B′(f −Aum−1/2).
(4.3)

The symmetrized iteration (4.3) can be written as

um = um−1 + B̄(f −Aum−1), m = 1, 2, . . . , (4.4)

where

B̄ = B′ +B −B′AB, (4.5)

which satisfies

I − B̄A = (I −BA)∗(I −BA). (4.6)

Obviously, ρ(I − B̄A) < 0 ⇐⇒ B̄ > 0 ⇐⇒ G ≡ (B′)−1 +B−1 −A > 0.

Theorem 4.1. The following results hold.

(a) Equation (4.3) converges if and only if G > 0, which implies that (4.2)
converges. Furthermore,

‖I −BA‖2A = λmax(I − B̄A) = 1−
(

sup
‖v‖A=1

(B̄−1v, v)

)−1

. (4.7)

(b) If B′ = B, G > 0 if and only if (4.2) converges and, with η = λmin(G),

2η

η + 1
(Bv, v) ≤ (B̄v, v) ≤ 2(Bv, v), v ∈ V. (4.8)

Remark 4.2. As an exercise, the reader may generalize Theorem 4.1 to
the case when A is SPSD.
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Algorithm 1 Modified Jacobi method

For i = 1 : n, xmi ← xm−1
i + ωa−1

ii

(
bi −

n∑
j=1

aijx
m−1
j

)
.

Algorithm 2 Modified Gauss–Seidel method

For i = 1 : n, xmi ← xm−1
i + ωa−1

ii

(
bi −

i−1∑
j=1

aijx
m
j −

n∑
j=i

aijx
m−1
j

)
.

4.2. Jacobi and Gauss–Seidel methods

For A = (aij) ∈ Rn×n, we write

A = D + L+ U,

where D is the diagonal of A, and L and U are the strict lower and upper
triangular parts of A respectively.

Given ω > 0, the (modified) Jacobi method can be written as (4.2) with

B = ωD−1 = (ω−1D)−1,

as shown in Algorithm 1. The (modified) Gauss–Seidel method can be
written as (4.2) with

B = (ω−1D + L)−1,

as shown in Algorithm 2.
The next result, which follows easily from Theorem 4.1, is well known.

Theorem 4.3. The modified Jacobi method converges if and only

0 < ω <
2

ρ(D−1A)
, (4.9)

and the modified Gauss–Seidel method converges if and only if

0 < ω < 2. (4.10)

In practice, it is often easy to choose ω to satisfy (4.9) so that the modified
Jacobi method is guaranteed to converge. In the rest of this paper, we
may always assume that such a choice of ω is made. For the Gauss–Seidel
method, we will always choose ω = 1 (optimal successive over-relaxation
is not generally used in multigrid methods). The Jacobi and Gauss–Seidel
methods together with their convergence theory can be extended to block
matrices in a straightforward fashion.
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4.3. The subspace correction method

We consider a sequence of spaces V1, . . . , VJ . These spaces, which will be
known as auxiliary spaces, are not necessarily subspaces of V , but each of
them is related to the original space V by a linear operator

Πk : Vk 7→ V. (4.11)

Our very basic assumption is that the following decomposition holds:

V =
J∑
i=1

ΠiVi. (4.12)

This means that for any v ∈ V there exists vi ∈ Vi (which may not be
unique) such that

v =
J∑
i=1

Πivi. (4.13)

Furthermore, we assume that each Vi is equipped with an energy inner
product ai(·, ·). We define

Ai : Vi 7→ V ′i

by

(Aiui, vi) = ai(ui, vi), ui, vi ∈ Vi.

Let Π′i : V ′ 7→ V ′i be the adjoint of Πi:

(Π′if, vi) = (f,Πivi), f ∈ V ′, vi ∈ Vi.

Let Pi = Π∗i : V 7→ Vi be the adjoint of Πi with respect to the A-inner
products:

(Piu, vi)Ai = (u,Πivi)A, u ∈ V, vi ∈ Vi.

The following identity holds:

Π′iA = AiPi. (4.14)

If u is the solution of (4.1), by (4.14), we have

Aiui = fi, (4.15)

where

ui = Piu, fi = Π′if.

This equation may be regarded as the restriction of (4.1) to Vi. We assume
that each such Ai has an approximate inverse or preconditioner:

Ri : V ′i 7→ Vi. (4.16)
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Algorithm 3 Successive subspace correction method

Given u0 ∈ V , for any m = 1, 2, . . . ,

1: v ← um−1

2: v ← v + ΠiRiΠ
′
i(f −Av), i = 1, 2, . . . , J ,

3: um ← v

The parallel subspace correction (PSC for short) method is (4.2) with
B = Bpsc given by

Bpsc =

J∑
i=1

ΠiRiΠ
′
i. (4.17)

The successive subspace correction (SSC for short) method is defined in
Algorithm 3.

The algorithm is equivalent to (4.2) with B = Bssc given by

I −BsscA = (I − TJ)(I − TJ−1) · · · (I − T1), (4.18)

where

Ti = ΠiRiΠ
′
iA = ΠiRiAiPi. (4.19)

Theorem 4.4. Assume that all Rk are SPD. Then

(B−1
pscv, v) = min∑

i Πivi=v

J∑
k=1

(R−1
k vk, vk), (4.20)

with the unique minimizer given by

v∗k = RkΠ
′
kB
−1
pscv. (4.21)

Theorem 4.5. Under the assumptions given above, we obtain the identity

‖I −BsscA‖2A = ‖(I − TJ)(I − TJ−1) · · · (I − T1)‖2A

= 1− 1

1 + c0
(4.22)

= 1− 1

c1
. (4.23)

Here

c0 = sup
‖v‖A=1

c0(v), c1 = sup
‖v‖A=1

c1(v) = 1 + c0,

and, with

wi = (I − T−1
i )Πivi +

J∑
j=i+1

Πjvj ,
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we obtain

c0(v) = inf∑
i Πivi=v

J∑
i=1

(TiT
−1
i T ∗i wi, wi)A, (4.24)

and

c1(v) = (B
−1
sscv, v) (4.25)

= inf∑
i Πivi=v

(T
−1
i (T iT

−1
i Πivi + T ∗i wi), (T iT

−1
i Πivi + T ∗i wi))A.

In particular, if Ri = A−1
i , then

c0(v) = inf∑
i Πivi=v

J∑
i=1

∥∥∥∥Pi J∑
j=i+1

Πjvj

∥∥∥∥2

Ai

(4.26)

and

c1(v) = inf∑
i Πivi=v

J∑
i=1

∥∥∥∥Pi J∑
j=i

Πjvj

∥∥∥∥2

Ai

. (4.27)

Lemma 4.6. If Rk = A−1
k for all k, and Vk are subspaces of V , then

1

4
(B−1

pscv, v) ≤ (B̄−1
sscv, v) ≤ c∗(B−1

pscv, v), v ∈ V, (4.28)

where

c∗ = max
1≤k≤M

[N(k)]2 and N(k) =
{
j ∈ {1, . . . , J} : Vj ∩ Vk 6= {0}

}
.

Proof. Given v =
∑J

i=1 vi, with vi ∈ Vi, it follows that

‖v‖2A =

J∑
k,j=1

(vk, vj)A =

J∑
k=1

(vk, vk)A + 2

J∑
j>k

(vk, vj)A

= −
J∑
k=1

(vk, vk)A + 2

J∑
j≥k

(vk, vj)A.

Thus

J∑
k=1

‖vk‖2A ≤ 2

J∑
k=1

(
vk,

J∑
j=k

vj

)
A

= 2

J∑
k=1

(
vk, Pk

J∑
j=k

vj

)
A

≤ 2

( J∑
k=1

‖Pk
J∑
j=k

vj‖2A
)1/2( J∑

k=1

‖vk‖2A
)1/2

.
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Consequently,

J∑
k=1

‖vk‖2A ≤ 4
J∑
k=1

∥∥∥∥Pk J∑
j=k

vj

∥∥∥∥2

A

.

By (4.20), (4.27) and (4.25), we have

(B−1
pscv, v) ≤ 4c1(v) = 4(B̄−1

sscv, v).

The upper bound also follows easily. From ‖Pk‖A = 1 and the Schwarz
inequality, we obtain

J∑
k=1

∥∥∥∥Pk J∑
j=k

vj

∥∥∥∥2

A

=

J∑
k=1

∥∥∥∥Pk ∑
j∈N(k);j≥k

vj

∥∥∥∥2

A

≤
J∑
k=1

∥∥∥∥ ∑
j∈N(k);j≥k

vj

∥∥∥∥2

A

≤
J∑
k=1

N(k)
∑

j∈N(k);j≥k

‖vj‖2A

≤
√
c∗

J∑
k=1

∑
j∈N(k);j≥k

‖vj‖2A ≤ c∗
J∑
k=1

‖vk‖2A.

The proof is concluded by taking the infimum over all decompositions on
both sides and applying (4.27).

Remark 4.7. We would like to point that the estimate in (4.28) holds for
anisotropic and jump coefficient problems, and the constant c∗ only depends
on the ‘topology’ of the overlaps between the subspaces and does not depend
on other ingredients and properties.

The Jacobi and Gauss–Seidel method can be interpreted as PSC and SSC
based on the decomposition

Rn =

n∑
i=1

span{ei},

with exact subspace solves such that

Bpsc = D−1, Bssc = (D + L)−1, B̄ssc = (D + U)−1D(D + L)−1.

By Theorem 4.5,

c0 = sup
‖v‖A=1

(D−1Uv,Uv), c1 = sup
‖v‖A=1

(D−1(D + U)v, (D + U)v).

By Lemma 4.6,

1

4
(Dv, v) ≤ (D−1(D + U)v, (D + U)v) ≤ c∗(Dv, v), v ∈ Rn. (4.29)
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We note that

c1 = sup
v∈V

(B̄−1
sscv, v)

‖v‖2A
≤ σ sup

v∈V

‖v‖2D
‖v‖2A

,

where

σ = sup
v∈V

‖v‖2
B̄−1

ssc

(Dv, v)
. (4.30)

In the above presentation, most results are for SPD problems. We would
like to point out that all of these results can be extended to a more general
class of problems, namely symmetric positive semi-definite problems. When
A is a matrix, we further assume that all the diagonals of A are non-zero and
hence positive. When the subspace correction method is used for a more
general symmetric positive semi-definite operator A, we further assume that
each Ai is SPD. We shall use the acronym SPSD to denote matrices or
operators that satisfy the aforementioned properties.

4.4. Bibliographical notes

The general notion of subspace corrections by means of space decomposi-
tions was described by Xu (1992), based on Bramble, Pasciak, Wang and
Xu (1991b, 1991c). It is an abstract point of view encompassing the theory
and practice of a large class of iterative algorithms such as multigrid and
domain decomposition methods. In the past two decades a great deal of
effort has been put into the investigation of theoretical and practical issues
related to these methods. General results, applicable in many cases, in the
theory of additive and multiplicative methods in Hilbert space can be found
in Xu and Zikatanov (2002). For a literature review and basic results we
refer the reader to the monographs and survey articles by Hackbusch (1985),
Bramble (1993), Vassilevski (2008), Xu (1989, 1997), Xu and Zou (1998),
Yserentant (1993), Toselli and Widlund (2005), Griebel and Oswald (1995)
and Smith, Bjørstad and Gropp (1996). For detailed studies of classical
iterative methods, we refer to the monographs by Young (1971), Hackbusch
(1994), Varga (2000) and Saad (2003).

Note that in this section we have considered SPSD matrices, and ac-
cording to Lee, Wu, Xu and Zikatanov (2007, 2008) and Ayuso de Dios,
Brezzi, Marini, Xu and Zikatanov (2014), all the results in this section
are valid for SPSD problems with semi-norms. Relations between the aux-
iliary space method and subspace correction methods is drawn in Chen
(2011). In the classical multigrid literature (Brandt et al. 1982, Brandt,
McCormick and Ruge 1985, Ruge and Stüben 1987, Trottenberg, Oosterlee
and Schüller 2001), the notions of algebraically smooth (low) frequencies
and algebraic high frequencies play an important role. They are also instru-
mental in the design of new AMG methods. As indicated by the convergence
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estimates, for a given smoother, the desirable coarse spaces should capture
or well approximate the lower end of the spectrum of the relaxed matrix
R̄A or D−1A. This is usually referred to as near-null space (Treister and
Yavneh 2015, Lai and Olson 2011, Xu 2009, Brezina et al. 2006).

5. Abstract multigrid methods and two-level theory

In this section we will present algebraic multigrid methods in an abstract
setting. The acronym AMG for ‘algebraic multigrid’ can also be used to
stand for ‘abstract multigrid’.

Our focus will be on two-level methods. In view of algorithmic design,
the extension of two-level to multilevel is straightforward: a general multi-
level V -cycle algorithm can be obtained by recursively applying a two-level
algorithm. However, the extension of a two-level convergence theory to a
multilevel case can be highly non-trivial.

We will only consider SPSD problems as described in Section 4. As is
done in most of the literature, the design principle of an AMG is to optim-
ize the choice of coarse spaces with a given smoother. The most commonly
used smoothers are the Gauss–Seidel method and the (modified or scaled)
Jacobi method. As these smoothers are convergent as iterative methods,
the resulting AMG method is always convergent. The task of our AMG
convergence theory is to make sure that this convergence is also fast. In
particular, for systems arising from the discretization of partial differential
equations, we hope that our AMG method converges uniformly with re-
spect to the size of the problem and/or some crucial parameters from the
underlying PDEs. We sometimes speak of this as ‘uniformly convergent’ or
‘uniform convergence’.

As it turns out, we are often able to establish such uniform convergence for
two-level AMG, but very rarely can we extend a uniform convergence result
to the multilevel case. For second-order elliptic boundary value problems,
multilevel convergence is very well understood for geometric multigrid meth-
ods. However, a rigorous multilevel convergence theory for AMG without
using geometric information is still very much an open problem.

We will mainly focus on two-level convergence theory for AMG methods
in this section and also in the rest of the paper.

5.1. A two-level method

A two-level method typically consists of the following components:

(i) a smoother, R : V ′ 7→ V ,

(ii) a coarse space Vc, which may or may not be a subspace of V , linked to
V via a prolongation operator,

P : Vc 7→ V,
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(iii) a coarse space solver, Bc : V ′c 7→ Vc.

In the discussion below we need the inner product

(u, v)R̄−1 = (T
−1
u, v)A = (R̄−1u, v), T = RA (5.1)

and the accompanying norm ‖ · ‖R̄−1 . Here we recall that the definition of
R̄ is analogous to that in (4.5).

We always assume that R̄ is SPD, and hence the smoother R is always
convergent. Furthermore,

‖v‖2A ≤ ‖v‖2R̄−1 . (5.2)

The restriction of (4.1) is then

Acuc = fc, (5.3)

where

Ac = P ′AP, fc = P ′f.

The coarse space solver Bc is often chosen to be the exact solver, namely
Bc = A−1

c , for analysis, but in a multilevel setting, Bc is recursively defined
and it is an approximation to A−1

c . We distinguish two different cases in
choosing Bc:

it is an exact two-level method if Bc = A−1
c , (5.4)

it is an inexact two-level method if Bc 6= A−1
c . (5.5)

When A is semi-definite, we use N to denote the kernel of A and we always
assume that N ⊂ Vc. Let

W := N⊥ and Wc := Vc ∩W, (5.6)

where the orthogonality is understood with respect to the (·, ·)R̄−1-inner
product. Let Q1 : V 7→W be the orthogonal projection with respect to the
(·, ·)R̄−1-inner product

(Q1v, w)R̄−1 = (v, w)R̄−1 , for all v ∈ V,w ∈W. (5.7)

Here Ac is semi-definite on Vc but invertible on Wc. We denote the restric-
tion of Ac on Wc by Âc, and define the pseudo-inverse of Ac by

A†c := Q′1Â
−1
c Q1. (5.8)

With a slight abuse of notation, we will still use A−1
c to denote the pseudo-

inverse of Ac, namely

A−1
c = A†c.

We will use similar notation for the pseudo-inverse of other relevant singular
operators and matrices in the rest of the paper.
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Algorithm 4 Two-level multigrid method

Given g ∈ V ′, the action Bg is defined via the following two steps.

1: Coarse grid correction: w = PBcP
′g.

2: Post-smoothing: Bg := w +R(g −Aw).

We choose to define an AMG algorithm in terms of an operator B : V ′ 7→
V , which can be considered as an approximate inverse or a preconditioner
of A. A typical two-level MG method is shown in Algorithm 4.

In the rest of this section, we take Bc = A−1
c .

There are usually two different (and mathematically equivalent) ways to
choose Vc, V , P and R. The first, known as the operator version, is such
that

Vc ⊂ V.

In this case P = ıc, where

ıc : Vc 7→ V (5.9)

is the natural inclusion of Vc into V . In the application to finite element
discretization for second-order elliptic boundary value problems, Vc and V
are just the finite element subspaces of H1(Ω). This type of notation is
convenient for analysis. However, this is not an algorithm that can be
directly used for implementation.

The second, known as the matrix version, is such that

Vc = Rnc and V = Rn,

and

P : Rnc 7→ Rn (5.10)

is the prolongation matrix.
These two different notations are related via the use of basis functions of
{φci}

nc
i=1 ⊂ Vc and {φi}ni=1 ⊂ V . As noted earlier, the prolongation matrix

P given in (3.12)–(3.13) is simply the matrix representation of ıc given in
(5.9), and we have

(φci , . . . , φ
c
nc) = (φi, . . . , φn)P. (5.11)

The following observation is clear.

Observation 5.1. Finding a coarse space Vc ⊂ V is equivalent to finding
a prolongation matrix P in (5.10).

Lemma 5.2. The error propagation operator for two-level AMG operator
E = I −BA is

E = (I −RA)(I −Πc), (5.12)
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where Πc = ıcA
−1
c ı′cA, which is the (·, ·)A orthogonal projection on Vc, in

matrix notation Πc = PA−1
c P TA.

5.2. An optimal two-level AMG theory

The aim of the AMG method is to balance the interplay between smoother
R and the coarse space Vc. Most existing AMG methods first fix a smoother,
which is often given by the Jacobi or Gauss–Seidel methods (or their com-
binations and variations), and then optimize the choice of coarse spaces.
This is the approach we will mainly discuss in this paper. However, we also
comment on a different approach by first fixing the coarse space and then
trying to optimize the choice of the smoother. It is also possible to try to
make an optimal choice of smoother and coarse space simultaneously, but
we will not address this approach here.

Let Qc : V 7→ Vc be the orthogonal projection with respect to the (·, ·)R̄−1-
inner product

(Qcu, vc)R̄−1 = (u, vc)R̄−1 , for all vc ∈ Vc. (5.13)

By the definition of W and Wc, we have that (·, ·)A is an inner product on
W , ‖ · ‖A is a norm on W , and the projection Πc : V 7→Wc is well defined:

(Πcu, vc)A = (u, vc)A, for all u ∈ V, vc ∈Wc. (5.14)

The two-level convergence rate is obtained in the following theorem.

Theorem 5.3. Assume that N ⊂ Vc. The convergence rate of an exact
two-level AMG is given by

‖E‖2A = 1− 1

K(Vc)
, (5.15)

where

K(Vc) = max
v∈W

‖(I −Qc)v‖2R̄−1

‖v‖2A
= max

v∈W
min
vc∈Wc

‖v − vc‖2R̄−1

‖v‖2A
. (5.16)

Proof. We note that

‖(I − T )v‖2A = ((I − T̄ )v, v)A, for all v ∈ V.

Then we have

‖E‖2A = max
w∈W

‖(I − T )(I −Πc)w‖2A
‖w‖2A

= max
w∈W

((I − T )(I −Πc)w, (I −Πc)w)A
‖w‖2A

= 1− min
w∈W

(T (I −Πc)w, (I −Πc)w)A
‖w‖2A
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= 1− min
w∈W

(Q1T (I −Πc)w, (I −Πc)w)A
‖(I −Πc)w‖2A + ‖Πcw‖2A

= 1− min
v∈W⊥Ac

(Q1Tv, v)A
‖v‖2A

= 1− min
v∈W⊥Ac

((I −Πc)Q1Tv, v)A
‖v‖2A

= 1− λmin (X),

where

X = (I −Πc)Q1T : W⊥Ac 7→W⊥Ac ,

and it is easy to see that X is self-adjoint with respect to (·, ·)A.
One key observation is that the inverse of X can be explicitly written as

Z = (Q1T )−1(I −Qc),

since by definition, we have, for any u, v ∈ V ,

(ΠcZu, v)A = ((Q1T )−1(I −Qc)u,Πcv)A = (T (Q1T )−1(I −Qc)u,Πcv)R̄−1

= (Q1T (Q1T )−1(I −Qc)u,Πcv)R̄−1 = ((I −Qc)u,Πcv)R̄−1 = 0,

which implies ΠcZ = 0. Thus we have

Z : W⊥Ac 7→W⊥Ac ,

and furthermore

XZ = (I −Πc)(I −Qc) = I −Πc = I on W⊥Ac .

Consequently

λmin (X) =
1

λmax (Z)
.

Finally,

λmax (Z) = max
v∈W⊥Ac

((Q1T )−1(I −Qc)v, v)A
(v, v)A

= max
v∈W⊥Ac

(T (Q1T )−1(I −Qc)v, v)R̄−1

(v, v)A

= max
v∈W⊥Ac

(Q1T (Q1T )−1(I −Qc)v, v)R̄−1

(v, v)A

= max
v∈W⊥Ac

((I −Qc)v, v)R̄−1

(v, v)A

= max
v∈W⊥Ac

‖(I −Qc)v‖2R̄−1

(v, v)A
= K(Vc).
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The last identity holds because I −Qc = (I −Qc)(I −Πc), and we can then
take the maximum over all v ∈W . This completes the proof.

Theorem 5.3 can be stated as follows using the matrix representation
introduced in Section 3.

Theorem 5.4. Assume that P ∈ Rn×nc and N(Ã) ⊂ Range(P ). The
convergence rate of an exact two-level AMG is given by

‖E‖2A = 1− 1

K̃(P )
, (5.17)

where

K̃(P ) = max
v∈Rn

min
vc∈Rnc

‖v − Pvc‖2˜̄R−1

‖v‖2
Ã

. (5.18)

Remark 5.5. The result of Theorem 5.4 can be viewed as follows. We
note that T

−1
(I −Qc) is a self-adjoint operator with respect to the A-inner

product. Hence, we immediately have

K(Vc) = ‖T−1
(I −Qc)‖A = ‖(RA)−1(I −Qc)‖A.

In the case of two subspaces, we have the following theorem giving the
precise convergence rate of the corresponding SSC method.

Theorem 5.6. Let {µj , ζj}nj=1 be the eigenpairs of T̄ = R̄A, and assume
that {ζj} are orthogonal with respect to (·, ·)R̄−1 . The convergence rate
‖E(Vc)‖A is minimal for the coarse space

V opt
c = span{ζj}ncj=1 ∈ arg min

dimVc=nc,N⊂Vc
K(Vc). (5.19)

In this case,

‖E‖2A = 1− µnc+1. (5.20)

Proof. By Theorem 5.3, we just need to maximize 1/(K(Vc)). For any
v ∈ V ⊥c , where ⊥ is with respect to the R̄−1-inner product, we have

min
vc∈Vc

‖v − vc‖2R̄−1 = ‖v‖2R̄−1 . (5.21)

Then it follows that

1

K(Vc)
= min

v∈V
max
vc∈Vc

‖v‖2A
‖v − vc‖2R̄−1

≤ min
v∈V ⊥c

max
vc∈Vc

‖v‖2A
‖v − vc‖2R̄−1

= min
v∈V ⊥c

‖v‖2A
‖v‖2

R̄−1

.

By the min-max principle (Theorem 2.1), we have

max
dimVc=nc

1

K(Vc)
≤ max

dimVc=nc
min
v∈V ⊥c

‖v‖2A
‖v‖2

R̄−1

= µnc+1.
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On the other hand, if we choose V opt
c = span{ζj}ncj=1, it is easy to compute

that K(V opt
c ) = 1/(µnc+1). So we have

max
dimVc=nc

1

K(Vc)
= µnc+1,

with optimal coarse space

V opt
c = span{ζj}ncj=1.

Using the matrix representation introduced in Section 3, we state the
matrix version of Theorem 5.6 below. For simplicity, with abuse of notation,
we still use A to denote the matrix representation of operator A.

Theorem 5.7. Let {µj , ζj}nj=1 be the eigenpairs of T̄ = R̄A. Let us also
assume that {ζj} are orthogonal with respect to (·, ·)R̄−1 . The convergence
rate ‖E(P )‖A is minimal for P such that

Range(P ) = Range(P opt), (5.22)

where

P opt = (ζ1, . . . , ζnc). (5.23)

In this case,

‖E‖2A = 1− µnc+1. (5.24)

The following theorem is important in motivating most AMG algorithms.

Theorem 5.8. Given η > 0, let Xη be defined as

Xη =
{
P ∈ Rn×nc : (Pv, Pv)R̄−1 ≥ η(v, v), v ∈ Rnc

}
. (5.25)

Then, with P opt given by (5.23), we have P ∈ arg minQ∈Xη trace(QTAQ) if

P ∈ Xη and Range(P ) = Range(P opt)).

Since the eigenvalues of R̄A are expensive to compute, the practical value
of Theorem 5.6 is limited. However, it provides useful guidance in the design
of practical AMG methods.

For finite element discretizations we can use Weyl’s law combined with
Theorem 5.6 to prove an estimate for the convergence rate of a two-grid
method with an optimal coarse space.

Corollary 5.9. Let the assumptions of the discrete Weyl’s law (The-
orem 2.5) hold, and let the smoother R̄ be spectrally equivalent to the
diagonal of the stiffness matrix A. Let γ > 0 be such that γn ≤ nc < n.
Then, for the optimal coarse space, we have the estimate

µnc+1 ≥ δ0 and ‖E‖2A ≤ 1− δ0,

where δ0 ∈ (0, 1) only depends on γ and the constants γ0 and γ1 in (2.31).
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Proof. By the assumptions in Theorem 2.5 and the fact that R̄ is spectrally
equivalent to the diagonal of A, we have

|w|21 ∼=‖w‖2A, ‖w‖20 ∼=h2‖w‖2R̄−1 . (5.26)

Further, Lemma 2.4 and Theorem 2.5 then show that

µnc+1(R̄A) = min
W⊂Vh

dimW=k

max
w∈W

‖w‖R̄−1 6=0

‖w‖2A
‖w‖2

R̄−1

∼=h2λnc+1 = O

((
nch

d

Vol(Ω)

)2/d)
.

(5.27)
The desired result follows immediately from Theorem 5.6 because Vol(Ω) ∼=

hdn and γn ≤ nc < n, which gives µnc+1

∼=1.

Remark 5.10. Since the coarse space which minimizes the convergence
rate is also the coarse space which minimizes K(Vc), as a corollary we have
the inequality

K(Vc) =
1

1− ‖E‖2A
≥ 1

µnc+1
,

or

‖E‖2A ≥ 1− µnc+1.

Theorem 5.3 provides an explicit estimate for the convergence of a two-
level method in terms of K(Vc). For a given method, a smaller bound on
K(Vc) means a faster convergence rate. In particular, the two-level AMG
method is uniformly convergent if K(Vc) is uniformly bounded with respect
to mesh parameters.

5.3. Quasi-optimal theories

We now look at the necessary and sufficient condition for uniform conver-
gence of a two-level method as proved in Section 5.2 (see Theorem 5.3):

min
vc∈Vc

‖v − vc‖R̄−1 ≤ K(Vc)‖v‖2A. (5.28)

Here K(Vc) is the smallest constant for which (5.28) holds for all v ∈ V .
The space Vc which minimizes K(Vc) is V opt

c . A similar argument was used
in the proof of Theorem 5.6 in Section 5.2. Here we generalize the result to
semi-definite A.

For a given smoother R, one basic strategy in the design of AMG is to find
a coarse space such that K(Vc) is as small as possible in practice. There are
many cases, however, in which the operator R̄−1 in the definition of K(Vc)
is difficult to work with.

One commonly used approach is to replace R̄−1 with a simpler but spec-
trally equivalent SPD operator. More specifically, we assume that D : V 7→
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V ′ is an SPD operator such that

cD(Dv, v) ≤ (R̄−1v, v) ≤ cD(Dv, v), for all v ∈ V. (5.29)

That is,

cD‖v‖2D ≤ ‖v‖2R̄−1 ≤ cD‖v‖2D, for all v ∈ V, (5.30)

where

(u, v)D = (Du, v), ‖v‖2D = (v, v)D.

Examples of such equivalent norms for Schwarz smoothers are given in
(4.20) and (4.27). As a rule, the norm defined by R̄ corresponding to the
symmetric Gauss–Seidel method, that is, R defined by the pointwise Gauss–
Seidel method, can be replaced with the norm defined by the diagonal of
A (i.e., by the Jacobi method, which, while not always convergent as a
relaxation, provides an equivalent norm).

In terms of this operator D, we introduce the quantity

K(Vc, D) = max
v

‖v −QDv‖2D
‖v‖2A

= max
v

min
vc∈Vc

‖v − vc‖2D
‖v‖2A

, (5.31)

where QD : V 7→ Vc is the (u, v)D-orthogonal projection.
By (5.16), (5.31) and (5.30), we have

cDK(Vc, D) ≤ K(Vc) ≤ cDK(Vc, D). (5.32)

Theorem 5.11. The two-level algorithm satisfies

1− 1

cDK(Vc, D)
≤ ‖E‖2A ≤ 1− 1

cDK(Vc, D)
≤ 1− 1

cDC
, (5.33)

where C is any upper bound of K(Vc, D), namely

min
w∈Vc

‖v − w‖2D ≤ C‖v‖2A, for all v ∈ V. (5.34)

The proof of Theorem 5.11 is straightforward and indicates that, if cD and
cD are ‘uniform’ constants, the convergence rate of the two-level method is
‘uniformly’ dictated by the quantity K(Vc, D).

We say that Vc is quasi-optimal if the following inequality holds:

min
w∈Vc

‖v − w‖2D ≤ γµ−1
nc+1‖v‖

2
A, for all v ∈ V, (5.35)

with a constant γ > 0 independent of the size of the problem.
The construction of an approximation to the optimal coarse space V opt

c

that is used in most AMG algorithms relies on two operators AM and DM

which satisfy

c1‖v‖2D ≤ ‖v‖2DM , ‖v‖2AM ≤ c2‖v‖2A, for all v ∈ V, (5.36)

with constants c1 and c2 independent of the problem size. Here, on the
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right-hand side, we have a seminorm ‖ ·‖AM , because sometimes AM is only
semi-definite. We point out that here AM and DM are analogues of A˜Wand D˜ defined in (6.6) and (6.7), respectively, in the general framework of
Section 6; the assumptions in (5.36) are analogous to Assumption 6.4 which
we made in the general AMG framework in Section 6.

Theorem 5.12. If DM and AM satisfy (5.36), and Vc is a coarse space
such that

min
w∈Vc

‖v − w‖2DM ≤ γµ
−1
nc+1‖v‖

2
AM

, for all v ∈ V, (5.37)

then the following hold.

(a) We have

min
w∈Vc

‖v − w‖2R̄−1 ≤
cD

cD

c2

c1
γµ−1

nc+1‖v‖
2
A, for all v ∈ V. (5.38)

(b) The corresponding two-level AMG algorithm satisfies

‖I −BA‖2A ≤ 1− cD
cD

c1

c2

1

γ
µnc+1. (5.39)

5.4. Algebraically high and low frequencies

In geometric MG, algebraically smooth error is also smooth in the usual
geometric sense. However, in AMG settings, smooth error can be geomet-
rically non-smooth. In order to make this distinction, we use the term
algebraically smooth error when we refer to the error in the AMG setting
that is not damped (eliminated) by the smoother R. In general, good inter-
pretation of the algebraically smooth error leads to an efficient and robust
AMG algorithm. Careful characterization of the algebraically smooth error
is needed, since in this case we can try to construct a coarser level which
captures these error components well.

Here is a more formal definition of an algebraically smooth error.

Definition 5.13. Let R : V 7→ V be a smoothing operator such that its
symmetrization R = R+RT −RTAR is positive definite. Given ε ∈ (0, 1),
we say that the vector v is algebraically ε-smooth (or v is an ε-algebraic low
frequency) with respect to A if

‖v‖2A ≤ ε‖v‖2R̄−1 . (5.40)

The set of algebraically smooth vectors will be denoted by

Lε = {v : ‖v‖2A ≤ ε‖v‖2R̄−1}. (5.41)

We point out that this is a set of vectors (a ball, or rather an ellipsoid) and
not a linear vector space in general. It is then clear that the elements of
this set need to be approximated well by elements from the coarse space.
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The rationale of Definition 5.13 can be seen from the following simple
result (it is always true that (R̄Av, v) ≤ ‖v‖2A).

Lemma 5.14. Any vector v ∈ V that satisfies

(RAv,v)A ≤ ε‖v‖2A (5.42)

is ε-algebraically smooth.

Proof. By the Schwarz inequality for the inner product defined by R
−1

and (5.42), we have

‖v‖2A = (RAv, R
−1

v) ≤ (RAv, Av)1/2(R
−1

v,v)1/2 ≤
√
ε(R

−1
v,v)1/2‖v‖A.

We can easily show that this definition is equivalent to saying that the
algebraically smooth error components are the components for which the
smoother converges slowly. Indeed, inequality (5.42) is clearly equivalent to
((I −RA)v, v)A ≥ (1− ε)(v, v)A, namely

‖Sv‖2A
‖v‖2A

≥ 1− ε, S = I − T and T = RA. (5.43)

The property (5.43) is often referred to as the smoothing property.

Remark 5.15. In the classical multigrid literature, an algebraically smooth
error is defined as e ∈ V such that

‖e‖2AD−1A ≤ ε‖e‖
2
A, (5.44)

for a small and positive parameter ε which implies

‖e‖2A ≤ ‖e‖D‖e‖AD−1A ≤
√
ε‖e‖D‖e‖A. (5.45)

That is,

‖e‖2A ≤ ε‖e‖2D. (5.46)

As is clearly seen from Definition 5.13, Lemma 5.14 implies (5.45) with
R ≈ D−1, where D is the diagonal of A.

Thanks to (7.9), we have the following result.

Lemma 5.16. If e is algebraically smooth, that is, e satisfies (5.46), then

‖e‖2
Ã
. ε‖e‖2

D̃
. (5.47)

Namely, e is also algebraically smooth with respect to Ã, the M -matrix
relative of A.

On the other hand, note that by the definition of ‖ · ‖R̄−1 , we always
have ‖v‖R̄−1 ≥ C‖v‖A, with constant C independent of the parameters of
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interest. Drawing from analogy with the geometric multigrid method, we
introduce the notion of algebraic high frequency as follows.

Definition 5.17. Given δ ∈ (0, 1], we call v ∈ V a δ-algebraic high fre-
quency if

‖v‖2A ≥ δ‖v‖2R̄−1 .

The set of algebraically high-frequency vectors will be denoted by

Hδ =
{
v : ‖v‖2A ≥ δ‖v‖2R̄−1

}
. (5.48)

The concept of algebraic high and low frequencies will be used in the two-
level AMG theory in Section 5.3, and also in the design of classical AMG
in Section 12.1.

Lemma 5.18. Let (φi, µi) be all the eigenpairs for R̄A, namely R̄Aφi =
µiφi. Then

span{φi : µi ≤ ε} ⊂ Lε

and

span{φi : µi ≥ δ} ⊂ Hδ.

We now introduce the notion of near-null space.

Definition 5.19 (near-null space). For sufficiently small ε ∈ (0, 1), we
shall say that span{φi : µi ≤ ε} is an ε-near-null space of R̄A.

5.5. Smoothing properties of Jacobi and Gauss–Seidel methods

The essence of multigrid methods is that simple iterative methods such as
Jacobi and Gauss–Seidel methods have a special property known as the
smoothing property. As an illustration, we apply the Gauss–Seidel method
to

Aµ = b,

with A given by (2.16) for isotropic problems and (2.34) for anisotropic
problems, respectively. We first choose µ randomly (as shown in Figure 5.1)
and then compute Aµ for both (2.16) and (2.34) to compute right-hand
sides b = Aµ respectively. We then apply the Gauss–Seidel method to both
equations with initial guess µ0 = 0 (see Figure 5.2).

Note that, for A given by (2.34) when ε� 1, we have

λ11 < λ21 < · · · < λN1 < λij , i ≥ 1, j ≥ 2.

The corresponding eigenfunctions, which can be viewed as ‘algebraic low
frequencies’, can be highly oscillatory in the x-direction.
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Figure 5.1. Initial error for both (2.16) and (2.34).

As an illustration of the difference between algebraic high/low frequencies
and geometric high/low frequencies, we consider the linear system given by
(2.34) for anisotropic problems. Clearly, A can be written as

A = εI ⊗M +M ⊗ I with M = tridiag(−1, 2,−1).

We define the vector µ ∈ RN as

µ = x⊗ y, with x = 1n, and y = (1 0 1 0 · · · 1 0 1)T ∈ Rn.

Then it is easy to compute that

Mx =



1
0
0
...
0
1


and My =



2
−2
2
...
−2
2


.

We have

Aµ = ε(I ⊗M)(x⊗ y) + (M ⊗ I)(x⊗ y) = ε(x⊗My) + (Mx⊗ y)

and

‖µ‖2A = µTAµ = ε(x⊗ y)T (x⊗My) + (x⊗ y)T (Mx⊗ y)

= ε(xTx)⊗ (yTMy) + (xTMx)⊗ (yT y) = εn(n+ 1) + n+ 1.

Letting D be the diagonal of A, we then have

‖µ‖2D = 2(1 + ε)µTµ = (1 + ε)n(n+ 1).

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


630 J. Xu and L. Zikatanov

0

0.1

0.2

1

0.3re
si
du
al 0.4

1

0.5

y

0.6

x

0.7

0 0

(a)

0

0.1

0.2

0.3

1

0.4

re
si
du
al

0.5

1

0.6

y

0.7

x

0.8

0 0

(b)

0

0.01

1

0.02re
si
du
al

0.03

1

y

0.04

x

0.05

0 0

(c)

Figure 5.2. (a) Error after applying five Gauss–Seidel iterations to (2.16). (b) Error
after applying five Gauss–Seidel iterations to (2.34). (c) Error after applying one
block Gauss–Seidel iteration to (2.34).
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Figure 5.3. Graph of function defined in (5.49). This function is highly oscillatory
in the x-direction.

This shows that

‖µ‖2A
‖µ‖2D

=
ε

1 + ε
+

1

(1 + ε)(n+ 1)
,

which implies that µ is an algebraic low frequency if ε is sufficiently small.
On the other hand, if we denote the nodal basis functions corresponding

to the uniform finite element mesh by {φij : 1 ≤ i, j ≤ n}, that is, φij is a
piecewise linear function such that

φij(kh, lh) = δikδjl,

then we define

Φ = (φ11, φ12, . . . , φ1n, φ21, . . . , φnn).

If we consider the finite element function corresponding to µ, namely, the
function defined by

u = Φµ =

(n+1)/2∑
i=1

n∑
j=1

φ2i−1,j , (5.49)

then, in the geometric point of view, this function is highly oscillatory in
the x-direction, which is a geometric high frequency (see Figure 5.3).

5.6. Convergence theory in view of algebraic high and low frequencies

We next present a convergence theory based on algebraic high and low
frequencies. We first prove the following lemma.
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Lemma 5.20. Let Vc ⊂ V be such that we obtain the ‘stable decomposi-
tion’

V = Vc + Vhf

for some Vhf ⊂ V which consists of δ-algebraic high frequencies (see Defin-
ition 5.17). Namely, for any v ∈ V , there exists vc ∈ Vc and vhf ∈ Vhf such
that

v = vc + vhf , ‖vhf‖2A ≤ c1‖v‖2A.

Then the corresponding two-level AMG satisfies

‖E‖A ≤ 1− δ

c1
.

Proof. It follows that

inf
wc∈Vc

‖v − wc‖2R̄−1 ≤ ‖vhf‖2R̄−1 ≤ δ−1‖vhf‖2A ≤
c1

δ
‖v‖2A.

As a result,

K(Vc) ≤
c1

δ
,

and finally we have

‖E‖A = 1− 1

K(Vc)
≤ 1− δ

c1
.

Corollary 5.21. If Vhf consists of δ-algebraic high frequencies, then for
the coarse space Vc given by

Vc = Range(I − Phf ), (5.50)

where Phf : V 7→ Vhf is the A-orthogonal projection, we obtain

‖E‖A ≤ 1− δ.

5.7. Bibliographical notes

One of the first results on two-level convergence of AMG methods can be
found in papers by Brandt et al. (1982) and Ruge and Stüben (1987). There
has been much research on extending the MG theory to algebraic settings
(Maitre and Musy 1983, Bank and Douglas 1985, Mandel 1988) and the al-
gebraic variational approach to the two-level MG theory (McCormick 1985,
McCormick 1984, McCormick and Ruge 1982).

For two-grid convergence, sharper results, including two-sided bounds, are
given by Zikatanov (2008) and also considered by Falgout and Vassilevski
(2004) and Falgout, Vassilevski and Zikatanov (2005). These two-level res-
ults are more or less a direct consequence of the abstract theory provided by
Bramble, Pasciak, Wang and Xu (1991c), Xu (1992) and Xu and Zikatanov
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(2002). A survey of these and other related results can be found in a re-
cent article by MacLachlan and Olson (2014). The two approaches in-
cluded in this section were recently developed by Xu, Zhang and Zikatanov
(2016a, 2016c).

Theorem 5.3 can be found in Zikatanov (2008), and can be viewed as
a consequence of the XZ identity (Xu and Zikatanov 2002) in the special
case of two subspaces from the general framework of the subspace correction
method. The original proof of this theorem in Zikatanov (2008) was based
on the XZ identity. The proof here is new and more direct.

Multilevel results are difficult to establish in general algebraic settings,
and most of them are either based on unrealistic assumptions or they use
geometric grids to prove convergence. We refer to Vaněk, Mandel and Brez-
ina (1996) and Brezina and Vassilevski (2011) for results in this direction.
Rigorous multilevel results for finite element equations can be derived using
the auxiliary space framework, which was developed by Xu (1996) for quasi-
uniform meshes. More recently, Chen, Nochetto and Xu (2012) showed that
multilevel convergence results for adaptively refined grids are optimal. A
multilevel convergence result on shape-regular grids using AMG based on
quad-tree coarsening (in two dimensions) and oct-tree coarsening (in three
dimensions) is shown in Grasedyck, Wang and Xu (2015).

Finally, we point out that the notation used in parts of this section origin-
ates in Bank and Dupont (1980), Bramble and Pasciak (1987) and Bramble,
Pasciak and Xu (1990), and is convenient for the analysis, especially when
finite element equations are considered.

6. A general approach to constructing coarse spaces

In this section we describe an abstract framework for constructing coarse
spaces by using the notion of space decomposition and subspace corrections.

Let us first introduce some technical results that will be used later as
analytic tools.

Lemma 6.1. Let V˜ and V be two vector spaces and let Π : V˜ 7→ V be a
surjective map. Let B˜ : V ′˜ 7→ V˜ be an SPD operator. Then B := ΠB˜Π′ is
also SPD. Furthermore,

(B−1v, v) = min
Πv˜=v
〈B˜−1v˜, v˜〉, (6.1)

with the unique minimizer given by

v˜∗ = B˜Π′B−1v. (6.2)

Lemma 6.2. Assume the following two conditions are satisfied for Π.

(a) For all v˜ ∈ V˜ ,

‖Πv˜‖A ≤ µ̃1‖v˜‖B˜−1 . (6.3)
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(b) For any v ∈ V , there exists v˜ ∈ V˜ such that Πv˜ = v and

‖v˜‖B˜−1 ≤ µ̃0‖v‖A. (6.4)

Then

κ(BA) ≤
(
µ̃1

µ̃0

)2

.

A direct consequence of Lemma 6.2 is the following result.

Theorem 6.3 (fictitious space lemma). Assume the following two con-
ditions are satisfied for Π. First,

‖Πv˜‖A ≤ µ1‖v˜‖A˜, for all v˜ ∈ V˜
Second, for any v ∈ V , there exists v˜ ∈ V˜ such that Πv˜ = v and

‖v˜‖A˜ ≤ µ0‖v‖A.

Then κ(Π) ≤ µ1/µ0 and, under the assumptions of Lemma 6.1,

κ(BA) ≤
(
µ1

µ0

)2

κ(B˜A˜).

We assume there exists a sequence of spaces V1, V2, . . . , VJ , which are not
necessarily subspaces of V , but each of them is related to the original space
V by a linear operator

Πj : Vj 7→ V. (6.5)

We assume that V can be written as a sum of subspaces, and (4.12) and
(4.13) hold.

Let

W˜ = V1 × V2 × · · · × VJ ,

with the inner product

(u˜, v˜) =

J∑
i=1

(ui, vi),

where u˜ = (u1, . . . , uJ)T and v˜ = (v1, . . . , vJ)T . More generally, for f˜ =

(f1, . . . , fJ)T ∈ V˜ ′ with fi ∈ V ′i , we can define

(f˜, v˜) =

J∑
i=1

(fi, vi).

We now define ΠW : W˜ 7→ V by

ΠWu˜ =

J∑
i=1

Πiui, for all u˜ = (u1, . . . , uJ)T ∈W˜.

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


Algebraic multigrid methods 635

Formally, we can write

ΠW = (Π1, . . . ,ΠJ) and Π′W =

Π′1
...

Π′J

.
We assume there is an operator Aj : Vj 7→ V ′j which is symmetric positive

semi-definite for each j, and define A˜W : W˜ 7→W˜′ as follows:

A˜W := diag(A1, A2, . . . , AJ). (6.6)

For each j, we assume there is a symmetric positive definite operator
Dj : Vj 7→ V ′j , and define D˜ : W˜ 7→W˜′ as follows:

D˜ := diag(D1, D2, . . . , DJ). (6.7)

We associate a coarse space V c
j , V c

j ⊂ Vj , with each of the spaces Vj ,
and consider the corresponding orthogonal projection Qj : Vj 7→ V c

j with

respect to (·, ·)Dj . We define Q˜ : W˜ 7→W˜′ by

Q˜ := diag(Q1, Q2, . . . , QJ). (6.8)

Assumption 6.4.

(a) The following inequality holds for all w˜ ∈W˜:

‖ΠWw˜‖2D ≤ Cp,2‖w˜‖2D˜ , (6.9)

for some positive constant Cp,2.

(b) For each w ∈ V , there exists a w˜ ∈W˜ such that w = ΠWw˜ and

‖w˜‖2A˜W ≤ Cp,1‖w‖2A, (6.10)

with a positive constant Cp,1 independent of w.

(c) For all j,

N(Aj) ⊂ V c
j . (6.11)

Remark 6.5. Assumption 6.4 implies that

w ∈ N(A)⇒ w˜ ∈ N(A1)× · · · ×N(AJ).

We define the global coarse space Vc by

Vc :=
J∑
j=1

ΠjV
c
j . (6.12)

Further, for each coarse space V c
j , we define

µ−1
j (V c

j ) := max
vj∈Vj

min
vcj∈V cj

‖vj − vcj‖2Dj
‖vj‖2Aj

(6.13)
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and

µc = min
1≤j≤J

µj(V
c
j ), (6.14)

which is finite, thanks to Assumption 6.4(c) (i.e. (6.11)).
By the two-level convergence theory, ifDj provides a convergent smoother,

then (1−µj(V c
j )) is the convergence rate for the two-level AMG method for

Vj with coarse space V c
j . The next theorem gives an estimate for the conver-

gence of the two-level method in terms of the constants from Assumption 6.4
and µc.

Theorem 6.6. If Assumption 6.4 holds, then for each v ∈ V we have the
error estimate

min
vc∈Vc

‖v − vc‖2D ≤ Cp,1Cp,2µ−1
c ‖v‖2A. (6.15)

Proof. By Assumption 6.4, for each v ∈ V , there exists v˜ ∈ V˜ such that

v = ΠW v˜, (6.16)

and (6.10) is satisfied.
By the definition of µc, we have

‖v˜−Q˜v˜‖2D˜ ≤ µ−1
c ‖v˜‖2A˜W . (6.17)

We let vc = ΠWQ˜v˜. Then vc ∈ Vc, and by Assumption 6.4 we have

‖v − vc‖2D = ‖ΠW (v˜−Q˜v˜)‖2D ≤ Cp,2‖v˜−Q˜v˜‖2D˜
≤ Cp,2µ−1

c ‖v˜‖2A˜W ≤ Cp,1Cp,2µ−1
c ‖v‖2A.

We define another product space

V˜ := Vc × V1 × V2 × · · · × VJ , (6.18)

and we set Πc : Vc 7→ V to be the natural inclusion from Vc to V . Then we
define Π : V˜ 7→ V by

Π := (Πc Π1 Π2 · · · ΠJ) (6.19)

and A˜ : V˜ 7→ V˜ ′ by

A˜ : =


Ac

A1

. . .

AJ

, (6.20)

where Ac : Vc 7→ V ′c is given by

Ac := Π′cAPic (6.21)
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and B˜ : V˜ 7→ V˜ ′ is given by

B˜ :=


A−1
c

D−1
1

D−1
2

. . .

D−1
J

. (6.22)

We introduce the additive preconditioner B̂,

B̂ := ΠB˜Π′ = ΠcA
−1
c Π′c +

J∑
j=1

ΠjD
−1
j Π′j , (6.23)

and we have the following results.

Lemma 6.7. If Assumption 6.4 holds, then for any v ∈ V there exists
v˜ ∈ V˜ such that (6.4) holds, that is,

‖v˜‖B˜−1 ≤ µ̃0‖v‖A,

where µ̃0 is a constant depending on Cp,1, Cp,2, µc and cD.

Lemma 6.8. If Assumption 6.9 holds, then (6.3) holds with constant µ̃1

depending on Cp,2 and cD.

By directly applying Lemma 6.2, we immediately have the following res-
ult.

Theorem 6.9. If Assumption 6.4 holds, then

κ(B̂A) ≤
(
µ̃1

µ̃0

)2

. (6.24)

The following two-level convergence result is an application of the con-
vergence theorem (Theorem 5.3) with the error estimate in Theorem 6.6.

Theorem 6.10. If Assumption 6.4 holds, then the two-level AMG method
with coarse space defined in (6.12) converges with a rate

‖E‖2A ≤ 1− µc
Cp,1Cp,2cD

.

6.1. Bibliographical notes

Matsokin and Nepomnyashchikh (1985) first proved the fictitious space
lemma. The work of Xu (1996) on the auxiliary space method is related.
An additive version of Lemma 6.1 can be found in Xu and Zikatanov (2002),
and the most general case (including multiplicative preconditioners) is found
in Xu (2016).
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In later sections we show how the general theory used here can be ap-
plied to various AMG algorithms, for example classical AMG (Brandt et al.
1982, Ruge and Stüben 1987), smoothed aggregation AMG (Mı́ka and Vaněk
1992a, 1992b), spectral AMGe (Chartier et al. 2003, Efendiev, Galvis and
Vassilevski 2011), and other algorithms.

Many of the works in the domain decomposition (DD) literature also
use techniques for defining coarse spaces, which, to a large extent, have
similar aims to the coarse space constructions for AMG outlined in this
section. We refer to Toselli and Widlund (2005), Widlund (1994, 2009),
Dohrmann, Klawonn and Widlund (2008), Spillane et al. (2014) and the
references therein for more details on using local eigenspaces for constructing
coarse spaces in DD methods.

7. Graphs and sparse matrices

In this section we give a brief introduction to the basic graph theory that
is often used for sparse matrices and also for the study of AMG.

7.1. Sparse matrix and its adjacency graph

An undirected graph (or simply a graph) G is a pair (V, E), where V is a
finite set of points called vertices, and E is a finite set of pairs of vertices,
known as edges. We often write V = {1, . . . , n} for some fixed n. We will
not consider directed graphs in this paper because the graphs corresponding
to the symmetric sparse matrices are undirected.

An edge e ∈ E is an unordered pair (j, k), where j, k ∈ V. The vertices
j and k are said to be adjacent if (j, k) ∈ E . A path from a vertex j to a
vertex k is a sequence (j0, j1, j2, . . . , jl) of vertices where j0 = j, jl = k,
and (ji, ji+1) ∈ E for all i = 0, 1, . . . , l − 1. A vertex j is connected to a
vertex k if there is a path from j to k. G = (V, E) is connected if every pair
of vertices is connected by a path; otherwise it is said to be disconnected. A
graph G0 = (V0, E0) is called a subgraph of G = (V, E) if V0 ⊂ V and E0 ⊂ E .

The neighbourhood N(i) is the set of vertices adjacent to the vertex i.
The degree or valency of a vertex is the number of edges that connect to it.
These are defined as

N(i) = {j : (i, j) ∈ E}, di = |{j : (i, j) ∈ E}|. (7.1)

A path connecting two vertices i and j is a sequence of edges (k0, k1), (k1, k2),
. . . , (km−1, km) in E such that k0 = i and km = j. The length of the path
is the number of edges in it. The distance between two vertices i and j
is the length of the shortest path connecting i and j, and we denote it by
dist(i, j). If i, j are not connected, then dist(i, j) = ∞. The diameter of
a graph is the largest distance between two vertices, that is, diam(G) =
max(i,j)∈E dist(i, j). An independent set is a set of vertices in which no two
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A =


∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0
∗ 0 ∗ ∗ ∗ 0
∗ 0 ∗ ∗ ∗ 0
∗ 0 0 0 0 ∗

 1

2

3

4

5 6

(a) (b)

Figure 7.1. (a) A sparse symmetric matrix, and (b) its associated graph.

are adjacent. A maximal independent set is an independent set such that
adding any other vertex to the set forces the set to contain an edge.

Given a symmetric matrix A ∈ Rn×n, the adjacency graph of A is an
undirected graph, denoted by G(A), G = (V, E) with V = {1, 2, . . . , n}.
The edges E are defined as

E = {(j, k) : ajk 6= 0}.

A matrix A is called irreducible if its adjacency graph G(A) = (V, E) is
connected. Otherwise, A is called reducible.

An example of a symmetric matrix is shown in Figure 7.1(a) and the
corresponding graph is shown in Figure 7.1(b). Pictorial representation of
a graph is often not available, and a graph can be drawn in different ways
with different coordinates of the vertices. As a general rule, sparse matrices
do not provide any geometric information for the underlying graph and only
the combinatorial or topological properties of G(A).

Given

S ⊂ {1, . . . , n} × {1, . . . ,m},

we define

Rn×mS =
{
X = (xij) ∈ Rn×m : xij = 0 if (i, j) /∈ S

}
. (7.2)

We say that X has sparsity pattern given by S if and only if X ∈ Rn×mS .
Often, the sparsity pattern of a matrix is determined in advance and the

set S is determined by a given matrix. For Y ∈ Rn×m, we let

S(Y ) =
{

(i, j) : yij 6= 0
}
.

We now consider the graphs associated with finite element or finite dif-
ference stiffness matrices. In the case of finite elements, this is the space
of finite element functions Vh, and for finite difference discretizations this is
the space of mesh-functions Vh, which can be identified with RN .

We assume that we have a finite-dimensional space V N
h which we use to

discretize the Neumann problem. We also have the finite element space for
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the Dirichlet (or mixed boundary condition) problem, and we assume that
the following inclusions hold: Vh = V D

h ⊂ V N
h . Equivalently, we have a

subspace of the variables which vanish on Vh: for example, the values of
the finite element or finite difference solution at the nodes on the Dirichlet
boundary vanish.

Let AN be the matrix corresponding to the finite element or finite dif-
ference discretization of the model second-order elliptic equation with Neu-
mann boundary conditions. Clearly we have the identity

(ANu, v) =
∑
e∈E

ωeδeuδev. (7.3)

Here, the sum is over all edges E of the graph G(AN ) = (V, E), δev = vi−vj ,
if E 3 e = (i, j), i < j. Also, ωe = −(AN )ij are the off-diagonal entries of
AN . Note that since we consider the Neumann problem, the bilinear form
defined by AN vanishes for u (resp. v) such that ui = 1 (resp. vi = 1) for
all i. For both 5-point and 9-point stencils we have that ωe = 1 for all e.

We consider the stiffness matrix AN , corresponding to the model prob-
lem (2.1) with Neumann boundary conditions on a bounded domain Ω ⊂ Rd,
that is, we have the boundary condition

α∇u · n = 0 on ∂Ω, (7.4)

where n is the unit normal vector to ∂Ω pointing outward. It is easy to de-
rive the stiffness matrices corresponding to the Dirichlet or mixed boundary
condition problem: we just restrict the bilinear form defined by AN to the
subspace given by

(Au, v) =
∑
e∈E

ωeδeuδev, uj = vj = 0 xj ∈ ΓD. (7.5)

Remark 7.1. Similar relations between differential problems with natural
(Neumann) and essential (Dirichlet) boundary conditions are seen not only
for the model problem considered here, but also for problems on H(curl),
H(div), linear elasticity and others.

7.2. M -matrix relatives of finite element stiffness matrices

A symmetric matrix A ∈ Rn×n is called an M -matrix if it satisfies the
following three properties:

aii > 0 for i = 1, . . . , n, (7.6)

aij ≤ 0 for i 6= j, i, j = 1, . . . , n, (7.7)

A is semi-definite. (7.8)

As the first step in creating a space hierarchy, most AMG algorithms for
Au = f with positive semi-definite A use a simple filtering of the entries
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of A, and construct an M -matrix which is then used to define crucial AMG
components.

Definition 7.2 (M-matrix relative). We call a matrix Ã an M -matrix

relative of A if Ã is an M -matrix and satisfies the inequalities

(v, v)
Ã
. (v, v)A and (v, v)D . (v, v)

D̃
, for all v ∈ V, (7.9)

where D̃ and D are the diagonals of Ã and A respectively.

A few remarks are in order.

(i) We have used the term M -matrix to denote semi-definite matrices,
and we are aware that this is not the precise definition. It is, however,
much more convenient to refer to M -matrices, and we decided to relax
the definition here in the hope that the inaccuracy would pay off by
appealing to the reader.

(ii) We point out that the restricted M -matrix relatives are instrumental
in the definition of coarse spaces and also in the convergence rate es-
timates. This is clearly seen later in Section 5.2 where we present the
unified two-level theory for AMG.

(iii) Often, the case is that the one-sided inequality in (7.9) is in fact a
spectral equivalence.

By definition, we have the following simple but important result.

Lemma 7.3. Let A+ be an M -matrix relative of A and let D and D+ be
the diagonal matrices of A and A+, respectively. If Vc ⊂ V is a subspace,
then the estimate

‖u− uc‖2D . ‖u‖2A (7.10)

holds for some uc ∈ Vc, given the estimate

‖u− uc‖2D+
. ‖u‖2A+

. (7.11)

This result means that we only need to work on the M -matrix relative of
A in order to get the estimate (7.10).

In this section we show how to construct the M -matrix relative to the
matrix resulting from a finite element discretization of the model prob-
lem (2.1) with linear elements. We first consider an isotropic problem with
Neumann boundary condition (7.4) and isotropic α = a(x)I. Construc-
tion of M -matrix relatives in the case of anisotropic tensor α(x) in (2.1) is
postponed to Section 14.2.

In the rest of this section we make the following assumptions on the
coefficient and the geometry of Ω.

• The domain Ω ⊂ Rd is partitioned into simplices Ω = ∪T∈ThT .
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• The coefficient a(x) is a scalar-valued function, and its discontinuities are
aligned with the partition Th.

• We consider the Neumann problem, and hence the bilinear form (2.3) is∫
Ω
a(x)∇v · ∇u =

∑
(i,j)∈E

(−aij)δeuδev =
∑
e∈E

ωeδeuδev. (7.12)

• It is well known that the off-diagonal entries of the stiffness matrix A are
given by

ωe = −(φj , φi)A =
∑
T⊃e

ωe,T ,

ωe,T =
1

d(d− 1)
aT |κe,T | cotαe,T , aT =

1

|T |

∫
T
a(x) dx.

Here, e = (i, j) is a fixed edge with end-points xi and xj , T ⊃ e is the set
of all elements containing e, |κe,T | is the volume of the (d−2)-dimensional
simplex opposite to e in T , and αe,T is the dihedral angle between the
two faces in T not containing e.

• Let E denote the set of edges in the graph defined by the triangulation and
let E− be the set of edges where aij ≥ 0, i 6= j. The set complementary to
E− is E+ = E \ E−. Then, with ωe = −aij and δeu = (ui − uj), e = (i, j),
we have∫

Ω
a(x)∇v · ∇u =

∑
e∈E+

ωeδeuδev −
∑
e∈E−

|ωe|δeuδev. (7.13)

• We also assume that the partitioning is such that the constant function
is the only function in the null space of the bilinear form (7.12). This is,
of course, the case when Ω is connected (which is true, as Ω is a domain).

The non-zero off-diagonal entries of A may have either positive or negative
sign, and usually E− 6= ∅. The next theorem shows that the stiffness matrix
A defined via the bilinear form (7.12) is spectrally equivalent to the matrix
A+ defined as

(A+u, v) =
∑
e∈E+

ωe(ui − uj)(vi − vj). (7.14)

Thus, we can ignore any positive off-diagonal entries in A, or equivalently we
may drop all ωe for e ∈ E−. Indeed, A+ is obtained from A by adding to the
diagonal all positive off-diagonal elements and setting the corresponding off-
diagonal elements to zero. This is a stronger result that we will need later,
because it gives spectral equivalence with the M -matrix relative of A+.

Theorem 7.4. Assume that A is the stiffness matrix corresponding to
linear finite element discretization of (2.1) with boundary conditions given
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by (7.4). Then A+ is an M -matrix relative of A which is spectrally equival-
ent to A. The constants of equivalence depend only on the shape-regularity
of the mesh. Moreover, the graph corresponding to A+ is connected.

A simple corollary, which we will use later to prove estimates for the
convergence rate, is as follows.

Corollary 7.5. Assume that A is the stiffness matrix for piecewise linear
discretization of equation (7.12) and A+ is the M -matrix relative defined
in Theorem 7.4. Then the diagonal D of A and the diagonal D+ of A+ are
spectrally equivalent.

Proof. For the diagonal elements of A and A+ we have

[D]j = (φj , φj)A ∼=(φj , φj)A+ = [D+]j .

The equivalences written above follow directly from Lemma 7.4.

Corollary 7.5 together with Lemma 7.3 provides a theoretical foundation
for using M -matrix relatives to design AMG for finite element matrices.

7.3. Bibliographical notes

We have introduced some standard notions from graph theory. For the
reader interested in more detailed descriptions, we refer to the classical
textbooks by Diestel (2010) and Gibbons (1985) as a general introduction
to graph theory, and to Saad (2003) and Varga (2000) for considerations
linking graphs, sparse matrices and iterative methods.

Our results on M -matrix relatives are related to the some of the works
on preconditioning by Z-matrices and L-matrices (Kraus and Schicho 2006,
Kraus 2008). They are implicitly used in most of the AMG literature (Ruge
and Stüben 1987) where the classical connection strength definition gives
an M -matrix. We point out that the M -matrix property and the existence
of an M -matrix relative is often not sufficient to achieve even a two-level
uniform convergence of AMG. A typical example is a matrix which has
been rescaled and the constant is no longer in the kernel of the discrete
operator. In this case, the standard AMG application may fail, and the
near kernel needs to be recovered by different means, such as the adaptive
AMG processes considered in Section 15 and the references given therein.

8. Connection strength

A central task in AMG is to obtain an appropriate coarse space or prolong-
ation. This process is known as a coarsening process. In a geometric grid
or, more generally, the adjacency graph of the stiffness matrix, we need to
identify vertices to be deleted from the graph. We need the coarsened graph
to still provide a good approximation for algebraically low frequencies.
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8.1. Basic idea and strength function

If a subset of vertices on which an algebraically smooth vector, say v,
changes very slowly, we only need to keep one degree of freedom to rep-
resent v in this subset. In other words, we can either aggregate this subset
together or keep one vertex and delete the rest of the vertices in this subset.
We say that the vertices in this subset are strongly connected to each other.
Connection strength is a concept introduced to identify strongly connec-
ted pairs of vertices. Roughly speaking, we say that i and j are strongly
connected if vi ≈ vj .

We imagine coarsening the graph in two stages: the first step is to remove
some edges and the second step is to remove some vertices. The second step
is the goal. Let us examine how the second step is carried out: we either
(i) aggregate some neighbouring vertices together or (ii) pick a maximal
independent set, denoted by C, in the filtered graph and then remove all the
remaining vertices. Using the argument above, (i) each aggregate should
only consist of strongly connected vertices, or (ii) each of the deleted vertices
should be strongly connected to some point in C. To guarantee either of
these two situations, we then have to remove all the weakly connected edges
in the first step.

Let us further use some heuristic arguments to motivate how the connec-
tion strength should be defined. Let v be an algebraically smooth (5.40),
namely

‖v‖2A ≤ ε‖v‖2R̄−1 .

Let u = v/‖v‖R̄−1 . We then have

(Au, u) ≤ ε⇒
∑

e=(i,j)∈E

(−aij)(ui − uj)2 ≤ ε. (8.1)

Thanks to Lemma 5.16, we can assume that A is an M -matrix, namely
−aij = |aij |. From (8.1), we have the following observations.

(i) A larger |aij | means a smaller (ui − uj)2.

(ii) An algebraically smooth error varies more slowly in the direction where
|aij | is larger.

This observation leads to the following definition of connection strength.
Given a threshold θ > 0, we say that the vertex j of the adjacency graph is
θ-strongly connected to vertex i if

−aij ≥ θmax
k 6=i
−aik. (8.2)

Note that by the definition above we may have j strongly connected to i
while i is not strongly connected to j. As a result, the adjacency graph
corresponding to the matrix of strong connections may not be symmetric.
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However, our theoretical framework is given in terms of the symmetrized
operator R̄, regardless of whether the original smoother R is symmetric.
This is due to the fact that we used the energy norm, namely the A-norm,
to measure the convergence rate, and the resulting convergence rate is given
in terms of R̄. This is the best convergence theory we have, and we will use
this theory to study AMG algorithms. As a result, we will only consider
strength functions that are symmetric. A strength function

sc : V × V 7→ R+ (8.3)

associated with an SPSD matrix is symmetric if sc(i, j) = sc(j, i).
Given a threshold θ > 0, we say that i and j are θ-strongly connected if

sc(i, j) ≥ θ.

We then define the strength matrix:

S =
∑

sc(i,j)≥θ

eie
T
j . (8.4)

Note that S is a Boolean matrix with entries equal to 0 or 1 depending
on the connection strength.

Given the non-overlapping decomposition

V =
m⋃
i=1

Ai =
⋃
Ã∈VA

Ã, VA = (A1, . . . ,Am), (8.5)

we extend the definition of strength function to

sc : VA × VA 7→ R+, (8.6)

and we assume that sc is symmetric.
Given a threshold θ > 0, we say that Ai and Aj are θ-strongly connected

to each other if

sc(Ai,Aj) ≥ θ.

An example of such a strength function is given in (8.13).
In the AMG literature, a number of heuristics have been proposed for

identifying strong connections, particularly when considering discretizations
of anisotropic equations. In general, connection strength is a notion that
is difficult to address theoretically or to relate to the convergence rate of
an algorithm. We refer to the classical papers and monographs mentioned
in Section 9.6 for further discussions on related issues. Current trends in
AMG development aim to re-evaluate the role of the classical definition of
connection strength.

We would finally like to comment that connection strength is used to
define the sparsity of P , and it is crucial, for example, in the proof of the
convergence of the two-level method for discretizations of elliptic equations
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with jump coefficients. Choosing the ‘right’ sparsity of P is crucial, as a
denser P would lead to a better approximation from a coarser space, and a
sparser P would lead to a less expensive algorithm.

In the rest of the section, we discuss different definitions of connection
strength:

(i) classical AMG,

(ii) lean AMG,

(iii) local-optimization based AMG.

8.2. Classical AMG

With the above motivation, we define the strength function as follows:

sc(i, j) =
−aij

min
(
maxk 6=i(−aik),maxk 6=j(−ajk)

)
=

aij

max
(
mink 6=i aik,mink 6=j ajk

) . (8.7)

Definition (8.7) is a symmetrized version of the strength function used in
the classical AMG literature (see (8.2)).

The following definition is also commonly used in classical AMG al-
gorithms:

sc(i, j) =
|aij |

min
(
|N(i)|−1∑

k 6=i |aik|, |N(j)|−1∑
k 6=i |ajk|

) . (8.8)

Again, this is a symmetrized version of strength functions used in the AMG
literature.

Finally, we may also have the following two definitions, which are based
on Cauchy–Schwarz for SPSD matrices:

s1(i, j) =
|aij |√
aiiajj

(8.9)

and

s2(i, j) =
−2aij
aii + ajj

. (8.10)

Note that definition (8.7) (which is mostly associated with classical AMG)
ignores all the non-negative entries of the stiffness matrix A = (aij).

8.3. Local-optimization strength function

Suppose that each pair of the index {i, j} ⊂ {1, . . . , n} is associated with
a space Vij , which is not necessarily a subspace of V . Assume now that
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we have two operators: Aij : Vij 7→ V ′ij , which is symmetric positive semi-

definite, and Dij : Vij 7→ V ′ij , which is symmetric positive definite.
Given a number kij < dimVij , we define a coarse space V c

ij ⊂ Vij as

V c
ij := span

{
ζ

(k)
ij , k = 1 : kij

}
,

where ζ
(k)
ij is the eigenvector corresponding to the kth smallest eigenvalue

of D−1
ij Aij .

We let Qij : Vij 7→ V c
ij denote the orthogonal projection with respect to

(·, ·)Dij . Motivated by (6.13), we define the strength function sc as follows:

sc(i, j) :=

(
sup
v∈Vij

‖(I −Qij)v‖2Dij
‖v‖2Aij

)−1

. (8.11)

A special case of the above definition is introduced in aggregation-based
algebraic multigrid (AGMG). Suppose now that we have a set of aggregates
{A1, . . . ,AJ}. We fix a pair {i, j} ⊂ {1, . . . , J}, and define

G = Ai
⋃
Aj .

We then let Vij define the restriction of V to G, that is,

Vij := {v|G : v ∈ V }, (8.12)

where

v|G(x) =

{
v(x) if x ∈ G,
0 if x /∈ G.

We use Aij and Dij , respectively, to denote the restriction of A and D to G.
We then choose kij = 1 and define the local coarse space V c

ij by

V C
ij = span{ζG}, ζG = ζ

(1)
ij ,

and the orthogonal projection Qij : Vij 7→ V C
ij with respect to (·, ·)Dij ,

namely,

Qijv =
(v, ζG)Dij
‖ζG‖2Dij

ζG.

The strength function based on aggregation is defined as

sc(i, j) :=

(
sup
v∈Vij

‖(I −Qij)v‖2Dij
‖v‖2Aij

)−1

. (8.13)

Another example is choosing Vij = R2 and

Aij =

(
aii aij
aij ajj

)
, Dij =

(
aii 0
0 ajj

)
.
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We choose kij = 1 and define the coarse space V c
ij ⊂ Vij as

V c
ij = span

{(
1
1

)}
.

By direct computation, the strength function defined in (8.11) is given by

sc(i, j) =
1− s2

1

1− s2
, s1 =

|aij |√
aiiajj

, s2 = − 2aij
aii + ajj

. (8.14)

We note that s1 ≥ s2 and hence

sc(i, j) ≤ 1 + s2 ≤ 1 + s1. (8.15)

We point out that the strength function given by (8.14) is obtained by
using the theory in Section 6, while the other strength functions such as
(8.7) are obtained by heuristic considerations.

8.4. Lean AMG

Instead of using the absolute value of matrix entries as the criterion to
determine if two points are strongly coupled, lean AMG uses affinity to
measure the connection strength, which is based on the following heuristic
observation: Given a vector v, if (i, j) is a strong connected pair of vertices,
after several relaxation on v, namely

v ← (I −RA)νv,

the values of vi and vj should be close.
In lean AMG, we generate K test vectors. Each test vector is the result

of applying ν Gauss–Seidel relaxation sweeps to Ax = 0, starting from
randomly generated vectors x(1), . . . , x(K) ∈ Rn. Further, we denote

Xn×K :=

X
T
1
...
XT
n

 = (I −RA)ν(x(1) · · · x(K)). (8.16)

Here XT
i is the ith row of Xn×K . The strength function for lean AMG is

then defined as

sc(i, j) :=
|(Xi, Xj)|2

(Xi, Xi)(Xj , Xj)
. (8.17)

8.5. Bibliographical notes

Classical algorithms for determining connection strength can be found in
Brandt et al. (1982), Stüben (1983), Brandt et al. (1985), Ruge and Stüben
(1987) and Briggs, Henson and McCormick (2000). The original measure
of connection strength given by Ruge (1983, 1985), McCormick and Ruge
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(1989) and Brandt et al. (1985) is non-symmetric, but for theoretical consid-
erations, which only depend on the symmetrized smoothers, it suffices to use
the slightly more restrictive but symmetric versions of connection strength.

Some extensions of these classical algorithms for defining strong connec-
tions are based on different measures for connectivity and distance such as
measure of importance and algebraic distance. Details can be found in Ruge
and Stüben (1987) and Trottenberg et al. (2001, Appendix A).

Connection strength functions have had little theoretical backing in the
past. The results developed in this section, such as local Poincaré inequal-
ities and especially the strength functions (8.15), show that such heuristics
are reasonable, and their choice can be motivated by theoretical results.

For aggregation AMG, typically a symmetric connection strength func-
tion is used, as defined by Vaněk et al. (1996). Some recent aggrega-
tion algorithms also define connection strength based on sharp theoretical
results, and use the local two-level convergence rate (8.11) as a measure
(Notay 2010, Napov and Notay 2012).

For aggregations based on matching (aggregates of size 2), the ‘heavy
edge’ matching algorithms in Karypis and Kumar (1998) correspond to a
connection strength function selecting aggregates depending on edge weights
in the adjacency graph. Some recent works (e.g. Livne and Brandt 2012)
use connection strength functions based on the size of the entries in the
Gram matrix formed by a set of smoothed test vectors.

9. Coarsening strategies

Once the smoother is identified, the central task of an AMG method is to
identify a sequence of coarse spaces, in functional terminology, or equival-
ently, in an algebraic setting, to identify a sequence of prolongation matrices.
This procedure is known as ‘coarsening’. In this section we will discuss this
coarsening procedure.

Roughly speaking, given equation (1.1), namely Au = f , on a vector space
V , the goal is to find a subspace Vc ⊂ V such that the solution uc ∈ Vc of
the ‘coarsened’ problem

Acuc = fc, Ac = ı′cAıc, fc = ı′cf (9.1)

would provide a good approximation to the original solution u ∈ V . More
specifically, the solution of uc of (9.1) would provide a good approximation
to those ‘algebraically smooth’ components of the error for which the given
smoother does not converge well.

9.1. Motivations

In some sense, ‘coarsening’ is done almost everywhere in numerical analysis.
For example, the finite element equation (2.19) can be viewed as a coarsened
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equation of the original equation (2.3). In this case the finite element space
Vh is a coarsened subspace of V = H1

0 (Ω).
It is therefore informative for us to examine how a finite element space

is constructed in general. While there are many different ways to construct
finite element spaces, mathematically speaking, the most convenient ap-
proach is via the use of ‘degrees of freedom’, which refers to a basis of a
dual space. More specifically, in a finite element discretization, the finite
element space Vh is obtained by first specifying the dual space V ′h (the so-
called space of degrees of freedom, or variables). For linear finite elements,
V ′h = {ψi : i = 1 : nh} is such that

ψi(v) = v(xhi ).

With such variables (nodal evaluation), we then find a dual basis {φi : i =
1 : nh} which are piecewise linear functions such that

ψi(φj) = δij , 1 ≤ i, j ≤ n.

The finite element space Vh is then defined by

Vh = span{φi : i = 1 : nh}.

In fact, mathematically speaking, all existing finite element spaces Vh can
be obtained by first constructing Vh. This is the approach taken in the
classical literature on finite element methods: see Ciarlet (2002).

In a similar way to the finite element method, we will therefore focus on
techniques for constructing a coarse space Vc ⊂ V by first identifying its
dual basis V ′c . Such an approach is rather abstract, but it turns out to be
more intrinsic, more general, and, in fact, more commonly used in the AMG
literature, albeit implicitly.

It is interesting to note that we rarely use the word ‘coarsening’ in the
design of a geometric multigrid method. Instead, we use a ‘refinement’ pro-
cedure to define a sequence of nested spaces. As an example, Figure 9.1
shows a uniformly refined triangular grid used for discretization of the Pois-
son equation with linear finite elements.

In AMG, we do not have the luxury of this hierarchy of spaces given by
a geometric refinement. Instead, we carry out a reverse-engineering of the
refinement process, namely coarsening.

Conceivably, we could also use such a reverse-engineering process to re-
cover geometric multigrid methods by starting from the finest geometric
grid, at least for some special cases: for example, if all triangles in the tri-
angulation shown in Figure 9.1 were acute and the graph corresponding to
the mesh were also an adjacency graph of the stiffness matrix. It is clear
that the coarse grid vertices, that is, the set C (known from the refinement),
is a maximal independent set (MIS) of vertices in the graph corresponding
to the refined mesh. In the simplest case, the coarse grid variables (the dual

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


Algebraic multigrid methods 651

Figure 9.1. Regular refinement of a coarse grid element: •, coarsest level vertices;
◦, first level of refinement; �, second level of refinement.

basis for Vc) precisely correspond to the MIS. This observation is explored
later, in Section 9.3.1, when constructing algorithms in the classical AMG
framework for a selection of coarse grid vertices via the MIS algorithm (Al-
gorithm 5). For further examples of relations between geometric AMG and
GMG coarsening, we refer to Section 10.2.

The above reverse-engineering for GMG gives some hint as to how a
coarsening process needs to be done in AMG, but we need to study the
process in a broader framework and – more importantly – we will use the
degrees of freedom, i.e. the dual bases, to obtain coarse spaces. In the above
GMG example, each grid point in the geometric grid corresponds to exactly
one variable. However, this is not always the case in applications.

9.2. Basic approach

By mimicking the construction of finite element spaces as described above,
given a linear algebraic system of equation Au = f , we adapt a coarsening
strategy consisting of the following steps.

1 We consider the adjacency graph G(A) of the coefficient matrix A. Based
on a certain strength function sc as described in Section 8, we remove
the weakly connected edge in G(A), that is, we drop certain entries in A
to form a filtered matrix Ã.

2 We carry out one of the following two substeps.

(a) Classical AMG. Find a maximal independent set of G(Ã) to form the
set of coarse vertices C. Then remove the rest, namely V \ C ≡ F .

(b) Aggregation AMG. Agglomerate using some greedy algorithm: pick
a point and agglomerate its neighbours and go from there.

3 We obtain a subset of variables obtained from the above steps, i.e. (V ′)c.

4 We use (V ′)c to define a high-frequency space Vhf = (V ′)
(0)
c by

Vhf = (V ′)(0)
c := {v ∈ V : 〈g, v〉 = 0, for all g ∈ (V ′)c}. (9.2)

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


652 J. Xu and L. Zikatanov

5 Find a tentative coarse space Wc such that

V = Vhf ⊕Wc. (9.3)

6 Apply a certain postprocessing (such as smoothing) to Wc to obtain Vc:

Vc = SWc.

7 Using Vc, or equivalently the prolongation P , we form the coarse matrix
Ac = P TAP .

8 We then repeat the above steps to Ac in place of A until a desirable
coarsest level is reached.

9.2.1. Construction of (V ′)c
Given A ∈ Rn×n and the associated graph G = (V, E), we proceed as follows.

(i) Form the two non-overlapping decompositions

V = C ∪ F , C =

nc⋃
i=1

Ai.

(ii) Identify (V ′)c = span{Ni : i = 1 : nc} ⊂ V ′.

Here are three examples that will be discussed in detail in later sections
(see Sections 11, 12 and 13).

Aggregation AMG. F = ∅ and

Ni(v) = 〈v〉Ai ≡
1

|Ai|
∑
j∈Ai

ψj(v) =
1

|Ai|
∑
j∈Ai

vj , i = 1 : nc. (9.4)

Classical AMG. F 6= ∅ and

Ai = {ki}, Ni(v) = ψki(v) = vki . (9.5)

In this case, C usually consists of disconnected vertices.

Energy-min AMG. F 6= ∅ and Ai are aggregates

Ni(v) = 〈v〉Ai ≡
1

|Ai|
∑
j∈Ai

ψj(v) =
1

|Ai|
∑
j∈Ai

vj , i = 1 : nc. (9.6)

9.2.2. Construction of Vc
Given coarse grid degrees of freedom (V ′)c ⊂ V ′, we define Vhf as in (9.2).
The following lemma shows how to find a subspace Wc, a ‘pre-coarse space’,
such that V = Vhf ⊕Wc.

Lemma 9.1. If φk,c, k = 1, . . . , nc are elements of V such that the Gram
matrix

G = (Gkm) = (Nm(φk,c))
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is non-singular, then we have

V = Vhf ⊕Wc, Wc = span{φk,c}nck=1.

Proof. We first show that Wc ∩ Vhf = {0}. In fact, if

v :=

nc∑
k=1

(ṽ)kφk,c ∈Wc ∩ Vhf ,

then we have

0 = Nm(v) =

nc∑
k=1

Nm(φk,c) =

nc∑
k=1

(ṽ)kGkm, m = 1, . . . , nc.

Hence,

Gṽ = 0,

and since, by assumption, G is non-singular, we must have v = 0. Therefore,
Wc ∩ Vhf = {0}.

Next, for any v ∈ V , we define wc ∈Wc as

wc =

nc∑
k=1

(w̃c)kφk,c, w̃c = G−1

 N1(v)
...

Nnc(v).

.
It is immediate to check that

Nm(v − wc) = 0, m = 1, . . . , nc,

and hence (v − wc) ∈ Vhf . This proves that

v = wc + (v − wc︸ ︷︷ ︸
∈Vhf

),

and completes the proof.

Lemma 9.1 gives us a way to construct a subspace Wc such that V =
Vhf ⊕Wc.

Lemma 9.2. Assume the coarse grid degrees of freedom are defined as

Nk :=
∑
j∈Ak

αjψj , k = 1, . . . , nc,

where
∑

j∈Ak αj = 1 and {ψj} is the dual basis of {φj}. If {φk,c : k =

1, . . . , nc} are elements of V such that the Gram matrix

G = (Nl(φk,c)) = I,

then we have

φk,c =
∑
j∈Ak

φj + vhf , vhf ∈ Vhf . (9.7)
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Proof. We fix a k and consider the subset Wk ⊂ V such that

Wk := {v ∈ V : Nk(v) = 1 and Nl(v) = 0, for all l 6= k}.

Pick any v1, v2 ∈Wk. We have

Nl(v1 − v2) = Nl(v1)−Nl(v2) = 0, for all l = 1, . . . , nc,

and this shows that (v1 − v2) ∈ Vhf .
Furthermore, if we define vck =

∑
j∈Ak φj , then

Nk(v
c
k) =

∑
j∈Ak

∑
i∈Ak

αj(ψj , φi) =
∑
j∈Ak

αj = 1,

and Nl(v
c
k) = 0 for all l 6= k since Ak and Al have no overlap. We then have

vck ∈Wk, and hence

Wk = {vck + vhf : vhf ∈ Vhf}.

Next, we describe how to construct the coarse space Vc using Wc.

Lemma 9.3. Assume that V = Vhf ⊕Wc and ϕ1,c, . . . , ϕnc,c is a basis in
Wc. Then φk,c = Sϕk,c, k = 1, . . . , nc are linearly independent if S : V 7→ V
satisfies one of the following conditions:

(a) S maps a linear independent set in Wc into a linear independent set
in V ,

(b) S is invertible,

(c) S = I −Qhf , where Qhf : V 7→ Vhf .

As a result, we have

V = Vhf ⊕ Vc, Vc = span{Sϕk,c : k = 1, . . . , nc}.

Proof. We only need to prove case (c), as cases (a) and (b) are trivial.
If φk,c were linearly dependent, there would be a linear combination of
{φk,c}nck=1 which vanishes. Equivalently, this means that there exists wc ∈
Wc such that (I−Qhf )wc = 0, which implies that wc ∈ Vhf . Since Vf∩Wc =
{0}, we have that wc = 0 and the only vanishing linear combination in
span{φk,c}nck=1 is the trivial one, and this completes the proof.

Remark 9.4. (i) For smoothed aggregation, S = I − ωD−1A for some
properly chosen ω so that S is non-singular, or maps a special linearly
independent set of vectors to a linearly independent set of vectors (see Sec-
tion 13).

(ii) For classical AMG with the ideal interpolation, S = I −Qhf , and Qhf
is the A-orthogonal projection (see Section 12).

(iii) For classical AMG with the standard interpolation, S = I −Qhf , and
Qhf is an approximation to the ideal interpolation (see Section 12).
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Algorithm 5 Maximal independent set method

1: Set C ← ∅, i← 1.

2: If i and all its neighbours are not visited, then set C ← C ∪ {i} and
mark i and all vertices in N(i) as visited.

3: If all vertices are visited, then output C and stop; else set i ← i + 1
and go to 2.

To give a summary of the discussions above, the coarsening algorithms
in AMG are methods for determining the coarse grid degrees of freedom,
or coarse grid variables. Such algorithms are based on selecting degrees
of freedom associated with subsets of vertices in the adjacency graph that
correspond to the matrix A, or to the strength matrix S, as is done in
geometric coarsening, when the hierarchy of meshes or adjacency graphs is
known.

9.3. Two basic coarsening algorithms

In the next two subsections we present typical algorithms for finding the
coarse grid degrees of freedom. Each such degree of freedom is associated
with a vertex or a subset of a graph. Two types of algorithm are distin-
guished: classical AMG algorithms pick coarse grid degrees of freedom that
correspond to a maximal independent set of vertices in the adjacency graph
of the strength matrix, and aggregation-based AMG algorithms use a split-
ting of the adjacency graph of the strength matrix in connected subgraphs.

9.3.1. A maximal independent set algorithm

Here we present a simple ‘greedy’ maximal independent set (MIS) algorithm,
which has been used in classical AMG algorithms to identify coarse grid
degrees of freedom. Given the adjacency graph of the strength matrix, the
simple greedy MIS algorithm is shown in Algorithm 5.

Remark 9.5. We note that the MIS algorithm recovers the geometric
coarsening if the vertices are visited in such an order that coarse grid vertices
are ordered first and all the connections in Figure 9.1 are strong. This is
obvious, but nevertheless shows that geometric coarsening can sometimes
be recovered by an algebraic algorithm.

Let us point out that for finite element stiffness matrices obtained via ad-
aptive refinement algorithms, the hierarchy of vertices is naturally included
in the refinement procedure. For regular refinement this choice of maximal
independent set is illustrated in Figure 9.1.
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Algorithm 6 Greedy aggregation method

Input: Graph G with n vertices. Output: V = ∪nck=1Vk, and Vk ∩ Vj = ∅
when k 6= j.

1: Set nc ← 0 and for k = 1 : n do:

a. If k and all its neighbours have not been visited, then (i) we set
nc ← nc + 1, (ii) we label with nc the subgraph whose vertices are k
and the neighbours of k, and (iii) we mark k and all its neighbours
as visited.

b. If at least one neighbour of k has been visited, we continue the loop
over the vertices.

2: Since after this procedure there might be vertices which do not belong
to any aggregate (but definitely have a neighbouring aggregate), we add
each such vertex to a neighbouring aggregate and we pick the one which
has a minimal number of vertices in it.

3: The algorithm ends when all vertices are in a subset.

9.3.2. An aggregation algorithm

The class of algorithms known as aggregation algorithms refers to the split-
ting of the adjacency graph of the strength matrix into a union of connected
subgraphs. Let {Vk}nck=1 be a non-overlapping splitting of the set of vertices

V = ∪nck=1Vk, Vj ∩ Vk = ∅, for j 6= k.

We then define

Ek = {(l,m) ∈ E : l ∈ Vk and m ∈ Vk} (9.8)

to be the set of edges associated with Vk.
An aggregation can be done in many different ways, some very soph-

isticated. In general, all combinatorial graph-partitioning algorithms can
be used for aggregation. We will not consider such algorithms in detail,
however, but provide the basic and most important example of the greedy
aggregation algorithm: see Algorithm 6. This algorithm can be applied
recursively to provide a multilevel hierarchy of aggregates.

9.3.3. Aggressive coarsening

The extended strong connections and the corresponding strength operator
are used to construct coarse spaces of smaller dimension. This procedure is
also known as aggressive coarsening. We recall the definition of a path in the
graph given in Section 7.1, and all our considerations concern the adjacency
graph G(S) of the strength matrix S ∈ Rn×n defined in (8.4). Aggressive
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coarsening refers to a selection of coarse grid vertices as the independent
set in the adjacency graph. Specifically, we choose vertices whose distance
is larger than 2 with respect to the strength operator.

Definition 9.6 (strong connection along a path). A vertex i is said
to connect strongly to a vertex j along a path of length l if there exists a
path (k0, k1, . . . , kl) in G(S) such that k0 = i, kl = j and sc(km, km+1) ≥ θ,
m = 0, 1, . . . , l − 1.

The next definition is related to the number of strongly path-connected
vertices.

Definition 9.7 ((m, l)-strong connection). For given integers m > 0
and l > 0, a vertex i is (m, l)-strongly connected to a vertex j if and only if i
strongly connects to j along at least m paths of length l (cf. Definition 9.6).

An aggressive coarsening algorithm generates a maximal independent set
using Algorithm 5 for the graph Gm,l = (V, Em,l) with a set of vertices
V = {1, . . . , n} and a set of edges Em,l defined as

Em,l := {(i, j) : i is (m, l) strongly connected to j}. (9.9)

As is well known (Diestel 2010), (Sl)ij is non-zero if and only if there is a
path of length ≤ l between i and j. An aggressive coarsening exploits this
property, and is an algorithm which selects a set of coarse grid degrees of
freedom corresponding to vertices in the graph which are at graph distance
larger than l. It uses the adjacency graph G(Sl) of Sl in place of G(S) in an
aggregation or a maximal independent set algorithm.

As an example, let us consider aggressive coarsening with l = 2 and
m = 1. The set of coarse grid degrees of freedom is obtained by applying
the standard MIS algorithm twice. First we find a maximal independent set
in G(S) and obtain a set of coarse grid degrees of freedom C (these are at
graph distance at least 2). Then we apply the MIS algorithm for a second
time to the graph with vertices the C-points, the edges between them being
given by the strength operator corresponding to S2.

Similarly, for aggregation, an aggressive coarsening corresponds to apply-
ing Algorithm 6 recursively, or applying it directly to the graph correspond-
ing to Sl for a given l.

9.4. Adaptive coarsening for classical AMG

An adaptive coarsening algorithm is an algorithm which adaptively chooses
the coarse grid degrees of freedom based on a given definition of strength
function based on the smoother in a two-grid algorithm. One example of
adaptive coarsening follows from the classical compatible relaxation intro-
duced by Brandt. The algorithm takes as input a smoother which leaves
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the coarse grid variables invariant and only smooths the components in the
algebraic high-frequency space Vhf.

A typical adaptive coarsening algorithm follows the steps given below.

Step 0. Set k = 0 and choose (V ′)k,c ⊂ V ′, for example, using the MIS or
aggregation method introduced in Section 9.3.

Step 1. Define Vk,f as the subspace of V which is annihilated by the
functionals in (V ′)k,c, namely

Vk,f = {v ∈ V : (g, v) = 0, for all g ∈ (V ′)k,c}.

Step 2. Let ık,f : Vk,f 7→ V be the natural inclusion operator, and compute
an estimate ρk,f of the norm of the smoother on Vk,f using

ρk,f ≈ sup
v∈Vk,f

‖(I − ık,fRk,f ı′k,fA)v‖2A
‖v‖2A

.

Here, Rk,f could be the restriction of the smoother R on Vk,f , or more
generally, any relaxation on Vk,f .

Step 3. Given a threshold δf > 0, if ρk,f > δf , we set k = k + 1, add more
functionals to (V ′)c and go to Step 1. Otherwise, we set (V ′)c = (V ′)k,c,
and accordingly Vf = Vk,f and stop the iteration.

In Step 3, if the stopping criterion is not satisfied, we need to enrich the
space (V ′)c by extending the set. One example of doing so is introduced in
compatible relaxation methods by extending the set C using the following
procedure.

First we randomly choose a vector v0 ∈ Vk,f , and form

v = (I − ık,fRk,f ı′k,fA)νv0 for some ν ≥ 1.

Then, with a given threshold θ ∈ (0, 1), we let

C1
0 =

{
i ∈ F : |vi| > θmax

k
|vk|
}
.

and

C1 = C0 ∪MIS(C1
0).

Finally, we update C ← C1 and proceed with the next compatible relaxation
iteration.

As is clear from the algorithm outlined above, we can use any of the
definitions of connection strength to obtain (V ′)0,c at Step 0. When ρk,f >
δf , it means that C obtained from the strength function s0 is not satisfactory,
namely, too coarse. This means that either the threshold for s0 is too small
or s0 itself is not satisfactory. We could still use s0, but with a smaller
threshold to obtain a C′0 that is bigger than C0 but does not necessarily
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contain C0. For example, if we initially use the (m, l)-strong connection
defined in Definition 9.7, C can be extended by increasing the value of m
or decreasing the value of l. This approach may not be computationally
efficient. A more effective approach, as used in compatible relaxation, is to
find candidates for additional C-points by examining the filtered matrix

A(1) = {aij : i, j ∈ F0},

where F0 = Ω \ C0, to get the set of coarse grid degrees of freedom C1
0 and

add them to C0 to extend the size of C.

9.5. AGMG coarsening: a pairwise aggregation

Aggregation-based algebraic multigrid (AGMG) uses the strength function
of (8.13) to form aggregations such that the local convergence rate (see
(6.13)) on each aggregate is bounded by a given threshold. The main idea
of the algorithm can be explained as follows.

It first splits the index set Ω into aggregates, each of which has at most
two elements, namely

Ω =
⋃
j

A(0)
j , A(0)

i

⋂
A(0)
j = ∅ and |A(0)

j | ≤ 2. (9.10)

This process is done by a greedy algorithm. At each step, the algorithm
finds the pair G = {i, j} for which the strength function defined in (8.14) is
maximal.

Using these pairs as aggregates {A(0)
j }, we form the unsmoothed aggreg-

ation prolongation P , which is piecewise constant with respect to the ag-
gregates and P has orthogonal columns.

We let A(0) := A and P (0) := P . Then A(1) := (P (0))TA(0)P (0). We then
apply the pairwise aggregation algorithm on A(1) and find larger aggregates

{A(1)
j }. Each A(1)

j is a union of two pairs in {A(0)
j } which minimize the

strength function defined in (8.13). Then we obtain P (1) and A(2). Applying
this procedure recursively, we obtain the final aggregates Aj , each of which

is a union of several pairs in {A(0)
j }.

The pairwise aggregation strategy aims to find the aggregates on which
the Poincaré constant µj(V

c
j )−1 is bounded, which is introduced in our ab-

stract framework by (6.13). As stated in the abstract convergence theorem,
bounding µj(V

c
j )−1 will bound the convergence rate of the AMG method.

9.6. Bibliographical notes

The coarsening strategies used in AMG are basically of two types: the first
uses connection strength to define a ‘strength’ graph and then performs the
greedy aggregation or MIS algorithms, and the other is based on algorithms
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such as compatible relaxation coarsening, which uses the smoother to detect
slowly converging components. These are heuristic approaches, which work
well on a certain class of problems but rarely have a theoretical justification
for their efficiency as AMG splitting algorithms.

Classical algorithms for selection of the coarse grid degrees of freedom are
found in Brandt et al. (1982), Stüben (1983), Brandt et al. (1985), Ruge
and Stüben (1987), and the MG tutorial of Briggs et al. (2000).

Parallel coarse-grid selection algorithms are found in Sterck, Yang and
Heys (2006) and, in combination with scalable interpolation algorithms, in
De Sterck, Falgout, Nolting and Yang (2008). Coarsening using information
about discretization, i.e. AMGe, is given in Jones and Vassilevski (2001) and
Brezina et al. (2001). Spectral AMGe coarsening is considered in detail in
Chartier et al. (2003). Many of the ‘upscaling’ and related techniques in
homogenization (see Efendiev, Hou and Wu 2000, Hou, Wu and Cai 1999),
resemble the coarsening procedures introduced in the classical and modern
AMG literature.

More sophisticated maximal independent set (MIS) algorithms for selec-
tion of coarse grid degrees of freedom, using different measures for con-
nectivity and distance in the graph corresponding to A, are found in Ruge
and Stüben (1987) and Trottenberg et al. (2001, Appendix A). Most of these
algorithms are refinements of the greedy algorithm given in this section. For
parallel versions, we refer to Luby (1986), Cleary, Falgout, Henson and Jones
(1998) and Sterck et al. (2006) for specific details on parallel and parallel
randomized MIS algorithms. Other coarsening schemes that are also suit-
able for parallel implementation are the coupled and decoupled coarsening
schemes (Yang 2006, Henson and Yang 2002).

Regarding the aggregation coarsening methods, we refer to Vakhutinsky,
Dudkin and Ryvkin (1979), Blaheta (1986) and Marek (1991) for earlier
work on such methods. The greedy aggregation algorithm presented here
is found in Vaněk et al. (1996). A special class of aggregation coarsening
methods based on matching were first employed by Karypis and Kumar
(1998) for fast graph partitioning, and later used in several of the AMG
methods. One example is the AGMG algorithm described in Section 9.5
and found in Napov and Notay (2012) and Notay (2012). The algorithm
given by Kim, Xu and Zikatanov (2003) also uses this coarsening approach.
Special matching techniques which optimize matrix invariants were used by
D’Ambra and Vassilevski (2013, 2014). The compatible relaxation (CR) al-
gorithm, first introduced by Brandt (2000) and further investigated by Livne
(2004), Falgout and Vassilevski (2004) and Brannick and Falgout (2010), is
a device that reduces the role of connection strength to only define initial
set of coarse grid degrees of freedom and then use the smoother to select
additional degrees of freedom. Other coarse/fine degrees of freedom par-
titioning algorithms are considered in MacLachlan and Saad (2007) from

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


Algebraic multigrid methods 661

both classical and compatible relaxation perspectives. The aggregation al-
gorithms, which aggregate vertices based on a local measure for two-level
convergence (Notay 2010, Napov and Notay 2012, Livne and Brandt 2012),
are somewhat different adaptive coarsening algorithms.

10. GMG, AMG and geometry-based AMG

Historically, the algebraic multigrid method was motivated by the geometric
multigrid method. In this section we will explore the relationship between
these two types of method.

10.1. Geometric multigrid method

We begin our discussion with a simple one-dimensional model problem,
namely (2.1) for d = 1,Ω = (0, 1) and α ≡ 1 with zero Dirichlet boundary
condition. For any integer N , we consider a uniform grid, denoted by Th,
of the interval [0, 1] as follows:

0 = x0 < x1 < · · · < xN+1 = 1, xj =
j

N + 1
(j = 0 : N + 1). (10.1)

This partition consists of uniform sub-intervals with length h = 1/(N + 1),
that is, Th =

⋃
i{τi}, where τi = (xi−1, xi) for d = 1. Such a uniform

partition is shown in Figure 10.1.

x0 xj xN+1

Figure 10.1. One-dimensional uniform grid.

We define a linear finite element space associated with the partition Th:

Vh = {v : v is continuous and piecewise linear w.r.t. Th, v(0) = v(1) = 0}.
(10.2)

Let Vh = Vh. Recall from the previous section that the finite element
approximation of our model problem is then uh ∈ Vh, satisfying (2.19). We
introduce the operator Ah : Vh 7→ Vh such that

(Ahvh, wh) = a(vh, wh), vh, wh ∈ Vh.

Then the finite element solution uh satisfies

Ahuh = fh, (10.3)

where fh ∈ Vh is the L2-projection of f : (fh, vh) = (f, vh), vh ∈ Vh.
To describe a geometric multigrid algorithm, we need to have a multiple

level of grids, say Tk, with k = 1 : J and TJ = Th being the finest mesh.
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n=31

n=15

n=7

n=3

n=1

Figure 10.2. Multiple grids in one dimension.

One simple definition of the grid points in Tk is

xki =
i

2k
, i = 0, 1, 2, . . . , Nk + 1, k = 1, 2, . . . , J,

where Nk = 2k−1. Note that Tk can be viewed as being obtained by adding
midpoints of the sub-intervals in Tk−1. For each k, the set of above nodes
will be denoted by Nk. This is illustrated in Figure 10.2.

For k = 1 : J , similar to the finite element space Vh defined as in (10.2),
we define the finite element space Vk associated with the grid Tk, to obtain
a nested sequence of finite element spaces as follows:

V1 ⊂ · · · ⊂ Vk ⊂ · · · ⊂ VJ . (10.4)

The classical V -cycle GMG method simply applies Algorithm 4 recurs-
ively with the following setting:

(i) Vk = Vk,

(ii) Ak : Vk 7→ Vk defined by

(Akuk, vk) = a(uk, vk), uk, vk ∈ Vk,

(iii) ıkk−1 : Vk−1 7→ Vk, the inclusion operator,

(iv) Rk : Vk 7→ Vk corresponding to a smoother such as the Gauss–Seidel
method.

Algebraic setting

Equation (10.3) may be called the operator form of the finite element equa-
tion. To get an equation in terms of vectors and matrix, we use the nodal
basis functions for Vh:

φi(x) =


x− xi−1

h
x ∈ [xi−1, xi],

xi+1 − x
h

x ∈ [xi, xi+1],

0 elsewhere.

(10.5)
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n=7

12 34 5 6 7

n=3

2 1 3

n=1

1

Figure 10.3. One-dimensional nodal basis functions on each level.

On each level, as in (10.5), we introduce a set of nodal basis functions

{φ(k)
i : i = 1 : Nk} for the finite element space Vk. This is illustrated in

Figure 10.3.
Each v ∈ Vk can be uniquely written as a linear combination of the basis

functions:

v = ξ1φ
(k)
1 + ξ2φ

(k)
2 + · · ·+ ξNkφ

(k)
Nk
. (10.6)

This gives an isomorphism from Vk to RNk , which maps v ∈ Vk to µ ∈ RNk ,
that is,

v = ξ1φ
(k)
1 + ξ2φ

(k)
2 + · · ·+ ξNkφ

(k)
Nk
−→ µ =


ξ1

ξ2
...
ξNk

. (10.7)

Here µ is called the matrix representation of v. Recall from the discussion
in Section 2.2, giving a basis of Vh defined in (10.5), that (2.19) is equivalent
to the linear system equations in (2.20).

We introduce the auxiliary space Vk := RNk . The transition operator
P k+1
k from Vk to Vk+1 is a matrix in RNk+1×Nk , and satisfies

(φ
(k)
1 · · ·φ

(k)
Nk

) = (φ
(k+1)
1 · · ·φ(k+1)

Nk+1
)ık+1
k . (10.8)

For the special one-dimensional problem we are now considering, for k =
1, 2, . . . , J − 1 we have

φ
(k)
j =

1

2
φ

(k+1)
2j−1 + φ

(k+1)
2j +

1

2
φ

(k+1)
2j+1 . (10.9)
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The matrix that encodes this relation is

P k+1
k =



1
2

1
1
2

1
2

1
1
2

1
2

1
1
2

. . . 1
2

1
1
2



. (10.10)

The classical V -cycle AMG method is obtained by simply applying Al-
gorithm 4 recursively with the following setting:

(i) Vk = RNk ,

(ii) Ak ∈ RNk×Nk : Vk 7→ Vk defined by

(Ak)ij = a(φ
(k)
i , φ

(k)
j ), 1 ≤ i, j ≤ Nk,

(iii) P kk−1 : Vk−1 7→ Vk, a matrix in RNk+1×Nk defined by (10.8),

(iv) Rk : Vk 7→ Vk corresponding to a smoother such as the Gauss–Seidel
method.

A similar multigrid algorithm can be obtained for problems in two and three
dimensions as long as we have a multiple level of grids and the corresponding
finite element spaces on each level.

10.2. Obtaining AMG from GMG

The first obstacle to extending GMG to AMG is the geometric information
used in GMG. However, a close inspection of GMG reveals that a GMG
method only depends on the following two major ingredients:

(i) the stiffness matrix corresponding to the finest grid,

(ii) the prolongation matrix on each level.

Once all the prolongation matrices are given, the stiffness matrices on all
coarser levels are given by

Ak = P Tk APk, k = J − 1, J − 2, . . . , 1, Pk =

J−1∏
j=k

P j+1
j . (10.11)
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Of course, a smoother is also needed on each level, but its definition can be
considered purely algebraic for the moment.

As the stiffness matrix on the finest grid is always available in any given
application, the only thing left is the prolongation matrices. We will now
use the example of the linear finite element method to discuss the rela-
tionship between the prolongation matrix and geometric information. Two
observations are highly relevant.

Observation 1. The prolongation matrix only depends on the natural
graph associated with the underlying grid, but not on the coordinates of
grid points.

Observation 2. The graph of the underlying grid is very close to the
adjacency graph of the stiffness matrix.

Based on the above discussions, roughly speaking, we can essentially re-
cover a geometric multigrid method for the stiffness matrix corresponding
to the continuous linear finite element discretization of the Laplace equation
by only using the algebraic and graph information provided by the stiffness
matrix:

(i) form the adjacency graph G(A) of the stiffness matrix A,

(ii) coarsen G(A).

As an illustrative example, let us consider the stiffness matrices corres-
ponding to a discretization of the Laplace equation on a square domain with
bilinear elements. It is well known (Ciarlet 2002) that the stiffness matrix
in this case is the same as the scaled matrix for the 9-point finite difference
stencil (2.18). The corresponding adjacency graph shown in Figure 10.4(c)
is denser (has more edges) than the mesh graph shown in Figure 10.4(a).
The set of its edges includes the diagonals of each of the squares forming
the mesh. For the construction of the prolongation/interpolation matrix,
we recall that the prolongation matrix gives the coefficients of the expansion
of a coarse grid basis function on a grid of size 2h in terms of the finer grid
basis on a grid of size h. Locally this matrix looks as follows:

[(P h2h)T ]i =


1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

.
This matrix is often called a ‘prolongation stencil’, and it shows the coeffi-
cients in the expansion of a coarse grid basis function in a compact form. In
the centre we have the coefficient 1, in front of the fine grid basis function
associated with a coarse grid vertex. The rest of the entries refer to the
coefficients corresponding to the fine grid basis functions in the expansion.
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(a) (b) (c)

Figure 10.4. (a) 6× 6 uniform grid, (b) graph of the matrix corresponding to the
5-point finite difference stencil, and (c) graph of the matrix corresponding to the
9-point finite difference stencil.

On regularly refined triangular grids we have an analogous situation. We
refer to Section 9 for details of the selection of coarse grid degrees of freedom
in this case. Prolongation and restriction matrices only depend on the topo-
logical structure of this graph. Similar observations led to the development
of the AMG: if the geometric coordinates are unknown, different avenues
for constructing coarse spaces are needed, leading to different variants of
AMG algorithms.

10.3. Obtaining GMG from AMG

In this section we use the unified theory in Section 6 to obtain GMG from
AMG. The main ingredients needed are the spaces Vj , operators Πj , Aj ,
Dj , and coarse spaces V c

j .
We now consider constructing a two-level geometric multigrid method for

(2.1) (or the variational formulation (2.3)). Suppose we have two grids:
a fine grid Th and a coarse grid TH . On each grid we define a linear fi-
nite element space Vh and VH with nodal basis functions {φhj } and {φHj },
respectively, and we consider the following partition of the domain Ω:

Ω =

J⋃
j=1

Ωj , with Ωj = supp(φHj ). (10.12)

We then define Vj as

Vj := {χjv : v ∈ Vh}, (10.13)

where χj is the characteristic function of Ωj . We note that Vj is not a
subspace of H1(Ω). The operator Πj : Vj 7→ Vh is defined as follows:

Πjvj := Ih(φHj vj), for all vj ∈ Vj , j = 1, . . . , J, (10.14)
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where Ih is the nodal interpolation operator on the fine grid. Here we note
that φHj vj is continuous in Ω. We notice that, by definition, φHj χj = φHj on
Ω, which implies the identities

J∑
j=1

Πjχjv = Ih

( J∑
j=1

φHj χjv

)
= Ih

( J∑
j=1

φHj v

)
= Ih(v) = v,

and hence
J∑
j=1

Πjχj = Id.

The operator Aj : Vj 7→ V ′j is the local restriction of the bilinear form
a(·, ·), namely,

(Ajuj , vj) := a(uj , vj)Ωj =

∫
Ωj

α(x)∇uj · ∇vj , uj , vj ∈ Vj . (10.15)

The following estimate tells us that Aj satisfies (6.10) with decomposition

v =
∑J

j=1 Πjvj where vj = χjv:

mc∑
j=1

‖vj‖2Aj =

mc∑
j=1

a(v, v)Ωj ≤ C1‖v‖2A,

where C1 depends on the number of overlaps of Ωj .
We choose D : V 7→ V ′ using the fine grid basis functions as follows:

(Dφhi , φ
h
j ) := a(φhi , φ

h
j )δij , 1 ≤ i, j ≤ n, (10.16)

and

(Du, v) :=
n∑
j=1

a(φhj , φ
h
j )ujvj , u, v ∈ V. (10.17)

Note that (D·, ·) is an inner product on V which induces a norm ‖ · ‖D.
In the above definition, the matrix representation of D is the diagonal of

the matrix representation of A. In a similar way, we can define Dj : Vj 7→ V ′j
using the basis functions for Vj .

By a simple scaling argument, we obtain

‖v‖20 ∼=hd‖v‖2`2 .

From (10.17), using inverse inequality, we then have

‖v‖2D . h−2
n∑
j=1

‖φhj ‖20v2
j

∼=hd−2‖v‖2`2 ∼=h−2‖v‖20.

We also have

‖Ihv‖20 ∼=hd‖Ihv‖2`2 = hd‖v‖2l2 ∼=‖v‖20.
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Assumption 6.9 can then be verified by∥∥∥∥ J∑
j=1

Πjvj

∥∥∥∥2

D

. h−2

∥∥∥∥ J∑
j=1

Πjvj

∥∥∥∥2

0

= h−2

∥∥∥∥Ih( J∑
j=1

φHj vj

)∥∥∥∥2

0

∼=h−2

∥∥∥∥ J∑
j=1

φHj vj

∥∥∥∥2

0

= h−2
J∑

i,j=1

∫
Ω
φHi viφ

H
j vj

≤ h−2
J∑

i,j=1

‖φHi ‖∞‖φHj ‖∞
∫

Ω
vivj ≤ h−2

J∑
i,j=1

∫
Ωi

⋂
Ωj

vivj

≤ Co
J∑
j=1

h−2

∫
Ωj

|vj |2 . Co
J∑
j=1

‖vj‖2Dj .

By the definition of Aj , the kernel of Aj consists of all constant functions in
Vj , and we choose V c

j to be the one-dimensional space of constant functions
on Ωj . Then

µj(V
c
j ) = λ

(2)
j , (10.18)

where λ
(2)
j is the second smallest eigenvalue of the operator D−1

j Aj .

The global coarse space Vc is defined as in (6.12). Note that in this case
it is easy to show, by definition, that the coarse space Vc constructed by
(6.12) is in fact identical to VH , namely

Vc = span{φHj : j = 1, . . . , J}. (10.19)

By Theorem 6.10, the convergence rate of this two-level geometric multigrid

method depends on the minj(λ
(2)
j ). If the Poincaré inequality is true for

each Vj , namely

inf
vc∈V cj

‖v − vc‖2Dj ≤ cj‖v‖
2
Aj , for all v ∈ Vj , (10.20)

with cj a constant, then the two-level geometric multigrid method converges
uniformly.

10.4. Spectral AMGe: a geometry-based AMG

We now consider the element-based AMG approaches, and also define the
ingredients needed to fit these methods into the general results in Section 6.
The AMGe methods are less algebraic, as they assume an underlying grid
and use element local stiffness matrices to define interpolation operators.
In the AMGe setting, it is assumed that we know the decomposition of the
n× n matrix A, that is,

A =
∑
τ∈T

Ãτ , (10.21)
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where T is the set of finite elements used to discretize the problem and, for
each element τ ∈ T , Ãτ is the zero-extension of the local stiffness matrix
Aτ on τ (which is symmetric positive semi-definite).

To define Vj , Dj , Aj and Πj in Section 6, corresponding to AMGe, we
partition the domain Ω into disjoint subdomains, Ω1, . . . ,ΩJ . Each sub-
domain is an agglomeration of elements, and

Ω̄ =
J⋃
j=1

Ω̄j .

For each subdomain Ωj , we introduce the cutoff operator χj : V 7→ Vj ,
whose action on v ∈ V is defined by

(χjv)(x) :=

{
v(x) if x ∈ Ω̄j ,

0 if x /∈ Ω̄j .
(10.22)

Then we define the space Vj by

Vj := χjV. (10.23)

Here Aj is defined by summing up all the associated stiffness matrices for
elements in Ωj , namely

Aj :=
∑
τ⊂Ωj

Ãτ . (10.24)

Clearly, Aj is symmetric positive semi-definite. It is easy to verify that
(6.10) holds. In fact, we have the following equations:

J∑
j=1

‖χjv‖2Aj =
J∑
j=1

a(v, v)Ωj =
∑
τ∈T

a(v, v)τ = ‖v‖2A. (10.25)

If we denote the diagonal of A by D, then Dj is a diagonal matrix
defined by

[Dj ]ii :=

{
Dii if i ∈ Ωj ,

0 if i /∈ Ωj .
(10.26)

The operator Πj is provided by diagonal matrices defined as

[Πj ]ii :=

{
[Aj ]ii/[A]ii if i ∈ Ωj ,

0 if i /∈ Ωj .
(10.27)

Note that [Πj ]ii = 1 if i is an inner point of Ωj . Inequality (6.9) is verified
in Lemma 12.4.

On each local space Vj , spectral AMGe chooses locally the ‘best’ coarse
space V c

j , which is the subspace spanned by eigenvectors of D−1
j Aj belonging
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to its mc
j smallest eigenvalues. The global coarse space is then defined

by (6.12).
By the abstract convergence theorem (Theorem 5.3), the convergence rate

of two-level spectral AMGe depends on the minimum of each mc
j+1 smallest

eigenvalue of D−1
j Aj on Vj . More precisely,

‖E‖A ≤ 1− µc
Cp,1Cp,2

,

with µc = min1≤j≤J µ
(j)
mcj+1.

10.5. Bibliographical notes

The main ideas of the GMG method were first demonstrated in the pioneer-
ing works by Fedorenko (1961, 1964) and Bahvalov (1966). Similar ideas,
using group relaxation methods, can be traced back to the works of South-
well (1940, 1946). The first description of a truly multigrid method is found
in the seminal work by Brandt (1973). Further developments in multilevel
methods are those of Brandt (1977) and Hackbusch (1979, 1978). These
works have attracted a lot of attention from the computational mathemat-
ics and engineering communities. Advances in the convergence analysis of
multigrid methods have been made by Nicolaides (1975, 1977), Bank and
Dupont (1980), Braess and Hackbusch (1983), Bramble and Pasciak (1987),
Bramble, Pasciak and Xu (1990, 1991a), Bramble, Pasciak, Wang and Xu
(1991c) and Xu (1992).

BoxMG (Dendy 1982, 1983) is a method that uses geometrically refined
grids and defines interpolation using algebraic techniques. We refer to
Dendy (1982, 1983) and de Zeeuw (1990) for details, and also to MacLach-
lan, Moulton and Chartier (2012) for results on the equivalence between
BoxMG and classical AMG.

Element-based AMG approaches are less algebraic, as they assume an
underlying grid and use element stiffness matrices to define interpolation
operators. Such methods include plain AMGe, element-free AMGe, spectral
AMGe and spectral agglomerate AMGe, and are developed to improve AMG
robustness for finite element based AMG. For results and discussions on
different flavours of AMGe we refer to Jones and Vassilevski (2001), Brezina
et al. (2001), Henson and Vassilevski (2001) and Brezina et al. (2006).

11. Energy-min AMG

Here we consider the energy-minimization algorithms for the construction
of coarse spaces. While this is not historically the first AMG approach to
coarsening, we focus on this technique first, as it can be used to motivate
most other AMG algorithms.
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11.1. Energy-minimization versus trace-minimization

In the next theorem we add a constraint to Theorem 5.8 and give a relation
between the optimal coarse space V opt

c and the energy-minimization. We
refer to Section 5.2 for the definition of P opt and Xη.

Theorem 11.1 (trace-minimization theorem). Given η > 0, let Zη
be defined as

Zη =
{
P ∈ Rn×nc : (Pv, Pv)R̄−1 ≥ η(v, v), v ∈ Rnc and P1 =

√
ncηζ1

}
.

(11.1)
Then P ∈ arg minQ∈Zη trace(QTAQ) if

P ∈ Zη and Range(P ) = Range(P opt).

Let P̂ = R̄−1/2P and define

Yη =
{
P ∈ Rn×nc : (Pv, Pv) ≥ η(v, v), v ∈ Rnc and P1 =

√
ncηζ̂1

}
,

(11.2)

where ζ̂j is the eigenvector corresponding to the jth smallest eigenvalue of

R̄1/2AR̄1/2. It is clear that R̄1/2AR̄1/2 and R̄A have the same spectrum.
Theorem 11.1 can be written as follows.

Theorem 11.2. Given η > 0, let Yη be defined as in (11.2). Then,

P ∈ arg min
Q∈Yη

trace(QT R̄1/2AR̄1/2Q)

if P ∈ Yη and Range(P ) = Range(P opt).

Suppose now that we have a bilinear form a(·, ·) on V which is symmet-
ric positive semi-definite, and an inner product (·, ·)R̄−1 on V . Here, for
example, the operator R̄ is the scaled parallel (resp. successive) subspace
correction method corresponding to the splitting of V as

V =

n∑
i=1

span{φi}.

In practice, R̄ can be a symmetrization of any A-norm convergent smoother
on V . Here, for simplicity, we choose R̄ = D−1.

We now consider a finite element space V with basis functions

{φj : j = 1 : n}.

Let P = (pij) ∈ Rn×nc be such that

(φc1, . . . , φ
c
nc) = (φ̂1, . . . , φ̂n)P, φ̂j = φj/‖φj‖A, j = 1 : n. (11.3)
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Let {(µj , ζj)} denote the eigenpairs of R̄A, and ζ̂j = ζj/‖ζj‖A. We then
define

Xη =
{

(φc1, . . . , φ
c
nc) : (φc1, . . . , φ

c
nc) satisfies (11.3) with P ∈ Yη

}
. (11.4)

We consider the minimization problem

min
(φc1,...,φ

c
nc )∈Xη

nc∑
j=1

‖φcj‖2A. (11.5)

Note that
nc∑
j=1

‖φcj‖2A =

nc∑
j=1

a(φcj , φ
c
j) =

nc∑
j=1

a

( n∑
k=1

pkjφ̂k,
n∑
l=1

pljφ̂l

)

=

nc∑
j=1

n∑
k=1

n∑
l=1

pkja(φ̂k, φ̂l)plj = trace(P TD−1/2ÃD−1/2P ).

Then Theorem 11.1 implies that

span{ζj , 1 ≤ j ≤ nc} = span{φ0
j , 1 ≤ j ≤ nc}, (11.6)

where

(φ0
1, . . . , φ

0
nc) ∈ arg min

(φc1,...,φ
c
nc

)∈Xη

nc∑
j=1

‖φcj‖2A. (11.7)

In the next section we use the functional setting, and provide details of the
design of energy-minimizing bases.

11.2. Energy-minimization basis for AMG and Schwarz methods

The discussion above motivates the computation of an energy-minimizing
basis as the solution of a global optimization problem with constraint. This
could be of concern regarding the efficiency of the proposed approach. As
we show later in this section, however, this is not a concern because the op-
timization problem is well conditioned and can be solved efficiently. We also
show below that the basis functions solving the energy-minimization prob-
lem are locally harmonic within each coarse grid ‘element’. This property
of the energy-minimizing basis suggests that various ‘harmonic extension’
techniques, used to define coarse spaces in multigrid methods (see Chan,
Xu and Zikatanov 1998, Brezina et al. 2001, Jones and Vassilevski 2001)
are very closely related to the energy-minimization algorithms. This prop-
erty also suggests that the energy-minimizing basis may also be used for
numerical homogenization for multiscale problems (see Efendiev, Hou and
Wu 2000, Hou, Wu and Cai 1999).
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We start our description with a given set of subdomains Ωi with the
property that none of the subdomains is fully contained in the union of the
rest of them. More precisely, we have

Ω =

nc⋃
i=1

Ωi and Ω̄i

⋂(⋃
j 6=i

Ωj

)c
6= ∅, (11.8)

where the superscript c is the standard set-complement. Equivalently, in the
purely algebraic setting, when there is no function space in the background,
we may choose Ωi to be a subset of vertices of the adjacency graph corres-
ponding to a matrix A. The aim is to construct basis functions {φHi }

nc
i=1

that are in Xη, with the following additional restrictions:

supp(φHi ) ⊂ Ω̄i, 1 ≤ i ≤ nc.

We want the basis functions to have a total minimal energy among all
such functions, namely {φHi }Ji=1 is the minimizer of

min

nc∑
i=1

‖ψi‖2A subject to ψi ∈ Vi and (ψ1, . . . , ψnc) ∈ Xη. (11.9)

Here

Vi = {v ∈ Vh : supp(v) ⊂ Ω̄i}, 1 ≤ i ≤ nc. (11.10)

Thanks to (11.8), the decomposition (11.11) holds, namely

V =

nc∑
i=1

Vi. (11.11)

Remark 11.3. In AMG, the minimization problem (11.9) written in terms
of the prolongation matrices is as follows: find P ∈ Rn×nc such that

P = arg min
Y ∈Rn×nc

F(Y ), Y 1nc = 1n, F(Y ) = trace(Y TAY ). (11.12)

In terms of vectors, local support means that few non-zeros per column
(or per row) are allowed in P . We note that the functions {φHi } satisfying
the properties mentioned above are linearly independent due to the second
assumption in (11.8) and the constraint in (11.12). This linear independence
is equivalent to assuming that P is a full rank matrix (i.e. rank(P ) = nc).

By the assumption in (11.8), for each j, there exists k ∈ Ωj such that
k /∈ Ωi for all i 6= j. We define

Aj = {k ∈ Ωj : k /∈ Ωi, i 6= j}, j = 1 : nc.
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Then Aj ∩ Ai = ∅ if i 6= j. We then define

C =

nc⋃
j=1

Aj and F = Ω \ C.

We define Nj ∈ V ′ as follows:

Nj(v) =
1

|Aj |
∑
i∈Aj

ψi(v) =
1

|Aj |
∑
i∈Aj

vi, j = 1 : nc.

Clearly {Nj}ncj=1 are linearly independent, and if supp(v) ⊂ Ωj , thenNi(v) =
0 for all i 6= j.

We define (V ′)c ⊂ V ′ by

(V ′)c = span{Nj : j = 1 : nc},

and Vhf ⊂ V by

Vhf = {v ∈ V : (g, v) = 0, for all g ∈ (V ′)c}.

If the basis {ϕj}ncj=1 satisfies

supp(ϕj) ⊂ Ωj and

nc∑
j=1

ϕj = 1,

then we have the Gram matrix

G = (Gij) = (Nj(ϕi)) = I.

By Lemma 9.1, we have

V = Vhf ⊕Wc, Wc = span{ϕj : j = 1 : nc}.

Let us first introduce some notation. We define the restriction Ai of A
on each subspace Vi as

(Aiui, vi) = (Aui, vi), for all ui, vi ∈ Vi, i = 1 : nc. (11.13)

Let Qi : V ′ 7→ V ′i be a projection defined as the adjoint of the natural
inclusion Vi ⊂ V :

〈Qiu′, vi〉 = 〈u′, vi〉 for all vi ∈ Vi, u′ ∈ V ′.

We now define the following PSC-type preconditioner (see (4.17)):

B =

nc∑
i=1

A−1
i ı′i =

nc∑
i=1

ıiA
−1
i ı′i. (11.14)

Thanks to (11.8), it is easy to see that the operator T : V 7→ V is an
isomorphism.

We are now in a position to state and prove the first result in this section.
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Theorem 11.4. The minimization problem (11.9) has a unique solution
which is given by

φHi = A−1
i QiB

−11, (11.15)

satisfying

supp(φHi ) ⊂ Ωi.

Proof. This result actually follows directly from Theorem 4.4 with v = 1.
However, let us give a different proof by finding the critical point of the
quadratic functional

L =

nc∑
i=1

(
1

2
‖φi‖2A − 〈λ, φi〉

)
.

Differentiating this functional gives

[∂φiL]ξi = (Aφi, ξi)− 〈λ, ξi〉, ξi ∈ Vi.

Hence the the ith component of the critical point (φHi ) is given by

(φi, ξi)A = 〈λ, ξi〉, for all ξi ∈ Vi, i = 1 : nc. (11.16)

From the above equations we obtain that

φHi = A−1
i Qiλ.

Summing up leads to

λ = B−11.

This gives a derivation of (11.15).
It is obvious that this unique critical point (φHi ) is indeed the unique

global minimizer of (11.9) that has a convex objective functional and a
convex constraint.

We now show that the constructed basis functions are locally discrete
A-harmonic. We say that a function w ∈ V is discrete A-harmonic on a
subdomain D if

(w, v)A = 0, for all v ∈ Vh,0(D) ≡ {v ∈ Vh : supp(v) ⊂ D̄}.

This property requires us to define the ‘subdomains’ D on which it holds.
Below, we introduce such subdomains in terms of function spaces. Mat-
rix/vector representations of the considerations below are easy to write. To
define an analogue of coarse grid elements (an analogue to a finite element
coarse grid), we first consider the set of all points in Ω that are interior to
all the Ωi:

ω0 =

( nc⋃
i=1

∂Ωi

)c⋂
Ω.
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Given x ∈ ω0, define the following function with values in the subsets of
{1, . . . , nc}, which is the set of indices of subdomains Ωi that contain x:

I(x) = {i : x ∈ Ωi}. (11.17)

To rule out any ambiguity, we shall assume that for any x ∈ ω0 the set I(x)
is ordered in ascending order. We then define

Kx = {y ∈ ω0 : I(y) = I(x)}. (11.18)

That is, Kx is the intersection of all the Ωi that contain x (see Figure 11.1).
The following simple proposition will lead us to an appropriate definition

of coarse grid elements.

Proposition 11.5. For the sets Kx defined in (11.18) we have:

(a) Kx = Ky if and only if I(x) = I(y),

(b) either Kx ∩Ky = ∅ or Kx = Ky, x ∈ ω0, y ∈ ω0,

(c) there are a finite number mH of different sets Kx, x ∈ ω0.

Proof. The (⇒) direction in (a) follows from the fact that x ∈ Kx = Ky,
and hence I(x) = I(y). The other direction follows from the definition
of Kx,y.

To prove (b) let us assume that there exists z ∈ ω0, such that z ∈ Kx and
z ∈ Ky. The definition of Kx and Ky then gives that I(x) = I(y) = I(z).
By (a), Kx = Ky. This proves (b).

The conclusion (c) follows directly from (b).

Let TH denote the finite collection of mH sets from Proposition 11.5(c).
We have

ω0 =
⋃
x∈ω0

Kx =
⋃

K∈TH

K.

As it is obvious that ω̄0 = Ω̄,

Ω̄ = ω̄0 =
⋃

K∈TH

K =
⋃

K∈TH

K̄. (11.19)

This means that the collection of TH forms a non-overlapping partition of
Ω. Each element in TH will be called a coarse grid element.

Remark 11.6. It is tempting to show how these macro-elements look on
an unstructured grid, and in Figure 11.1 we have depicted three such sup-
ports together with their intersection. However, let us point out that an es-
sential feature of the technique we present here is that the coarse elements
need not be defined explicitly, and they might have a fairly complicated
shape.

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


Algebraic multigrid methods 677

(a) (b)

(c) (d)

Figure 11.1. (a–c) A triangular grid and the supports of three basis functions. The
intersections are plotted in (d): the darker shaded domain corresponds to a coarse
element and is the intersection of all three supports; the lighter shaded domains
are intersections of two supports; the white area corresponds to no intersection.

Lemma 11.7. Let λ = B−11. Assume that for each coarse element K ∈
TH as defined above, we have (1, wK)A = 0 for all wK supported in K.
Then

〈λ, ξ〉 = 0, for all ξ ∈ Vh,0(K).

Proof. By definition K = Ky for some y ∈ Ω. Thus

Vh,0(K) =
⋂

i∈I(y)

Vi and
∑
i∈I(y)

φHi (x) = 1, x ∈ K.

Thus, by (11.16), we have

(φi, ξ)A = 〈λ, ξ〉, for all ξ ∈ Vh,0(K),

and

〈λ, ξ〉 =
∑
i∈I(y)

(φi, ξ)A = (1, ξ)A = 0.

The desired result then follows.
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Figure 11.2. (a) The profile of λ = B−11, and (b) a typical basis function φHi .

When the coarsening corresponds to a geometric multigrid and uniform
refinement, the lemma shows that λ = B−11 ∈ V ′ is a discrete edge δ-
function with respect to the coarse elements (i.e. λ is supported around
∂K). Figure 11.2 shows an example profile of λ and a basis function φHi .

Combining the above result with the identity (11.16), we immediately
obtain our second main result in this section.

Theorem 11.8. Each basis function φHi is discrete A-harmonic on each
coarse element K ∈ TH , namely

(φHi , v)A = 0, v ∈ Vh,0(K). (11.20)

In one space dimension (d = 1) the above result is rather trivial, and this
has in fact already been discussed by Wan, Chan and Smith (1999/2000).
In this case, the basis function (φHi ) is analogous to the generalized finite
element basis function in Babuška and Osborn (1983).

The local harmonic properties in all the aforementioned literature are
obtained by construction from local element boundaries. It is interesting to
note that the energy-minimizing basis studied here is the result of a more
global construction, and the local harmonic properties are a by-product of
the construction.

11.3. Convergence of energy-minimization AMG

We present a proof of the two-level convergence of AMG based on energy-
minimization.

We define cutoff operators χj on the subdomains Ωj introduced in (11.8)
as follows:

(χjv)(x) :=

{
v(x) if x ∈ Ω̄j ,

0 if x /∈ Ω̄j .

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


Algebraic multigrid methods 679

Then we define spaces Wj by

Wj := χjV = χjv, for v ∈ V.

It is easy to verify that

{χjφi : suppφi ∩ Ωj 6= ∅} (11.21)

forms a basis of Wj .
The operator Πj : Wj 7→ V is defined as in (10.14), with φHj being the

solution of the minimization problem (11.9) ((11.15) in Theorem 11.4).
We then have that

nc∑
j=1

Πjχj = Id.

In fact, we have

nc∑
j=1

φHj (x) =
∑
j:x∈Ωj

φj(x) =
∑
j∈I(x)

φj(x) = 1,

which implies the identity

nc∑
j=1

Πjχjv = Ih

( nc∑
j=1

φHj χjv

)
= Ih(v) = v, and hence

nc∑
j=1

Πjχj = Id.

(11.22)
The operator Aj : Wj 7→ W ′j is the local restriction of the bilinear form

a(·, ·) as in (10.15).
Inequality (6.10) is satisfied with the decomposition v =

∑nc
j=1 Πjvj ,

where vj = χjv ∈Wj :

mc∑
j=1

‖vj‖2Aj =

mc∑
j=1

a(v, v)Ωj ≤ Co‖v‖2A,

where Co depends on the number of overlaps of Ωj .
We choose D : V 7→ V ′ using the fine grid basis functions as follows:

(Dφhi , φ
h
j ) := (Aφhi , φ

h
j )δij , 1 ≤ i, j ≤ n. (11.23)

Notice that in the above definition the matrix representation of D is the
diagonal of the matrix representation of A. In a similar way, we can define
Dj : Wj 7→W ′j using basis functions of Wj defined in (11.21), and the matrix
representation of Dj is the diagonal of the matrix representation of Aj . It
is well known that

‖v‖2D ∼=h−2‖v‖20, for all v ∈ V, and ‖vj‖2Dj ∼
=

h−2‖vj‖20, for all vj ∈Wj .
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Inequality (6.9) can be verified by∥∥∥∥ nc∑
j=1

Πjvj

∥∥∥∥2

D

. h−2

∫
Ω

( nc∑
j=1

φHj vj

)2

= h−2
nc∑
i,j=1

∫
Ω
φHi viφ

H
j vj

≤ h−2
nc∑
i,j=1

‖φi‖∞‖φj‖∞
∫

Ω
vivj

≤ h−2
(

max
1≤j≤nc

‖φj‖∞
)2

nc∑
i,j=1

∫
Ωi

⋂
Ωj

vivj

≤ Co
(

max
1≤j≤nc

‖φj‖∞
)2

nc∑
j=1

h−2

∫
Ωj

|vj |2

. Co
(

max
1≤j≤nc

‖φj‖∞
)2

nc∑
j=1

‖vj‖2Dj .

We choose local coarse spaces W c
j ⊂ Wj to be the space of constant

functions on Ω̄j . Then the global coarse space Vc is defined as

Vc :=

nc∑
j=1

ΠjW
c
j .

In fact, for this case, Vc is the subspace spanned by {φHj }:

Vc = span{φHj : j = 1, . . . , nc}. (11.24)

We choose the subdomain Ωj such that the Poincaré inequality holds:

inf
vc∈W c

j

‖v − vc‖20 ≤ cd2
j |v|21,

where dj is the diameter of Ωj , and c is a constant independent of the mesh
size and the size of Ωj . Since

‖v‖2Dj ∼=h−2‖v‖20, ‖v‖2Aj ∼=|v|21,

we have

inf
vc∈W c

j

‖v − vc‖2Dj ≤ c
(
dj
h

)2

‖v‖2Aj ,

Combining the above discussion with Theorem 6.10, we obtain the fol-
lowing result.

Theorem 11.9. The convergence rate of two-level AMG based on energy-
minimization is bounded by

‖E‖A ≤ 1− µ, (11.25)

https://doi.org/10.1017/S0962492917000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492917000083


Algebraic multigrid methods 681

where 0 < µ < 1 depends only on the size and overlaps of the sub-
domains Ωj .

11.4. Bibliographical notes

Energy-minimization seems to encompass several algorithms: the Lagrange
equations for this minimization are solved approximately in classical AMG
(Section 12), while the functional is approximately minimized in smoothed
aggregation (Section 13).

For energy-minimization approaches we refer to the works by Mandel,
Brezina and Vaněk (1999), Wan et al. (1999/2000), Chan, Xu and Zikatanov
(1998), Xu and Zikatanov (2004) and Brannick and Zikatanov (2006). An
interesting fact is that for regularly refined grids, given the right supports,
the trace (energy) minimization prolongation recovers the coarse basis very
closely, although not exactly. The small discrepancies are due to effects
from the boundary, and the further in graph distance the coarse grid basis
function is, the closer it is to piecewise linear.

The extensive numerical experiments reported in Wan et al. (1999/2000),
Wan (1998), Mandel et al. (1999) and Xu and Zikatanov (2004) show that
the energy-minimizing basis leads to uniformly convergent two-grid and
multigrid methods for many problems of practical interest, and especially for
problems with rough coefficients. These methods also provide a framework
for numerical homogenization, and are related to the homogenization meth-
ods used by Grauschopf, Griebel and Regler (1997) and the M3 techniques
of Lipnikov, Moulton and Svyatskiy (2011).

The ‘smoothed aggregation’ approach in the algebraic multigrid method,
as well as the theoretical framework, is reported in works by Vaněk, Mandel
and Brezina (Vaněk et al. 1996, 1998, Mandel et al. 1999), who draw an
explicit relation between the construction of a basis for the coarse space and
the ‘energy’ of the basis functions. As pointed out by Wan et al. (1999/2000)
and Mandel et al. (1999), this can be viewed as a step (or steps) towards
obtaining basis functions minimizing a quadratic (energy) functional, which
we considered earlier.

Olson, Schroder and Tuminaro (2011) explore different sparsity patterns,
including long-distance energy-minimizing prolongations. Schroder (2012)
considers anisotropic problems.

Vassilevski and Zikatanov (2006) consider constrained energy-minimiza-
tion preserving multiple vectors. In the finite element settings, when the
element stiffness matrices are available, local energy-minimization provides
coarse spaces which result in uniform two-level convergence (Kolev and
Vassilevski 2006).
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12. Classical AMG

A coarse space in classical AMG is always viewed as a subspace defined via
a prolongation (interpolation) matrix. Its dimension, nc, is a fraction of
the dimension of the finer space. Popular interpolation schemes in classical
AMG are direct, standard or multipass interpolation. The matrix represent-
ations of such interpolations are of the form P =

(
W
I

)
, with W ∈ RnF×nC ,

and they can be viewed as sparse approximations to the so-called ‘ideal’ in-
terpolation with W = −A−1

FFAFC , which is, in general, a full matrix. Here,
the matrix AFF is the block of the matrix corresponding to the F -points
and AFC is the block corresponding to the connections between the C-points
and F -points. The splitting of vertices of the adjacency graph correspond-
ing to A in subsets F and C is done using one of the coarsening strategies
described in Section 9.

12.1. Coarse spaces in classical AMG

The coarsening algorithm in classical AMG uses a splitting of the set of
vertices {1, 2, . . . , n} of the graph corresponding to A into two disjoint sets

C ∪ F = {1, 2, . . . , n}, C ∩ F = ∅, (12.1)

where C is a maximal independent set whose independence is with respect
to the graph of the strength operator S defined in Section 8.2, and the
splitting is referred to as a ‘C/F splitting’. A simple greedy C/F splitting
algorithm is introduced in Algorithm 5, Section 9.3.1.

We assume that V is equipped with a basis {φk}nk=1, and we let nf = |F|,
nc = |C| denote the cardinality of the sets forming the C/F splitting. When
convenient we assume that

F = {1, . . . , nf} and C = {nf + 1, . . . , n}. (12.2)

In this case, the high-frequency space Vhf as defined in (9.2) can be writ-
ten as

Vhf = span{φj , j ∈ F}. (12.3)

Following the procedure in Section 9, we first proceed to identify a tentative
coarse space Wc. One easy choice is

Wc = span{φj , j ∈ C}. (12.4)

Obviously the above tentative space satisfies (9.3), namely

V = Vhf ⊕Wc,

but Wc is hardly a low-frequency space. Given a basis function in Wc, φjk ,
we filter out its high-frequency component to obtain the following coarse
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basis function:

φk,c := (I −Πhf )φjk = φjk +
∑
j /∈C

pjkφj . (12.5)

Here Phf is the (·, ·)A orthogonal projection onto Vhf . By the definition
of Πhf ,

Πhfφk =

{
φk if k ∈ F ,
−
∑

j∈F pjkφj if k ∈ C,

where pjk satisfies

−
∑
j∈F

pjk(φj , φi)A = (φk, φi)A, for all i ∈ F , k ∈ C. (12.6)

In matrix notation, with the ordering given by (12.2), the matrix form of
the equations in (12.6) is

AFFW = AFC , where A =

(
AFF AFC
ATFC ACC

)
. (12.7)

Here, Wjk = pjk, j ∈ F , k ∈ C, where pjk are the coefficients given in (12.6).
In view of Lemma 9.3, we have S = I−Πhf . Vc is the span of the functions

in (12.5):

Vc = span{φk,c}nck=1 = Range(I − Phf ).

We note that

(φ1,c, . . . , φnc,c) = (φ1, . . . , φn)

(
W
I

)
.

Thus the corresponding prolongation matrix is

P =

(
W
I

)
, W = −A−1

FFAFC . (12.8)

The functions {φk,H} given in (12.5) form a basis of Vc similar to the geo-
metric multigrid method for Lagrangian finite elements. We denote the
prolongation matrix defined in (12.8) by P opt, and refer to it below as the
ideal interpolation.

The following result can be easily established.

Lemma 12.1. If A satisfies A1 = 0, the solution of (12.7) also satisfies
the constraint in (11.12), namely, W1nc = 1nF .

Next, we introduce the set of the prolongations PC ,

PC =

{
P : P =

(
W
I

)}
.
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and from the definition given in (5.25) in Section 11 we recall that

PC ⊂ ηX ,

for some constant η > 0. For example, η ∼=max1≤j≤n |Djj | if R̄−1 ∼=D, where
D is the diagonal of A. Equivalently, P ∈ PC means that the coarse grid
basis is defined as

φk,H = φjk + vf , jk ∈ C, vf ∈ Vf , k = 1, . . . , nc.

Clearly, all elements of PC are of full rank, and we also have that P opt ∈ PC
by definition.

We have the following theorem, showing that the coarse grid matrix cor-
responding to V opt

c = Range(P opt) has a minimal trace.

Theorem 12.2. If we fix the set of indexes C and coarse grid degrees of
freedom, then for P opt we have

P opt = arg min
P∈PC

trace(P TAP ). (12.9)

Furthermore, if we denote Ac = (P opt)TAP opt, then

‖vc‖2Ac = min
{
‖v‖2A : 〈φ′jk , v〉 = vc,k, k = 1, . . . , nc

}
. (12.10)

Proof. The relation (12.9) follows from the simple identities

trace(Ac) =

nc∑
k=1

‖φk,H‖2A =

nc∑
k=1

‖(I − Phf )φjk‖
2
A

=

nc∑
k=1

min
vk∈Vhf

‖φjk + vk‖2A

= min

{
nc∑
k=1

‖φjk + vk‖2A : vk ∈ Vhf , k = 1, . . . , nc

}
= min

P∈PC
trace(P TAP ).

To prove (12.10), we note that any v ∈ V such that 〈φ′jk , v〉 = vc,k can be
written as

v = wc + vf , where wc =

nc∑
k=1

vc,kφjk .

By the definition of Phf , we have (I−Phf )vf = 0 and vc = (I−Phf )(v−vf ) =
(I − Phf )v. We then have

‖v‖2A = ‖Phfv‖2A + ‖(I − Phf )v‖2A = ‖Phfv‖2A + ‖vc‖2Ac ≥ ‖vc‖
2
Ac .
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Theorem 12.2 shows that the minimizer P satisfies equation (12.7). By
Theorem 12.2 it follows that the minimizer of (11.12) and the solution
to (12.7) are the same for A1 = 0.

12.2. Quasi-optimality of the ideal interpolation

The following two-level convergence result is well known: see e.g. MacLach-
lan, Manteuffel and McCormick (2006).

Theorem 12.3. For P opt defined as the solution to the minimization
problem (11.12), or equivalently the solution to (12.7), the two-level AMG
method with prolongation P opt converges with a rate ‖E‖A ≤ 1− δ, where
δ is a constant depending only on the maximum degree of the vertices in
the graph corresponding to A and the threshold θ in choosing the strong
connections.

Proof. According to Corollary 5.21, we only need to verify that Vhf con-
sists of δ-algebraic high frequencies as defined in Definition 5.17. Clearly,
from the discussion in Section 7.2, we can assume that A is an M -matrix
with all connections being strong connections. We consider the graph cor-
responding to A and recall that the set of coarse grid degrees of freedom
is a maximal independent set of vertices in this graph. By definition of
connection strength, for any j ∈ {1, . . . , n} and any i ∈ N(j) we have

ajj =
∑
k∈Nj

−ajk ≤ |Nj |max
k∈Nj

(−ajk) ≤ −
|Nj |
θ
aji.

Next, for any j ∈ F , let kj ∈ C be such that |akj ,j | > 0. Such a kj
exists because the set of C-vertices is a maximal independent set. This
choice is not unique, and we just fix one such index kj for every j. Using
the notation from Section 9, and the fact that v ∈ Vhf vanishes at the
C-vertices, we obtain

‖v‖2R̄−1 ≤ cD‖v‖2D = cD
∑
j∈F

ajjv
2
j = cD

∑
j∈F

ajj(vj − vkj )
2

≤ cD
∑
j∈F
−|Nj |

θ
aj,kj (vj − vkj )

2

≤ max
j

(|Nj |)
cD

θ

∑
(i,j)∈E

−aij(vi − vj)2

≤ max
j

(|Nj |)
cD

θ
‖v‖2A.

We note that interpolations like P opt (with the possible exception of one-
dimensional problems) are not used in practice, because the prolongation
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686 J. Xu and L. Zikatanov

matrix P opt could have a lot of fill-in and (P opt)TAP opt is dense. However,
it is also important to note that sparse approximations to P opt are used in
practice. Thus the energy-minimization technique for constructing coarse
spaces may be viewed as a motivation for other AMG techniques used to con-
struct approximations of V opt

c . For example, most of the known techniques
approximate the minimizer of the functional F given in equation (11.12):
(i) the prolongation matrices constructed in the classical AMG framework
approximate the solution to equation (12.7) over the subset of PC consist-
ing of sparse matrices, and (ii) the energy-minimization techniques outlined
in Section 11.2 and the smoothed aggregation considered in Section 13.3
minimize (approximately) the trace of the coarse grid matrix F(P ) over a
set of sparse matrices P .

12.3. Construction of prolongation matrix P

12.3.1. Prolongation

An intuitive idea for finding an approximate solution of the problem (12.7)
is to use some basic iterative methods such as the Jacobi method, and then
properly rescale the coefficients of W so that it satisfies

W1nc = 1nf (12.11)

and also fits into a sparsity pattern:

W ∈ Rnf×ncS . (12.12)

Following this idea, we construct the interpolations used in classical AMG
(Trottenberg et al. 2001, Section A.7) – direct interpolation, standard inter-
polation and multipass interpolation – in a unified fashion.

Direct interpolation. Here we approximate the solution to (12.7)–(12.12)
by one Jacobi iteration with initial guess W0 = 0, namely,

W1 = −D−1
FFAFC .

In order to satisfy the constraint (12.11), we rescale W1 to obtain that

W = M(−D−1
FFAFC) = [diag(AFC1)]−1AFC ,

where M is a rescaling operator defined by

M(Y ) = [diag(Y 1)]−1Y. (12.13)

Standard interpolation. The construction of the prolongation matrix via
standard interpolation can be viewed in several different ways. Probably the
most natural way is to view it as a smoothing of the direct interpolation,
again followed by rescaling. Indeed, assuming that the smooth error (eTF , e

T
C)

satisfies

AFF eF +AFCeC = 0,
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we approximate this equation via

eF = −D−1
FFAFCeC +D−1

F AFF (D−1
FFAFC)eC (12.14)

W = (I −D−1
FFAFF )W 1, W 1 = −D−1

FFAFC , (12.15)

using the same notation eF , eC for the approximations (see Trottenberg
et al. 2001). This is equivalent to a Jacobi smoothing iteration applied
to the unscaled direct interpolation W 1. Rescaling is also needed for the
standard interpolation, and the final formula is

W = [diag((I −D−1
FFAFF )W 11)]−1(I −D−1

FFAFF )W 1. (12.16)

The similarity to the smoothed aggregation discussed in Section 13.3 is
obvious, as this is indeed a smoothing applied to W 1.

Multipass interpolation. This is an approximation to the solution of
(12.7) when the C/F splitting has been constructed by means of aggressive
coarsening, namely, using the (m, l)-strong connection defined in Defini-
tion 9.7. The set of F is divided into l disjoint subsets F1, F2, . . . , Fl as
follows. We first define the distance from a point j to a subset of points C:

dist(j, C) = min{dist(j, i) : i ∈ C}.

Next, we set

Fk = {j ∈ F : dist(j, C) = k}, k = 1, 2, . . . , l, l = max{dist(j, C) : j ∈ F}.

Then AFF , AFC can be written as the following block matrices:

AFF =


AF1F1 AF1F2 · · · AF1Fl
AF2F1 AF2F2 · · · AF2Fl

...
...

. . .
...

AFlF1 AFlF2 · · · AFlFl

, AFC =


AF1C

AF2C
...

AFlC

. (12.17)

We can also write W block-wise as W T = (W T
F1
,W T

F2
, . . . ,W T

Fl
). Then (12.7)

takes the form
AF1F1WF1 +AF1F2WF2 + · · ·+AF1FlWFl +AF1C = 0,

AF2F1WF1 +AF2F2WF2 + · · ·+AF2FlWFl +AF2C = 0,
...

AFlF1WF1 +AFlF2WF2 + · · ·+AFlFlWFl +AFlC = 0.

(12.18)

To define the entries of WFk via multipass interpolation, we use the following
steps.

1 For k = 1, use direct interpolation to approximate WF1 . More precisely,
we write the first equation in (12.18) as

AF1F1WF1 + ÂF1C = 0,
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688 J. Xu and L. Zikatanov

with ÂF1C = AF1F2WF2 + · · ·+AF1FlWFl +AF1C . Then we apply direct
interpolation and write WF1 as a function of WFj , j > 1.

2 While k < l:

(a) Write the (k + 1)st equation in (12.18) substituting the expressions
for WFm , m < (k+1) obtained from the previous steps. The (k+1)th
equation then has the form

ÂFk+1Fk+1
WFk+1

+ ÂFk+1Fk+2
WFk+2

+ · · · ÂFk+1FlWFl + ÂFk+1C = 0.
(12.19)

(b) Apply direct interpolation to (12.19) to write WFk+1
as a function of

WFj , j > (k + 1).

(c) Set k ← k + 1.

From the derivation and the definitions above, we have the following
set inclusions describing the sparsity patterns of the prolongations defined
earlier:

S(P ) ⊂ S

(
AFC
I

)
(direct interpolation (12.3.1)),

S(P ) = S

(
ÂFC
I

)
(standard interpolation (12.16)),

S(P ) = S


ÂF1C

ÂF2C
...

ÂFlC
I

 (multipass interpolation).

12.3.2. Interpolation preserving a given vector

From the above discussions, it is important that the prolongation P pre-
serves some vectors which can represent algebraic smooth errors. Both dir-
ect and standard interpolation use a diagonal scaling to make sure that the
prolongation preserves constant vectors, which is the kernel of scalar elliptic
operators. To generalize this idea, here we introduce αAMG interpolation,
which constructs the prolongation matrix by choosing an initial guess that
preserves the near-null component v(1), which may not necessarily be con-
stant vectors.

We construct P ∈ PC such that it ‘preserves’ a given vector v, namely,

vF = WvC .

To do this, we first pick an initial guess W 0 for W (or P ),

W 0 = D−1
v AFC , (12.20)
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where Dv is a diagonal matrix such that the following identity holds:

vF = D−1
v AFCvC .

It is easy to derive that the explicit formula for diagonal entries of Dv is

dkk =

∑
j∈C akjv

(1)
j

v
(1)
k

.

Then the W in this ‘vector-preserving’ interpolation is obtained by applying
one Jacobi iteration for the linear problem (12.7) with initial guess W 0:

W = D−1AFC +D−1
FF (−AFC −AFFD−1AFC).

A fully detailed description of the construction of a prototype vector v and
coarse space interpolating this vector exactly, using αAMG (the classical
AMG version of adaptive AMG), can be found in Brezina et al. (2006).
The ideas, however, were outlined earlier in Brandt et al. (1982).

12.4. Classical AMG within the abstract AMG framework

Classical AMG falls within the abstract theory developed in Sections 5
and 6. To do this, we first consider an M -matrix relative of A using the
adjacency graph corresponding to a strength function. We then use a max-
imal independent set algorithm to identify C, the set of coarse points, to
form a C/F splitting. We further split the set of indices Ω = {1, 2, . . . , n}
into subsets Ω1,Ω2, . . . ,ΩJ so that

Ω =
J⋃
j=1

Ωj . (12.21)

Then, for each j ∈ C, we define

Ωj := {j}
⋃
F sj , j = 1, . . . , J. (12.22)

where F sj := F
⋂
sj and sj is the set of strong neighbours of j. This depends

on the definition of connection strength. For example, in the direct inter-
polation we introduced in the previous section, we simply use the strength
connection defined in (8.8); in the standard interpolation we use the (m, l)-
strong connection defined in Definition 9.7, with m = 1 and l = 2.

For each Ωj we let

Ωj = {m1,m2, . . . ,mnj}, (12.23)

and let nj := |Ωj |, namely, nj is the cardinality of Ωj . In accordance with
the notation in Section 6, we then define

Vj := Rnj , (12.24)
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and the associated operator Πj : Vj 7→ V ,

(Πjv)i =

{
pmk,kvk if i = mk,

0 if i /∈ Ωj ,
(12.25)

where pmk,k are given weights. As all the constructions below will be based
on the M -matrix relative of A, without loss of generality, we use A to denote
the M -matrix relative.

Following Section 6, we introduce the operator χj : V 7→ Vj ,

(χjv)i := vmi , (12.26)

which takes as argument a vector v and returns only the portion of it with
indices in Ωj . That is, χjv is a vector in Rnj . It is immediate to verify that

J∑
j=1

Πjχj = I.

To estimate the convergence rate using the theory in Section 5, we need to
verify all the items in Assumptions 6.4. To do this, we choose a decompos-
ition v =

∑J
j=1 Πjvj with vj = χjv. We further define Cp,2 as a constant

depending on the overlaps in the partition {Ωj}Jj=1,

Co = max
1≤j≤J

|{l : Ωl ∩ Ωj 6= ∅}|. (12.27)

The local operators Aj on Vj are defined as

(Aju, v) =
∑
e∈E
e⊂Ωj

ωeδj,euδj,ev. (12.28)

Here, e ⊂ Ωj means the two vertices connected by e are in Ωj , and δj,eu =
umk−ml for e = (k, l) and ωe are the weights determined by the off-diagonal
elements in the M -matrix relative of A. Note that Aj is a symmetric positive
semi-definite matrix because all the weights ωe are non-negative. Then
(6.10) easily verified:

mc∑
j=1

‖χjv‖2Aj =

mc∑
j=1

∑
e∈E
e⊂Ωj

ωe(δev)2 ≤ Co
∑
e∈E

ωe(δev)2

= Co‖v‖2AM ≤ CoCM‖v‖
2
A.

(12.29)

If D is the diagonal of A, then we set Dj , j = 1 : J to be the restriction of
D on Ωj , namely, in Rnj×nj and

(Dj)ii = Dmi,mi , or equivalently Dj = χjDjχ
′
j (12.30)

We have the following lemma, which shows (6.9).
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Lemma 12.4. For Dj defined in (12.30), the following inequality holds:∥∥∥∥mc∑
j=1

Πjwj

∥∥∥∥2

D

≤ Co
mc∑
j=1

‖wj‖2Dj , for all wj ∈ Vj . (12.31)

Proof. Recall from the definition of Πj that we have

‖Πjv‖D ≤ ‖v‖Dj , for all v ∈ Vj . (12.32)

Therefore,∥∥∥∥ J∑
j=1

Πjvj

∥∥∥∥2

D

=

(
D

J∑
i=1

Πivi,
J∑
j=1

Πjvj

)
=

J∑
i=1

J∑
j=1

(DΠivi,Πjvj)

=
∑

1≤i,j≤J
Ωi∩Ωj 6=∅

(DΠivi,Πjvj) ≤
∑

1≤i,j≤J
Ωi∩Ωj 6=∅

‖Πjvi‖2D + ‖Πjvj‖2D
2

≤ Co
J∑
j=1

‖vj‖2Dj .

We choose the local coarse spaces V c
j as

V c
j := span{1nj}. (12.33)

Then, by definition, we have

µj(V
c
j ) =

1

λ
(2)
j

, (12.34)

where λ
(2)
j is the second smallest eigenvalue of the matrix D−1

j Aj . The

global coarse space Vc is then obtained by (6.12), and is

Vc = span{P1, P2, . . . , PJ}. (12.35)

Finally, by Theorem 5.3, the convergence rate of this two-level geometric

multigrid method depends on the minj(λ
(2)
j ). If the discrete Poincaré in-

equality is true for each Vj , namely,

inf
vc∈V cj

‖v − vc‖2Dj ≤ cj‖v‖
2
Aj , for all v ∈ Vj , (12.36)

with cj a constant, then the two-level classical AMG method converges
uniformly.

12.5. Bibliographical notes

The classical coarse space definition in AMG was introduced by Brandt
et al. (1982), and then somewhat improved by Stüben (1983), Brandt et al.
(1985) and Ruge and Stüben (1987).
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Despite its great success in practical applications, classical AMG al-
gorithms still lack solid theoretical justifications beyond the theory for two-
level methods. It is important to note that a multigrid method that con-
verges uniformly in the two-level case with an exact coarse grid solver may
not converge uniformly in the multilevel case: see Brandt (1986) and Ruge
and Stüben (1987). For classical AMG, the early theoretical studies of con-
vergence date back to the 1980s: see Mandel (1988), McCormick (1982),
Brandt (1986) and Ruge and Stüben (1987). A survey of Stüben’s res-
ults can be found in the monograph by Trottenberg et al. (2001), who also
gives the three classical prolongation constructions (direct, standard and
multipass). In all cases, it is crucial to define coarsening and interpola-
tion operators so that the interpolation error is uniformly bounded. The
role of the ideal interpolation as the minimizer of an upper bound for the
convergence rate was emphasized by Falgout and Vassilevski (2004).

13. Aggregation-based AMG

Aggregation (or agglomeration) refers to an algorithm that splits the set of
vertices of the graph of the filtered matrix as a union of non-overlapping
subsets (aggregates) (each of which forms a connected sub-graph):

{1, . . . , n} =
J⋃
j=1

Aj , Ai
⋂
Aj = ∅, i 6= j. (13.1)

Such a partition can be obtained using the algorithms described in Section 9.
If we are solving a finite element system, the partition (13.1) would cor-

respond to a non-overlapping decomposition of Ω,

Ω =
J⋃
j=1

Ωj , Ωi

⋂
Ωj = ∅, i 6= j, (13.2)

such that Aj contains the indices associated with the enumerations of the
vertices in the subdomain Ωj .

We denote the elements in Aj by

Aj = {m1,m2, . . . ,mnj}, (13.3)

and let nj := |Aj |, that is, nj is the number of elements in Aj .

13.1. Unsmoothed aggregation: preserving one kernel vector

Using the framework introduced in Section 6, we define

Vj := Rnj ,
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and the associated operator Πj : Rnj 7→ Rn is the trivial extension of v ∈
Rnj :

(Πjv) =

{
vk i = mk,

0 i /∈ Aj ,
(13.4)

P = (p1, p2, . . . , pJ), pj = Πj1nj . (13.5)

This prolongation matrix obviously satisfies

P1J =
J∑
j−1

Pj = 1n. (13.6)

The local coarse space V c
j is

V c
j := span{1nj}.

Then the global coarse space Vc is obtained by (6.12). In fact

Vc = span{p1, p2, . . . , pJ}.

We note that

(φ1,c, . . . , φJ,c) = (φ1, . . . , φn)P, (13.7)

where

φj,c =
∑
k∈Aj

φk, j = 1, 2, . . . , J. (13.8)

Further, Πj corresponds to matrix representation of the operator Ih(φHj ·)
with the coarse grid basis φj,c defined above. In view of Section 10.3 (see
especially (10.14)), aggregation-based AMG can also be viewed as a GMG
method.

The above procedure gives a full description of the unsmoothed aggrega-
tion AMG method. We can use the framework in Section 6 to carry out a
two-level convergence analysis. The local matrices Aj are defined in exactly
the same way as in the case of classical AMG in Section 12.4. Thus we
write A as in (12.4) and then define Aj by (12.28). The matrices Dj are
defined as the restriction of the diagonal of A to Ωj , as in (12.30). Using the
same argument as in Section 12.4, Assumption 6.4 is satisfied by (12.29) and
Lemma 12.4. Theorem 5.3 can then be applied to prove that the two-level
unsmoothed aggregation method has a convergence rate depending only on
the local Poincaré constants in (12.36).

13.2. Unsmoothed aggregation: preserving multiple vectors

One great advantage of the aggregation AMG method is that it can be
easily extended to the case when the stiffness matrix A has multiple kernel
or near-kernel vectors.
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To give an illustration of how to construct prolongation preserving more
than one vector, we consider two-dimensional elasticity problems. In this
case we have three functions, namely the rigid body motion, to preserve

u1 =

(
1
0

)
, u2 =

(
0
1

)
, u3 =

(
−y
x

)
.

The corresponding vectors are

ζ1 =



1
0
1
0
...
1
0


, ζ2 =



0
1
0
1
...
0
1


and ζ3 =



−y1

x1

−y2

x2
...
−yn
xn


∈ R2n.

On each aggregate Aj , we consider

ζ
(j)
1 =



1
0
1
0
...
1
0


, ζ

(j)
2 =



0
1
0
1
...
0
1


and ζ

(j)
3 =



−ym1

xm1

−ym2

xm2

...
−ymnj
xmnj


∈ R2nj .

The prolongation matrix is then given by

P = (p1, p2, . . . , pJ) ∈ R(2n)×(3J), Pj = Πj(ζ
(j)
1 , ζ

(j)
2 , ζ

(j)
3 ) ∈ R(2n)×3.

This prolongation matrix satisfies

P (1J ⊗ ej) = ζj , 1 ≤ j ≤ 3. (13.9)

The rest of the AMG algorithm based on this prolongation matrix is
similar to the 1-vector case.

Extension from the 3-vector case, as mentioned above, to arbitrary m-
vectors is straightforward. We let m = dim(N(A)), and consider the case
when m ≥ 1. We now assume that we are given m vectors {ζj}mj=1 which
are linearly independent and m� n, and we can then proceed to construct
a prolongation P such that P (1nc ⊗ ej) = ζj , j = 1 : m.

We would like to point out that for the multiple kernel or near-kernel
vector case we often need some geometric information to describe the cor-
responding vectors. In the finite element case, these vectors should be ob-
tained by taking the canonical interpolation of the corresponding kernel
functions of the underlying partial differential operators, and we then split
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(a) (b)

Figure 13.1. Graph of the coarse grid matrix corresponding to the unsmoothed
aggregation (a) and the ‘denser’ graph for the coarse grid matrix obtained by
smoothed aggregation (b).

these vectors into different aggregates by using the local degrees of freedom
associated with different aggregates.

13.3. Smoothed aggregation

The aggregation procedure described above provides a simple yet efficient
AMG method. The resulting method is known as the unsmoothed aggreg-
ation AMG (UA-AMG) method. This terminology may be justified by
examining the shape of the basis function as defined by (13.8). A typical
basis of this form is not smooth. There is a procedure to smooth out these
basis function by using a smoother, which is equivalent to a few applications
of smoothing on the prolongation matrix (13.5) as follows:

PS = (I −RsA)νP, for some ν ≥ 1. (13.10)

A typical choice is the scaled Jacobi smoother with RS = ωD−1. We note
that, in view of (13.9), if ζj is in the kernel of A, we still have

PS(1J ⊗ ej) = ζj , 1 ≤ j ≤ m.

Conceivably, a bigger ν in (13.10) would lead to an AMG algorithm that
has a better convergence rate. However, a bigger ν in (13.10) also means
a denser PS and hence a denser Ac, and a more expensive setup for the
resulting AMG algorithm. As an example, Figure 13.1 shows the graphs
of the coarse grid matrices corresponding to unsmoothed and smoothed
aggregation. Clearly the smoothed aggregation graph is denser than the
unsmoothed one.

In view of Lemma 9.3, the basis function (13.8) and the resulting UA-
AMG corresponds to the use of a tentative coarse space Wc. The smoothed
basis functions by means of (13.10) and resulting SA multigrid corresponds
to the use of the Vs in Lemma 9.3 with S = (I −RsA)ν .
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13.4. Bibliographical notes

One of the first aggregation algorithms comes from applications in eco-
nomics, and is due to Vakhutinsky et al. (1979). Subsequently, aggregation
methods were developed and used by Blaheta (1986) to solve discrete elliptic
problems, and by Marek (1991) for the calculation of stationary points of
Markov chains.

A special class of aggregation coarsening methods is based on matching
in graphs (also known as pairwise aggregation), and such methods were
employed in Kim et al. (2003) and for non-symmetric problems in Kim, Xu
and Zikatanov (2004). Aggregations using matching in graphs were further
used by Notay (2010), Brannick, Chen and Zikatanov (2012), Livne and
Brandt (2012) and D’Ambra and Vassilevski (2013, 2014). To improve the
scalability of the unsmoothed aggregation, a number of algorithms have been
developed: Kim et al. (2003) used a variable V -cycle, Notay and Vassilevski
(2008) proposed non-linear Krylov subspace acceleration, and Olson et al.
(2011) designed a procedure for correcting the energy of the coarse-level
Galerkin operator.

Aggregation, especially the unsmoothed aggregation, can be used in con-
junction with non-linear (variable-step/flexible) preconditioning methods
to result in an optimal algorithm. Such non-linear methods are called al-
gebraic multilevel iteration methods, and were introduced by Axelsson and
Vassilevski (1991). Non-linear multilevel preconditioners were proposed and
an additive version of them was first analysed by Axelsson and Vassilevski
(1994); see also Golub and Ye (1999/2000), Notay (2000), Saad (2003) and
Kraus (2002). In these non-linear multilevel preconditioners, n steps of a
preconditioned CG iterative method provide a polynomial approximation of
the inverse of the coarse grid matrix. The same idea can be used to define
the MG cycles, as shown by Vassilevski (2008) and Notay and Vassilevski
(2008). A comprehensive convergence analysis of the non-linear AMLI-cycle
multigrid method for symmetric positive definite problems was conducted by
Hu, Vassilevski and Xu (2013). Based on classical assumptions for approx-
imation and smoothing properties, the non-linear AMLI-cycle MG method
is shown to be uniformly convergent.

The smoothed aggregation AMG method, first developed by Mı́ka and
Vaněk (1992a, 1992b) and later extended by Vaněk, Mandel and Brezina
(1996), was motivated by some early work on aggregation-based MG studied
by Blaheta (1986, 1988).

A major work on the theory and practice of the SA algorithm is found
in Vaněk, Mandel and Brezina (1998). The convergence result proved there
assumes the sparsity of the coarse grid matrix and a certain ratio between
the number of coarse and fine degrees of freedom. For general sparse matri-
ces, and even for general adapted finite element matrices corresponding to
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elliptic equations, it is difficult to verify such assumptions, and this is yet
to be done.

14. Problems with discontinuous and anisotropic coefficients

A good AMG method should be robust with respect to possible heterogen-
eity features such discontinuous jumps and anisotropy. These heterogen-
eities should be detected and properly resolved automatically in an AMG
process. Extensive numerical experiments have shown that AMG such as
classical AMG and SA-AMG are very robust with respect to these hetero-
geneities. One main technique used to detect and resolve these heterogeneit-
ies is by means of the connection strength (see Section 8.2). In this section
we shall use the model problem (2.1) with two special sets of coefficients,
(2.9) and (2.10), to discuss how classical AMG works for problems with
strong heterogeneities.

14.1. Jump coefficients

In this section we consider the classical AMG method when applied to a
problem with heterogeneous (jump) coefficients, namely (2.1) with (2.9).
We begin with a discussion of how the connection strength is used to define
the sparsity pattern of the prolongation.

The connection strength function was introduced to handle cases such
as jump coefficients and anisotropies in the matrices corresponding to dis-
cretizations of scalar PDEs. An important observation regarding classical
AMG is that the prolongation matrix P , which defines the basis in the
coarse space, uses only strong connections. Here we need the strength op-
erator S : V 7→ V defined in (8.4). We now focus on the jump coefficient
problem defined in (2.9),

α(x) =

{
ε x ∈ Ωε,

1 x ∈ Ω1,

where ε is sufficiently small that the graph corresponding to the strength op-
erator has at least two connected components. Directly from the definition
of Si in (8.8), we have the following.

• The graph corresponding to the connection strength matrix S is obtained
from the graph corresponding to A by removing all entries aij correspond-
ing to an edge connecting a vertex from the interior of Ωε to a vertex
in Ω1.

• In other words, in this setting we have a block lower triangular S with
at least two blocks, in which the first block corresponds to the vertices
interior to Ωε and the second block corresponds to the rest of the vertices.
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• The considerations above apply to any configuration of the subsets Ωε

and Ω1. In fact, they can even be disconnected, forming cross-points and
so on.

In Figures 14.1–14.3 we illustrate the connection strength graphs and
their connected components for specific coefficients α(x), which is defined
as in (2.9) with ε = 10−3. The domain Ωε is a union of elements, and T ∈ Ωε

if and only if (xT−1/2)(yT−1/2) < 0, where (xT , yT ) is the barycentre of T .
The domain Ω1 is Ω1 = Ω \Ω1. In Figure 14.2, Ωε and Ω1 are disconnected
in the graph of the strength matrix S. In the graph of S, Ωε is split into

two connected components, denoted by Ω
(1)
ε and Ω

(2)
ε ; Ω1 is split into two

parts, denoted by Ω
(1)
1 and Ω

(2)
1 , which are connected via only one point,

x0 = (1/2, 1/2). With a reordering of indices, the strength matrix for this
case can be written as

S =


Sε,1

Sε,2
S11

S12

Sx1 Sx2 Sx

,
where Sε,1 and Sε,2 are two diagonal blocks corresponding to the two connec-

ted components Ω
(1)
ε and Ω

(2)
ε , S11 and S12 are two diagonal blocks corres-

ponding to the two connected components Ω
(1)
1 and Ω

(2)
1 , S0 is the diagonal

entry corresponding to the grid point x0, and Sx1 and Sx2 are low-rank
matrices with only a few non-zero entries (two non-zero entries in this ex-

ample), which contain the connections from x0 to points in Ω
(1)
1 and Ω

(2)
1

respectively.
We define an operator AS : V 7→ V ′ using A and S:

(ASu, v) :=
∑
Sij 6=0

ωij(ui − uj)(vi − vj),

where ωij = |aij |. We have the following lemma.

Lemma 14.1. For all v ∈ V , we have

(ASv, v) ≤ (A+v, v) . (Av, v).

For classical AMG, the definition of the prolongation matrix P only uses
strong connections, and the coarse space is the union of the coarse spaces
in each strongly connected component of the graph of A+. Note that the
classical AMG construction gives the same coarse space for both A and its
M -matrix relative A+. For this reason, in the considerations that follow we
write A instead of A+ and E instead of E+, as the coarse space is defined
using only entries from A+.
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(a) (b)

Figure 14.1. Jump coefficient problem on a uniform mesh. (a) The coefficient is
1 in the shaded region, and 10−3 in the blank region. (b) The strongly connected
components in the graph correspond to the strength matrix S.

(a) (b)

Figure 14.2. Jump coefficient problem on an unstructured mesh. (a) The coefficient
is 1 in the shaded region, and 10−3 in the blank region. (b) The strongly connected
components in the graph correspond to the strength matrix S.
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Figure 14.3. Jump coefficient problem: non-zero pattern of strength matrix S
when reordered in block lower triangular form. (a) Structured uniform grid, and
(b) unstructured mesh.

We now consider the convergence of classical two-level AMG with the
standard interpolation for the jump coefficient problem, and we prove a
uniform convergence result for the two-level method. The same result for
direct interpolation can be obtained via slight modification of the proof for
the standard interpolation case. Before we go through the AMG two-level
convergence proof, we first introduce the following result on a connected
graph, which can be viewed as a discrete version of the Poincaré inequality.

Lemma 14.2. We consider the following graph Laplacian on a connected
undirected graph G = (V, E):

〈Au, v〉 =
1

2

∑
(i,j)∈E

(ui − uj)(vi − vj). (14.1)

For any v ∈ V , the following estimate is true:

‖v − vc‖2`2 ≤ µn
2d〈Av, v〉, (14.2)

where n = |V| is the size of the graph, vc =
∑n

j=1wjvj is a weighted average

of v, µ =
∑n

j=1w
2
j , and d is the diameter of the graph.

We now consider classical AMG coarsening as defined in Section 12.4, and
with an abuse of notation we use Ωj to denote the set of vertices defined
via the C/F splitting in (12.21). The next lemma is a spectral equivalence
result, showing that the local operators Aj , defined in (12.28), for a shape-
regular mesh, are spectrally equivalent to a scaling of the graph Laplacian
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operators AL,j defined as

(AL,ju, v) =
1

2

∑
(i,k)∈Ωj

(ui − uk)(vi − vk). (14.3)

Lemma 14.3. With the assumption we made on the shape-regularity of
the finite element mesh, the following inequalities hold for Aj defined as in
(12.28) using the standard interpolation:

cLh
d−2〈AL,jvj , vj〉 ≤ (Ajvj , vj) ≤ cLhd−2〈AL,jvj , vj〉, (14.4)

where AL,j is a graph Laplacian defined in (14.1) on the graph Gj , h is
the mesh size, and cL, cL are constants depending on the shape-regularity
constant and the threshold θ for the connection strength.

Proof. By definition of connection strength, we have

aii =
∑
k∈Nk

−aik ≤ −
|Ni|
θ
aij .

Since A is symmetric, we also have

aii ≤ −
|Ni|
θ
aji.

By the definition of Ωj in the standard interpolation, for any i ∈ Ωj \ {j},
either i ∈ F sj or there exists a i ∈ F sj such that i ∈ F sk . For the latter,
(j, k, i) forms a path between j and i going along strong connections. We
then have

−aik ≥ −
θ

|Nk|
akk ≥ −

θ

|Nk|
akj ≥ −

θ2

|Nk||Nj |
ajj

and

ajj ≥ −ajk ≥
|Nk|
θ
akk ≥ −

(
|Nk|
θ

)2

aik.

Combining the above two inequalities and using the assumption that the
mesh is shape-regular, for any l ∈ Ωj that is connected to i we have

σ1aij ≤ −ail ≤ σ2ajj ,

with constants σ1 and σ2 depending on the shape-regularity constant and θ.
Since in the definition of Aj in (12.28), ωe = −aij/2 for e = (i, j), we

obtain

c1ajj〈AL,jvj , vj〉 ≤ (Ajvj , vj) ≤ c2ajj〈AL,jvj , vj〉. (14.5)

Then, by a scaling argument, ajj ∼=hd−2 and the proof is complete.

Theorem 14.4. The two-level method using a coarse space Vc defined via
classical AMG is uniformly convergent.
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Proof. By Theorem 5.3, we only need to show that µc is bounded, which
can be easily obtained by combining Lemmas 14.2–14.3 with Lemma 7.3.

14.2. Anisotropic problem

We consider the following problem:−uxx − εuyy = f in Ω,

∂u

∂n
= 0 on ∂Ω.

(14.6)

We discretize the problem using the finite element method on an n × n
uniform triangular grid in Ω = (0, 1) × (0, 1). We order the vertices of the
triangulation lexicographically and denote them by {(ih, jh)}ni,j=0. Then
the stiffness matrix is

A = diag(−εI,B,−εI) with B = diag(−1, 2(1 + ε),−1). (14.7)

It is immediate to see that, for sufficiently small 0 < ε� 1, the strength
operator S takes the form

S = diag(0, SB, 0) with SB = diag(1, 1, 1), (14.8)

and the M -matrix relative of A is

A+ = diag(0, B+, 0) with B+ = diag(−1, 2,−1). (14.9)

If we use uniform coarsening to solve the above linear problem, it has been
proved by Yu, Xu and Zikatanov (2013) (see also Zikatanov 2008) that uni-
form convergence is not achieved when using point relaxation as a smoother
and standard coarsening. A fix for this is to use connection strength and
coarsen the adjacency graph of the strength operator S. The C/F split-
ting constructed in this way using the MIS algorithm (Algorithm 5) from
Section 9.3.1 results in semi-coarsening (coarsening in only one direction).

We now move on to show uniform convergence of two-level classical AMG
for the anisotropic problem (14.6). Recall that we consider a uniform grid in
R2 with lexicographical ordering of the vertices. Then the stiffness matrix
is (14.7). We further assume, without loss of generality, that n = 2m + 1
for some m. The coarse grid points using the strength operator defined in
(14.8) are then with coordinates ((2i)h, jh), where i = 1 : m and j = 1 : n.

Further, as each coarse grid function is uniquely determined by its values
at the coarse points, the function that corresponds to the point ((2i)h, jh)
for some i and j is defined as the unique piecewise linear function φi,j,H
satisfying

φ((2i)h, jh) = 1, φ((2i− 1)h, jh) = 1/2, φ((2i+ 1)h, jh) = 1/2,

and φi,j,H(x) = 0 at all other grid nodes.
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Alternatively we can use the basis functions for bilinear elements, which
can be written as tensor products. Let us first define the piecewise linear
basis in one dimension:

φj,h(t) =


(t− (j − 2)h)

h
t ∈ ((j − 2)h, (j − 1)h),

(jh− t)
h

t ∈ ((j − 1)h, jh),

0 otherwise.

The basis in Vh is then

φij,h(x, y) = φi,h(x)φj,h(y), (14.10)

and for the coarse grid basis we have

φij,H(x, y) = φi,2h(x)φj,h(y). (14.11)

The basis functions for the linear elements are formed by piecewise linear
interpolation of the bilinear basis.

The subset Ωij is the support of this basis function, that is, the grid points
where φij,H is non-zero. More precisely,

Ωij = {((2i− 1)h, jh), (2ih, jh), ((2i+ 1)h, jh)}. (14.12)

Thus Ωij consists of the coarse grid point (2ih, jh) and its neighbours in the
x-direction. Then we define Vj := R3.

The operator Πj : Vj 7→ V is defined by the matrix representation of
Ih(φij,H ·). Aij is defined as in (12.28). In this case

Aij =

 1 −1 0
−1 2 −1
0 −1 1

. (14.13)

Hence Aij is symmetric positive semi-definite, and since for any vij ∈ Vij
we have ∑

i,j

(vij , vij)Aij =
∑
ij

∑
(k,l)∈E
k,l∈Ωij

−akl(vk − vl)2

≤ 2
∑

(k,l)∈E

−akl(vk − vl)2

= 2(v, v)A,

Aij satisfies (6.10).
We define Dij as in (12.30). As Aij1 = 0, the minimum eigenvalue of

D−1
ij Aij is 0 and the corresponding eigenvector is the constant vector, we

choose the local coarse space V c
ij to be the space of all constant vectors in

Vij . The corresponding global coarse space is then defined as in (6.12).
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Theorem 14.5. The two-level method with coarse space defined above
converges uniformly for the anisotropic problem in (14.6), with convergence
rate independent of ε and the mesh size h.

Proof. By Theorem 5.3, the convergence rate depends on the second smal-
lest eigenvalue of D−1

ij Aij , which is 1 for all i and j.
Next, Theorem 5.3 can be applied to this case, and we obtain

‖E‖A ≤ 1− 1

C
, (14.14)

with C independent of ε and the mesh size, which proves the uniform con-
vergence of the AMG method.

14.3. Bibliographical notes

Fast solvers for problems with heterogeneous and or anisotropic coefficients
have been the focus of research for the last three or four decades. The
AMG methods are among the preferred solvers due to their robust beha-
viour with respect to the coefficient variation and independence of the geo-
metry. Standard multilevel methods for these problems do have limitations,
as their convergence may deteriorate, as shown by Alcouffe, Brandt, Dendy
and Painter (1981). The cause for this in geometric multigrid with standard
coarse spaces was discussed by Bramble and Xu (1991) and Xu (1991), and
later by Oswald (1999). Attempts to remove the dependence on the size of
the coefficient jumps was made by introducing the matrix-dependent pro-
longations. We refer to Dendy (1982, 1983), Reusken (1993) and de Zeeuw
(1990). Several theoretical and numerical results on geometric and algebraic
methods for discontinuous coefficients can be found in the survey paper by
Chan and Wan (2000) and the references therein. Anisotropic equations
and AMG coarsening are considered by Brannick et al. (2006).

Finally, in addition to the theory presented here, some partial theoretical
results on the convergence of AMG are found in the classical papers on
AMG (Ruge and Stüben 1987) and smoothed aggregation (SA) (Vaněk et al.
1996). Related works are the frequency filtering and decompositions found
in Hackbusch (1989), Wittum (1992), Wagner and Wittum (1997), Weiler
and Wittum (1997) and Nägel, Falgout and Wittum (2008).

15. Bootstrap and adaptive AMG

In all the algorithms studied earlier, we assume that the near-null spaces
are known in advance. Eliminating such an assumption and extending the
range of applicability of optimal multigrid techniques is attempted in the
framework of the bootstrap/adaptive AMG methods, which we describe in
this section. In summary, the adaptive AMG (αAMG, αSA) and bootstrap
AMG (BAMG) algorithms are intended for harder problems for which the
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Algorithm 7 Prolongation via least-squares minimization

1: Input: Matrices Ψ ∈ Rn×m, Ψc ∈ Rnc×nc , a norm ‖ · ‖, initial sparsity
pattern S(P ) for P ; bound on maximum non-zeros per row smax .

2: Output: Prolongation matrix P such that PΨc ≈ Ψ.
3: Set i ← 1.
4: while (i ≤ n) do

5: Find p̃i ← arg minp̃i∈RncSi
‖ΨT

c p̃i − Ψ̃i‖.

6: if (‖ΨT
c p̃i − Ψ̃i‖ > ε) and (|S(i)| ≤ smax) then

7: S(i)← S(i) ∪jc {jc}, where jc are close to i in graph distance.
8: else
9: i← i+ 1

10: end if
11: end while
12: for i = 1 : n, jc ∈ S(i) do
13: if (pi,jc ≤ εp) then Set pi,jc ← 0 end if
14: end for
15: return P

standard variants of the classical AMG method or the smoothed aggregation
method may converge too slowly. The bootstrap/adaptive algorithms make
special choices of coarse spaces. Based on a given smoother, they self-
improve until they achieve the desired convergence rate.

15.1. Sparsity of prolongation matrices

Here we give a very short summary of the sparsity patterns of the prolong-
ation matrices defined for energy-minimization AMG in Section 11, clas-
sical AMG in Section 12, and aggregation AMG in Section 13. First, for
energy-minimizing AMG we have that the sparsity pattern of the prolonga-
tion could be prescribed in advance, and in some sense this approach is more
general as it can also use the sparsity patterns given below for classical AMG
and aggregation AMG approaches. For specific restrictions related to the
number of vectors interpolated exactly by the energy-minimizing prolong-
ation, we refer to Xu and Zikatanov (2004) and Vassilevski and Zikatanov
(2006). There are also ways to define the prolongation with changing pat-
terns. Such algorithms are useful because they provide a mechanism to
control the sparsity pattern of the prolongation. Algorithm 7 was first de-
scribed by Brandt (2002) and later included in the bootstrap adaptive AMG
algorithm designed by Brandt, Brannick, Kahl and Livshits (2011). In the
algorithm description, we refer to the graph of the M -matrix relative as
defined in Section 9.
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Algorithm 8 Prolongation via aggregation

1: Input: Matrix Ψ ∈ Rn×m, an aggregation ∪nci=1Ai = {1, . . . , n}, and a
prolongator smoother S : Rn 7→ Rn (for smoothed aggregation (SA)).

2: Output: Prolongation matrix P such that Range(PΨc) ≈ Range(Ψ).

3: Set (ΨAi)kj =

{
Ψkj k ∈ Ai, j = 1 : m,

0 k /∈ Ai, j = 1 : m.

4: Set P = (ΨA1 , . . . ,ΨAnc ).
5: if (SA) then P ← (I −RsA)P end if
6: return P

To conclude this section, we point out that the algorithmic details for the
construction of direct, standard and multipass interpolations are already
described in detail in Section 12.

15.2. Notation

Given a matrix A ∈ Rn×n and a relaxation (smoother) R for this matrix, we
use an adaptive procedure to construct a sequence of coarse spaces which
are characterized by the sequence of prolongation matrices

Pmj : Rn
m
j 7→ Rn

m
j+1 .

The corresponding V -cycle matrix is denoted by Bm. We introduce the
following notation, used throughout this section.

• For a matrix Y ∈ Rn×m, we set

Y = (y1, . . . , ym) =

ỹ
T
1
...
ỹTn

.
Clearly, {yi}mi=1 are the columns of Y and {ỹTj }nj=1 are the rows of Y .

• V = (V1, . . . , VJ) is a multilevel hierarchy of spaces Vj ⊂ Vj+1, j = 1 :
(J − 1) and the fine grid spaces are denoted by VJ .

• We let {P jj−1}Jj=2 denote the prolongation matrix from a coarser level

(j − 1) to finer level j, and Pj = P JJ−1P
J−1
J−2 · · ·P

j+1
j , j = 1, . . . , (J − 1) is

the prolongation from level j to level J

• We let Pj = {P jj−1}
j
j=2 and P = PJ denote the set of all prolongations

up to level j. As we have mentioned on several occasions, the set of
prolongation matrices P completely determines the multilevel hierarchy
of spaces V.
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• A set of test vectors on every level is available:

C = {Ψ1, . . . ,ΨJ}, Ψj ∈ Rnj×m.

In an adaptive method, the hierarchy of coarse spaces is constructed so
that Ψj ≈ P jj−1Ψj−1, or P jj−1 is constructed so that Ψj can be well

approximated by elements from RangeP jj−1.

• We need the standard V -cycle preconditioner B(Pj) with a hierarchy of
spaces given by Pj , starting at level j.

• Aj is the restriction of the fine grid matrix A on level j, and Mj is the
restriction of the ‘mass’ matrix, defined as Aj = P Tj APj , Mj = P Tj Pj .

A generic adaptive AMG algorithm changes the set P, adjusting the hier-
archy of spaces V. In general, in the adaptive procedure the number of
levels is not known, and in some of the algorithms below we use V1 as the
finest space by mapping the indexes in the notations above as

j ← J − j + 1, j = 1, . . . , J.

15.3. A basic adaptive algorithm

We now describe a generic adaptive algorithm for constructing coarse spaces.
We use an approach slightly different to that found in the literature, and fit
both BAMG and αSA into one framework.

Step 0. Given A ∈ Rn×n and the associated graph G(A) = (V, E).

Step 1. Initialization.

1: Choose m0 ≥ 1, q ≥ 1, 1 ≤ n0 < n and δ0 ∈ (0, 1).

2: P ← ∅.

3: Vc ← V = Rn; V ← {Vc}.

4: nc ← n; m← m0.

5: B ← R.

6: Randomly pick m test vectors Ψ0 = (ψ1, . . . ψm), Ψ0 ∈ Rn×m.

7: Ψ← Ψ0; C ← {Ψ0}.

Step 2. If nc ≤ n0, go to Step 3, else do:

1: Make a copy of Ψ: Ψ̂← Ψ. Then compute

Ψ← (I −BA)qΨ, δ = max
1≤i≤m

‖Ψi‖A
‖Ψ̂i‖A

. (15.1)
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Algorithm 9 Approximation of le eigenpairs of A

for j = J, . . . , 1 do
if j = J (coarsest grid) then

Find {(ϕ(k)
J , λ

(k)
J )}lek=1– the solutions to the eigenvalue problems:

AJϕ
(k)
J = λ

(k)
J MJϕ

(k)
J , k = 1, . . . , le;

else
for k = 1, . . . , le do

Set v
(k)
j = (P jj−1)Tϕ

(k)
j−1, µ

(k)
j = λ

(k)
j−1, and C

(k)
j = Aj − µ(k)

j Mj

Relax on C
(k)
j w = 0, i.e., ϕ

(k)
j = (I − S(k)

j C
(k)
j ) v

(k)
j .

Set λ
(k)
j =

〈Ajϕ(k)
j , ϕ

(k)
j 〉

〈Mjϕ
(k)
j , ϕ

(k)
j 〉

end for
end if

end for

2: If δ ≤ δ0 then stop.

3: Use a coarsening strategy (see Section 9) to update nc and find a set of
coarse grid DOFs {Ni(·)}nci=1. Then set

Vc ← Rnc , V ← V ∪ {Vc}.

4: Form the ‘restriction’ of Ψ to the coarse space:

Ψc ← Restrict(Ψ, {Ni(·)}nci=1).

Then set C ← C ∪ {Ψc}.

5: Identify a sparsity pattern S(P ) (see Section 15.1; also Sections 12.3
and 13.2).

6: Find a prolongation matrix P using Ψc and Ψ by applying Algorithms 7
or 8. Then set

P ← P ∪ {P}, A← P TAP, Ψ← Ψc, B ← Rc,

where Rc is the relaxation on the coarse grid Vc.

Step 3. Order the spaces in V increasing with respect to their dimension
as

V = {V1, V2, . . . , VJ} with VJ = Rn,

and the corresponding prolongation matrices

P = {P j+1
j }J−1

j=1 , P j+1
j : Vj 7→ Vj+1, j = 1, 2, . . . , J − 1.
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Algorithm 10 αSA: adding a test vector ψ to the current set of test vec-
tors ΨJ

Step 1. Update ΨJ by adding ψ as a new column: ΨJ ← [ΨJ , ψ].

Step 2. For l = J, . . . , 3:

1: Update Ψl−1 by evaluating the coarse grid degrees of freedom Nj(ψ),
j = 1 : nl−1. This process adds nl−1 rows to Ψl−1.

2: Use Algorithm 8 (SA) to define a prolongation P ll−1 matrix and coarse
grid operator Al−1.

3: Update Pl ← {P ll−1} ∪ Pl−1.

4: As the number of rows in Ψl−1 was increased in Step 2.1, we need to
change P l−1

l−2 in Pl−1 in order to keep the set P consistent. We define

P̃ l−1
l−2 as the ‘bridge’ prolongation via Algorithm 11, and we set

P̃l−1 =← {P̃ l−1
l−2 } ∪ Pl−2.

5: Test the convergence of B(P̃l−1) on the newly added test vector ψl−1:

ψ̂l−1 ← ψl−1, ψl−1 ← (I −Bl−1(P̃l−1)A)q(ψl−1).

If

(
‖Pl−1ψl−1‖2A
‖Pl−1ψ̂l−1‖2A

)1/q

≤ δ then stop.

6: Update the coarse representation of Ψl−1:

Ψl−1 ← [Ψ̂l−1, ψl−1].

Set B to be the V -cycle AMG method based on the above coarse spaces
and prolongation matrices.

Step 4. Compute δ in (15.1) using current B. If δ ≤ δ0, stop. Else, update
C, P and V by modifying, removing from or adding to the set of test vectors;
bootstrap AMG uses Algorithm 9 and adaptive SA uses Algorithm 10. Then
go to Step 3.

The restriction operator in Step 2.4 is as follows:

Ψc = (Ni(ψj))1≤i≤nc,1≤j≤m (bootstrap AMG),

Ψc = (Ni(ψj))1≤i≤nc ⊗ ej , j = 1 : m (adaptive aggregation).

In the test vectors all the sets P, C, V are chosen so that J corresponds
to the finest grid.
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Algorithm 11 αSA setup: construction of a ‘bridging’ prolongator

1: Denote the last column of Ψl−1 by ψl−1, and let Ψ̂l−1 consist of all other
columns of Ψl−1.

2: Create a prolongation P l−1
l−2 using Algorithm 8 with the Ψl−2 by fitting

all the vectors in Ψ̂l−1.

15.4. Bibliographical notes

The AMG approaches we have considered are aimed at the adaptive choice
of coarse spaces and multilevel hierarchies in an AMG algorithm. The
majority of adaptive AMG methods known to date use the operator A
and aim to capture the worst-case errors. All specific details regarding
bootstrap AMG (BAMG) are found in Brandt (2002), Brandt et al. (2011)
and Brandt, Brannick, Kahl and Livshits (2015). Adaptive classical AMG is
described in Brezina et al. (2006), and adaptive smoothed aggregation AMG
is discussed in detail by Brezina et al. (2004, 2005). While the adaptive and
bootstrap MG processes have been successful in several settings, they are
still only a heuristic attempt to overcome serious obstacles to achieving
good performance from the classical AMG perspective. Indeed, the costs
of achieving added robustness using a bootstrap or adaptive MG algorithm
are significant.

Central to adaptive MG is an important distinction between the role of the
underlying multigrid algorithm (aggregation or classical AMG) and what
additional adaptive elements it should provide. If the idea of self-improving
the coarse spaces is poorly implemented, the adaptive and bootstrap mul-
tigrid algorithms can easily degenerate into an algorithm with no better
convergence properties than a classical Krylov method preconditioned by
the MG smoother (Falgout 2004).

The basic ideas on adaptive AMG are outlined in early works on classical
AMG (Brandt et al. 1982). In fact, the adaptive process of constructing
interpolation based on fitting a set of test vectors for badly scaled matrices
was introduced by Ruge (1983). Some of the basic ideas of adaptive AMG
can also be found in Ruge (1985, 1986), McCormick and Ruge (1989) and
Brandt et al. (1985). Further advances in adaptive AMG methods, along
with new ideas for using eigenvector approximations to guide the adapt-
ive process, were introduced in the bootstrap AMG (BAMG) framework of
Brandt (2002). The BAMG method is a self-learning multigrid algorithm
that automatically determines the algebraically smooth errors in a given
problem, and was further developed by Brandt et al. (2011, 2015). Ad-
aptive AMG algorithms were further developed and new algorithms were
introduced in some more recent works: αAMG in the framework of clas-
sical AMG (Brezina et al. 2006), and αSA in the framework of smoothed
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aggregation AMG (Brezina et al. 2004, Brezina et al. 2005). Other ad-
aptive multilevel algorithms are the adaptive filtering and the filtering de-
compositions (Wittum 1992, Wagner and Wittum 1997) and the multilevel
multigraph algorithms (Bank and Smith 2002).

These references have more specific details on implementation of BAMG,
αAMG and αSA. One improvement on the original BAMG method is that of
Manteuffel, McCormick, Park and Ruge (2010), who introduce an indirect
BAMG (iBAMG) method. Compared to BAMG, the iBAMG method is
closer to the spirit of classical AMG, which attempts to collapse unwanted
connections on the assumption that the smooth error is locally constant.

Brandt et al. (2011) pair BAMG with an adaptive relaxation (Brandt
2000, Kahl 2009) and a multigrid eigensolver (Brezina et al. 2008). A
combination of the bootstrap cycling scheme (Livshits 2008, Kahl 2009)
and then the multigrid eigensolver is used to compute sufficiently accurate
sets of test vectors, and adaptive relaxation is used to improve the AMG
setup cycle.

In recent years, other adaptive approaches to constructing hierarchy of
spaces have been introduced. The classical AMG approach to defining the
hierarchy of spaces is considered by Brannick, Frommer, Kahl, MacLachlan
and Zikatanov (2010) and MacLachlan et al. (2006) in the framework of ad-
aptive reduction algorithms. Adaptive BoxMG was considered by MacLach-
lan et al. (2012). A specialized adaptive approach for Markov chains has
been presented by De Sterck, Miller, Treister and Yavneh (2011).

16. Concluding remarks

In this paper we try to give a coherent presentation of a number of algebraic
multigrid (AMG) methods. However, this presentation, limited by our cur-
rent theoretical understanding of AMG algorithms in general, is by no means
complete. We choose to include those AMG algorithms that can fit into the
theoretical frameworks presented in this paper. One notable exception is
the bootstrap and adaptive AMG presented in Section 15. These types of
algorithm still lack good theoretical understanding, but they provide an al-
gorithmic framework to use and extend the AMG algorithms presented in
Sections 10–13 to a wider range of applications.

There are still many AMG algorithms in the literature that we are not
able to include in this paper, for two main reasons. One is that these
algorithms cannot be easily cast within our theoretical framework; another
is that there are algorithms that the authors are yet to comprehend on
a reasonable theoretical level. Examples of algorithms and results that
need further investigation and analysis include adaptive filtering, multilevel
ILU methods, the multilevel convergence properties of SA-AMG, BAMG,
adaptive AMG, and many others.
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The AMG methods studied in this paper are obtained by optimizing the
choice of coarse spaces based on a given smoother. Indeed, almost all the
existing AMG methods follow this strategy. It is possible, however, that an
AMG method could also be designed by optimizing the choice of smoother
based on a given coarsening strategy. This, in our view, is a subject worthy
of further investigation. Theoretically, it would also be possible to optimize
both coarsening and smoother simultaneously.

Finally, we would like to note that several AMG software packages have
been developed and are currently in use, most notably:1

Hypre http://acts.nersc.gov/hypre/
Trilinos https://trilinos.org/
Multigraph http://ccom.ucsd.edu/˜reb/software.html
AGMG http://homepages.ulb.ac.be/˜ynotay/AGMG/
PyAMG http://pyamg.org/
FASP http://fasp.sourceforge.net/
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P. Vaněk, J. Mandel and M. Brezina (1996), ‘Algebraic multigrid based on

smoothed aggregation for second and fourth order problems’, Computing 56,
179–196.
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