
J. Appl. Prob. 53, 614–621 (2016)
doi:10.1017/jpr.2016.26

© Applied Probability Trust 2016
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Abstract

In this paper we study a special class of size dependent branching processes. We assume
that for some positive integer K as long as the population size does not exceed level K ,
the process evolves as a discrete-time supercritical branching process, and when the
population size exceeds level K , it evolves as a subcritical or critical branching process.
It is shown that this process does die out in finite time T . The question of when the mean
value E(T ) is finite or infinite is also addressed.
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1. Introduction

Let N ≡ {1, 2, 3, . . .} and N0 ≡ {0, 1, 2, 3, . . .}. Size dependent branching processes have
been well studied in the literature; see, e.g. [3], [4], and [5]. In this paper we treat a special
class of such processes. In particular, we focus on the behaviour of T and E(T ), where T is the
extinction time of a Galton–Watson branching process (Zn)n∈N0 with a threshold K , a positive
integer, i.e. (Zn)n∈N0 behaves according to a supercritical process as long as Zn ≤ K and when
Zn ≥ K + 1 as a subcritical process or as a critical process, for all n. Specifically:

(i) if Zn−1 = i ≤ K then each of these i individuals creates offspring independently of
all the others according to a distribution (πj )j∈N0 and with mean M ≡ ∑∞

j=1jπj > 1,
which could be ∞;

(ii) if Zn−1 = k ≥ K + 1 then each of these k individuals creates offspring independently
of all the others according to a distribution (pj )j∈N0 with mean m ≡ ∑∞

j=1jpj ≤ 1 (if
m = 1, we further assume that p1 < 1). (The distributions (πj )j∈N0 and (pj )j∈N0 do
not change with n.)

2. Main results

Theorem 1. Let T ≡ min{n : n ∈ N, Zn = 0} be the extinction time of the process (Zn)n∈N0 .
Then for each j ∈ N,

Qj ≡ P(T < ∞ | Z0 = j) = P(there exists n, n < ∞, Zn = 0 | Z0 = j) = 1.

Theorem 2. Let T ≡ min{n : n ∈ N, Zn = 0} and f (s) ≡ ∑∞
j=0pj s

j , 0 ≤ s ≤ 1, be the
probability generating function (PGF) of the offspring distribution (pj )j∈N0 .
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Let 1 < M = ∑∞
j=1jπj < ∞ and either m < 1 or m = 1 and

I ≡
∫ 1

0

1 − s

f (s) − s
ds < ∞.

Then E(T ) < ∞.

Remark 1. Let m = 1 and the distribution (pj )j∈N0 be of the Slack type (see [7]); i.e. for
some 0 < α < 1,

f (s) ≡
∞∑

j=0

pj s
j = s + (1 − s)1+αL(1 − s), 0 ≤ s ≤ 1,

where L(x) is slowly varying as x → 0. Then, the integral I in Theorem 2 is finite. In
particular, this includes the following case:

f (s) = s + a

1 + α
(1 − s)1+α, 0 < α < 1, 0 < a ≤ 1,

i.e.

f (s) = a

1 + α
+ (1 − a)s + α(1 + α)

2
s2 +

∞∑
j=3

∣∣∣∣
(

1 + α

j

) ∣∣∣∣ sj .

Here, 0 < p0 = f (0) = a/(1 + α) < 1, m = 1; see [6].

Remark 2. If m = 1 and
∑∞

j=0pj s
j = f (s) = s + (1 − s)2L(1 − s), L(x) is slowly varying

at x = 0, then I = ∞.
All critical processes with finite offspring variance σ 2 belong to this class. In Theorem 4

below we show that if I = ∞ then E(T ) = ∞.

Theorem 3. Let p0 + p1 = 1 and p1 < 1.

(i) If LM ≡ ∑∞
j=2(log j)πj < ∞ then E(T ) < ∞.

(ii) If LM = ∞ then E(T ) = ∞.

Remark 3. Thus, for the special case (necessarily subcritical) when p0 + p1 = 1, p1 < 1, a
necessary and sufficient condition for E(T ) < ∞ is LM < ∞, i.e. we need only a logarithmic
moment condition on the supercritical offspring distribution. Thus, M could be ∞.

Theorem 4. Let π0 = 0. If (pj )j∈N0 is a critical offspring distribution and

I =
∫ 1

0

1 − s

f (s) − s
ds = ∞,

then E(T ) = ∞. (This class includes all critical processes with offspring variance σ 2 < ∞,
i.e. finite second moment.)

Remark 4. From Theorems 2 and 4, when π0 = 0 and m = 1, a necessary and sufficient
condition for E(T ) = ∞ is I = ∞.

3. Proofs

The following result on the extinction probability for subcritical or critical Galton–Watson
processes is well known.
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Lemma 1. Let (ζn)n∈N0 be a subcritical or critical Galton–Watson process with offspring
distribution (pj )j∈N0 and p1 < 1. Then for any j ∈ N, qj ≡ P(ζn = 0 for some 1 ≤ n <

∞ | ζ0 = j) = 1.

Proof. See [1, p. 7]. �
Lemma 2. Let (ζn)n∈N0 be a subcritical process as in Lemma 1, i.e. m = ∑∞

j=1jpj < 1. Let
τ ≡ min{n : n ∈ N and ζn = 0} be the extinction time of the process. Then

E(τ | ζ0 = 1) ≤ 1

1 − m
< ∞.

Proof. The proof follows from

E(τ | ζ0 = 1) =
∞∑

j=0

P(τ > j | ζ0 = 1)

=
∞∑

j=0

P(ζj > 0 | ζ0 = 1)

=
∞∑

j=0

(1 − fj (0))

≤
∞∑

j=0

mj

= 1

1 − m
,

where fj (s) is the PGF of ζj (since we have 1 − fj (0) ≤ f ′
j (1−) = mj by the mean value

theorem). �
Lemma 3. Let (ζn)n∈N0 be a critical process as in Lemma 1 and ζ0 = 1. Then

E(τ ) = ∞ when I =
∫ 1

0

1 − s

f (s) − s
ds = ∞,

or

E(τ ) < ∞ when I =
∫ 1

0

1 − s

f (s) − s
ds < ∞.

Proof. See [6]. �
Lemma 4. Let (ζn)n∈N0 be a supercritical process with ζ0 ≡ 1, g(s) ≡ ∑∞

i=0πj s
j its offspring

PGF, and q ≡ P(ζn = 0 for some 1 < n < ∞)(< 1) its extinction probability.
The underlying probability space � disintegrates almost surely into

Q ≡ {ω | (ζn(ω))n∈N0 dies out}
and Qc ≡ {ω | (ζn(ω))n∈N0 has an infinite line of descent} with P(Q) = q and P(Qc) = 1−q.

If π0 > 0 (and, hence, q > 0) then on Qc (ζn)n∈N0 can be decomposed into ζn(ω) =
ζ

(A)
n (ω) + ζ̃ (ω), where (ζ

(A)
n )n∈N0 is the process of all descendants with infinite lines of descent

and (ζ̃n)n∈N0 is a nonnegative process. Then (ζ
(A)
n )n∈N0 is a supercritical process with PGF

ĝ(s) = (g((1 − q)s + q) − q)/(1 − q) and values in N. Hence, ĝ(s) = ∑∞
j=1π̂j s

j , i.e.
π̂0 = 0 and M̂ ≡ ĝ′(1 − m) = M(> 1).
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On Q ζn = ζ
(B)
n , n ∈ N0, is a subcritical process with PGF g∗(s) ≡ g(sq)/q and m∗ ≡

g′(q) < 1. If π0 = 0 then q = 0 and, hence, Qc = � and (ζn)n∈N0 = (ζ
(A)
n )n∈N0 almost

surely.

Proof. See [1, pp. 47–53]. �
Lemma 5. Let Z0 ≡ j, j ∈ {1, . . . , K} and T1 := min{n : n ∈ N, Zn ≥ K + 1 or Zn = 0}.
Then

E(T1) ≤ K

1 − m∗ + 2K + C(K)

√
π̂1

1 − √
π̂1

=: C1 < ∞,

where m∗ and π̂1 are as in Lemma 4 and C(K) := maxn∈N(nKπ̂
n/2
1 ) < ∞.

Proof. For each 1 ≤ i ≤ K , let (ζ
(A)
n,i )n∈N0 , (ζ

(B)
n,i )n∈N0 , Qi , and Qc

i be as defined in
Lemma 4.

Case 1. Let H be the event Q1 ∩ . . . ∩ Qj . Then Zn = ζ
(B)
n,1 + · · · + ζ

(B)
n,j for 0 ≤

n ≤ T1 almost surely on H , where the processes (ζ
(B)
n,i )n∈N0 are independent and identically

distributed (i.i.d.) subcritical with PGF g∗(s) and ζ
(B)
0,i = 1. Let τ

(B)
i be the extinction time

of (ζ
(B)
n,i )n∈N0 . Then E(τ

(B)
i ) ≤ 1/(1 − m∗) < ∞. Here, ZT1 = 0 with probability less than

or equal to qj , namely, when max1≤i≤j τ
(B)
i = T1. Otherwise, ZT1 ≥ K + 1. In either case

T1 ≤ τ
(B)
1 + · · · + τ

(B)
j . Hence, E(T1, H) ≤ jE(τ

(B)
1 ) ≤ K(τ

(B)
1 ) ≤ K/(1 − m∗) < ∞.

Case 2. Consider the event Hc = � \ H . Almost surely on Hc there exists at least one
1 ≤ i ≤ j with Zn ≥ ζ

(A)
n,i for all 0 ≤ n ≤ T1, where the (ζ

(A)
n,i )n∈N0 are i.i.d., supercritical

processes with PGF ĝ(s) and ζ
(A)
0,i = 1.

Let τ
(A)
i := min{n | n ∈ N, ζ

(A)
n,i ≥ K + 1}. The paths (ζ

(A)
l,i )0≤l≤n are increasing as π̂0 =

0. These paths can attain not more than K values before they reach the level K + 1. As
P(ζ

(A)
l+1,i = k | ζl,i = k) = π̂ k

1 ≤ π̂1 and P(ζl+1,i ≥ k + 1 | ζl,i = k) ≤ 1, the probability of
every path with τ

(A)
i ≥ n is not greater than 1Kπ̂n−K

1 and there are not more than nK such
paths. Hence, P(τ

(A)
i ≥ n | ζ

(A)
0,i = 1) ≤ nKπ̂n−K

1 = (nKπ̂
n/2
1 )π̂

(n−2K)/2
1 for n ≥ 2K . Then

limn→∞ nKπ̂
n/2
1 = 0 and, therefore, C(K) := maxn∈N(nKπ̂

n/2
1 ) < ∞. Hence,

E(τ
(A)
i ) =

∞∑
n=1

P(τ
(A)
i ≥ n)

≤
2K∑
n=1

1 +
∞∑

n=2K+1

P(τ
(A)
i ≥ n)

≤ 2K + C(K)

∞∑
l=1

√
π̂1

l

= 2K + C(K)

√
π̂1

1 − √
π̂1

< ∞.

We have T1 ≤ τ
(A)
i on Hc and, therefore,

E(T1) = E(T1, H) + E(T1, H
c) ≤ K

1 − m∗ + 2K + C(K)

√
π̂1

1 − √
π̂1

< ∞, �
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Now we are ready for the proof of Theorem 1. Since T1 is a stopping time, ZT1 is a well-
defined random variable. Now consider the case ZT1 = k ≥ K + 1. As (ZT1+n)n is then a
subcritical or critical branching process, ZT1+n will reach the set of the states {0, 1, 2, . . . , K}
with probability 1. Hence, we can define

D1 ≡
{

min{n : n ≥ 1, ZT1+n ≤ K} when ZT1 ≥ K + 1,

0 when ZT1 = 0.

At T1 + D1, (Zn)n∈N0 has completed its first cycle. If ZT1+D1 �= 0 then the process starts with
ZT1+D1(∈ {1, . . . , K}) its second cycle, which can be treated the same way as the first one, and
so on.

Hence, we can now define the random times T2, D2, . . . , Tn, Dn, . . . accordingly. In partic-
ular, if ZT1+D1 = 0 then set (Ti, Di) = (0, 0) for all i ≥ 2, and so on. The extinction time T

defined in Theorem 1 can now be written as T = T1 + D1 + · · · + Tn∗ + Dn∗ , where n∗ is the
smallest n with ZT1+D1+···+Tn+Dn = 0.

Proof of Theorem 1. For 1 ≤ i, j ≤ K < k define

λi,j (k) ≡ P(ZT1 = k | ZT1−1 = i, Z0 = j)

= P(ZT1 = k, ZT1−1 = i, Z0 = j)

P(ZT1−1 = i, Z0 = j)

= π∗i
k

∑∞
l=1 P(Zl−1 = i, Zl−2 ≤ K, . . . , Z1 ≤ K, Z0 = j)∑∞

l=1 P(Zl ≥ K + 1, Zl−1 = i, Zl−2 ≤ K, . . . , Z1 ≤ K, Z0 = j)
,

where the ratio is positive. Here, (π∗i
k )k∈N0 is the i-fold convolution of the supercritical offspring

distribution (πk)k∈N0 .
Set gi,j (s) ≡ ∑∞

h=K+1λi,j (h)sh. Then P(ZT1+1 = 0 | ZT1 = 0) = 1, and P(ZT1+1 =
0 | ZT1 ≥ K + 1) ≥ min{gi,j (p0) : 1 ≤ i, j ≤ K} ≡ λ, say. Now p0 > 0 implies that
λ > 0. Hence, P(ZT1+D1 = 0) ≥ λ and P(ZT1+D1 ∈ {1, . . . , K}) ≤ 1 − λ. By the conditional
independence of the cycles as defined above, for each n ≥ 1, P(ZT1+D1+T2+D2+···+Tn+Dn ∈
{1, 2, . . . , K}) ≤ (1 − λ)n. Since Qj = limn→∞ P(T = T1 + D1 + T2 + D2 + · · · + Tn +
Dn | Z0 = j), it follows that

Qj = 1 − lim
n→∞ P(ZT1+D1+···+Tn+Dn ∈ {1, . . . , K} | Z0 = j) ≥ 1 − lim

n→∞(1 − λ)n = 1

as λ > 0. �
Proof of Theorem 2. We know by Lemma 2 and Lemma 3 that the conditions of Theorem 2

imply that the extinction time τ of the Galton–Watson process with offspring distribution
(pj )j∈N0 has a finite expectation, and in case this process is subcritical, E(τ ) ≤ 1/(1 − m) if
ζ0 = 1.

Now we have to estimate E(D1). Suppose that ZT1 = k ≥ K + 1. If we remove the
threshold K , (ZT1+n)n∈N0 = (ζn,1 + · · · + ζn,k)n∈N0 , where the (ζn,i)n∈N0 are i.i.d. subcritical
or critical Galton–Watson processes with offspring distribution (pj )j∈N0 . Now the process
(ζn,1 + · · · + ζn,k)n∈N0 dies out, when all the (ζn,i)n have died out, i.e. at max{τ1, τ2, . . . , τk}.
This is clearly less than or equal to τ1 + τ2 + · · · + τk . As (ZT1+n)n∈N0 reaches the states
{0, 1, 2, . . . , K} not later than when (ζn,1 + · · · + ζn,k)n∈N0 dies out, we obtain

E(D1 | ZT1 = k) ≤ E(max{τ1, . . . , τk}) ≤ kE(τ ), E(D1 | ZT1 = 0) = 0.
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Hence,

E(D1 | ZT1 ≥ K + 1) ≤ max

{ ∞∑
k=K+1

λi,j (k)kE(τ ) : 1 ≤ i, j ≤ K

}

= max{g′
i,j (1−) : 1 ≤ i, j ≤ K}E(τ ).

This is finite as g′(1−) = M < ∞.
Next, P(T > T1 + D1) = P(ZT1+D1 ∈ {1, 2, . . . , K}) ≤ 1 − λ. Then, using the cycle

argument as in the discussion prior to Theorem 1, and since T ≤ ∑n∗
j=1(Tj + Dj), using

Wald’s identity we see that E(T ) ≤ E(T1 + D1)E(n∗), (where n∗ as defined before the proof
of Theorem 1) implying

E(T ) ≤ E(T1 + D1)

∞∑
k=1

(1 − λ)k

≤ (C1 + E(D1))(1 − λ)
1

λ

= (C1 + E(D1))

(
1

λ
− 1

)
< ∞ as λ > 0. �

Remark 5. In the proof of Theorem 2 we bound above the maximum of i.i.d. random variables
by their sum. Hence, the conditions given in Theorem 2 are only sufficient, and by far not
necessary, to prove the finiteness of E(D1), as can be seen in Theorem 3.

Lemma 6. Let (ζn,1+· · ·+ζn,k)n∈N0 be the sum of k i.i.d. subcritical Galton–Watson processes
with an offspring distribution such that p0 + p1 = 1, p1 < 1 and such that ζ0,i = 1. Let
τi ≡ min{n : n ≥ 1, ζn,i = 0} be the extinction time of (ζn,i)n, 1 ≤ i ≤ k.

Let τ̃ = max{τ1, τ2, . . . , τk} and Ek := E(τ̃ ). Then, for all k ∈ N,

− 1

log(1 − p0)
Hk ≤ Ek ≤ 1 − 1

log(1 − p0)
Hk,

where Hk := (1 + 1
2 + · · · + 1/k).

Proof. Here the extinction times τi of these subcritical processes are geometrically dis-
tributed: P(τi = k) = po(1 − p0)

k−1, k ∈ N0. Set q0 := 1 − p0. Then

P(τi ≤ l) =
l∑

k=1

p0q
k−1
0 = p0

1 − ql
0

1 − q0
= 1 − ql

0.

Hence, P(τ̃ ≤ l) = P(max{τ1, τ2, . . . , τk} ≤ l) = (1 − ql
0)

k, P(τ̃ > l) = 1 − (1 − ql
0)

k .
This implies that Ek = E(τ̃ ) = ∑∞

l=01 − (1 − ql
0)

k .
Comparing this infinite sum with the corresponding integral (see [2]), we obtain∫ ∞

0
1 − (1 − qx

0 )k dx ≤ Ek ≤ 1 +
∫ ∞

0
1 − (1 − qx

0 )k dx.

Substituting y = 1 − qx
0 leads to∫ ∞

0
1 − (1 − qx

0 )k dx = − 1

log q0

∫ 1

0

1 − yk

1 − y
dy
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= − 1

log q0

∫ 1

0
(1 + y + · · · + yk−1) dy

= − 1

log q0
Hk. �

Remark 6. The integral in the proof of Lemma 6 is the value for E(τ̃ ), if the τi were exponen-
tially distributed with parameter − log q0.

Lemma 7. (i) We have LM = ∑∞
j=2(log j)πj < ∞ if and only if

∑∞
j=2(log j)π∗i

j < ∞ for
all i ≥ 2.

(ii) Let (ζn,i)n∈N0 , 1 ≤ i ≤ K , be i.i.d. subcritical Galton–Watson processes with offspring
distribution (pj )j∈N0 and extinction times τi, ζ0,i = 1. Then the mean values of the extinction
times τ̃j of (ζn,1 + · · · + ζn,j )n∈N0 , 1 ≤ j ≤ K , have a finite common upper bound.

Proof. (i) Let Y1, . . . , Yi ≥ 0 be i.i.d. random variables with distribution (πj )j∈N0 . Then

(a) We have ∞∑
j=2

(log(1 + j))π∗i
j = E(log(1 + Y1 + · · · + Yi))

≤ E(log(1 + Y1) + · · · + log(1 + Yi))

= iE(log(1 + Y1)) < ∞ as LM < ∞
and log j ∼ log(1 + j), i.e. log j/log(1 + j) → 1 as j → ∞.

(b) We have E(log(1 + Y1)) ≤ E(log(1 + Y1 + · · · + Yi)) < ∞ implies that LM < ∞.

(ii) We have E(τ̃ ) ≤ KE(τ1) < ∞. �
Proof of Theorem 3. We have Ek ∼ −(1/log(1 − p0))Hk by Lemma 6. Furthermore, Hk ∼

log k. Hence, there exist constants 0 < C3 < C2 < ∞ with C3 log k ≤ Ek ≤ C2 log k for all
k ≥ K + 1.

(i) As E(D1 | ZT1 = k) ≤ C2 log k, k ≥ K + 1, and E(D1 | ZT1 = 0) = 0, we obtain

E(D1 | ZT1 ≥ K +1) ≤ C2 max
1≤i≤K, 1≤j≤K

∞∑
k=K+1

λi,j (k) log k

P(ZT1 ≥ K + 1)
< ∞ as LM < ∞

(implies that
∑∞

k=2(log k)π∗i
k < ∞ by Lemma 7(i)). Hence, E(D1) < ∞ and, therefore,

E(T ) ≤ E(T1 + D1)

(
1

λ
− 1

)
< ∞.

(ii) Let LM = ∞. Then

E(D1 | ZT1 ≥ K + 1) ≥ C3 min
1≤i≤K, 1≤j≤K

∞∑
k=K+1

λi,j (k) log k − E(τ̃ ) = ∞,

by Lemma 7(ii) and as LM = ∞. As T ≥ D1, we obtain E(T ) = ∞.

This completes the proof. �
Proof of Theorem 4. By Theorem 1 we know that the branching process (Zn)n∈N0 dies out

eventually, i.e. P(T < ∞) = 1. The condition π0 = 0 ensures that this can happen only by a
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jump from some k ≥ K + 1 to 0 (with probability pk
0). Using the tree structure of the paths

of the process (Zn)n∈N0 , we embed a critical Galton–Watson process (
n)n∈N0 governed by
the offspring PGF f (s) with 
0 ≡ 1. The assumptions of Theorem 4 imply that E(τ
) = ∞,
where τ
 is the extinction time of (
n)n∈N0 . Construction of (
n)n : (ZT1+n)n behaves like a
sum of i.i.d. critical Galton–Watson processes governed by f (s) for n = 0, 1, . . . , D1.

Step 1. Choose at random one of the ZT1(≥ K + 1) individuals and define (
n)n=0,...,D1 as
the values of the process generated by this individual. Obviously, 
n ≤ ZT1+n, n = 0, . . . , D1.

Step 2. Since ZT1+D1 ≤ K , either 
D1 = 0 and, therefore, 
n = 0 for all n ≥ D1, or 
D1 =
j ∈ {1, . . . , K}. In the latter case choose j individuals at random from the ZT1+D1+T2(≥ K+1)

individuals. Define (
D1+n)n=0,...,D2 as the values of the sum of the processes generated by
these j individuals, i.e. (
n)n is now defined for 0 ≤ n ≤ D1 + D2 and so on. So (
n)n∈N0

will eventually die out, at the latest at time T , when (Zn)n∈N0 dies out. Hence, τ
 ≤ T . Since
E(τ
) = ∞, it follows that E(τ ) = ∞. �

4. Final remarks

Let us modify the process (Zn)n∈N0 in such a way that on reaching the state 0 there is an
immigration of exactly one individual, i.e. if Zr = 0 then Zr+1 = 1, r ∈ N0. The state 1 is now
a point of renewal. The renewal time is distributed like T +1, where T is the extinction time of
the original process. The modified process is a recurrent Markov chain as P(τ + 1 < ∞) = 1
by Theorem 1. If E(T + 1) < ∞ then this chain is positively recurrent and nullrecurrent
otherwise. An interesting problem is to investigate the stationary distribution in the positive
recurrent case.

One might introduce a finite number of thresholds 1 ≤ K1 < K2 < · · · < Kr . As long
as the different Galton–Watson processes are supercritical below K1 and subcritical or critical,
respectively, between Kj and Kj+1 and above Kr , the behaviour of the new branching process
should not differ much from the one studied in this paper.

All processes looked at so far belong to the class of size-dependent Galton–Watson processes.
The extension of the results of this paper to the multitype case will appear elsewhere.
An interesting problem is to investigate the asymptotics of the distribution of Zn conditioned

on the event {Zn > 0} as n → ∞.
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