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We present direct numerical simulations of non-Oberbeck–Boussinesq (NOB)
Rayleigh–Bénard (RB) convection due to large temperature differences in two-
dimensional (2-D) and three-dimensional (3-D) cells. Perfect air is chosen as the
operating fluid and the Prandtl number (Pr) is fixed to 0.71 for the reference state
T̂0= 300 K. In the present system, we consider large temperature differences ranging
from 60 K to 240 K, and relatively strong NOB effects are induced at moderate
Rayleigh numbers (Ra) in the range 3 × 106 6 Ra 6 5 × 109. The large temperature
difference also induces the turbulence system with large density variation. Due
to top-down symmetry breaking under NOB conditions, an increase of the centre
temperature Tc is found compared to the arithmetic mean temperature Tm of the top
and bottom plates, and the shift of Tc is strongly dependent on Rayleigh number
Ra and temperature differential ε. The NOB effects on the Nusselt number (Nu) are
quite small (.2 %). The power-law scalings of Nu versus Ra are robust against NOB
effects, even for the extremely large temperature difference 240 K, which has never
been reached in previous experiments and simulations. The Reynolds numbers Re,
as well as the scalings of Re versus Ra, are also insensitive to NOB effects. It is
noteworthy that the influence of NOB effects on Nu and Re in 3-D RB flow are
weaker than its 2-D counterpart. Furthermore, the extended laminar boundary layer
(BL) equations are developed based on the low-Mach-number Navier–Stokes equations,
which qualitatively predicts the NOB effects on velocity profiles. Direct numerical
simulation results indicate that the top and bottom thermal BLs can compensate each
other much better than the velocity BLs under NOB conditions, which contribute to
the robustness of Nu.
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1. Introduction

Turbulent Rayleigh–Bénard (RB) convection by now has been studied extensively, in
which the fluid is heated from below and cooled from above (see, e.g. Bodenschatz,
Pesch & Ahlers (2000), Ahlers, Grossmann & Lohse (2009), Lohse & Xia (2010),
Chillà & Schumacher (2012), Xia (2013)). Most of these studies strive to stay in
a limit described by the Oberbeck–Boussinesq (OB) approximation, which relies on
satisfying the following main assumptions: the density is regarded a constant except
in the buoyancy term, where the density ρ is assumed to be linearly dependent on
temperature T; all fluid properties (e.g. thermal conductivity k, dynamic viscosity µ)
are considered constants.

The OB approximation is found to be reasonably satisfactory if the temperature
difference is below a certain threshold which is different for different fluids (Gray
& Giorgini 1976). However, large temperature differences are ubiquitous in many
practical applications, where non-Oberbeck–Boussinesq (NOB) effects become
significant. For instance, in nuclear reactors where the typical temperature differences
of thermal insulation systems can reach up to several hundred degrees, the variations
of ρ, k and µ must be taken into account simultaneously. In foundry processes and
some astrophysical flows, NOB effects also play an important role.

There is by now a large body of literature on NOB effects in RB convection
(Ahlers et al. 2009; Chillà & Schumacher 2012) for various fluids, such as gaseous
helium (Wu & Libchaber 1991; Sameen, Verzicco & Sreenivasan 2008), glycerol
(Zhang, Childress & Libchaber 1997, 1998; Sugiyama et al. 2007; Horn, Shishkina
& Wagner 2013), gaseous ethane (Ahlers et al. 2007, 2008), water (Ahlers et al.
2006; Sugiyama et al. 2009; Horn & Shishkina 2014; Demou & Grigoriadis 2019),
SF6 (Burnishev, Segre & Steinberg 2010; Burnishev & Steinberg 2012) and air (Xia
et al. 2016; Liu et al. 2018). In general, NOB effects in turbulent RB convection
can be induced by two paths (Chillà & Schumacher 2012). One is related to the
convection beyond the incompressible limit, which mainly occurs in gases (Ahlers
et al. 2007), in which the strong compressibility effects and large variations of the
fluid properties can arise. The other is usually found in liquids, where NOB effects
are almost induced solely from the temperature-dependent material properties (Ahlers
et al. 2006). In early experiments of Zhang et al. (1997), an important issue relevant
for NOB effects in RB convection was confirmed, that is, that the flow structures
become asymmetric due to a top-down symmetry breaking. With the asymmetry of
top and bottom thermal boundary layers (BLs), the temperature at the cell centre
will deviate from the arithmetic average of the temperatures at the top and bottom
plates. For the convection in water, Ahlers et al. (2006) experimentally found that
the Nusselt number Nu and Reynolds number Re are rather insensitive to the NOB
effects, which only result in a small reduction of Nu (.2%) under NOB conditions.
No obvious modification of Re is found within the experimental resolution. The centre
temperature is increased due to NOB effects. While for gaseous ethane, Ahlers et al.
(2007) found a decrease of the centre temperature and an increase of Nu which are of
opposite and greater magnitude than those for NOB effects in water. Direct numerical
simulations (DNS) were performed by Sameen, Verzicco & Sreenivasan (2009) to
disentangle the importance of different material parameters for the NOB effects on
heat transport and flow structures. More recently, Valori et al. (2017) performed an
experimental study of the whole velocity field under NOB conditions. The prior
studies indicated the fact that NOB effects depend very sensitively on the particular
working fluid. The NOB effects are especially relevant to high-Ra convection where
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the temperature difference is usually large; however, the NOB effects in various fluids
at high Ra are still poorly understood (Chillà & Schumacher 2012).

In RB convection of air with large temperature differences, the flow reversals
(Xia et al. 2016) and instabilities (Liu et al. 2018) have recently been studied;
however, the heat and momentum transports for relatively high Ra have rarely been
studied. In order to fill this gap, we investigate NOB effects for compressible air
via DNS in two-dimensional (2-D) and three-dimensional (3-D) cells. To induce
NOB effects, we consider large temperature differences ranging from 60 K to 240 K.
With large variations in fluid properties, especially the large density variations, we
try to understand such NOB effects on heat and momentum transport as well as
flow structures quantitatively. There are three major purposes for choosing this
model. Firstly, we can study strong NOB effects on heat transport induced by
large temperature differences in a moderate range of Rayleigh numbers. Secondly,
the relationships between fluid properties and temperature are well described by
Sutherland’s law, which permits us to investigate the influences of variations in
µ and k in an accurate way. Finally, flow compressibility with a rather large
density variation is appropriately taken into account by employing low-Mach-number
Navier–Stokes equations with acoustic waves filtered (Paolucci 1982). In short,
this study is favourable for inferring the possible influence of large temperature
differences and fluid compressibility on heat transport and flow structures in some
high Ra experiments that usually encounter large temperature differences. To the best
of our knowledge, the extremely large temperature difference (e.g. 1T̂ = 240 K) has
never been reached in previous experiments and simulations, which is several times
that of the largest one used in previous studies. In addition, the low-Mach-number
Navier–Stokes equations are also firstly employed to treat 3-D fully turbulent
convection at relatively high Ra with large density variations (Livescu 2020).

The reminder of this paper is organized as follows. In § 2 we describe the detailed
numerical procedures. In § 3 we show the major results for the OB and NOB cases,
including the flow organizations, heat and momentum transport, and BL profiles, etc.
In § 4 we summarize our findings and conclude the paper.

2. Numerical procedures
In figure 1 we show the configuration of the present system in which the working

fluid is air in a cell of width Ŵ, height Ĥ and depth D̂ (for 3-D cases), where ‘·̂’
denotes dimensional quantities. Height Ĥ is chosen as the reference length. For all
cases, D̂/Ŵ = 1 and Ŵ/Ĥ = 1. The bottom and top walls are fixed at temperatures
of T̂H and T̂C, with T̂H > T̂C, while the lateral walls are thermally insulated. No-slip
and non-penetrative boundary conditions are applied at all rigid walls. To treat NOB
effects in air due to a large temperature difference, we employ low-Mach-number
Navier–Stokes equations (Paolucci 1982). The reference temperature T̂0= (T̂H + T̂C)/2
is chosen to be 300 K, and the reference quantities such as µ̂0, k̂0, ĉp0 are determined
at this temperature (Xia et al. 2016). The dimensional temperature difference is
1T̂= T̂H− T̂C= 2εT̂0, where ε is the temperature differential, quantifying the intensity
of NOB effects, with ε 6 0.4 corresponding to 1T̂ 6 240 K. The dimensionless
temperatures T at the hot and cold walls are given by 1+ ε and 1− ε, respectively.
The free-fall velocity û0 = (2εĝĤ)1/2 is used as the reference velocity, where ĝ
is the gravitational acceleration, and, thus, the reference time is t̂0 = Ĥ/û0. The
hydrodynamic pressure π is non-dimensionalized by ρ̂0Û2, and the thermodynamic
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FIGURE 1. Sketch of the present Rayleigh–Bénard convection in (a) 2-D and (b) 3-D
cells with the working fluid air, where D̂/Ŵ = 1 and Ŵ/Ĥ = 1.

pressure p is non-dimensionalized by ρ̂0R̂T̂0, where R̂ is the gas constant. Finally,
the dimensionless form of low-Mach-number Navier–Stokes equations with acoustic
waves filtered can be written as

∂ρ

∂t
+
∂ρuj

∂xj
= 0, (2.1)

∂ρui

∂t
+
∂ρuiuj

∂xj
=−

∂π

∂xj
+

√
Pr
Ra
∂τij

∂xj
+

1
2ε
(ρ − 1)ni, (2.2)

ρcp

(
∂T
∂t
+ uj

∂T
∂xj

)
=

1
√

RaPr

∂

∂xj
k
∂T
∂xj
+ Γ

dp
dt
, (2.3)

p= ρT, (2.4)

where ni is the unit vector in the direction of gravity and k is the thermal conductivity.
The ratio of the specific heats is γ = 1.4. Denote by Γ = (γ − 1)/γ the measure
of the resilience of the fluid. The isobaric specific heat cp is fixed to 1. Let π be
the hydrodynamic pressure. Let p be the thermostatic pressure; for a more detailed
definition, see Xia et al. (2016) and Liu et al. (2018). The viscous stress tensor τij is
expressed as τij=µ(∂ui/∂xj+ ∂uj/∂xi)− (2/3)δijµ∂uk/∂xk, where δij is the Kronecker
delta function. The four control dimensionless parameters of this problem are the
temperature differential ε, Rayleigh number Ra, Prandtl number Pr and aspect ratio
A, defined as

ε ≡
1T̂

2T̂0
, Ra≡

2εĉp0ρ̂
2
0 ĝĤ3

µ̂0k̂0

, Pr≡
ĉp0µ̂0

k̂0

, A≡
Ŵ

Ĥ
. (2.5a−d)

We fixed the reference Pr to 0.71 and A to 1. Dimensionless thermal conductivity k
and dynamic viscosity µ are determined by Sutherland’s law:

k= T1.5(1+ Sk)/(T + Sk), µ= T1.5(1+ Sµ)/(T + Sµ). (2.6a,b)

For air, the dimensionless Sutherland constants Sk = Ŝk/T̂0 = 0.648 and Sµ = Ŝµ/T̂0 =

0.368 for the reference state T̂0=300 K (White 1974; Suslov & Paolucci 1999; Suslov
2010). Sutherland’s law is developed based on the kinetic theory of ideal gases and an
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idealized intermolecular-force potential (Sutherland 1893), which is commonly used in
fully compressible flows (Chen, Xu & Lu 2010; Pirozzoli, Bernardini & Grasso 2010;
Wan et al. 2013). Fairly accurate results can be obtained with an error less than a
few per cent over a wide range of temperatures. Oberbeck–Boussinesq cases are also
investigated for the purpose of making a comparison. We set ε= 0.005, µ= k= p= 1,
∂uj/∂xj= 0 and ρ= 1 except in the buoyancy term ρ= 1/T = 1/(1+ δT)≈ 1− δT , so
the equations (2.1)–(2.4) can be reduced to the classical OB equations (van der Poel
et al. 2015; Wang et al. 2018).

The governing equations are solved numerically by our in-house code lMn2d/3d.
In this solver, all spatial terms are discretized by a second-order central difference
scheme. To avoid pressure–velocity decoupling, the staggered grid is utilized for
temperature and velocities, and pressure is also staggered in time with all other
variables. The fractional-step method is used to solve the equations (Verzicco &
Orlandi 1996). A multi-grid strategy (Briggs, Henson & McCormick 2000) is adopted
to solve the pressure Poisson equation. For time advancement, the wall-normal viscous
terms are semi-implicitly treated with the Crank–Nicolson scheme, while all other
terms are discretized by the third-order Runge–Kutta scheme. The numerical details
and validations of the code have been elaborated on in our previous works (Xia et al.
2016; Liu et al. 2018; Wang et al. 2019a). The grid sizes and some other simulation
parameters are given in tables 3 and 4 in the Appendix. For all simulations, the Nu
and Re are averaged for at least 400 free-fall time units after all transients have been
dissipated. The grid is chosen to satisfy the resolution requirement which can resolve
the smallest scales of the problem, i.e. the Kolmogorov scale ηK and the Batchelor
scale ηB (Shishkina et al. 2010). In addition, a non-uniform grid is adopted with
more grid points clustered near walls in order to resolve small scales inside BLs. For
all cases, there are at least 10 grid points inside the thermal BLs.

3. Results and discussion
3.1. Flow organization

3.1.1. The velocity fields
In figure 2(a–d) we show the instantaneous velocity and reduced temperature fields

at Ra = 5 × 108 and 8 × 108 for OB and ε = 0.2. Here, the reduced temperature is
defined as

Θ = (T − 1)/2ε. (3.1)

In 2-D simulations the velocity fields are very complex, even when we miss 3-D
flow modes. As shown in figure 2(a,b), we can find a relatively stable large-scale
circulation (LSC) at Ra= 5× 108, the size of which is comparable to the box size H
in both OB and NOB cases (Xi, Lam & Xia 2004; Sugiyama et al. 2009; Chandra
& Verma 2013). As Ra increases, the instantaneous velocity fields that the corner
rolls become more unstable and the relatively stable LSC is broken. For the case
Ra= 8× 108 shown in figure 2(c,d), some relatively large-scale vortices detach from
the corners and convect along the main wind. Movies at different Ra are provided in
the supplementary materials available at https://doi.org/10.1017/jfm.2020.66. It should
be mentioned that the LSC can still be observed from the mean flow field in this
case, but the mean velocity distribution is changed, which will be further discussed
in the following. In figure 2(e, f ) we show the volume rendering of 3-D temperature
fields. Vigorous sheetlike plumes are emitted from the bottom and top plates, with no
significant differences in plume structures between the OB and NOB cases. Overall,
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FIGURE 2. Snapshots of the 2-D velocity (arrows) and reduced temperature Θ (colour)
fields for Pr = 0.71 with different ε and Ra. (a,b) Ra = 5 × 108; (a) OB, (b) ε = 0.2.
(c,d) Ra= 8× 108; (c) OB, (d) ε = 0.2. (e,f ) Volume rendering of 3-D temperature fields
(T) for Ra= 107; (e) OB, ( f ) ε = 0.2.

for air, we cannot observe obvious qualitative differences from the snapshots between
OB and NOB cases for the same Ra, which is different from the NOB cases in water
(Sugiyama et al. 2009).

To better show NOB effects on the velocity field, we present in figure 3 the mean
horizontal velocity profiles v̄(z) at y = 0.5 and mean vertical velocity profiles w̄(y)
at z = 0.5 for Ra = 108 and 109 in OB and various ε in 2-D cases, respectively.
Due to the inherent nature of top-down symmetry breaking, the flow structures will
be asymmetric as stated in (Zhang et al. 1997). From figure 3, we can see that
the profiles of the horizontal velocity v̄(z) and the vertical velocity w̄(y) become
asymmetric to a certain degree. It should be mentioned that the profiles at Ra= 109
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FIGURE 3. Mean velocity profiles of v̄(z) for 2-D cases in the plane of y= 0.5 (a,b) and
w̄(y) in the plane of z= 0.5 (c,d) for (a,c) Ra= 108 and (b,d) Ra= 109.

shown in figure 3(b) are different from those at Ra= 108 shown in figure 3(a), due to
the change of flow pattern as illustrated in figure 2. At Ra= 108, there is a relatively
stable LSC, giving rise to the peaks of the profile near the edge of the top/bottom
viscous BL. However, at Ra = 109, the stable LSC is broken and there are large
vortices detached from corner rolls, and the convection of those large vortices has led
the peaks of the profile occurring in the bulk (e.g. z' 0.2 at the bottom) rather than
the edge of the viscous BL. Interestingly, even without stable LSC in this case, we
can still find the BL structures and a relatively sharp transition of the velocity profiles
occurring near the edge of the viscous BL. In § 3.4 we will further discuss the NOB
effects on the profiles of the viscous BLs, which can be described qualitatively by
laminar BL theory.

In order to quantify the intensity of velocity asymmetry, for 2-D cases, the absolute
value of the ratio of horizontal maximum mean velocity v̄max and horizontal minimum
mean velocity ūmin is calculated, namely, v̄r = |v̄max|/|v̄min|, and a similar ratio is also
obtained for the vertical velocity w̄r = |w̄max|/|w̄min|. In figure 4 we show v̄r and w̄r
as a function of Ra for different ε. It is well known that the velocity ratios should
be equal to 1 within OB approximation due to inherent symmetry of the system,
while they deviate from 1 under NOB conditions. Here, we can see that v̄r or w̄r
is a non-monotonic function of Ra for different ε. For Ra . 8 × 108, v̄r shows a
strong deviation under NOB conditions, and the maximum deviation is around 8 % at
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FIGURE 4. Graphs of v̄r (a) and w̄r (b) versus Ra for different ε for 2-D cases.
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FIGURE 5. The profiles of time-averaged reduced temperatures 〈Θ〉t for 2-D cases at
y= 0.5 for (a) Ra= 108 and (b) Ra= 109.

Ra= 3× 108 with ε = 0.4. Similar behaviors are found for w̄r. Furthermore, the most
interesting feature is that the Ra dependence of v̄r or w̄r is not monotonous, similar
to the convection of air with NOB effects in a differentially heated cell (Wang et al.
2019a). Based on the present data, it seems that the asymmetric feature of velocity is
weakened for high Ra, which should also be attributed to the change of flow pattern
when Ra & 8× 108, as illustrated in figure 2.

3.1.2. The temperature profiles and shift of centre temperature
Apart from the velocity distribution, the NOB effects also exert a significant

influence on the temperature field. Here, we are committed to studying the influence
of NOB effects on temperature profiles and centre temperature quantitatively. Within
OB approximation, the centre temperature Tc should be equal to 1 (or Θc = 0).
However, the Tc measured under NOB conditions will deviate from this mean value,
due to the asymmetry between top and bottom thermal BLs (Ahlers et al. 2007;
Sugiyama et al. 2009; Horn et al. 2013; Weiss et al. 2018). For instance, with much
smaller µ/k, the thicknesses of viscous/thermal BLs near the cold wall become much
thinner in the present system (Xia et al. 2016).

In figure 5 we show the profiles of time-averaged reduced temperatures 〈Θ〉t on the
line at y=0.5 in 2-D OB and NOB cases with different ε and Ra. For OB cases, Θ in
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FIGURE 6. (a) The profiles of time- and plane-averaged reduced temperatures 〈Θ〉t,S for
a 3-D case at Ra= 108. Panels (b) and (c) are the local enlargement of (a).

the bulk is nearly zero, and slight overshoots are observed near the edge of the thermal
BL for Ra = 108, which is influenced by the relatively large size corner rolls. Such
overshoots can also be observed in NOB cases. At Ra= 109, the overshoots disappear
since these corner rolls are smaller and detach from the corner frequently. For NOB
cases, Θ in the bulk become positive for various ε and Ra. This finding is similar
to that in strongly turbulent RB convection in liquids (Ahlers et al. 2006), which is
opposed to the previous finding for ethane gas close to its critical point (Ahlers et al.
2007). It should be mentioned that the prediction of the central temperature is still a
tough task because of the nonlinear temperature dependence of material properties. In
the present system, the thermal conductivity increases with the increase in temperature,
similar to that in liquids instead of gaseous ethane close to its critical point, which
might play a dominant role. In figure 6 we show the profiles of time- and plane-
averaged reduced temperatures 〈Θ〉t,S for the 3-D case at Ra= 108 for various ε. The
asymmetry of top and bottom thermal BLs is still presented under NOB conditions,
but the shift of Tc in the bulk becomes much smaller. At z/H=0.5, the centre reduced
temperature Θc is of the order 10−3, which is almost close to the level of statistical
uncertainties. The NOB effects on the shift of Tc are greatly reduced in 3-D cases,
which has not been fully understood. We guess that it might be attributed to better
fluid mixing for air in the bulk with the flow motion in the third dimension.

In the present cases, we conjecture that the positive shift of Tc is mainly attributed
to the temperature-dependent thermal conductivity k. In other word, the sign of Θc

can be judged beforehand based on the solution of the motionless state as follows. It
is well known that the motionless conductive state is always a solution of the system
before convection onset, which can be used as the base flow for studying onset of
instability (Liu et al. 2018). With fixed temperatures at the top and bottom boundaries,
the profiles of temperature T for different ε can be obtained by solving the nonlinear
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FIGURE 7. (a) Variations of k with Θ . (b) The profiles of Θ for OB and various ε cases
at the motionless state.
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FIGURE 8. (a) The relative deviations versus ε for air for various Ra in 2-D cases.
(b) The relative deviations as a function of Ra for various ε in 2-D cases.

equation
d
dz

(
k

dT
dz

)
= 0, (3.2)

with given boundary conditions at the top and bottom plates

T|z=H = 1− ε, T|z=0 = 1+ ε.

In figure 7(a) we show the thermal conductivity k as a function of Θ , while the
profiles of temperature in the conduction state in the OB and NOB cases are presented
in figure 7(b). It is seen that Tc will always be higher than 1 in the present cases,
which is qualitatively in consistence with the present DNS results shown in figure 5.
The shifts of Tc at the cell centre under motionless states are around 0.022, 0.044 and
0.087 for ε= 0.1, 0.2 and 0.4, respectively, which will be compared with DNS results
with turbulent convection at relatively high Ra.

As mentioned before, the shift of Tc is greatly reduced in 3-D cases; thus, in
figure 8(a) we only show the relative deviation (Tc − Tm)/2ε at the cell centre
versus ε at various Ra in 2-D cases. We can see that all deviations are positive, in
qualitative agreement with predictions under motionless states as shown in figure 7.
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FIGURE 9. The time-averaged temperature (T − Tm)/2ε fields at (a) Ra= 5× 108 and
(b) Ra= 109 under NOB conditions. The mean velocity vectors are also shown.

This is similar to the finding for water (Sugiyama et al. 2009). Moreover, the Tc is
strongly dependent on Ra, and the maximum relative deviation is about 5 %, occurring
at Ra= 3× 108, but all the relative deviations are below the values of the motionless
states. Previously, for convection in water under NOB conditions, Sugiyama et al.
(2009) found that the relative deviation is rather independent of Ra as Ra & 105 and
it almost increases linearly with increasing temperature difference. However, for 2-D
RB convection of air with a large temperature difference, the data points of relative
deviations are quite scattered, and such a linear relationship seems to be no longer
valid. Furthermore, for RB convection in water with NOB effects, the Tc can even
be reasonably predicted by the extended Prandtl–Blasius BL theory (Ahlers et al.
2006) despite the large deviations in the temperature profiles. Nevertheless, due to
the strong scatter and Ra dependence of our data, we cannot directly borrow the
extended BL theory to predict Tc in the present cases. In figure 8(b) we show relative
deviations versus ε for different Ra. Clearly, the largest deviations occur at ε = 0.4
for all Ra numbers. Similar to v̄r or w̄r, the Ra dependence of Tc is not monotonous.
Interestingly, for Ra & 5 × 108, the value of relative deviation will not be enhanced,
but reduced slightly for all ε as Ra increases, which might be attributed to the altered
flow organizations. In figure 9 we show the mean temperature fields (T − Tm)/2ε at
Ra= 5× 108 and 109. It is clear that the size of the corner roll is smaller at Ra= 109

than at Ra= 5× 108, and the former case has a smaller value of (Tc − Tm)/2ε. The
mean flow organization at Ra = 109 for the ε = 0.1 case is quite similar to that for
the ε= 0.2 case, and then we can see that their values of (Tc−Tm)/2ε are very close,
as shown in figure 8(b). The ε = 0.4 case at Ra= 109 has a larger hot left-bottom
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Case OB ε = 0.1 ε = 0.2 ε = 0.4

2-D Nu' 0.109Ra0.295 Nu' 0.110Ra0.295 Nu' 0.116Ra0.292 Nu' 0.107Ra0.296

3-D Nu' 0.164Ra0.285 Nu' 0.169Ra0.283 Nu' 0.167Ra0.284 Nu' 0.168Ra0.282

TABLE 1. The best power-law fit of Nu∼ Raα for OB and various ε cases in 2-D and
3-D cases.

corner roll, which produces a larger relative deviation at the cell centre. Thus, except
for the boundary layers, we think the flow organization also plays a certain role in
determining the relative deviation at the cell centre.

3.2. Global heat transport
We now pay attention to the global heat transport with and without NOB effects,
which is measured by the Nusselt number Nu, defined as

Nu=
Q

k2ε/H
, (3.3)

where Q is the heat flux across any horizontal plane. In figures 10(a) and 10(c) we
show the log–log plot of Nu versus Ra for OB and NOB cases for various ε. It is
clear that the change of Nu caused by NOB effects is quite small, which cannot be
distinguished directly in a log–log plot. Therefore, we list the raw data of Nu for all
cases in tables 3 and 4. It is well known that in RB convection for a fixed Pr, the
relationship between Nu and Ra can usually be expressed by a power-law scaling,
i.e. Nu ∼ Raα. For 2-D RB convection within OB approximation, Zhang, Zhou &
Sun (2017) examined Ra scalings of Nu for Pr = 0.7 and Pr = 5.3, which yielded
Nu ∼ Ra0.30±0.02 for both Pr. Presently, in table 1 we list the best power-law fitting
to Nu versus Ra for OB and various ε cases. Clearly, for current 2-D cases in the
Ra number range 5 × 107 6 Ra 6 5 × 109, the Nu versus Ra for OB cases yields
Nu∼ Ra0.295, which is very close to that in (Johnston & Doering 2009; van der Poel
et al. 2012; Zhang et al. 2017; Wang et al. 2019b). It should be emphasized that the
Ra-scaling exponents are also insensitive to NOB effects in RB convection despite
the changes in flow organizations caused by top-down symmetry breaking, similar to
the differentially heated cavity (Wang et al. 2019a). For present 3-D cases in the Ra
number range 3× 106 6Ra6 108, the Nu versus Ra for OB cases yields Nu∼Ra0.285,
which is also close to its 2-D counterpart.

In addition, to quantitatively show the NOB effects on Nu, the Nusselt number ratio
NuNOB/NuOB versus ε for all Ra is shown in figures 10(b,d). As previously mentioned,
the flow organizations are changed due to NOB effects, including the mean velocity
and temperature profiles. However, the Nusselt number Nu seems to be insensitive
to changes in ε, even up to ε = 0.4, corresponding to the dimensional temperature
difference 240 K. For 2-D cases, the maximum deviation of NuNOB/NuOB from 1 for
all Ra is less than 2 %. It is also found that the maximum deviation for 3-D cases
(.1 %) is even smaller than that for 2-D cases. Interestingly, similar to Ra dependence
of Tc, the Nusselt number ratios display an obvious dependence on Ra in spite of the
limited deviations, while they are only weakly dependent on Ra for water with NOB
effects (Sugiyama et al. 2009).
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FIGURE 10. The Nusselt number Nu versus Ra for OB and various ε for 2-D cases (a)
and 3-D cases (c); NuNOB/NuOB versus ε for various Ra in (b) 2-D cases and (d) 3-D
cases. The dashed lines are power-law fitting for OB data.

3.3. Reynolds numbers
In RB convection, the Reynolds number Re is an important response parameter, which
is defined as

Re=
ÛĤ
ν̂0
=

√
Ra
Pr

U, (3.4)

where Û and U are the dimensional and dimensionless characteristic velocities.
Here, we choose the root mean square (r.m.s.) velocities as the characteristic

velocity (Wagner & Shishkina 2013; Zhang et al. 2017, 2018; Ng et al. 2018),
i.e. U = Urms

=
√
〈u · u〉V , where 〈·〉V denotes the space average in two and three

dimensions and u is the velocity vector. In figure 11(a,c) we show Re based on r.m.s.
of velocities as a function of Ra for OB and NOB for various ε. Similar to Nu,
the Reynolds number can also be expressed by a power-law scaling, i.e. Re ∼ Raβ ,
as shown in table 2. It is clear that the influence of NOB effects on Re are quite
limited, which almost has no influence on the Ra scaling exponents. Based on Urms,
the power-law fitting to the data of OB cases yields the scaling of Re ∼ Ra0.617 in
2-D cases and Re∼ Ra0.491 in 3-D cases. For 2-D cases, the scaling exponent 0.617
is in excellent agreement with the exponent 0.62 found for the OB case of water by
Sugiyama et al. (2009), and is also close to 0.6 reported by Zhang et al. (2017) and
Wang et al. (2019b) recently. For 3-D cases, the scaling exponent is notably smaller
than that for 2-D RB flows, which agrees with previous findings that this exponent
ranges from 0.42 to 0.5 for 3-D RB flows with various working fluids based on one-
and multiple-point measurements (Niemela et al. 2001; Qiu & Tong 2001; Sun & Xia
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Case OB ε = 0.1 ε = 0.2 ε = 0.4

2-D Re' 0.042Ra0.617 Re' 0.044Ra0.615 Re' 0.045Ra0.613 Re' 0.042Ra0.618

3-D Re' 0.236Ra0.491 Re' 0.238Ra0.491 Re' 0.235Ra0.492 Re' 0.253Ra0.487

TABLE 2. The best power-law fittings for Re versus Ra for OB and various ε in 2-D
and 3-D cases.
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FIGURE 11. The Reynolds number Rerms based on the root mean square (r.m.s.) velocities
versus Ra for OB and NOB with various ε in (a) 2-D and (c) 3-D cases. The error bars
are smaller than the symbol sizes. The dashed lines are the best power-law fit for OB
data. The Reynolds number ratio ReNOB/ReOB versus ε at various Ra numbers for (b) 2-D
and (d) 3-D cases.

2005; Brown, Funfschilling & Ahlers 2007). To show the differences quantitatively
due to NOB effects, the Reynolds number ratio ReNOB/ReOB versus ε for all Ra is
presented in figure 11(b,d). We note that the maximum deviation of ReNOB/ReOB from
1 for all Ra numbers is about 3 % for 2-D cases and about 1 % for 3-D cases. In the
scope of the present data, this deviation does not show an obvious growth trend with
increasing Ra or ε, so we guess that the NOB effects at some higher Ra experiments
might also be limited at least for air.

3.4. The viscous and thermal boundary layers
The viscous and thermal BLs play an essential role in global heat transport across
the fluid layer (Grossmann & Lohse 2000). The Nusselt number is related, directly or
intimately, to the thickness of the thermal BLs, due to the fact that within the thermal
BLs heat is mainly transported via conduction (Wu & Libchaber 1991; Belmonte,
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Tilgner & Libchaber 1994; Lui & Xia 1998). In this section, we are committed to
studying the viscous and thermal BLs with strong variations of density, as well as µ
and k. The NOB effects on flow structures and heat transport are more significant in
2-D RB flows; thus, we mainly discuss the results for 2-D cases below.

3.4.1. The extended BL equations for air with a large temperature difference
Here, we derive the laminar BL equations starting from the non-dimensionalized

low-Mach-number Navier–Stokes equations. For derivation of a steady BL solution,
we assume time derivatives to be zero (∂(·)/∂t ≡ 0) in (2.1)–(2.3). Furthermore, we
consider a 2-D BL in the x–z plane with a zero-pressure gradient, and the buoyancy
term is neglected. The temperature is assumed to be advected passively. Finally, the
equations of flow motion are simplified to

∂ρu
∂x
+
∂ρw
∂z
= 0, (3.5)

ρu
∂u
∂x
+ ρw

∂u
∂z
=

√
Pr
Ra

∂

∂z

(
µ
∂u
∂z

)
, (3.6)

ρCp

(
u
∂T
∂x
+w

∂T
∂z

)
=

1
√

RaPr

∂

∂z

(
k
∂T
∂z

)
. (3.7)

Here we further assume that ρT = 1, which is valid for open systems. Furthermore,
we introduce a stream function:

ρu=
∂Ψ

∂z
, ρw=−

∂Ψ

∂x
. (3.8a,b)

Next, referring to Ahlers et al. (2006, 2007), we further introduce a self-similar
variable Z̃ = z/L, while Ψ̃ = Ψ/LU, such that L = (Pr/Ra)1/4

√
x/U. So the velocity

components become

u=
U
ρ
Ψ̃ ′, w=

√
Pr
Ra

1
2ρL

(Z̃Ψ̃ ′ − Ψ̃ ). (3.9a,b)

Then, the momentum equation becomes

µΨ̃ ′′′ +

(
Ψ̃

2
−µ

2ρ ′

ρ
+µ′

)
Ψ̃ ′′ +

[
µ

(
2ρ ′ρ ′

ρ2
−
ρ ′′

ρ

)
−µ′

ρ ′

ρ
−
Ψ̃

2
ρ ′

ρ

]
Ψ̃ ′ = 0, (3.10)

and the temperature equation becomes

kT ′′ + (k′ + 1
2 CpPrΨ̃ )T ′ = 0. (3.11)

From the equation of state ρ = 1/T , we obtain

µΨ̃ ′′′ +

(
Ψ̃

2
+µ

2T ′

T
+µ′

)
Ψ̃ ′′ +

(
µ

T ′′

T
+µ′

T ′

T
+

1
2
Ψ̃

T ′

T

)
Ψ̃ ′ = 0, (3.12)

kT ′′ + (k′ + 1
2 CpPrΨ̃ )T ′ = 0, (3.13)
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FIGURE 12. The definition of the thickness of viscous BL for DNS results, where the
OB case at Ra= 109 is used. The edge of BL (red dot) with velocity ve is defined at the
position of 3 % of the peak value of the secondary derivative of velocity |v′′(z)|.

where

µ′ = (1+ Sµ)
(
−

T1.5

(T + Sµ)2
+

1.5T0.5

(T + Sµ)

)
T ′, (3.14)

k′ = (1+ Sk)

(
−

T1.5

(T + Sk)
2 +

1.5T0.5

(T + Sk)

)
T ′, (3.15)

and the boundary conditions

Ψ (0)= 0, Ψ ′(0)= 0, Ψ ′(∞)= ρ∞, (3.16a−c)

T(0)= Tw, T(∞)= T∞. (3.17a,b)

In this paper, we use the density and temperature at the cell centre from DNS results
to define the boundary conditions for the BL equations at infinity (ρ∞, T∞). Here, Tw

is the temperature at the wall as sketched in figure 1, i.e. Tw = 1 + ε (hot plate) or
Tw = 1− ε (cold plate). Then, the new BL equations can be solved by the shooting
method, the results of which are compared to the DNS results in § 3.4.2.

3.4.2. The viscous/thermal boundary layer
Here, in some cases, we cannot find the maximum velocity near the BL edge as

shown in figure 3(b). Therefore, we use a new definition of the thickness of the
viscous BL (δv) as illustrated in figure 12, which is slightly different from that in
prior studies (Sun, Cheung & Xia 2008; Wei & Xia 2013). According to BL theory,
the viscous effects mainly come from the term containing the secondary derivative
of velocity. In order to find the edge of the viscous BL, we calculate the secondary
derivative of velocity with respect to z, i.e. v′′(z), and set the location of 3 % of the
peak value of |v′′(z)| to be the edge of the viscous BL, ensuring that the viscous
effects become small at this location and beyond. Then, the velocity at the edge of
the viscous BL is denoted as ve. The thickness of the viscous BL δv is defined as the
distance from the wall at which the extrapolation of the linear part of the horizontal
velocity profile meets the horizontal line passing through the velocity ve. We examined
that, for Ra= 108, this difference of δv between current and prior definitions is less
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FIGURE 13. The comparison of normalized velocity profiles of current BL equations and
DNS results for OB and NOB cases with different Ra on the line y= 0.5. (a,b) Ra= 108,
(c,d) Ra= 109. (a,c) The BL profiles on the bottom plate. (b,d) The BL profiles on the
top plate. Here, δv is the thickness of the viscous BL and ue is the velocity at the edge
of the BL.

than 1 %. The thickness of the thermal BL (δT) can also be defined using the centre
temperature Tc in a similar way (Zhou & Xia 2013).

In figure 13 we show the profiles of normalized velocity v(z)/ve as a function
of z/δv for Ra = 108, 109 for OB and NOB cases on the line y = 0.5 in 2-D cases.
For each DNS case, the combination of ve and δv can be uniquely determined. Due
to symmetry breaking under NOB conditions, the velocity profile on the bottom
(top, respectively) plate is shown in figure 13(a,c) (figure 13b,d, respectively). There
are some deviations of the velocity profile between the solutions of the present BL
equations and DNS which are also found in experiments by (Wei & Xia 2013), and
DNS by (Shi, Emran & Schumacher 2012). However, we find a similar trend of
viscous BL profiles due to NOB effects between the extended BL solutions and DNS.
Clearly, we find that the changes of the normalized velocity profiles on the bottom
plate and the top plate are opposite. The deviations could result from the generation of
plumes, pressure gradient and time variation of the BL, since the laminar BL theory
relies on a series of assumptions. However, in general, our extended BL equations can
reasonably predict the influence of NOB effects on the velocity profiles, regardless
of the Ra. In figure 14 we further show the profiles of Θ as a function of z/δT for
Ra = 108, 109 for both OB and NOB cases. The value of δT for each DNS case is
determined according to δv, since equations (3.10) and (3.11) are coupled. Again, the
temperature profiles obtained by extended BL equations agree qualitatively with the
DNS results, and we still observe a certain degree of deviations near the edge of
thermal BLs.
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FIGURE 14. The comparison of normalized temperature profiles of BL theory and DNS
results as a function of z/δT for OB and NOB cases with different Ra. (a,b) Ra = 108,
(c,d) Ra= 109. (a,c) The temperature profiles on the bottom plate. (b,d) The temperature
profiles on the top plate. δT is the thickness of thermal BL.
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FIGURE 15. The compensation of viscous and thermal BLs. (a) Fδv and (b) FδT versus
Ra for various ε for 2-D cases on the line at y= 0.5.

As shown in figure 13, we easily find that the thickness of the viscous/thermal BL
is increased near the hot plate due to NOB effects, and decreased near the cold plate.
In figure 15 we compare the sum of thicknesses of the top and bottom viscous/thermal
BL for the NOB case to the OB case by calculating the ratios Fδv and FδT at y= 0.5
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for 2-D cases, which are defined as

Fδv = 2δOB
v /(δ

t
v + δ

b
v)

NOB
; FδT = 2δOB

T /(δt
T + δ

b
T)

NOB. (3.18a,b)

From figure 15(a), it can be seen that there are relatively strong deviations from
1 for Fδv (at most around 6 %), which are also Ra-dependent. For Ra . 8 × 108,
the NOB effects on velocity fields are relatively stronger. For higher Ra, the LSC
is broken, the corner rolls become unstable and the velocity fields are dominated
by smaller vortex structures, which weaken the impact of NOB effects. In contrast
to Fδv , the NOB effects have less impact on FδT . The maximum deviation from 1
for FδT is at most around 3 % due to cancellations between δt

T and δb
T , close to

the deviations of NuNOB/NuOB, but no tendency can be seen. In water under NOB
conditions, Ahlers et al. (2006) also attributed the robustness of Nu towards NOB
effects to a compensation effect of top and bottom thermal BLs. Present data for air
– even with large temperature differences – seem to support this statement, suggesting
that this mechanism holds in different systems under NOB conditions. As previously
mentioned, the flow structure is reorganized around Ra ' 8 × 108 in 2-D cases, but
one cannot observe any clear transition from the data of FδT .

4. Summary and conclusions

To summarize, we have systematically studied 2-D and 3-D RB convection of air
under NOB conditions due to large temperature differences by DNS. We consider
the turbulence system with large temperature differences (60 K–240 K), which gives
rise in large density variations. The extremely large temperature difference case with
1T̂ = 240 K is also considered, which has not been reached in previous experiments.
The strong NOB effects are induced in a moderate Ra range 3 × 106 6 Ra 6 5 ×
109. To the best of our knowledge, the low-Mach-number Navier–Stokes equations
are firstly employed in order to treat 3-D turbulence with large density variations and
temperature-dependent fluid properties in RB convection at relatively high Ra (Livescu
2020).

Firstly, for air with large density variations, the top-down symmetry is broken with
NOB effects which induces some changes in flow organizations, such as the shift
of centre temperature Tc and the asymmetry of the velocity/thermal BLs. The Tc is
increased under NOB conditions compared to the arithmetic mean temperature of the
top and bottom plates Tm, which is different from ethane gas close to its critical
point (Ahlers et al. 2007). The maximum relative deviation (Tc−Tm)/2ε is around 5 %
in 2-D cases, while it becomes quite small in 3-D cases. As reported by Ahlers et al.
(2006) and Sugiyama et al. (2009), the Tc for water under NOB conditions are weakly
dependent on Ra, which can be generally predicted by an extended Prandtl–Blasius
theory. However, this theory fails in the present system due to the fact that present
results of Tc are scattered and strongly dependent on Ra. Combined with previous
experimental and numerical results, we can conclude that the deviation of the centre
temperature is sensitively dependent on the particular working fluid.

Moreover, for all Ra and ε explored, we find that the NOB effects have a very
limited influence on Nu. The Nusselt number NuNOB will differ from NuOB by 2 % or
less regardless of the existence of stable LSC. The Nusselt number ratios NuNOB/NuOB

are Ra- and ε-dependent, while they are only weakly dependent on Ra for water with
NOB effects (Sugiyama et al. 2009; Demou & Grigoriadis 2019). More importantly,
we also find that the power-law scaling of Nu ∼ Raα is rather insensitive to the
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NOB effects. The maximum influence of NOB effects on Re is around 3 % for 2-D
cases and 1 % for 3-D cases, which are also Ra- and ε-dependent. In general, the
NOB effects on Nu and Re are much weaker in 3-D cases. This finding is also
different from that for low-temperature gaseous helium (Sameen et al. 2008) in a
3-D cylindrical cell. Besides, unlike the NOB effects in water, the extremely large
temperature differences induce large density variations, which is the most significant
feature of the present system; however, the effects of large density variations seem
to play a very limited role on global heat and momentum transport in the scope of
the present study.

Finally, the extended BL equations based on low-Mach-number Navier–Stokes
equations are developed, involving the strong variation of density, as well as the
temperature-dependent fluid properties. The NOB effects on BL velocity profiles
shown by DNS are predicted qualitatively by the extended BL theory in spite of the
large deviations in the z dependence of horizontal mean velocity profiles on the line
y= 0.5 for 2-D cases. With increasing ε, the relative velocity inside BLs near the hot
plate is increased, while it decreases near the cold plate. From Fδv and FδT data, we
interestingly find that the NOB effects have a much stronger impact on the viscous
BLs than the thermal BLs. For all Ra explored, the FδT data are scattered but their
deviations from 1 are at most around 3 %, close to the deviations of NuNOB/NuOB.
In the present system, the data also supports the fact that the compensation effect
between the top and bottom thermal BL leads to the robustness of Nu against the
NOB effects, suggesting that this mechanism holds in many different systems under
NOB conditions.

In a word, this study fills the gap of numerical study of NOB effects in air with
large temperature differences at relatively high Ra in both 2-D and 3-D systems. The
results show that the power-law scalings for Nu and Re versus Ra are rather insensitive
to the NOB effects for air, in particular for 3-D RB flows, which implies that the NOB
effects may play a very limited role for Nu and Re at some high Ra experiments with
large temperature differences in air or other perfect gases.
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Appendix. Details of the simulation parameters

The detailed simulation parameters and results are presented in tables 3 and 4.
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Case Ra Nx ×Nz tavg Nb
BL N t

BL Nu NuV Re

OB 5× 107 256× 256 1500 14 14 19.77 ± 0.06 19.71 2385 ± 6
ε = 0.1 384× 384 1500 20 22 19.80 ± 0.10 — 2406 ± 10
ε = 0.2 384× 384 1500 19 23 20.12 ± 0.09 — 2452 ± 8
ε = 0.4 384× 384 1500 16 26 19.60 ± 0.08 — 2430 ± 3

OB 8× 107 384× 384 1500 18 18 23.30 ± 0.09 23.28 3153 ± 7
ε = 0.1 512× 512 1500 30 33 23.42 ± 0.07 — 3153 ± 4
ε = 0.2 512× 512 1500 28 34 23.53 ± 0.12 — 3162 ± 5
ε = 0.4 512× 512 1500 23 37 23.19 ± 0.08 — 3116 ± 8

OB 1× 108 384× 384 1000 17 17 25.31 ± 0.10 25.21 3623 ± 8
ε = 0.1 512× 512 1000 28 30 25.16 ± 0.07 — 3591 ± 9
ε = 0.2 512× 512 1000 26 32 25.17 ± 0.15 — 3550 ± 6
ε = 0.4 512× 512 1000 22 35 24.91 ± 0.16 — 3519 ± 6

OB 3× 108 512× 512 1000 17 17 35.79 ± 0.12 35.63 6793 ± 8
ε = 0.1 512× 512 1000 21 22 35.74 ± 0.05 — 6805 ± 17
ε = 0.2 512× 512 1200 20 23 35.75 ± 0.05 — 6768 ± 27
ε = 0.4 512× 512 1600 17 25 35.67 ± 0.09 — 6597 ± 18

OB 5× 108 512× 512 1000 14 14 42.32 ± 0.07 42.26 9298 ± 25
ε = 0.1 512× 512 1000 14 19 42.28 ± 0.13 — 9266 ± 17
ε = 0.2 512× 512 1000 13 20 42.35 ± 0.11 — 9409 ±17
ε = 0.4 512× 512 1600 11 22 42.43 ± 0.13 — 9372 ± 16

OB 8× 108 768× 768 800 20 20 46.94 ± 0.45 47.31 13896 ± 47
ε = 0.1 768× 768 800 19 21 47.06 ± 0.47 — 13768 ± 91
ε = 0.2 768× 768 1000 16 22 46.93 ± 0.17 — 13689 ± 92
ε = 0.4 768× 768 900 14 22 46.92 ± 0.17 — 14084 ± 59

OB 1× 109 768× 768 800 21 21 50.18 ± 0.25 50.01 15327 ± 123
ε = 0.1 768× 768 800 20 22 49.70 ± 0.24 — 15499 ± 41
ε = 0.2 768× 768 1000 19 23 49.83 ± 0.36 — 15494 ± 134
ε = 0.4 768× 768 800 17 24 49.53 ± 0.36 — 15301 ± 55

OB 5× 109 1152× 1152 600 21 21 76.58 ± 0.63 76.49 39691 ± 520
ε = 0.1 1152× 1152 800 20 21 76.76 ± 0.81 — 39218 ± 365
ε = 0.2 1152× 1152 1000 19 22 76.68 ± 0.96 — 39187 ± 538
ε = 0.4 1152× 1152 800 17 23 76.03 ± 0.96 — 39520 ± 412

TABLE 3. Simulation parameters for 2-D cases. The columns from left to right indicate
the following: OB and various ε cases (NOB); Rayleigh number Ra; grid size (Nx × Nz);
the averaging time for calculating statistics tavg; the number of grid points within the
bottom thermal BL Nb

BL; the number of grid points within the top thermal BL N t
BL; Nusselt

numbers Nu measured at the bottom plate; Nusselt numbers NuV =
√

RaPr〈εu〉V,t + 1
measured by the globally averaged kinetic energy dissipation rates; and Reynolds numbers
Re=

√
Ra/PrUrms. The Prandtl number Pr is fixed to 0.71.
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Case Ra Nx ×Ny ×Nz tavg Nb
BL N t

BL Nu NuV Re

OB 3× 106 128× 128× 128 500 13 13 11.50 ± 0.08 11.47 357.8 ± 2.7
ε = 0.1 128× 128× 128 500 12 12 11.56 ± 0.02 — 358.4 ± 3.6
ε = 0.2 128× 128× 128 500 12 11 11.49 ± 0.04 — 357.4 ± 1.8
ε = 0.4 128× 128× 128 500 11 10 11.49 ± 0.08 — 359.9 ± 1.6

OB 1× 107 192× 192× 192 400 19 19 16.25 ± 0.05 16.23 649.6 ± 2.5
ε = 0.1 192× 192× 192 400 20 18 16.20 ± 0.03 — 652.7 ± 2.9
ε = 0.2 192× 192× 192 400 21 17 16.24 ± 0.07 — 652.6 ± 3.6
ε = 0.4 192× 192× 192 400 22 15 16.28 ± 0.13 — 653.0 ± 1.0

OB 3× 107 256× 256× 288 400 21 21 22.14 ± 0.04 22.15 1112.9 ± 1.5
ε = 0.1 256× 256× 288 400 22 20 22.07 ± 0.02 — 1116.9 ± 3.1
ε = 0.2 256× 256× 288 400 23 19 22.09 ± 0.02 — 1114.7 ± 2.1
ε = 0.4 256× 256× 288 400 25 17 21.96 ± 0.03 — 1107.8 ± 0.7

OB 1× 108 384× 384× 392 400 28 28 31.29 ± 0.02 31.39 2004.1 ± 4.6
ε = 0.1 384× 384× 392 400 29 26 31.24 ± 0.08 — 2004.7 ± 1.1
ε = 0.2 384× 384× 392 400 31 25 31.12 ± 0.03 — 2005.6 ± 3.3
ε = 0.4 384× 384× 392 400 33 22 31.00 ± 0.03 — 1989.6 ± 4.9

TABLE 4. Simulation parameters for 3-D cases. The columns from left to right indicate the
following: OB and various ε cases (NOB); Rayleigh number Ra; grid size (Nx×Ny×Nz);
the averaging time for calculating statistics tavg; the number of grid points within the
bottom thermal BL Nb

BL; the number of grid points within the top thermal BL N t
BL; Nusselt

numbers Nu measured at the bottom plate; Nusselt numbers NuV =
√

RaPr〈εu〉V,t + 1
measured by the globally averaged kinetic energy dissipation rates; and Reynolds numbers
Re=

√
Ra/PrUrms. The Prandtl number Pr is fixed to 0.71.
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