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INQUISITIVE BISIMULATION

IVANO CIARDELLI ANDMARTIN OTTO

Abstract. Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In

its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents

have, but also the questions that they are interested in. Technically, InqML fits within the family of logics

based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic

second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce

and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the

expressiveness of InqML and first-order logic in the context of relational structures with two sorts, one for

worlds and one for information states, and characterise inquisitive modal logic as the bisimulation invariant

fragment of first-order logic over various natural classes of two-sorted structures.

§1. Introduction. The recently developed framework of inquisitive logic [3, 5, 7,
10] can be seen as a generalisation of classical logic which encompasses not only
statements, but also questions. One reason why this generalisation is interesting
is that it provides a novel perspective on the logical notion of dependency, which
plays an important rôle in applications (e.g., in database theory) and which has
recently received attention in the field of dependence logic [29]. Indeed, dependency
is nothing but a facet of the fundamental logical relation of entailment, once this
is extended so as to apply not only to statements, but also to questions [4]. This
connection explains the deep similarities existing between systems of inquisitive logic
and systems of dependence logic (see [3, 4, 32, 33]). A different rôle for questions
in a logical system comes from the setting of modal logic: once the notion of a
modal operator is suitably generalised, questions can be embedded under modal
operators to produce new statements that have no “standard” counterpart. This
approach was first developed in [11] in the setting of epistemic logic. The resulting
inquisitive epistemic logicmodels not only the information that agents have, but also
the issues that they are interested in, that is, the information that they would like to
obtain. Modal formulae in inquisitive epistemic logic can express not only that an
agent knows that p (by the formula �p) but also that she knows whether p (�?p)
or that she wonders whether p (⊞?p)—a statement that cannot be expressed without
the use of embedded questions. As shown in [11], several key notions of epistemic
logic generalise smoothly to questions: besides common knowledge we now have
common issues, the issues publicly entertained by the group; and besides publicly
announcing a statement, agents can nowalso publicly ask a question, which typically
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results in new common issues. Thus, inquisitive epistemic logic may be seen as one
step in extending modal logic from a framework to reason about information and
information change, to a richer framework which also represents a higher stratum
of cognitive phenomena, in particular issues that may be raised in a communication
scenario.
Of course, like standard modal logic, inquisitive modal logic provides a general

framework that admits various interpretations, each suggesting corresponding
constraints on models. For instance, an interpretation of InqML as a logic of
action is suggested in [3]. In that interpretation, a modal formula �?p expresses
that whether a certain fact p will come about is predetermined independently of
the agent’s choices, while ⊞?p expresses that whether p will come about is fully
determined by the agent’s choices.
From the perspective of mathematical logic, inquisitive modal logic is a natural

generalisation of standard modal logic. In standard modal logic, the accessibility
relation of a Kripke model associates with each possible world w ∈W a set ó(w)⊆
W of possible worlds, namely, the worlds accessible fromw; any formulaϕ ofmodal
logic is semantically associated with a set |ϕ|M ⊆W of worlds, namely, the set of
worlds where it is true; modalities then express relationships between these sets:
for instance, �ϕ expresses the fact that ó(w)⊆ |ϕ|M. In the inquisitive setting, the
situation is similar: we still have a set Σ(w) associated with each possible world w,
and a set [ϕ]M associated with a formula ϕ. Now, however, both Σ(w) and [ϕ]M are
no longer sets of worlds, but sets of sets of worlds. Inquisitive modalities still express
relationships between these two objects: �ϕ expresses the fact that

⋃

Σ(w) ∈ [ϕ]M,
while ⊞ϕ expresses the fact that Σ(w)⊆ [ϕ]M.
In this manner, inquisitive logic leads to a new framework formodal logic that can

be viewed as a generalisation of the standard framework. This raises the question
of whether and how the classical notions and results of modal logic carry over to
this more general setting. In this paper we address this question for the fundamental
notion of bisimulation and for two classical results revolving around this notion,
namely, the Ehrenfeucht–Fraı̈ssé theorem for modal logic, and van Benthem style
characterisation theorems [15, 24, 28, 31]. A central topic of this paper is the rôle
of bisimulation invariance as a unifying semantic feature that distinguishes modal
logics from classical predicate logics. As in many other areas, from temporal and
process logics to knowledge representation in AI and database applications, so
also in the inquisitive setting we find that the appropriate notion of bisimulation
invariance allows for precise model-theoretic characterisations of the expressive
power of modal logic in relation to first-order logic.
Our first result is that the right notion of inquisitive bisimulation equivalence

∼, with finitary approximation levels ∼n, supports a counterpart of the classical
Ehrenfeucht–Fraı̈ssé characterisations for first-order logic or for basic modal logic.
This result establishes an exact correspondence between the expressive power of
InqML and the finite approximation levels of inquisitive bisimulation equivalence:
if two points are behaviorally different in a way that can be detected within a
finite number of steps, then the difference between them is witnessed by an InqML
formula, and vice versa. The result is nontrivial in our setting because of some
subtle issues stemming from the interleaving of first- and second-order features in
inquisitive modal logic.
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INQUISITIVE BISIMULATION 79

Theorem 1.1 (Inquisitive Ehrenfeucht–Fraı̈ssé theorem). Over finite vocabular-
ies, the finite levels ∼n of inquisitive bisimulation equivalence correspond to the levels
of InqML-equivalence up to modal nesting depth n.

In order to compare InqML with classical first-order logic, we define a class
of two-sorted relational structures, and show how such structures encode models
for InqML. With respect to such relational structures we find not only a “standard
translation” of InqML into two-sorted first-order logic, but also a vanBenthem style
characterisation of InqML as the bisimulation-invariant fragment of (two-sorted)
first-order logic over several natural classes of models. These results are technically
interesting, and they are not available on the basis of classical techniques, because
the relevant classes of two-sortedmodels are nonelementary (in fact, first-order logic
is not compact over these classes, as we show). Our techniques yield characterisation
theorems both in the setting of arbitrary inquisitive models, and in restriction to
just finite ones—that is, both in the sense of classical model theory and in the sense
of finite model theory.

Theorem 1.2. Inquisitive modal logic can be characterised as the ∼-invariant
fragment of first-order logic FO over natural classes of (finite or arbitrary) relational
inquisitive models.

Beside the conceptual development and the core results themselves, we think that
also the methodological aspects of the present investigations have some intrinsic
value. Just as inquisitive logic models cognitive phenomena at a level strictly above
that of standardmodal logic, so themodel-theoretic analysismoves up from the level
of ordinary first-order logic to a level strictly between first- and second-order logic.
This level is realised by first-order logic in a two-sorted framework that incorporates
second-order objects in the second sort in a controlled fashion. This leads us to
generalise a number of notions and techniques developed in the model-theoretic
analysis of modal logics over nonelementary classes of frames (cf. [13, 15, 24, 25],
among others). In the present paperwe focus on the general case of inquisitivemodal
models. This also sets the stage for the model-theoretic treatment of inquisitive
epistemic models. That case, which is of particular interest from the point of view of
logical modelling, also requires some further extensions of the technical apparatus
presented here. We aim to present corresponding results from [9] in a sequel to the
present paper.

§2. Inquisitive modal logic. In this section we provide an essential introduction
to inquisitive modal logic, InqML [3]. For further details and proofs, we refer to
Section 7 of [3].

2.1. Foundations of inquisitive semantics. Usually, the semantics of a logic
specifies truth-conditions for the formulae of the logic. In modal logics these truth-
conditions are relative to possible worlds in aKripkemodel. However, this approach
is limited in an important way: while suitable for statements, it is inadequate for
questions. To overcome this limitation, inquisitive logic interprets formulae not
relative to states of affairs (possible worlds), but relative to states of information.
Following a tradition that goes back to the work ofHintikka [18], information states
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are modelled extensionally as sets of worlds, namely, the set of those worlds which
are compatible with the given information.1

Definition 2.1 (Information states). An information state over a set of worlds
W is a subset s ⊆W .

The empty set represents a state of inconsistent information, which is not
compatible with any world. We refer to it as the inconsistent state.
Rather than specifying when a sentence is true at a world w, inquisitive semantics

specifies when a sentence is supported by an information state s: intuitively, for a
statement α this means that the information available in s implies that α is true; for
a question ì, it means that the information available in s settles ì. If t and s are
information states and t ⊆ s , this means that t holds at least as much information
as s: we say that t is an extension of s. If t is an extension of s, everything that
is supported at s will also be supported at t. This is a key feature of inquisitive
semantics, and it leads naturally to the notion of an inquisitive state.

Definition 2.2 (Inquisitive states). An inquisitive state over a set of possible
worlds W is a nonempty set of information states Π ⊆ ℘(W ) that is down-
ward closed in the sense that s ∈ Π implies t ∈ Π for all t ⊆ s (downward
closure).

The downward closure condition requires that Π be closed under extensions of
information states. As described in the next section, an inquisitive state can be seen
as a combined representation of information and issues. For more discussion on the
significance of this structure, see [6, 11, 12].

2.2. Inquisitive modal models. A Kripke frame can be thought of as a set W of
worlds together with a map ó that equips each world with a set of worlds ó(w), that
is, an information state: the set of worlds that are accessible from w.
Similarly, an inquisitive modal frame consists of a setW of worlds together with

an inquisitive assignment, a map Σ :W → ℘℘(W ) that assigns to each world a
corresponding inquisitive state Σ(w), that is, a downward closed set of information
states. A model is a frame enriched by a propositional assignment.

Definition 2.3 (Inquisitive modal models). An inquisitive modal frame is a
pair F = (W,Σ), where W is a set, whose elements are referred to as worlds, and
Σ: W → ℘℘(W ) assigns an inquisitive state Σ(w) to each world w ∈W .
An inquisitive modal model for a set P of propositional atoms is a pair M =

(F,V ) where F is an inquisitive modal frame, and V : P → ℘(W ) is a propositional
assignment.
Aworld-(or state-)pointed inquisitive modal model is a pair consisting of amodel

M and a distinguished world (or state) inM.

1An analogous step from single worlds to sets of worlds (or, depending on the setting, from
assignments to sets of assignments) is taken in recent work on independence-friendly logic [19, 20]
and dependence logic [1, 14, 29, 30, 32, 33], where sets of worlds are referred to as teams. Although they
originated independently and for different purposes, inquisitive logic and dependence logic are tightly
related. For detailed discussion of this connection, see [3, 4].
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INQUISITIVE BISIMULATION 81

With an inquisitive modal model M we can always associate a standard Kripke
model K(M) having the same set of worlds and modal accessibility map ó :W →
℘(W ) induced by the inquisitive map Σ according to

ó : W −→ ℘(W )
w 7−→ ó(w) :=

⋃

Σ(w).

A natural interpretation for inquisitive modal models is the epistemic one,
developed in [2, 11]. In that interpretation, the map Σ is taken to describe not
only an agent’s knowledge, as in standard epistemic logic, but also an agent’s issues.2

The agent’s knowledge state at w, ó(w) =
⋃

Σ(w), consists of all the worlds that
are compatible with what the agent knows. The agent’s inquisitive state at w, Σ(w),
consists of all those information states where the agent’s issues are settled. This
interpretation is particularly interesting in the multimodal setting, where a model
comes with multiple state maps Σa , one for each agent a in a set A. Moreover, this
specific interpretation suggests some constraints on the maps Σa , analogous to the
usual S5 constraints on Kripke models.

Definition 2.4 (Inquisitive epistemic models). An inquisitive epistemic frame for
a set A of agents is a pair F = (W,(Σa)a∈A), where each map Σa :W → ℘℘(W )
assigns to each world w an inquisitive state Σa(w) in accordance with the following
constraints, where óa(w) =

⋃

Σa(w):

– w ∈ óa(w) (factivity);
– v ∈ óa(w) ⇒ Σa(v) = Σa(w) (full introspection).

It is easy to verify that the Kripke frame associated with an inquisitive epistemic
frame is an S5 frame, that is, the accessibility maps óa correspond to accessibility
relations Ra :={(w,v) : v∈óa(w)} that are equivalence relations onW.

Example 2.5. Consider a model with four worlds, wpq,wpq,wpq,wpq , where the
subscript indicate the propositional valuation at each world. The inquisitive state
map Σ is as follows, where S↓ indicates the closure of the set S ⊆ ℘(W ) under
subsets.

Σ(wpq) = Σ(wpq) = {{wpq},{wqq}}
↓,

Σ(wpq) = Σ(wpq) = {{wpq,wpq}}
↓.

This model is depicted in Figure 1. At a world w, the epistemic state ó(w) of the
agent consists of those worlds included in the same dashed area as w; the solid
blocks inside this area are the maximal elements of the inquisitive state Σ(w)—that
is, the maximal states in which the issue is resolved.
At worlds wpq and wpq , the agent’s knowledge state is {wpq,wpq}: that is, the

agent knows that p is true, but not whether q is true. Moreover, in order to settle the
agent’s issues it is necessary and sufficient to reach an extension of the current state
which settles whether q. In short, then, these are worlds where the agent knows that
p and wonders whether q.

2In inquisitive semantics, the term issue is used to refer to the content of a question. For instance, the
issues that a detective entertains might be those expressed by the questions who committed the murder,
whether they had an accomplice, and what the motive is.
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wpq wpq

wpq wpq

Figure 1. A single-agent inquisitive epistemic model.

Atworldswpq andwpq , the agent’s knowledge state is {wpq,wpq}: that is, the agent
knows that ¬p, but not whether q. However, at these worlds no further information
is needed to resolve the agent’s issues. Thus, these are worlds where the agent knows
that ¬p and does not have any remaining issues.

2.3. Inquisitive modal logic. The syntax of inquisitive modal logic InqML is given
by:

ϕ ::= p |⊥|(ϕ∧ϕ) |(ϕ→ ϕ) |(ϕ

>

ϕ) |�ϕ | ⊞ϕ.

The syntax of inquisitive epistemic logic is defined analogously, except that
modalities are indexed by agents; that is, for every agent a ∈ A we have two
corresponding modalities �a and ⊞a , which are interpreted based on the state
map Σa associated with the agent.

3 We treat negation and disjunction as defined
connectives (syntactic shorthands) according to

¬ϕ := ϕ→⊥ and ϕ∨ø := ¬(¬ϕ∧¬ø)

so that the above syntax emulates standard propositional formulae in terms of atoms
and connectives ∧ and→ together with the defined ¬ and ∨. The semantics of these
will be essentially the same as in standard propositional logic.
In addition to standard connectives, our language contains a new connective,

>

, called inquisitive disjunction. We may read formulae built up by means of this
connective as propositional questions. For instance, we read the formula p

>

¬p as
the question whether or not p, and we abbreviate this formula as ?p. Our language
also contains two modalities, which are allowed to embed both statements and
questions.Aswe shall see, both thesemodalities coincidewith a standardKripke box
modality when applied to statements, but crucially differ when applied to questions.
In particular, under an epistemic interpretation�?p expresses the fact that the agent
knows whether p, while ⊞?p intuitively says, roughly, that the agent is interested in
the issue whether p.
As mentioned above, the semantics of InqML is given in terms of support in an

information state, rather than truth at a possible world. 4

3In [2, 11] the modalities �a and ⊞a are denoted Ka and Ea , and read as “know” and “entertain”
respectively.
4This means that InqML fits within the quickly growing family of logics based on a team semantics.

See footnote 1 on page 9 and the references therein.
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Definition 2.6 (Semantics of InqML). Let M = (W,Σ,V ) be an inquisitive
modal model, s ⊆W :

• M,s |= p ⇐⇒ s ⊆ V (p),
• M,s |=⊥ ⇐⇒ s = ∅,
• M,s |= ϕ∧ø ⇐⇒ M,s |= ϕ andM,s |= ø,
• M,s |= ϕ→ ø ⇐⇒ ∀t ⊆ s :M,t |= ϕ⇒M,t |= ø,
• M,s |= ϕ

>

ø ⇐⇒ M,s |= ϕ orM,s |= ø,
• M,s |=�ϕ ⇐⇒ ∀w ∈ s :M,ó(w) |= ϕ,
• M,s |=⊞ϕ ⇐⇒ ∀w ∈ s ∀t ∈ Σ(w) :M,t |= ϕ.

If a state s can be extended consistently to a state that supports a formula ϕ, we
say that s is compatible with ϕ:

s is compatible with ϕ iff ∃t ⊆ s : t 6= ∅ andM,t |= ϕ.

The derived clauses for the defined connectives ¬ and ∨ then read as follows:

• M,s |= ¬ϕ ⇐⇒ s is not compatible with ϕ,
• M,s |= ϕ∨ø ⇐⇒ ∀t ⊆ s,t 6= ∅ : t is compatible with ϕ or with ø.

As an illustration, consider the support conditions for the formula

?p := p

>

¬p.

This formula is supported by a state s in case p is true at all worlds in s (i.e., if the
information available in s implies that p is true) or in case p is false at all worlds in
s (i.e., if the information available in s implies that p is false). Thus, ?p is supported
by those information states that settle whether or not p is true.

Proposition 2.7. The following properties hold generally in InqML:

• persistency: ifM,s |= ϕ and t ⊆ s , thenM,t |= ϕ;
• semantic ex-falso:M,∅ |= ϕ for all ϕ ∈ InqML.

The first principle says that support is preserved as information increases, that
is, as we move from a state to an extension of it. The second principle says that
the empty set of worlds—the inconsistent information state—vacuously supports
every formula. Together, these principles imply that the support set [ϕ]M := {s ⊆
W : M,s |= ϕ} of a formula is downward closed and nonempty, that is, it is an
inquisitive state.
Although the primary notion of our semantics is support at an information state,

truth at a world is retrieved by defining it as support with respect to singleton states.

Definition 2.8 (Truth). ϕ is true at a world w in a modelM, denotedM,w |= ϕ,
in caseM,{w} |= ϕ.

Spelling out Definition 2.6 in the special case of singleton states, we see
that standard connectives have the usual truth-conditional behavior. For modal
formulae, we find the following truth-conditions:

• M,w |=�ϕ ⇐⇒ M,ó(w) |= ϕ,
• M,w |=⊞ϕ ⇐⇒ ∀t ∈ Σ(w) :M,t |= ϕ.
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Notice that truth in InqML cannot be given a direct recursive definition, as the
truth conditions for modal formulae�ϕ and⊞ϕ depend on the support conditions
for ϕ—not just on its truth conditions.
For many formulae, support at a state just boils down to truth at each world. We

refer to these formulae as truth-conditional.5

Definition 2.9 (Truth-conditional formulae). We say that a formula ϕ is truth-
conditional if for all modelsM and information states s:M,s |= ϕ ⇐⇒ (M,w |= ϕ
for all w ∈ s).

Following [3], we view truth-conditional formulae as statements, and nontruth-
conditional formulae as questions. The next proposition identifies a large class of
formulae that are truth-conditional.

Proposition 2.10. Atomic formulae (including ⊥) and all formulae of the form
�ϕ and ⊞ϕ are truth-conditional. The class of truth-conditional formulae is closed
under all connectives except for

>

.

Using this fact, it is easy to see that all formulae of standard modal logic, that is,
formulae which do not contain

>
or ⊞, receive exactly the same truth-conditions

as in standard modal logic.

Proposition 2.11. Ifϕ is a formula not containing

>

or⊞, then we haveM,w |=ϕ
if and only if K(M),w |= ϕ holds in standard Kripke semantics.

As long as questions are not around, the modality ⊞ also coincides with
�, and with the standard box modality. That is, if ϕ is truth-conditional,
then

M,w |=�ϕ ⇐⇒ M,w |=⊞ϕ ⇐⇒ M,v |= ϕ for all v ∈ ó(w).

Thus, the two modalities coincide on statements. However, they come apart when
they are applied to questions. For an illustration, consider the formulae �?p and
⊞?p in the epistemic setting: �?p is true iff the knowledge state of the agent, ó(w),
settles the question ?p; thus, �?p expresses the fact that the agent knows whether
p. By contrast, ⊞?p is true iff any information state t ∈ Σ(w), that is, any state that
settles the agent’s issues, also settles ?p; thus⊞?p expresses that finding out whether
p is part of the agent’s goals.

Example 2.12. Consider again the model of Example 2.5. The agent’s knowledge
state at world wpq is ó(wpq) = {wpq,wpq}. Since {wpq,wpq} does not support ?q
we have M,w |= ¬�?q. On the other hand, since the agent’s inquisitive state is
Σ(wpq) = {{wpq},{wpq}}

↓, and since each element in this state supports ?q, we
do have M,wpq |= ⊞?q. This witnesses that, at world wpq , the agent does not
know whether q (¬�?p), but she’s interested in finding out (⊞?q). By contrast,
one can check that at world wpq we have M,wpq |= ¬�?q ∧¬⊞?q, witnessing that
at this world, the agent is neither informed about whether q, nor interested in
finding out.

5In team semantic terminology (e.g., [29, 33]), truth-conditional formulae are called flat.
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2.4. Defining properties of worlds and states. Inquisitive modal formulae can be
interpreted both relative to information states and (derivatively) relative to worlds.
They can thus be seen both as expressing properties of state-pointed models, and
as expressing properties of world-pointed models. We can identify these properties
with the corresponding classes:

• Kw
ϕ = {(M,w) : M,w |= ϕ},

• Ks
ϕ = {(M,s) : M,s |= ϕ}.

More generally, by a property of world- or state-pointed models we mean a class
of such objects. We say that a property K of world-pointed models is definable
in InqML if K = Kw

ϕ for some formula ϕ of InqML. Similarly, a property K of
state-pointed models is definable in InqML if K =Ks

ϕ for some ϕ.
We can now formulate the main question that we will address in this paper: which

properties of world- or state-pointed models are definable in InqML?
For the case of state-pointed models, persistency and the semantic ex-falso

condition (Proposition 2.7) impose an immediate constraint: in order for a property
K of state-pointed models to be definable in InqML, K must be an inquisitive
property, in the following sense.

Definition 2.13 (Inquisitive properties). A property K of state-pointed models
is an inquisitive property if the following two conditions hold:

(i) if (M,s) ∈ K and t ⊆ s , then (M,t) ∈ K;
(ii) (M,∅) ∈ K for any modelM.

In the rest of the paper, when dealing with properties of state-pointed models, we
can restrict our attention to inquisitive properties.
What features must a world-property have in order to be InqML definable?

Similarly, what features must an inquisitive state-property have? The following two
sections provide a precise answer to this question.

§3. Inquisitive bisimulation. An inquisitivemodalmodel can be seen as a structure
with two sorts of entities, worlds and information states, which interact with each
other. On one hand, an information state s is completely determined by the worlds
that it contains; on the other hand, a world w is determined by the atoms it
makes true and the information states which lie in Σ(w). Taking a more behavioral
perspective, we can look at an inquisitive modal model as a model where two kinds
of transitions are possible: from an information state s we can make a transition
to a world w ∈ s , and from a world w we can make a transition to an information
state s ∈ Σ(w). This suggests a natural notion of bisimilarity, together with its
natural finite approximations of n-bisimilarity for n ∈ N. As usual, these notions
can equivalently be defined either in terms of back-and-forth systems or in terms of
strategies in corresponding bisimulation games. We start from the latter due to its
more immediate and intuitive appeal to the underlying dynamics of a “probing” of
behavioral equivalence.
The inquisitive bisimulation game is played by two players, I and II, who act as

challenger and defender of a similarity claim involving a pair of worlds w and w′ or
information states s and s ′ over twomodelsM= (W,Σ,V ) andM′= (W ′,Σ′,V ′).We
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denote world-positions as (w,w′) and state-positions as (s,s ′), where w ∈W,w′ ∈
W ′ and s ∈ ℘(W ),s ′ ∈ ℘(W ′), respectively. The game proceeds in rounds that alter-
nate between world-positions and state-positions. Playing from a world-position
(w,w′), I chooses an information state in the inquisitive state associated with one of
these worlds (s ∈ Σ(w) or s ′ ∈ Σ′(w′)) and IImust respond by choosing an informa-
tion state on the opposite side, which results in a state-position (s,s ′). Playing from a
state-position (s,s ′), I chooses a world in either state (w ∈ s or w′ ∈ s ′) and IImust
respond by choosing a world from the other state, which results in a world-position
(w,w′). A round of the game consists of fourmoves leading from aworld-position to
another.
In the bounded version of the game, the number of rounds is fixed in advance.

In the unbounded version, the game is allowed to go on indefinitely. Either player
loses when stuck for a move. The game ends with a loss for II in any world-position
(w,w′) that shows a discrepancy at the atomic level, that is, such that w and w′

disagree on the truth of some p ∈ P . All other plays, and in particular infinite runs
of the unbounded game, are won by II.

Definition 3.1 (Bisimulation equivalence). Twoworld-pointedmodelsM,w and
M

′,w′ are n -bisimilar, M,w∼nM′,w′, if II has a winning strategy in the n-round
game starting from (w,w′). M,w and M′,w′ are bisimilar, denoted M,w ∼M

′,w′,
if II has a winning strategy in the unbounded game starting from (w,w′). Two
state-pointed models M,s and M

′,s ′ are (n-)bisimilar, denoted M,s ∼M
′,s ′ (or

M,s∼nM′,s ′), if every world in s is (n-)bisimilar to some world in s ′ and vice versa.6

These notions generalise naturally to the multimodal setting with inquisitive
assignments (Σa)a∈A for a setA of agents; at a world-position, player I also gets the
choice of which agent to probe.
Now let us turn to the static perspective on inquisitive bisimulations. One natural

way to define a bisimulation between two models M and M′ is as a relation which
pairs up both the worlds and the states of these two models in such a way as to

6This definition of bisimilarity between states is reminiscent of the corresponding definition given
in [21] for modal team logic. Like inquisitive modal logic, modal team logic interprets formulae with
respect to sets of possible worlds, and thus can be seen as expressing properties of state-pointed models.
However, there are some major differences with the present setting. Most importantly, the structures for
modal team logic are standard Kripke models. By contrast, InqML is interpreted on models having a
richer structure; information states enter the picture not just as evaluation points, but also in determining
the structure of the model itself, since each world is associated with a set Σ(w) of “successors” which are
not worlds, but information states. This difference is reflected in the respective notions of bisimulation. In
modal team logic, bisimilarity between worlds is the standard notion, and bisimilarity between states is
a simple derivative of it: two states are bisimilar if each world in the one is bisimilar to some world in the
other. By contrast, in our setting, world-bisimilarity and state-bisimilarity are inextricably intertwined.
It is helpful to view this in terms of the bisimulation game. The game for modal team logic starts with a
pair of information states; player I selects a world from either state, and player II responds with a world
in the other; after that, the standard bisimulation game for modal logic is played. Thus, information
states play a very limited role: they only matter for the initial move, and moreover, there is no move
where players have to pick an information state. By contrast, in the case of inquisitive modal logic, the
game alternates indefinitely between world-positions and state-positions, and moves in which players
pick information states are a crucial part of the game.
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guarantee a winning strategy in the unbounded bisimulation game. This leads to the
following definition.

Definition 3.2 (Bisimulation relations). Let M = (W,Σ,V ) and M ′ =
(W ′,Σ′,V ′) be two inquisitive modal models. A nonempty relation Z ⊆
W ×W ′∪℘(W )×℘(W ′) is called a bisimulation in case the following constraints
are satisfied:

• atom equivalence: if wZw ′ then for all p ∈ P , w ∈ V (p) ⇐⇒ w ′ ∈ V ′(p),
• state-to-world back&forth: if sZ s ′ then

– for all w ∈ s there is some w ′ ∈ s ′ s.t. wZw ′,
– for all w ′ ∈ s ′ there is some w ∈ s s.t. wZw ′,

• world-to-state back&forth: if wZw ′ then

– for all s ∈ Σ(w) there is some s ′ ∈ Σ′(w ′) s.t. sZ s ′,
– for all s ′ ∈ Σ′(w ′) there is some s ∈ Σ(w) s.t. sZ s ′.

It is then routine to check that bisimilarity can be characterised in terms of the
existence of a bisimulation relation.

Proposition 3.3. LetM,x andM′,x′ be twoworld- or state-pointedmodels.M,x ∼
M

′,x′ ⇐⇒ there exists a bisimulation Z such that xZ x′.

Alternatively, we can view an inquisitive bisimulation as a relationwhich is defined
exclusively on the worlds of the two models. We will call such a relation a world-
bisimulation. In order to define it, let us first fix a way to lift a binary relation
between two sets to a relation between the corresponding powersets.

Definition 3.4. The lifting of a relation Y ⊆W ×W ′ to information states is
the relation Y ⊆ ℘(W )×℘(W ′) linking information states s and s ′ iff

– for all w ∈ s there is a w ′ ∈ s ′ s.t. wY w ′,
– for all w ′ ∈ s ′ there is a w ∈ s s.t. wY w ′.

Definition 3.5 (World-bisimulation). LetM = (W,Σ,V ) andM ′ = (W ′,Σ′,V ′)
be two inquisitive modal models. A nonempty relation Y ⊆ W ×W ′ is called
a world-bisimulation in case the following constraints are satisfied whenever
wYw′:

• atom equivalence:

– ∀p ∈ P : w ∈ V (p) ⇐⇒ w ′ ∈ V ′(p),

• back&forth:

– for all s ∈ Σ(w) there is s ′ ∈ Σ′(w ′) s.t. sYs ′,
– for all s ′ ∈ Σ′(w ′) there is s ∈ Σ(w) s.t. sYs ′.

Bisimulations and world-bisimulations are tightly connected, as the following
proposition brings out. The straightforward proof is omitted.

Proposition 3.6. If Z is a bisimulation between two models M and M′, then its
restriction to worlds, Zw := Z ∩ (W ×W ′), is a world-bisimulation. Conversely, if Y
is a world-bisimulation, then Y ∪Y is a bisimulation.
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If Z is a bisimulation, then Z is included in Zw∪Zw, but not necessarily identical
to it. Thus, a bisimulation is not uniquely determined by its restriction to worlds.
Rather, given a world-bisimulation Y, the bisimulation Y ∪Y is the largest among
the bisimulations Z with Zw = Y .

Corollary 3.7. Two world-pointed modelsM,w andM′,w′ are bisimilar iff there
is a world-bisimulation Y such that wYw′. Two state-pointed models M,s and M′,s ′

are bisimilar iff there is a world-bisimulation Y such that sYs ′.

We now turn to the finite levels of bisimilarity.

Definition 3.8. Let M and M
′ be two inquisitive modal models. A back-and-

forth system of height n is a family (Zi)i≤n of nonempty relations Zi ⊆W ×W ′∪
℘(W )×℘(W ′) satisfying the following constraints for each i ≤ n:

• atom equivalence: if wZi w
′ then for all p ∈ P , w ∈ V (p) ⇐⇒ w ′ ∈ V ′(p),

• state-to-world back&forth: if s Zi s
′ then

– for all w ∈ s there is some w ∈ s ′ s.t. wZi w
′,

– for all w ′ ∈ s ′ there is some w ∈ s s.t. wZi w
′,

• world-to-state back&forth: if i > 0 and wZi w
′ then

– for all s ∈ Σ(w) there is some s ′ ∈ Σ′(w ′) s.t. s Zi–1 s
′,

– for all s ′ ∈ Σ′(w ′) there is some s ∈ Σ(w) s.t. s Zi–1 s
′.

It is straightforward to check that n-bisimilarity can be characterised in terms of
back&forth systems as follows.

Proposition 3.9. Let M,x and M
′,x′ be two world- or state-pointed models.

M,x∼nM′,x′ iff there exists a back&forth system (Zi)i6n such that x Zn x
′.

Analogously to what we did for full bisimilarity, it is also possible to give a
purely world-based notion of back&forth-system of height n as a family of relations
(Yi)i≤n ⊆W ×W ′. As expected, n-bisimilarity can then be characterised in terms
of the existence of such a system, in a way analogous to the one given by Corollary
3.7. We leave the details to the reader.

§4. An Ehrenfeucht–Fraı̈ssé theorem. The crucial rôle of these notions of
equivalence for the model theory of inquisitive modal logic is brought out in a
corresponding Ehrenfeucht–Fraı̈ssé theorem.
Using the standard notion of the modal depth of a formula, InqMLn denotes the

class of InqML-formulae of depth up to n. It is easy to see that the semantics of
any formula in InqMLn is preserved under n-bisimilarity; as a consequence, all of
inquisitive modal logic is preserved under full bisimilarity. The following analogue
of the classical Ehrenfeucht–Fraı̈ssé theorem shows that, for finite sets P of atomic
propositions, n-bisimilarity coincides with logical indistinguishability in InqMLn,
which we denote as ≡n

InqML
:

M,s ≡nInqMLM
′,s ′ :⇐⇒

{

M,s |= ϕ ⇔ M
′,s ′ |= ϕ

for all ϕ ∈ InqMLn.
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Theorem 4.1 (Ehrenfeucht–Fraı́ssé theorem for InqML). Over any finite set of
atomic propositions P , for any n ∈ N and inquisitive state-pointed modal modelsM,s
andM′,s ′:

(i) M,s ∼n M′,s ′ ⇐⇒ M,s ≡n
InqML

M
′,s ′;

(ii) M,w ∼n M′,w′ ⇐⇒ M,w ≡n
InqML

M
′,w′.

Notice that item (ii) of the theorem follows from item (i) by taking s and s ′ to
be singleton states. As usual, the crucial implication of the theorem, from right to
left, follows from the existence of characteristic formulae for ∼n-classes of pointed
models—and it is here that the finiteness of P is crucial. Notice, however, that
while we can expect a formula to uniquely characterise the ∼n class of a world, we
cannot expect a formula to uniquely define the∼n-class of an information state, for
this would conflict with the persistency property of the logic (Proposition 2.7): if a
formula is supported at M,s , it must also be supported at M,s ′ for all s ′ ⊆ s even
when M,s ′ 6∼n M,s . However, the next proposition shows that InqMLn-formulae
characterise the ∼n-class of an information state up to persistency.

Proposition 4.2 (Characteristic formulae for ∼n-classes). Let M,w be a world-
pointed model and M,s a state-pointed model over a finite set of atomic propositions
P . There are InqML-formulae ÷n

M,w and ÷
n
M,s of modal depth n such that:

(i) M′,w′ |= ÷n
M,w ⇐⇒ M

′,w′∼nM,w;

(ii) M′,s ′ |= ÷n
M,s ⇐⇒ M

′,s ′∼nM,t for some t ⊆ s.

These results can be extended straightforwardly to amultimodal inquisitive setting
with a finite set A of agents.

Proof. By simultaneous induction on n, we define formulae ÷n
M,w and ÷

n
M,s

together with auxiliary formulae ÷n
M,Π for all worlds w, information states s and

inquisitive states Π overM. Given two inquisitive states Π and Π′ in modelsM and
M

′, we writeM,Π∼n M′,Π′ if every state s ∈Π is n-bisimilar to some state s ′ ∈Π′,
and vice versa. Dropping reference to the fixedM, we let:

÷0w =
∧

{p : w ∈ V (p)}∧
∧

{¬p : w 6∈ V (p)},

÷ns =
∨

{÷nw : w ∈ s},

÷nΠ =

>

{÷ns : s ∈Π},

÷n+1w = ÷nw ∧⊞÷nΣ(w)∧
∧

{¬⊞÷nΠ : Π⊆ Σ(w),Π 6∼nΣ(w)}.

As a special case, we have ÷n
∅
=⊥ (as

∨

∅≡⊥). These formulae are of the required
modal depth; the conjunctions and disjunctions in the definition are well defined
since, for a given n, there are only finitely many distinct formulae of the form ÷nw ,
and analogously for ÷ns or ÷

n
Π (indeed, it is easy to check that, for finite P , InqMLn

is finite up to logical equivalence). Note that, by Proposition 2.10, the formulae ÷nw
and ÷ns are truth-conditional for all n.
We show the following:

1. M′,w′ |= ÷n
M,w ⇐⇒ M

′,w′∼nM,w;
2. M′,s ′ |= ÷n

M,s ⇐⇒ M
′,s ′∼nM,t for some t ⊆ s ;
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3. M′,s ′ |= ÷n
M,Π ⇐⇒ M

′,s ′∼nM,s for some s ∈Π.

We first show that, for each individual n, (1)⇒ (2)⇒ (3). The three claims are
then established together by induction on n.
For (1) ⇒ (2), suppose M′,s ′ |= ÷n

M,s . By persistency (Proposition 2.7), ÷
n
M,s is

true at each w′ ∈ s ′; that is, for all w′ ∈ s ′ we haveM′,w′ |=
∨

{÷n
M,w : w ∈ s}. Since

connectives have the standard behavior in terms of truth-conditions, this means that
for any w′ ∈ s ′ we haveM′,w′ |= ÷n

M,w for some w ∈ s . By (1), this means that any
world in s ′ is n-bisimilar to some world in s. Letting t be the set of worlds in s that
are n-bisimilar to some world in s ′, we have t ⊆ s and M

′,s ′ ∼n M,t. Conversely,
suppose M′,s ′ ∼n M,t for some t ⊆ s . Then every w

′ ∈ s ′ is n-bisimilar to some
w ∈ s . By (1), this means thatM′,w′ |= ÷n

M,w , which impliesM
′,w′ |= ÷n

M,s . Since this

holds for any w′ ∈ s ′, and since ÷n
M,s is a truth-conditional formula (by Proposition

2.10), it follows thatM′,s ′ |= ÷n
M,s .

For (2)⇒ (3), supposeM′,s ′ |= ÷n
M,Π. This impliesM

′,s ′ |= ÷n
M,s for some s ∈Π.

By claim (2) we have M′,s ′ ∼n M,t for some t ⊆ s . Since Π is downward closed,
t ∈Π. Conversely, supposeM′,s ′ ∼n M,t for some t ∈Π. By (2),M

′,s ′ |= ÷n
M,t , and

since t ∈Π, alsoM′,s ′ |= ÷n
M,Π.

We can now show (1) (and thus (2) and (3)) for all n ∈N by induction. The claim
M

′,w′ |= ÷0
M,w ⇔ M

′,w′∼0M,w follows immediately from the definition of ÷
0
M,w .

Now assume that claim (1), and thus also claims (2) and (3), hold for n, and let us
consider the claim for n+1.
For the right-to-left direction, suppose M′,w′ ∼n+1 M,w. We want to show that

M
′,w′ |= ÷n+1

M,w . This amounts to showing that:

(i) M′,w′ |= ÷n
M,w ;

(ii) M′,w′ |=⊞÷n
M,Σ(w)

;

(iii) M′,w′ |= ¬⊞÷n
M,Π when Π⊆ Σ(w) and Π 6∼n Σ(w).

For (i):M′,w′ ∼n+1M,w impliesM
′,w′ ∼n M,w, so by the induction hypothesis

M
′,w′ |= ÷n

M,w .

For (ii) take s ′ ∈ Σ′(w′). SinceM′,w′ ∼n+1 M,w we must haveM
′,s ′ ∼n M,s for

some s ∈ Σ(w). By the induction hypothesis, M′,s ′ |= ÷n
M,Σ(w)

. This holds for all

s ′ ∈ Σ′(w′), and soM′,w′ |=⊞÷n
M,Σ(w)

.

For (iii) suppose for a contradiction that for some Π ⊆ Σ(w), Π 6∼n Σ(w) and
M

′,w′ |=⊞÷n
M,Π. This means that every s

′ ∈ Σ′(w′) supports ÷n
M,Π and thus, by our

induction hypothesis, is n-bisimilar to some s ∈Π. Since Π⊆ Σ(w) and Π 6∼n Σ(w),
there must be a state t ∈ Σ(w) which is not n-bisimilar to any s ∈ Π. But since
any state s ′ ∈ Σ′(w′) is n-bisimilar to some s ∈ Π, this means that t is not n-
bisimilar to any s ′ ∈ Σ′(w′). Since t ∈ Σ(w), this contradicts the assumption that
M

′,w′ ∼n+1M,w.
This establishes the right-to-left direction of claim (1). For the converse, suppose

M
′,w′ |= ÷n+1

M,w . To proveM
′,w′ ∼n+1M,w, we must show that:

(i) w′ and w coincide on atomic formulae;

(ii) any s ′ ∈ Σ′(w′) is n-bisimilar to some s ∈ Σ(w);

(iii) any s ∈ Σ(w) is n-bisimilar to some s ′ ∈ Σ′(w′).
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For (i): Since ÷n
M,w is a conjunct of ÷

n+1
M,w , by the induction hypothesis we have

M
′,w′ ∼n M,w, which implies that w and w

′ satisfy the same atomic formulae.
For (ii): Since ⊞÷n

M,Σ(w)
is a conjunct of ÷n+1

M,w , M
′,w′ |= ⊞÷n

M,Σ(w)
. This implies

that any s ′ ∈ Σ′(w′) supports ÷n
M,Σ(w)

. By induction hypothesis, this means that any

s ′ ∈ Σ′(w′) is n-bisimilar to some s ∈ Σ(w).
In preparation for (iii), consider the set Π of states in Σ(w) that are n-bisimilar

to some s ′ ∈ Σ′(w′). We have already seen that any s ′ is n-bisimilar to some state
s ∈ Σ(w), which must then be in Π by definition. By induction hypothesis, the fact
that s ′ is n-bisimilar to some state in Π impliesM′,s ′ |= ÷n

M,Π. As this holds for every

s ′ ∈ Σ′(w′), we haveM′,w′ |=⊞÷n
M,Π.

Now suppose towards a contradiction that, contrary to (iii), some s ∈ Σ(w) were
not n-bisimilar to any state in Σ′(w′). Then s could not be n-bisimilar to any state in
Π either. This implies that Π 6∼n Σ(w) so that ¬⊞÷n

M,Π would be a conjunct of ÷
n+1
M,w .

Then, sinceM′,w′ |= ÷n+1
M,w , we should haveM

′,w′ |= ¬⊞÷n
M,Π, contrary to what we

found above. This completes the proof. ⊣

It is now easy to prove the nontrivial direction of Theorem 4.1.

Proof of Theorem 4.1. We focus on the left-to-right direction in claim (i) of
Theorem 4.1: the converse follows from the observation that InqML-formulae of
depth up to n are invariant under n-bisimilarity, and claim (ii) follows from (i) by
specialisation to singleton states. So supposeM,s 6∼nM

′,s ′: then either of the states s
and s ′ is not n-bisimilar to any subset of the other.Without loss of generality, suppose
it is s ′. By the property of the formula ÷n

M,s we haveM,s |= ÷
n
M,s butM

′,s ′ 6|= ÷n
M,s .

Since the modal depth of ÷n
M,s is n, this shows thatM,s 6≡

n
InqML

M
′,s ′. ⊣

Asa corollary ofTheorem4.1,we have the following characterisation of properties
definable in InqML.

Corollary 4.3. A property of world-pointed models (resp., an inquisitive property
of state-pointedmodels) over a finite setP of atomic propositions is definable in InqML
if and only if it is closed under ∼n for some n ∈ N.

Proof. If a property K of pointed models is defined by a formula ϕ of depth n,
then, since ϕ is invariant under n-bisimilarity, K is closed under ∼n.
Conversely, suppose that K is a property of world-pointed models closed under

∼n. Using Proposition 4.2 it is easy to show that K is defined by the formula
÷Kn :=

∨

{÷n
M,w : (M,w) ∈ K}. Notice that the disjunction is well defined, since for a

given n there are only finitely many distinct formulae of the form ÷n
M,w .

Similarly, if K is an inquisitive property of state-pointed models closed under
∼n, it follows from Proposition 4.2 that K is defined by the inquisitive disjunction
÷Kn =

>

{÷n
M,s : (M,s) ∈ K}. ⊣

Remark 4.4. Notice that the construction of characteristic formulae does not
use the modality �. This implies that � can be eliminated from the language of
InqML without loss of expressive power. This was proved in a more direct way in
[3], where it is shown that a formula �ϕ can always be turned into an equivalent
�-free formula. However, this translation is not schematic, i.e., there is no �-free
formula ø(p) such that for every ϕ, �ϕ ≡ ø(ϕ).
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§5. Interlude: InqML and neighborhood semantics. In neighborhood semantics
for modal logic (see [27] for a recent overview), modal formulae are interpreted with
respect to neighborhood models, which are defined as triplesM= (W,Σ,V ) whereW
is a set of worlds,V :P → ℘(W ) is a propositional valuation, and Σ :W → ℘℘(W ),
called a neighborhood map, is a function which assigns to each world a set of
information states. The standard language of modal logic is interpreted on such
models by means of the standard truth-conditional clauses for connectives, and the
following clause for modalities:

M,w |=nhd �ϕ ⇐⇒ |ϕ|M ∈ Σ(w)

where |ϕ|M is the set of worlds in M where ϕ is true. A class of neighborhood
models which is particularly well-studied is that ofmonotonic neighborhood models
[16], which are characterised by the fact that, for all worlds w, the set Σ(w) is
upward-closed, that is, closed under supersets.
Clearly, an inquisitive modal model is a special case of neighborhood model:

it is a neighborhood model such that Σ(w) is nonempty and downward closed,
that is, closed under subsets. That is, inquisitive modal models are neighborhood
models which have exactly the opposite monotonicity property than monotonic
neighborhood models have.
In spite of this similarity in models, however, there are big differences between

InqML and neighborhood semantics, in terms of the logics that arise from these
approaches, their expressive power and the induced notions of equivalence.
These differences arise from the way in which the neighborhood function is

used to interpret modal formulae. In neighborhood semantics, to interpret �ϕ
we check whether the interpretation of ϕ is a neighborhood. The clause for the main
modality of InqML, ⊞, is very different: just as in Kripke semantics, we have to
check whether ϕ holds in all successors of the given world—only, these successors
are now information states rather than worlds. As a consequence of this, whereas
neighborhood semantics gives rise to non-normal modal logics, the logic of the ⊞
modality in InqML is normal: it validates the K axiom, as well as distribution over
conjunction and the necessitation rule.7

Besides giving rise to very different modal logics, InqML and neighborhood
semantics are also different, and in fact incomparable, in terms of their expressive
power. To see that neighborhood semantics can draw distinctions that InqML
cannot draw, consider the formula �⊤. In neighborhood semantics, this expresses
the property of having the whole universe as a neighborhood:

M,w |=nhd �⊤ ⇐⇒ W ∈ Σ(w)

This property is clearly not invariant under inquisitive bisimulations (indeed, it is
not preserved under disjoint unions!). Thus, it is not expressible in InqML.
To see that InqML can also draw distinctions that neighborhood semantics

cannot draw, consider the formula ⊞?p. This formula expresses the fact that at

7In this discussion, we have set aside the modality � of InqML for simplicity since, as remarked
above, this modality is definable from ⊞ and the connectives. However, as shown in [3], � is also a
normal modality in InqML.
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every neighborhood of the evaluation world, the truth-value of p is constant.

M,w |=⊞?p ⇐⇒ ∀s ∈ Σ(w) : s ⊆ |p|M or s ⊆ |¬p|M .

We claim that this property is not expressible in neighborhood semantics. To see
this, consider two models M1 and M2 with the same universe W = {v,u,u′} and
the same valuation V (p) = {v}. The two models differ in their neighborhood map,
which are both constant, with values

{{v},{u}}↓ for Σ1 inM1 versus {{v,u}}↓ for Σ2 inM2.

Given anyw ∈W , we haveM1,w |=⊞?p butM2,w 6|=⊞?p. However, the set {v,u}
is not the truth-set of any formula inneighborhood semantics: the reason is that u and
u′ are indistinguishable, and so a truth-set always contains either both, or neither.
Using this fact, we can show by induction that M1,w |=nhd ϕ ⇐⇒ M2,w |=nhd ϕ
for all formulae ϕ. Hence, the property expressed by ⊞?p is not expressed by any
formula in neighborhood semantics.
Clearly, since InqML and neighborhood semantics are sensitive to different

features of a model, the appropriate notion of bisimilarity is also different in these
two contexts. For instance, consider again the above modelsM1 andM2: according
to the notion of bisimilarity ∼N appropriate for neighborhood semantics [17], the
relation R = {(v,v),(u,u),(u,u′),(u′,u),(u′,u′)} is a bisimulation. This implies that
M1,v ∼

N
M2,v. By contrast, a single round of the inquisitive bisimulation game

suffices to show thatM1,v 6∼M2,v in our setting.
Conversely, under our notion of bisimulation, a point w in a modelM is always

fully bisimilar to its copy in the disjoint unionM⊎M
′. Clearly, the same cannot be

true in neighborhood semantics, given that in this semantics modal formulae are
not in general preserved under disjoint unions.
A notion of bisimulation which is much closer to the one we study here is found in

the literature on monotonic neighborhood models [16]. In terms of the bisimulation
game, the difference between the two notions can be described as follows. Starting
from aworld-position (w,w′), Player I picks a state s in either Σ(w) or Σ′(w′); Player
II responds with a state s ′ on the opposite side. At this point, the two games come
apart: in our version of the game, I can choose a world from either s or s ′, while
in the version given in [16], I is required to pick a world from s ′. Imposing such
a restriction in our setting would trivialise the game, providing II with a universal
winning strategy: always pick s ′ = ∅.
Interestingly, however, one can show that due to the downward-closure of Σ(w),

in our setting it would not make a difference (in terms of the resulting notion of
bisimilarity) if Player I were required to pick a world from the state s that he himself
selected in the world-to-state phase. Thus, we could equivalently have presented
the game in a form which is the mirror image of the game used in monotonic
neighborhood frames. Clearly, this symmetry reflects the opposite monotonicity
constraints that these two logics impose on the neighborhood map.

§6. Relational inquisitive models. In the remainder of this paper we compare the
expressive power of inquisitive modal logic with that of first-order logic. This is not
quite as straightforward as for ordinary modal logic. A standard Kripke model can
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be identified naturally with a relational structure with a binary accessibility relation
R and a unary predicate for the interpretation of each atomic proposition p ∈P . By
contrast, an inquisitive modal model also needs to encode the inquisitive state map
Σ :W → ℘℘(W ). This map can be identified with a binary relationE ⊆W ×℘(W ).
In order to view this as part of a relational structure, however, we need to adopt a
two-sorted perspective, and viewW and ℘(W ) as domains of two distinct sorts. We
thus turn to two-sorted structures. In order to capture the fact that the second sort
contains sets of elements of the first sort, our relational structures include a relation
å between these sorts, which simulates set-theoretic membership. This leads to the
following notion.

6.1. Relational inquisitive modal models.

Definition 6.1 (Relational models). A relational inquisitive modal model over
atomic propositions P = {pi : i ∈ I } is a relational structure

M= (W,S,E,ε,(Pi)i∈I )

whereW,S are nonempty sets related by E,ε ⊆W ×S, and Pi ⊆W for i ∈ I .
With s ∈ S we associate the set s := {w ∈ W : (w,s) ∈ ε} ⊆ W and require

the following conditions, which enforce resemblance with inquisitive modal
models:

• extensionality: for s,s ′ ∈ S, s = s ′ implies s = s ′;
• local powerset: if s ∈ S and t ⊆ s , there is an s ′ ∈ S such that s ′ = t;
• nonemptiness: E[w] 6= ∅ for all w ∈W ;
• downward closure: for s,s ′ ∈ S with s ′ ⊆ s , s ∈ E[w] implies s ′ ∈ E[w].

Multimodal variants are analogously defined, with a relationEa ⊆W ×S to encode
the inquisitive assignments Σa for agent a ∈ A.
By a world (resp. state)-pointed relational model we mean a pair (M,x) where x

is an element in the first (resp. second) sort ofM.

By extensionality, the second sort S of such a relational model can always be
identified with a domain of sets over the first sort, namely, {s : s ∈ S} ⊆ ℘(W ). In
the following, we will assume this identification and view a relational model as a
structureM= (W,S,E, ∈ ,(Pi)) where S ⊆ ℘(W ) and ∈ is the actual membership
relation.We shall therefore also specify relationalmodels by justM= (W,S,E,(Pi))
when the fact that S ⊆ ℘(W ) and the natural interpretation of ε are understood.
Notice that, given this identification, the downward closure condition can be stated
more simply as: if s ∈ E[w] and t ⊆ s , then t ∈ E[w].
Notice that a relational model M induces a corresponding Kripke structure

K(M) = (W,R,(Pi)i∈I ), where R ⊆W ×W is the relation defined as follows:

wRw′ ⇐⇒ for some s ∈ S : wE s and w′ ∈ s,

so that R[w] := {w′ : wRw′} =
⋃

E[w] as the natural relational encoding of the
map ó : w 7→

⋃

Σ(w).
In addition to the above conditions, we might impose other constraints on a

relational modelM: in particular, we may require S to be the full powerset ofW, or
to resemble the powerset from the local perspective of each world w ∈W .
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Definition 6.2. A relational modelM= (W,S,E,(Pi)) is

– full if S = ℘(W );
– locally full if ℘(R[w])⊆ S for all w ∈W .

Note that, by local powerset, the condition of local fullness is equivalent to the
condition that the information states R[w] =

⋃

E[w] are represented in S for all
w ∈W .

6.2. Relational encoding of inquisitive modal models. The connection between
inquisitive modal models and their relational counterparts is not one-to-one. In one
direction, a relational modelM= (W,S,E,(Pi)) uniquely determines an inquisitive
modal model

M
∗ = (W,Σ,V ) where Σ(w) = E[w],V (pi) = Pi .

Notice that the nonemptiness and downward closure conditions on E guarantee
that M∗ is indeed an inquisitive modal model. Since the passage from M to M

∗

obliterates information about the second sort S, there are in general many different
relational modelsM that determine the same inquisitive modal model M. That is,
a given inquisitive modal model may have different relational counterparts. Let us
call such counterparts the relational encodings ofM.

Definition 6.3. A relational encoding of an inquisitive modal model M is a
relational modelM withM∗ =M.

Clearly, two relational counterparts ofMmust coincide in terms ofW, E and the
Pi . But this leaves quite some choice with respect to the richness of the second sort.
The following isolates some immediate choices.

Definition 6.4 (Relational encodings). Given an inquisitive modal modelM =
(W,Σ,V ), we define three relational encodingsM[··· ](M) of M, each based on W,
and with wE s ⇔ s ∈ Σ(w), w ε s ⇔w ∈ s and Pi =V (pi). The encodings differ in
the second sort domain S:

• forMrel(M), the minimal encoding ofM: S := image(Σ);
• forMlf(M), the minimal locally full encoding ofM: S := {s ⊆ ó(w) : w ∈W };
• forMfull(M), the unique full encoding ofM: S := ℘(W ).

To encode state-pointed models M,s we augment the corresponding S by ℘(s).
These definitions generalise in a natural way to the multimodal case.

6.3. Relational models and InqML. The notions of (n-)bisimilarity defined in
Section 3 naturally lifts to relational models as follows.

Definition 6.5 ((n-)Bisimilarity for relational models). Two state- or world-
pointed relational modelsM1,x1 andM2,x2 are bisimilar,M1,x1 ∼M2,x2, if they
encode bisimilar pointedmodels, i.e., ifM∗

1,x1 ∼M
∗
2,x2. Similarly for n-bisimilarity:

M1,x1 ∼nM2,x2 ifM
∗
1,x1 ∼nM

∗
2,x2.

In particular, any two encodings of the same pointed inquisitive model are
bisimilar. We similarly lift the interpretation of InqML to relational models.
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Definition 6.6. LetM,x be a (world- or state-)pointed relational model and ϕ
a formula of InqML. We defineM,x |= ϕ to meanM∗,x |= ϕ.

By a property of world-pointed relational models we mean a class of world-
pointed relational models. Similarly, by an inquisitive property of state-pointed
relational models we mean a class of state-pointed relational modes which satisfies
the analogues of the conditions in Definition 2.13. By a world- or state-property
over a class of relational models C we mean a class of pointed models (M,x) with
M ∈ C. We can then translate Corollary 4.3 into a characterisation of the properties
of pointed relational models that are definable in InqML.

Corollary 6.7. Let K be a property of world-pointed relational models, or an
inquisitive property of state-pointed relational models, over a finite set P of atomic
propositions. ThenK is definable in InqML if and only if it is closed under∼n for some
n ∈ N. More generally, if K is a world property or an inquisitive state property over a
class C of relational models, K is definable in InqML over C iff it is closed under ∼n

within C for some n ∈ N.

Proof. It follows from Theorem 4.1 that if a class K is defined by an InqML
formula ϕ, then K is closed under ∼n where n is the modal depth of ϕ.
Conversely, suppose K is a property of world-pointed relational models closed

under ∼n for some n ∈ N. Then K∗ := {(M∗,w) : (M,w) ∈ K} is also closed under
∼n, so by Corollary 4.3 it is definable by a formula ϕ of InqML. It is easy to
check that ϕ defines K (note that ∼n-closure of K implies that (M,w) ∈ K ⇐⇒
(M∗,w) ∈ K∗). If K ⊆ C is closed under ∼n in restriction to C, we may similarly
work with K∗ := {(M∗,w) : M,w∼nM′,w′ for some (M′,w′) ∈ K}. The reasoning
for inquisitive state-pointed properties is exactly analogous, using the second part
of Corollary 4.3. ⊣

6.4. Relational models and first-order logic. A relational inquisitive model
supports a two-sorted first-order language having two relation symbols E and å
corresponding to the relations E and ε, respectively, and predicate symbols Pi for
i ∈ I . We use w,v,u as variables for the first sort, and s,t as variables for the second
sort. 8 Moreover, we make use of two defined binary predicates. The first is simply
inclusion, defined in the natural way in terms of å:

s⊆ t := ∀w(å(w,s)→ å(w,t)).

The second defined predicate, e(w,t), corresponds to the relation R[w] = t (i.e.,
the relational encoding of the graph of the map ó):

e(w,t) := ∀v(å(v,t)↔∃s(E(w,s)∧ å(v,s))).

In terms of this language we can define a pair of standard translations STw(ϕ) of
STs(ϕ) of a formula, which capture its truth conditions in a world and its support
conditions in an information state, respectively. Correspondingly, STw(ϕ) has a
single free variable w of the first sort while STs(ϕ) has the free variable s of the

8We use different fonts to distinguish object language symbols (E,w,s, ... ), in typewriter font, from the
corresponding notation for semantic objects (E,w,s, ... ), in regular font.
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second sort. Of STs(ϕ) we also use a substitution variant STt(ϕ) which is just like
STs(ϕ) except that the roles of variables s and t are exchanged. The following define
these standard translations by simultaneous induction:

• STw(pi ) = Pi (w),
STs(pi ) = ∀w(å(w,s)→ STw(pi )),

• STw(⊥) =⊥,
STs(⊥) = ∀w(å(w,s)→ STw(⊥))

(

≡ ¬∃wå(w,s)
)

,
• STw(ϕ∧ø) = STw(ϕ)∧STw(ø),
STs(ϕ∧ø) = STs(ϕ)∧STs(ø),

• STw(ϕ

>

ø) = STw(ϕ)∨STw(ø),
STs(ϕ

>

ø) = STs(ϕ)∨STs(ø),
• STw(ϕ→ ø) = STw(ϕ)→ STw(ø),
STs(ϕ→ ø) = ∀t(t⊆ s→ (STt(ϕ)→ STt(ø))),

• STw(⊞ϕ) = ∀s(E(w,s)→ STs(ϕ)),
STs(⊞ϕ) = ∀w(å(w,s)→ STw(⊞ϕ)),

• STw(�ϕ) = ∀s(e(w,s)→ STs(ϕ)),
STs(�ϕ) = ∀w(å(w,s)→ STw(�ϕ)).

It is straightforward to verify that the truth-conditions and support-conditions of
ϕ in a modelM correspond, respectively, to the satisfaction conditions for STw(ϕ)
and STs(ϕ) in any locally full relational encoding ofM.

Proposition 6.8. LetM be a locally full relational inquisitive model, ϕ ∈ InqML.
For all worlds w ∈W and all states s ∈ S:

(i) M,w |= ϕ ⇐⇒ M,w |= STw(ϕ);
(ii) M,s |= ϕ ⇐⇒ M,s |= STs(ϕ).

The assumption that M be locally full is crucial for this result. This is because,
if a model is not locally full, then for some w ∈ W it could be that the state
ó(w) =

⋃

Σ(w) which is involved in determining the truth condition of �ϕ is not
represented inM. If so, there will be no state s ∈ S satisfying å(w,s), which means
that STw(�ϕ) will come out as vacuously true at w, regardless of whether or not
M

∗,w |=�ϕ. However, even whenM is not locally full, preservation still holds for
all �-free formulae, as one can easily verify.

Proposition 6.9. Let M be a relational inquisitive model, ϕ ∈ InqML a �-free
formula. Then for all worlds w ∈W and all states s ∈ S:

(i) M,w |= ϕ ⇐⇒ M,w |= STw(ϕ);
(ii) M,s |= ϕ ⇐⇒ M,s |= STs(ϕ).

Recall that, by Remark 4.4, any formula ϕ of InqML is equivalent to some�-free
formula ϕ∗. Combining this with the previous proposition, we have the following
corollary.

Corollary 6.10. For any ϕ ∈ InqML there exist first-order formulae ϕ⋆
w
:=

STw(ϕ
∗) and ϕ⋆

s
:= STs(ϕ

∗) such that for any relational inquisitive modelM, world
w ∈W and s ∈ S:

(i) M,w |= ϕ ⇐⇒ M,w |= ϕ⋆
w
;

(ii) M,s |= ϕ ⇐⇒ M,s |= ϕ⋆
s
.
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The corollary allows us to view InqML as a syntactic fragment of first-order logic,
InqML ⊆ FO, over the class of all relational inquisitive models, just as standard
modal logic ML may be regarded as a fragment ML ⊆ FO over Kripke models.
Importantly, however, the class of relational inquisitive modal models is not first-
order definable in this framework, since the local powerset condition involves a
second-order quantification. In other words, we are dealing with first-order logic
over nonelementary classes of intended models. In fact, first-order logic is not
compact over this class, as the following example shows.

Example 6.11. There is a first-order formula ϕ(s) in a single free variable s
of the second sort (information state) which over any relational inquisitive model
says of an element s that there are no infinite R-paths inside s. Combining this, for
instance, with a formula that says that R in restriction to s defines a discrete linear
ordering with a minimal element, and formulae øn(s) saying that s comprises at
least n distinct worlds, we get a violation of compactness.

Proof. The induced modal accessibility relation R is definable according to

R(u,v)↔ ∃s(E(u,s)∧ å(v,s)).

The local power set condition implies that the entire power set ℘(s) of the
designated state s is represented in the second sort of the relational model. So
the following formula faithfully emulates the standard monadic second-order
formalisation of the relevant property:

ϕ(s) := ¬∃t
(

t⊆ s∧∃uå(u,t)∧∀u
(

å(u,t)→∃v(å(v,t)∧R(u,v))
))

,

where again t⊆ s abbreviates ∀v(å(v,t)→ å(v,s)). ⊣

We remark that all the considerations of this section admit straightforward
variations for the multimodal inquisitive setting, where models are equipped with a
family (Σa)a∈A of inquisitive assignments, indexed by a set A of agents.
In an extension and variation of the above, Silke Meißner [22] has proposed an

alternative standard translation, which in some way is more uniform as it allows
for a direct treatment of ✷. As outlined in [23], it also relaxes the constraints
on relational encodings so as to extend the scope of the standard translation to
an elementary class of relational structures, which in turns gives rise to a model-
theoretic compactness proof for InqML. While our translation could in principle
be replaced by the more recent one from [23], adherence to our narrower classes
of natural relational encodings of the intended inquisitive models can be seen as a
strength of our characterisation theorems.

§7. Bisimulation invariance.

7.1. Bisimulation invariance as a semantic constraint. As discussed above, InqML
can be thought of as a fragment of first-order logic when interpreted over relational
models. We may think of ∼-invariance as a characteristic semantic feature of this
fragment. The question we are interested in is: with respect to what classes C of
relational models can InqML be characterised as being exactly the ∼-invariant
fragment of first-order logic? Let us first make precise what this means.
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Definition 7.1. We say that InqML is the∼-invariant fragment of FO for world-
properties with respect to a class C of relational models, in symbols

InqML≡w

C FO/∼,

if for every property K of state-pointed models over C, K is definable in InqML if
and only if it is both definable in FO and ∼-invariant.
Similarly, we say that InqML is the ∼-invariant fragment of FO for inquisitive

state-properties with respect to C, in symbols

InqML≡s

C FO/∼,

if for any inquisitive property K of state-pointed models over C, K is definable in
InqML if and only if it is definable in FO and ∼-invariant.

Remark 7.2. For any class C, InqML≡s

C FO/∼ implies InqML≡w

C FO/∼.

Proof. With the ∼-invariant world property defined by ϕ(w) ∈ FO associate the
property defined by ϕ′(s) = ∀w(w ∈ s→ ϕ(w)). This property is inquisitive and ∼-
invariant. From InqML≡s

C FO/∼ we obtain a formula ø ∈ InqML expressing this
property. Then the same formulaø, on the level ofworlds, defines theworld-property
defined by ϕ(w). ⊣

Our question then can be formulated succinctly as follows: over which classes
C do we have InqML ≡s

C FO/∼ (and thus also InqML ≡w

C FO/∼)? Equivalently,
the question is: over which classes C is InqML sufficiently expressive to capture all
first-order definable properties of world- or state-pointed relational models that are
invariant under inquisitive bisimulation?
Section 8 will establish that InqML is expressively complete for ∼-invariant first-

order properties in this sense over each of the following classes of relational models:
the class of all relational models, the class of all finite relational models, the class of
all locally full models, and the class of all finite locally full models. Before delving
into the proof, however, we discuss some underlying model-theoretic concerns and
limitations. In particular we stress the connection with the all-important classical
rôle of first-order compactness, as well as the rôle of nonclassical model-theoretic
techniques in dealing with first-order logic over nonelementary classes of models.

7.2. Bisimulation invariance and compactness. Let K be a property of world-
pointed relationalmodels over a class C. SupposeK is InqML-definable by a formula
ϕ: then K is both FO-definable (by the standard translation ϕ⋆) and ∼-invariant
(as it is ∼n invariant, with n the modal depth of ϕ). Thus, one direction of the
equivalence InqML≡w

C FO/∼ holds for any class C. By Corollary 6.7, the converse
direction amounts to the claim that if K is FO-definable and ∼-invariant, then it is
in fact ∼n-invariant for some n.

9 That is, it amounts to the claim that, for every
FO-definable property K over C, ∼-invariance implies ∼n-invariance for some n.
Analogous reasoning establishes the same connection w.r.t. inquisitive state-

properties. We summarise these in the following, where a first-order formula ϕ(s)

9Notice that if K is FO-definable, the defining formula contains only finitely many atoms. Thus, the
propertyK depends only on the restriction of amodel to a finite setP of atoms, and we can use Corollary
6.7 to conclude that if K is ∼n-invariant for some n, it is InqML-definable.
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in a free variable of the second sort is called inquisitive over the class C if the state-
property expressed by ϕ(s) over C is an inquisitive property, i.e., is downward closed
and always holds of the empty state.

Observation 7.3. For any class C of relational inquisitive models, the following are
equivalent:

(i) InqML≡w

C FO/∼,
(ii) for any formula ϕ(w)∈ FO in a single free variable of the first sort,∼-invariance
over C implies ∼n-invariance over C for some finite n.

Similarly, the following are equivalent:

(i) InqML≡s

C FO/∼,
(ii) for any formula ϕ(s) ∈ FO in a single free variable of the second sort that is
inquisitive over the class C, ∼-invariance over C implies ∼n-invariance over C
for some finite n.

In both contexts, condition (ii) may be viewed as a compactness principle for
∼-invariance of first-order properties, which is nontrivial in the nonelementary
setting of relational inquisitive models. Interestingly, this compactness principle for
∼-invariance of FO-properties of worlds fails relative to the class of full relational
models.

Proposition 7.4. There is a first-order formula ϕ(w) in a single free variable w of
the first sort that, relative to the class of full relational models, is ∼-invariant but not
∼n-invariant for any n.

Proof. Compare Example 6.11 for the following well-foundedness property:

P(w) := there is no infinite R-path from w.

On one hand P clearly is ∼ invariant but not ∼n-invariant for any n. On the
other hand P is first-order definable over the class of full relational inquisitive
models since, over these models, first-order logic affords the full expressive power of
monadic second-order quantification over the first sortW : first-order quantification
over the second sort S = ℘(W ) is quantification over subsets of the first sort. The
formula

ϕ(w) := ¬∃s
(

å(w,s)∧∀u
(

å(u,s)→∃v(å(v,s)∧R(u,v))
))

defines the world-property P over any full relational model. ⊣

A similar well-foundedness property can also be captured in first-order logic
over full relational inquisitive epistemic models for two agents and using one basic
proposition. It suffices to describe analogous path properties for paths formed by
a strict alternation of Ra- and Rb-edges on a path that alternates between worlds
where p is true and where p is false, for some atomic proposition p and distinct
agents a,b ∈A. This shows that InqML 6≡w

C FO/∼when C is the class of full relational
models or full relational epistemicmodels. Over these classes, there are FO-definable,
∼-invariant world properties that are not InqML-definable. Although this is in sharp
contrast with our Theorem 1.2, the fact that the analogue of the theorem fails over
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Figure 2. Generic upgrading patterns.

full relational models is not too surprising: over such models, FO, unlike InqML,
has access to full-fledged monadic second-order quantification.

7.3. A nonclassical route to expressive completeness. In all our characterisation
theorems to be treated in the following section, we establish semantic correspon-
dences:

InqML≡w

C FO/∼, InqML≡s

C FO/∼.

These are assertions about equal expressive power between two systems presented
in very different style: while InqML is based on concrete syntax with clearly defined
semantics, FO/∼ is defined in terms of the semantic constraint of ∼-invariance.
In fact, ∼-invariance is easily seen to be undecidable as a property of first-order
formulae, so that FO/∼ itself cannot be regarded as a syntactic fragment. As
discussed in the previous subsection, proving one of these equivalences boils down
to establishing a compactness principle relating ∼-invariance to ∼n-invariance for
some finite level n, in the nonclassical context of nonelementary classes of relational
inquisitive models.
For this there is a general approach that has been successful in a number of

similar investigations, starting from an elementary and constructive proof in [24]
of van Benthem’s characterisation theorem [31] and its finite model theory version
due to Rosen [28] (for ramifications of this method, see also [13, 25] and [26]). This
approach involves an upgrading of a sufficiently high finite level ∼n of bisimulation
equivalence to a finite target level ≡q of elementary equivalence, where q is the
quantifier rank ofϕ. Concretely, and in the case of properties ofworlds, this amounts
to providing, for any world-pointed relational modelM,w a fully bisimilar pointed
model M̂,ŵ with the property that, if M,w ∼n M′,w′, then M̂,ŵ ≡q M̂

′,ŵ′. The
diagram on the left in Figure 2 shows how∼-invariance ofϕ, together with its nature
as a first-order formula of quantifier rank q, entails its ∼n-invariance: one chases
the diagram through its lower rung to check that, for ϕ that is preserved under both
∼ and ≡q , we haveM,w |= ϕ iffM′,w′ |= ϕ.
The reasoning for inquisitive properties of information states is analogous, using

a corresponding upgrading for state-pointed models (cf. the right hand side in
Figure 2). At the technical level we shall mostly restrict the explicit discussion to the
more familiar world-pointed scenario, and only mention the necessary variations
for the state-pointed case where relevant.
Any upgrading of the kind we just discussed involves an interesting tension

between the very distinct levels of expressiveness of InqML-formulae and FO-
formulae.While the latter can, for instance, distinguish worlds w.r.t. finite branching
degrees of the accessibility relation R or w.r.t. short cycles that R may form in the
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vicinity of a world, no ∼-invariant logic can. The challenge is to overcome this
discrepancy in bisimilar companion structures, using the malleability up to ∼ of
relational inquisitive models (within the respective class C!)—and, for instance, to
boost all multiplicities and lengths of all cycles beyond what can be distinguished in
FOq (FO up to quantifier rank q).
We show how to achieve the required upgradings for various classes C of models

in the next section, and thus establish our characterisation theorems.
We use a variation of the upgrading technique from [24] to instantiate the above

idea. In effect we shall deviate slightly from the generic picture in Figure 2 by
interleaving ∼-preserving preprocessing steps and ≡q-preserving steps as shown in
Figure 4. The upgrading itself is based on an inquisitive analogue of partial tree
unfoldings, combined with locality arguments for first-order Ehrenfeucht–Fraı̈ssé
games. We start with two technical remarks.

Essentially disjoint unions and essential parts. Inquisitive bisimulation between
world- or state-pointed inquisitive models is robust under the augmentation of
the set of worlds by disconnected sets of new worlds. This phenomenon is well
known from ordinary bisimulation between Kripke structures. But whereas the
disjoint union of two Kripke models is again a Kripke model, the disjoint union
of two relational inquisitive models would fail to satisfy extensionality (and thus
fail to be a relational inquisitive model) unless we take care of identifying the
respective empty states. In the following, if M and M

′ are relational models, we
denote byM⊕M

′ their essentially disjoint union, that is, the model obtained from
the disjoint union by identifying the empty information states ofM andM′. Indeed,
the empty information state plays a special, albeit somewhat trivial rôle for various
purposes. To isolate the structurally distinctive part of a relational inquisitive model
M= (W,S,E, ∈ ,(Pi)) we may consider its essential part as obtained by removal of
the empty information state:

M
◦ :=M↾(W ∪S◦) = (W,S◦,E◦,∈◦,(Pi)),

where S◦ := S \{∅} andE◦,∈◦ ⊆W ×S◦ are corresponding restrictions. WhileM◦

is not itself a relational inquisitive model, it uniquely determines the original model.
Writing M◦ ∗ {∅} for the unique extension by re-insertion of ∅, which reproduces
M, we have the one-to-one correspondence

(†) M
◦ =M↾(W ∪S◦) ! M=M

◦ ∗{∅}

Moreover, essentially disjoint unions of models (or of subsets of their domains)
are disjoint unions at the level of the essential parts.

Locality and truncation of models. Towards the assessment of the expressive
power of FO over relevant classes of relational inquisitive models, which are not
elementary, we cannot rely on classical compactness arguments. Instead we invoke
locality arguments based on the local nature of first-order logic over relational
structures, in terms of Gaifman distance. In the setting of inquisitive relational
models, Gaifman distance is graph distance in the undirected bi-partite graph on
the setsW of worlds and S of states with edges between any pair linked by E or ε;
the ℓ-neighborhood N ℓ(w) of a world w consists of all worlds or states at distance
up to ℓ from w in this sense, and N ℓ(s) is similarly defined. But the presence of the

https://doi.org/10.1017/jsl.2020.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.77


INQUISITIVE BISIMULATION 103

empty information state ∅ ∈ S might seem to spoil any locality-based arguments
because it trivialises the distance measure inM. 10Passage to the essential partM◦,
however, overcomes this obstacle. The empty state plays a trivial rôle not just w.r.t.
bisimulation, where it only occurs as a dead end, but alsow.r.t.FO expressiveness: the
relational modelM is uniformly quantifier-free FO-interpretable in its essential part
M

◦. It follows that≡q between the essential parts of (pointed) relational inquisitive
models implies ≡q between the actual models.

11So the correspondence in (†) is
compatible with individual levels of FO-equivalence. Meaningful locality arguments
can therefore be based on ℓ-neighborhoods w.r.t. essential parts, where Gaifman
distance is not trivialised by ∅. IfM is a relational inquisitive model, w a world in
M, and ℓ an even number, we define truncation ofM to depth ℓ as

M
ℓ
w := (M

◦ ↾N ℓ(w))∗{∅},

where N ℓ(w) consists of those worlds or states at Gaifman distance at most ℓ from
w in M

◦ (!). It is easy to see that Mℓ
w is a relational inquisitive model. Similarly,

for a state s 6= ∅ and even ℓ, we defineMℓ
s := (M

◦ ↾N ℓ+1(s))∗{∅}, which again is a
relational inquisitive model.

§8. Characterisation theorem for InqML. Our aim is to show the following main
characterisation theorem.

Theorem 1.2. Let C be any of the following classes of relational models: the class of
all models; of finite models; of locally full models; of finite locally full models. Then
InqML≡w

C FO/∼ and InqML≡s

C FO/∼.

By Observation 7.3 it suffices to establish the following.

Proposition 8.1. Let C be any of the above classes. Any first-order formula which
is ∼-invariant over C is ∼n-invariant over C for some finite level n ∈ N.

8.1. Partial unfolding and stratification. To establish the compactness principle
for ∼-invariance expressed in Proposition 8.1 for the relevant classes of relational
models we make use of a process of stratification. This is similar to tree-like
unfoldings in standard modal logic.

Definition 8.2. A relational inquisitive modelM is stratified if its two domains
W and S consist of essentially disjoint strata, that is, of two families (Wi)i∈N and
(Si)i∈N such that:

(i) W =
⋃

Wi and S =
⋃

Si ;
(ii) for each i,j ∈ N :Wi ∩Wj = ∅ and Si ∩Sj = {∅};
(iii) E[w]⊆ Si for all w ∈Wi and Si ⊆ ℘(Wi+1).

For an even ℓ 6= 0 and a world w, we say that M is stratified to depth ℓ from w if
its truncation M

ℓ
w (see the definition at the end of Section 7.3) is stratified with

10In fact, the Gaifman diameter of any relational inquisitive model is easily seen to be bounded by 4,
as ∅ ∈ S is E-related to every world, so that also every information state has distance at most 2 from ∅.
11Uniform syntactic rewriting provides for every ϕ(x) ∈ FO a translation ϕ◦(x) ∈ FO of the same

quantifier rank such thatM,w |= ϕ iffM◦,w |= ϕ◦.
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W0 = {w}.M is stratified to depth ℓ from a nonempty state s ∈ S, if its truncation
M
ℓ
s is stratified withW0 = ∅, S0 = ℘(s).

We note that no nontrivial stratified model can be full.

Proposition 8.3. Any world-pointed relational inquisitive modelM,w is bisimilar
to a stratified one. For even ℓ 6= 0, any finiteM,w is bisimilar to a finite model that
is stratified to depth ℓ from w. An analogous result holds for state-pointed relational
inquisitive models M,s . If M is locally full, the (ℓ-)stratified target model can be
chosen to be locally full, too.

Proof Sketch. The underlying process of partial unfolding is similar to the well-
known tree unfolding of Kripke structures, but leaves quite some flexibility as to the
choice of the second sort. Starting from a model M, we define a stratified model
M

′, whose essential partM′◦ consists of N-tagged copies of worlds and nonempty
information states fromM, so thatW ′ ⊆W ×N and S ′◦ ⊆ S◦×N. In the world-
pointed case, let w′ := (w,0). We takeW ′

0 := {(w,0)}. For any n ∈ N, we choose a
downward closed set Sn ⊇

⋃

(u,n)∈W ′
n
E[u] and put

S ′◦
n := S

◦
n ×{n},

W ′
n+1 :=

⋃

s∈S◦n
s×{n+1},

and define E ′◦ := {((u,n),(s,n)) : (u,s) ∈ E},
ε′

◦ := {((u,n+1),(s,n)) : u ∈ s},
P′
i := {(u,n) : u ∈ Pi}.

This uniquely determinesM′ =M
′◦ ∗ {∅}. It is easy to check thatM′,w′ ∼M,w.

In order to maintain finiteness, the unfolding process can be truncated at any stage
n if we replace the aboveW ′

n+1 byW and correspondingly put S
◦ instead of S ′◦

n+1

and augment E ′◦ by all of E◦. The resulting M
′,w′ is fully bisimilar to M,w,

is finite if M is, and is stratified to depth 2n. With the straightforward maximal
choice for the S ′◦

n , viz. S
′◦
n := S

◦ ×{n}, the (full or truncated) unfolding process
preserves local fullness, too. In the state-pointed case we start out by settingW ′

0 := ∅,
S ′
0 := ℘(s)×{0} and proceed inductively as above. ⊣

Observation 8.4. Let M,w and M
′,w′ be world-pointed relational models that

are stratified to depth ℓ for some even ℓ from their respective worlds. LetMℓ
w,w and

M
′ℓ
w′,w′ be their ℓ-truncations. Then, for n > ℓ/2:

M
ℓ
w,w ∼nM′ℓ

w′,w′ =⇒ M
ℓ
w,w ∼ M

′ℓ
w′,w′.

Analogously for state-pointed models that are stratified to depth ℓ from their
distinguished states.

This is because, due to stratification and cut-off, the n-round game exhausts all
possibilities in the unbounded game.Afterm rounds of the bisimulation game, which
starts from the pairing of the roots w and w′ of the stratified models, the position is
a pairing of worlds from strataWm andW

′
m. So player II wins the unbounded game

if she does not lose within n rounds.

Proof of Theorem 1.2. We first present the upgrading argument for the case
of world-pointed models, which is closer to the classical intuition. The version for
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q

q copiesq copiesq copies q copies
w w

Figure 3. The structuresM◦
0,w andM

◦
1,w in the game argument.

state-pointed models, which is formally the stronger, will be discussed below. Let
C be any one of the classes in the theorem and let ϕ(x) ∈ FOq be ∼-invariant as a
world property over C. We want to show that ϕ is ∼n-invariant over C for n = 2q ,
where q is the quantifier rank of ϕ. The upgrading argument is sketched in Figure 4.
Towards its ingredients, consider a world-pointed relational modelM,w in C. Since
ϕ is ∼-invariant, we can, by Proposition 8.3, assume w.l.o.g. thatM,w is stratified
to depth ℓ = n from w. Let Mℓ

w be its ℓ-truncation, which is then fully stratified.
We define two world-pointed modelsM0,w andM1,w as follows. Each of theMi

consists of an essentially disjoint union of the following constituents: both models
contain q distinct isomorphic copies ofM as well as ofMℓ

w . In addition,M0 contains
a copy ofMℓ

w with the distinguished world w, whileM1 contains a copy ofM with
the distinguished world w.

M0,w := q⊗M ⊕ M
ℓ
w,w ⊕ q⊗M

ℓ
w

M1,w := q⊗M ⊕ M,w ⊕ q⊗M
ℓ
w

Using a locality-based Ehrenfeucht–Fraı̈ssé game argument for FO we can
show:

(∗) M0,w ≡q M1,w.

As argued in connection with the correspondence (†) at the end of Section 7, due
to quantifier-free interpretability ofMi,w inM

◦
i ,w, (∗) is equivalent to:

(∗∗) M
◦
0,w ≡q M

◦
1,w.

The diagram in Figure 3 suggests the arrangement, with open cones for copies of
M

◦ and truncated cones forM◦ ↾N ℓ(w) (the essential part ofMℓ
w), and with filled

circles for the distinguished worlds.
We argue that the second player has a winning strategy in the classical q-round

Ehrenfeucht–Fraı̈ssé game over the two structures in (∗∗) starting in the position
with a single pebble on the distinguished world w on either side. Indeed, player II
can force a win by maintaining the following invariant w.r.t. the game positions
(u;u′) for u= (u0,u1, ...,um) with u0 =w inM

◦
0 and u

′ = (u′0,u
′
1, ...,u

′
m) with u

′
0 =w

inM◦
1 after round m, for m = 0, ...,q, for ℓm := 2

q–m:

u and u′ are partitioned into clusters of matching subtuples such
that the distance between separate clusters is greater than ℓm
and corresponding clusters are in isomorphic configurations of
isomorphic component structures ofM◦

0 andM
◦
1 or in isomorphic

configurations inM◦
0 ↾N

ℓ(w) andM◦
1 ↾N

ℓ(w).
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Figure 4. Upgrading pattern for Theorem 1.2/Proposition 8.1.

This condition is satisfied at the start of the game, for m = 0 (ℓ0 = 2
q = n). The

second player canmaintain this condition through a round, say in the step fromm to
m+1, as follows. Suppose the first player puts a pebble in position u = um+1 inM

◦
0

or u′ = u′m+1 inM
◦
1 at distance up to ℓm+1 of one of the level m clusters (it cannot

fall within distance ℓm+1 of two distinct clusters, since the distance between two
distinct clusters from the previous level is greater than ℓm = 2ℓm+1); then this new
position joins a subcluster of that cluster and its match is found in an isomorphic
position relative to the matching cluster. If the first player puts the new pebble in a
position u = um+1 inM

◦
0 or u

′ = u′m+1 inM
◦
1 at distance greater than ℓm+1 of each

one of the level m clusters, this position will form a new cluster and can be matched
with an isomorphic position in one of the as yet unused component structures on
the opposite side.
This argument restricts naturally to the scenarios of (finite or general) locally full

relational inquisitive structures, because stratification (to some depth) according to
Proposition 8.3 preserves local fullness, and so does restriction to some even depth
and the formation of essentially disjoint sums.
Given any two pointed modelsM,w∼nM′,w′ in any of the relevant classes C, we

see that a first-order formula ϕ of quantifier rank q that is preserved under ∼, is
preserved by chasing the diagram in Figure 4 along the path through the auxiliary
models, which are all in C. The expressive completeness claim for Theorem 1.2, that
is, expressibility of ϕ in InqML over C, now follows from Corollary 6.7: indeed, ϕ is
logically equivalent over C to the disjunction over the characteristic formulae ÷n

M,w

for allM,w ∈ C that satisfy ϕ. ⊣

The case of state properties. To show Proposition 8.1 for state properties, we
can similarly upgrade the situationM,s∼nM′,s ′ for nonempty s,s ′ in companion
structures through passage to truncations of fully bisimilar models that are stratified
to depth ℓ from their distinguished states. 12 Assuming w.l.o.g. that M,s is itself

12 Note that the upgrading argument trivialises for ϕ(s)∈ FO in the case of state-pointed modelsM,s
with s = ∅: For any n,M,∅ ∼n M′,s ′ iffM,∅ ∼M′,s ′ iff s ′ = ∅. If ϕ(s) is∼-invariant over C, it must be
satisfied by s = ∅ across all of C or nowhere; and being inquisitive over C, the former must in fact be true.
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stratified to depth ℓ = 2q with stratified restriction M
ℓ
s we define as before the

following essentially disjoint unions

M0,s := q⊗M ⊕ M
ℓ
s,s ⊕ q⊗M

ℓ
s,

M1,s := q⊗M ⊕ M,s ⊕ q⊗M
ℓ
s

and we find thatM0,s ≡qM1,s . We do the same forM
′,s ′. The rest of the argument

for Proposition 8.1 is completed with the straightforward analogue of Figure 4 for
the relevant state-pointed models.

§9. Conclusion. We have seen the beginnings of a model theory for inquisitive
modal logic. Our contribution started in Section 3, where we described a natural
notion of bisimulation for inquisitive modal structures. From a game-theoretic
perspective, bisimilarity and its approximations can be characterised in terms of
a game which interleaves two kinds of moves: world-to-state moves (fromw to some
s ∈ Σ(w)) and state-to-world moves (from s to some w ∈ s).
In Section 4 we saw that bisimilarity relates to modal equivalence in the usual

way: two pointed models over a finite vocabulary are distinguishable in the n-round
bisimulation game iff they are distinguished by a formula of modal depth n.
In Section 5 we compared inquisitive modal logic to neighborhood semantics for

modal logic, showing that, although these two logics are interpreted over similar
structures, they are very different in terms of their expressive power, and are invariant
under different notions of bisimulation equivalence.
In Section 6 we discussed how inquisitive modal models can be encoded as two-

sorted relational structures on which we can naturally interpret first-order formulae
of a suitable relational signature. This enabled us to define a standard translation
from InqML to first-order logic, and to view InqML as a syntactic fragment of
first-order logic with respect to those relational structures.
We then asked over what classes of structures this syntactic fragment coincides,

up to logical equivalence, with the fragment determined by the semantic property
of bisimulation invariance. Using an inquisitive analogue of partial tree unfoldings
in Section 8, we established a positive answer to this question for several natural
classes, including the class of all relational inquisitive models, and the class of all
finite models.
The results obtained in this paper provide us with a better understanding of

inquisitive modal logic in at least two ways. From a more concrete perspective, we
have given a characterisation of the expressive power of InqMLwhich is very helpful
in order to tell what properties of pointed models can and cannot be expressed in
the language: for instance, it is easy to see that properties like P(w) := “W ∈ Σ(w)”
or P(w) := “{w} ∈ Σ(w)” are not bisimulation invariant, and thus not expressible
in InqML. From a more abstract perspective, we have looked at a natural notion of
behavioral equivalence for inquisitive modal structures, whose main constituent is a
map Σ :W → ℘℘(W ), rather than ó :W → ℘(W ) as in Kripke structures. We saw
that, in terms of expressive power, InqML is a natural choice for a language designed
to talk about properties which are invariant under this notion of equivalence: over
various classes of structures, InqML expresses all and only the first-order properties
that are invariant in this sense.
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In a separate paper, we will tackle the case of inquisitive epistemic models—the
inquisitive version of multimodal S5 models. Conceptually, this class of models is
interesting in light of the natural interpretation of inquisitive modalities in the
epistemic setting, as described in Section 2. Technically, it presents interesting
challenges as the stratifications used in Section 8 are incompatible with the S5
frame conditions. Nevertheless, it can be shown that the counterpart of our
characterisation result still holds in this setting—again, both in general and in
restriction to finite models. A preliminary account is given in [9].
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