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Geometric Dilution Of Precision (GDOP) is a factor that describes the effect of geometry on

the relationship between measurement error and position determination error. It is used to

provide an indication of the quality of the solution. Conventional closed-form GDOP

calculation formula applied to all possible combinations of visible satellites is rather time

consuming, especially as the number of satellites grows. Approximations, such as the

maximum volume method, are faster but optimum selection is not guaranteed. In this paper,

a more concise but efficient solution for the calculation of GDOP value in the case of four

Global Positioning System (GPS) satellites is firstly reviewed and then extended to cover the

other forms of dilution of precision (DOP) values, including vertical DOP (VDOP) and

horizontal DOP (HDOP). Secondly, a review and extension of the conventional solution is

performed in the case of three GPS satellites aided by an altimeter. Based on the ideas gained

from these two approaches, a simpler closed-form DOP formula for three GPS satellites

aided by an altimeter is derived. The advantage of the proposed formulation is that it is

simpler and thus reduces the computational load in comparison to the conventional one.
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1. INTRODUCTION. Geometric dilution of precision, usually referred to as

the GDOP, is a factor that describes the effect of geometry on the relationship

between measurement error and position determination error. It is used to provide an

indication of the quality of the solution. The smaller the GDOP factor, the more

accurate the navigation fix. The most straightforward approach is to use the closed-

form solution to all combinations and select the minimum one. However, this is very

time-consuming when the number of satellites is large. It has been shown (Kihara and

Okada, 1984) that GDOP is approximately inversely proportional to the volume of

the tetrahedron formed by four satellites. Therefore, the optimum solution is to select

satellites such that the volume is as large as possible, which is sometimes called the

maximum volume method. The disadvantage of this method is that it does not

guarantee an optimum selection of satellites. To avoid the above disadvantages, a

modified closed-form solution with simpler calculation was later proposed (Zhu,

1992), which worked only for a four-satellite case.

2. DILUTION OF PRECISION. Consider the vectors depicted in Figure 1

relating to the Earth’s centre, satellites and user position. The vector s represents the

vector from the Earth’s centre to a satellite, u represents the vector from the Earth’s

centre to the user’s position, and r represents the vector from the user to satellite.

Thus, we can write the vector relation

r¯ s®u. (1)
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Figure 1. Definition of vectors.

The distance srs is computed by measuring the propagation time from the

transmitting satellite to the user}receiver. The pseudo-range ρ
i
is defined for the i-th

satellite by:
ρ
i
¯ ss

i
®us­ct

b
­νρ

i

, (2)

where: c is the speed of light, t
b

is the receiver clock offset from system time, and

νρ
i

is the pseudo-range measurement noise. Considering the user position in three

dimensions, denoted by (x
u
, y

u
, z

u
), the GPS pseudo-range measurements made to the

n satellites can then be written as:
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where: (x
i
, y

i
, z

i
) denotes the i-th satellite’s position in three dimensions.

Equation (3) is linearised by expanding Taylor’s series around the approximate (or

nominal) user position (xW
n
, yW

n
, zW

n
) and neglecting the higher terms. Defining ρW

i
as ρ

i

at (xW
n
, yW

n
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n
) gives :
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where:
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, e

i=
, e

i>
)3E

i
, i¯ 1,…, n, denotes the line-of-sight vector from the user

to the satellites. Equation (4) can be written in a matrix formulation
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which can be represented as:
z¯Hx­v. (7)

The dimension of matrix H is n¬4 (bold, uppercase letters are used to denote

matrices) with n& 4, and H is usually referred to as the ‘geometry matrix’ or

‘visibility matrix’. The least squares solution to Equation (7) is given by:

xW ¯ (HTH)−<HTz,
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and the quality of navigation solution for a linearised pseudo-range equation is

represented by taking the difference between the estimated and true positions :

xh ¯xW ®x

¯ (HTH)−<HTHx­(HTH)−<HTv®x

¯(HTH)−<HTv, (8)

where: v has zero mean, and so does x4 . The covariance between the errors in the

components of the estimated position is :

E²xh xh T´¯ (HTH)−<HTE²vvT´H(HTH)−<, (9)

where: E²[´ is the expected value operator. If all components of v are pairwise

uncorrelated and have variance σ=, then:

E²vvT´¯σ=I,

and Equation (9) becomes:

E²xh xh T´¯σ=(HTH)−<. (10)

The GDOP factor is defined as:

GDOP¯otr(HTH)−<¯AE²xh xh T´
σ=

¯
oσ=

xx
­σ=

yy
­σ=

zz
­σ=

tt

σ
, (11)

where:

σ
xx

,σ
yy

,σ
zz

¯ root-mean-squared (RMS) errors in x, y, and z positions, re-

spectively;

σ
tt
¯RMS error in time;

σ¯RMS GPS pseudo-range error.

It can be seen from Equation (11) that the GDOP factor gives a simple

interpretation of how much one unit of measurement error contributes to the derived

position solution error for a given situation. It determines the magnification factor of

the measurement noise that is translated into the derived solution. Clearly, the GDOP

expression can be relatively simple if all the measurements exhibit the same RMS

errors. The modified version of GDOP, hereinafter called the weighted GDOP

(WGDOP), is utilized for measurements with different error variances. These

measurements could be from two different systems, such as the GPS with GLONASS

or an altimeter. It is known that the GPS navigation algorithm using weighted least-

squares estimation provides a better solution than the ordinary least-squares

estimation, which is especially evident when the random errors in pseudo-range

measurements are significantly different from each other. The quality of the

navigation solution regarding measurements with different random errors can be

modified as follows:
xh ¯ (HTWH)−<HTWv. (12)

Assuming the covariance matrix of v is :
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and the weighting function is defined as:
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, (14)

where: σ
i
, i¯ 1,…, n represents the RMS error of the i-th measurement, consequently,

the estimation covariance becomes:

E²xh xh T´¯ (HTWH)−<HTWE²vvT´WTH(HTWH)−<

¯σ=

<
(HTWH)−<, (15)

and the WGDOP is recognized as:

WGDOP¯otr(HTWH)−< (16)

3. CALCULATION OF DOP FOR FOUR VISIBLE SATELLITES.

Four satellites will generally be required to provide sufficient information for an

acceptable three-dimensional position fix. When less than four satellites are available,

other sensor data may be fused with available pseudo-range data such as altimeter

information (Stein, 1985) or accurate clock information (Sturza, 1985). The aiding

information is simply used as a source of additional data that will make the

navigation solution mathematically possible. The selection of four visible satellites for

obtaining suitable navigation accuracy has appeared in several literatures. From

Equation (7), the geometry}visibility matrix for four satellites is :

H¯

A

B

E
=

E
<

E
>

E
?

C

D

¯

A

B

e
=<

e
<<

e
><

e
?<

e
==

e
<=

e
>=

e
?=

e
=>

e
<>

e
>>

e
?>

1

1

1

1

C

D

. (17)

From basic matrix algebra, since:

(HTH)−<¯
adj(HTH)

det(HTH)
¯

adj(HTH)

det=(H)
, (18)

the GDOP factor can be written as:

GDOP¯otr(HTH)−<¯
otr[adj(HTH)]

rdet(H)r
. (19)

The determinant of H is not changed through the elementary row operations,

consequently,
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Figure 2. The tetrahedron formed by four satellites.

In Equation (18), the following two properties have been employed:

det(AB)¯det(A) det(B),

and
detAT ¯detA,

provided A and B are both square matrices.

The existing methods for GDOP calculation include (Stein, 1985) :

(a) Matrix inversion by computer ;

(b) Closed form algorithm;

(c) Maximum volume of a tetrahedron.

The matrix inversion by computer presents a computational burden on the navigation

computer. The idea of the maximum volume approach is based on the property from

Equation (19), where it can be seen that the GDOP is approximately proportional to

l}detH. It can also be seen from Equation (20) that the volume of the tetrahedron

formed by four satellites is det(H)}6,

Volume¯
1

6
(A¬B)[C,

where: the vectors A, B, and C are defined as in Figure 2. However, the maximum

volume method does not guarantee the selection of the four satellites with minimum

GDOP.

By use of the following properties :

(AB)−<¯B−<A−<,

and
tr(AB)¯ tr(BA),

we have:
tr(AB)−<¯ tr(B−<A−<)¯ tr(A−<B−<)¯ tr(BA)−<.

Therefore, the GDOP of Equation (19) can be alternatively written as:

GDOP¯otr(HTH)−<¯otr(HHT)−<. (21)

Denoting
E

ij
¯ e

i<
e
j<
­e

i=
e
j=
­e

i>
e
j>
­1, 1% i! j% 4, (22)
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and using the fact that :

e=
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­e=
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¯ 1, i¯ 1,…, 4,

we have:
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Based on Equation (21), several forms of DOPs are defined as:

(a) Geometric Dilution of Precision (GDOP):

GDOP¯o(HHT)−<
<,<

­(HHT)−<
=,=

­(HHT)−<
>,>

­(HHT)−<
?,?

. (23)

(b) Horizontal Dilution of Precision (HDOP):

HDOP¯o(HHT)−<
<,<

­(HHT)−<
=,=

. (24)

(c) Vertical Dilution of Precision (VDOP):

VDOP¯o(HHT)−<
>,>

. (25)

(d) Position Dilution of Precision (PDOP):

PDOP¯o(HHT)−<
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=,=
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. (26)

Here the notation (HHT)−<
i,i

is defined as the i-th element on the main diagonal of

(HHT)−< :
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and the cofactor, cof
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(A), is the determinant of the sub-matrix of A formed by

deleting the i-th row and the i-th column. The cofactors can be derived to be
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and the trace of the matrix (HHT)−< is :

tr[adj(HHT)]¯ 3
?

i=<

cof
i,i

(HHT). (28)

Defining the following variables (Zhu, 1992) :
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the GDOP can be written as:

GDOP¯A16­b­c

a­b­2c
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This closed-form equation needs only 39 multiplications, 34 additions, 1 division, and

1 square root. Since both E
<=

E
>?

and E
<>

E
=?

appears twice, two multiplications can

be eliminated.

4. CALCULATION OF DOP USING ALTIMETER AIDING. Con-

ceptually, the altimeter can be viewed as a pseudo-satellite located at the centre of the

Earth. See Figure 3. Therefore, one of the satellite observables can be replaced by

Figure 3. The tetrahedron formed by three satellites and an altimeter.

altitude information provided by the altimeter. In this case, three visible satellites will

be sufficient for a three-dimensional navigation fix. The H matrix then can be

expressed as:

H¯
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e
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e
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e
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e
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e
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1
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. (30)

The weighting matrix regarding the two types of measurements is defined as:

W¯

A

B

0

1}r

0

0

1

0

0

0

0

0

1

0

0

0

0

1

C

D

, (31)

where: r represents the ratio of the altimeter error variance to the GPS pseudo-range

error variance:

r¯
σ=

alt

σ=
gps

. (32)
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As mentioned in Section 2, DOP performance measures indicate the error as an

estimated navigation quantity ‘per unit of measurement noise ’. The use of weighted

DOP is more appropriate when measurements from two different systems are fused.

The WGDOP in Equation (16) is as follows

WGDOP¯otr(HTWH)−<

¯Atr[adj(HTWH)]

det(HTWH)

¯A tr[adj(HTWH)]

det(HT) det(W) det(H)
. (33)

Defining the following variable
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we have:
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After some algebraic manipulation, the cofactors on the main diagonal are found to

be:
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and the trace is :
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The determinant of H and W matrices are :

det(H)¯ (e
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®e
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) (e
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) (e
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)¯detHT, (38)
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and

det(W)¯ 1}r, (39)

respectively. Substituting Equations (37) to (39) into Equation (33) yields the GDOP

value. This closed-form formula has a relatively simple form in the denominator, but

is more complicated in the numerator. It needs 47 multiplications, 42 additions, 1

division, and 1 square root. Notice that E=

=?
, E=

<=
, E=

<?
, 3E

<<
and (E

<<
­3) all appear

twice in the expression. Besides, the value of 1}r is assumed to be already known

outside the GDOP calculation loop, and thus can be treated as a constant during the

calculation. The weighted HDOP (WHDOP) and weighted VDOP (WVDOP) are

obtained by using Equations (24) and (25) – except replacing (HTWH) by (HTH) :

WHDOP¯Acof
<,<

(HTWH)­cof
=,=

(HTWH)

det(HT) det(W) det(H)
,

WVDOP¯A cof
>,>

(HTWH)

det(HT) det(W) det(H)

respectively, where the cofactors are given by Equation (36).

5. DEVELOPMENT OF THE ALTERNATIVE FORMULA. A more

concise and efficient formulation that reduces the computational load is derived based

on Sections 3 and 4. The following relation will be employed in the approach.

tr(HTWH)−<¯ tr(HHTW)−<¯ tr(WHHT)−< (40)

A brief proof is given now.

Proof. By use of the equality in basic matrix algebra:
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it is shown that :
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hence:
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Manipulation yields :
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where the following relation has been used:

e=
i<
­e=

i=
­e=

i>
¯ 1, i¯ 2,…, 4.

The cofactors on the main diagonal can be obtained as:
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Compared with Equations (36), Equations (42) are improved. The trace of (HHTW)−<

is :

tr[adj(HHTW)]¯ 3
?

i=<

cof
i,i

(HHTW)

¯ 8­2[E
=>
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and
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In Equation (43), E=

=>
, E=

=?
, E=

>?
and E=

=>
­E=

=?
­E=

>?
appear twice in the expression.

The determinant by Equation (44) is complicated and is not a good choice. Instead,

the much simpler formula previously obtained by multiplying three determinants,

det(HT) det(W) det(H) can be used. The negative sign in Equation (41a) is treated as

an addition. The alternative closed-form formula only needs 31 multiplications, 29

additions, 1 division, and 1 square root.

Again, the value of 1}r is treated as a constant in GDOP calculation loop.

6. CONCLUSIONS. Issues related to GDOP calculation have been reviewed.

Closed-form formulae for the calculation of GDOP factors for the cases of four

satellites and three satellites plus an altimeter, have been discussed. Extended results

on other forms of DOPs, including HDOP and VDOP, have also been presented. A

derivation to obtain an alternative closed-form formulation in the case of three

satellites plus an altimeter has been presented, in which the random errors of

measurements from two systems are significantly different and, consequently, a

weighting function appears in the calculation of DOPs (which yields the WGDOP,

WHDOP and WVDOP, etc.). Related proofs for deriving the alternative formulae are

provided. The computational load based on the proposed algorithm is reduced.
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