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PREDICTING THE PROBABILITY OF
A RECESSION WITH NONLINEAR
AUTOREGRESSIVE
LEADING-INDICATOR MODELS

HEATHER M. ANDERSON AND FARSHID VAHID
Monash University

We develop nonlinear leading-indicator models for GDP growth, with the interest-rate
spread and growth in M2 as leading indicators. Since policy makers typically are
interested in whether a recession is imminent, we evaluate these models according to their
ability to predict the probability of a recession. Using data for the United States, we find
that conditional on the spread, the marginal contribution of M2 growth in predicting
recessions is negligible.
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1. INTRODUCTION

Forecasting recessions has always been important for policy makers and business
planners, and this concern has led to a large time-series literature on macroeco-
nomic forecasts. Much of this literature is based on linear models, but these cannot
account for asymmetries that are often associated with business cycles. Typically,
recessions involve sharp but short-lived declines in economic activity, but expan-
sions are gradual, and often last longer than recessions. Also, negative shocks to
output appear to be less persistent than positive shocks.

The recent time-series literature on business cycles has paid much attention
to the modeling of asymmetries in output, and there are now many nonlinear
univariatemodels that allow for recessionary and expansionary regimes. Well-
known examples include the Markov-switching (MS) model [Hamilton (1989)],
the current-depth-of-recession (CDR) model [Beaudry and Koop (1993)], the
smooth-transition autoregressive (STAR) model [Ter¨asvirta (1994)], and the thres-
hold autoregressive (TAR) model [Potter (1995)]. All of these models have pro-
vided useful information on the dynamics of business cycles, but their forecast
performance has been disappointing.
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One reason why forecast evaluations have not found significant differences
between linear and nonlinear models may be that the out-of-sample forecast
periods are usually short, and they do not necessarily contain the nonlinear fea-
tures that the nonlinear model was designed to capture. Thus, the potential advan-
tages of nonlinear specifications are not necessarily realized out of sample. Noting
that STAR specifications fit the data very well during recessions, Ter¨asvirta and
Anderson (1992) argued that the forecasting gains from such models might be
seen only when one was forecasting over a recessionary period. Tiao and Tsay
(1994) and Montgomery et al. (1998) have found evidence that supports this
argument.

Most nonlinear univariate models of business cycles have used GDP as the
indicator of economic activity, despite the fact that formal tests that GDP is a linear
process usually fail to reject linearity. If GDP is a linear process, then the MS, TAR,
and STAR models are not even identified. It is, of course, possible that models of
GDP conditional on other variables are nonlinear, whereas the marginal model is
linear. There is now ample evidence that GDP conditioned on other variables is
nonlinear. Granger et al. (1993) rejected the null hypothesis that output was linear
in the context of a bivariate model of GDP and a leading indicator, and Anderson
and Vahid (1998) found statistically significant evidence of a common nonlinear
factor in a trivariate model of GDP, consumption, and investment. Recently, Skalin
and Teräsvirta (1999) proposed a STAR-based test of Granger noncausality and
applied it to Swedish GDP. These nonlinear causality tests found strong evidence
that exports and wages Granger-cause GDP.

The fact that other variables are useful for predicting GDP is very well known,
and it has frequently been used in developing leading-indicator models. Stock
prices and short-term interest rates have been used as leading indicators since the
twentieth century. Further, since Mitchell and Burns (1961) first nominated several
variables that they called “leading indicators,” the NBER has explicitly funded the
development of new leading indicators. Given then that other variables are known
to forecast output well, the exercise of comparing the forecasting abilities of linear
and nonlinearunivariatemodels seems to be merely of academic value. If the goal
is to develop good forecasting models for GDP, then multivariate models seem to
offer a more appropriate framework.

This paper develops some nonlinear leading-indicator models for output. These
models are generalizations of the linear leading-indicator models advocated by
Zellner and Hong (1989), Zellner et al. (1991), and Zellner and Min (1999). Some
previous attempts to incorporate leading indicators in nonlinear models include the
bivariate smooth-transition error-correction model by Granger et al. (1993) and the
bivariate MS models by Hamilton and Perez-Quiros (1996) and Ravn and Solas
(1999). Chauvet (1998) uses a single-factor MS model as an alternative index
of coincident indicators. Recent papers, such as those by Estrella and Mishkin
(1998) and Birchenhall et al. (1999), have used leading indicators in probit and
logit models to forecast recessions. Other related work includes the nonlinear
impulse response analyses by Weise (1999) and Choi (1999), which illustrate
various asymmetries in the effects of monetary policy.
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Our empirical models emphasize the ability of the interest-rate spread to predict
output. Friedman and Kuttner (1998) provide a useful overview of the theoretical
and empirical literature on the predictive power of the interest-rate spread. Gen-
erally, it is believed that monetary policy affects the short end of the term struc-
ture more than the long end, so that changes in the interest-rate spread will lead
the output changes induced by monetary policy. Also, credit conditions can affect
interest-rate spreads by changing long-term rates more than short-term rates. Thus,
interest-rate spreads may reflect an economy’s financial climate, and whether or
not this climate will be conducive for real growth. Sims (1980) and, more recently,
Estrella and Mishkin (1998) and Karunaratne (1999) have found that interest-
rate variables are better predictors of real activity than direct measures of money.
However, given the large theoretical and empirical literatures that relate output and
money, and recent concern that the spread did not predict the 1990 recession, we
also include money in some of our models.

We evaluate our models according to their ability to predict recessions. Sec-
tion 2 explains why we focus on predicting recessions, and it also describes the
calculation and evaluation of event forecasts. We discuss our data in Section 3, and
then undertake our empirical analysis in Sections 4 and 5. We find that, although
univariate nonlinear models cannot predict recessions any better than AR mod-
els, the multivariate nonlinear modelsdo outperform VARs. We also find that the
predictive ability of our models increases significantly as we go from univariate
models of output to bivariate models of output and the spread. Using money instead
of (or as well as) the spread does not improve forecasts. Section 6 summarizes and
concludes.

2. FORECASTING RECESSIONS

Time-series models have always been assessed by their ability to predict out of
sample. Thus, the calculation of forecasts and the comparison of forecasts obtained
from different models have become quite routine. Two typical examples that study
forecasts of detrended output include a comparison of the forecasting ability of AR,
MS, and TAR models of GDP by Clements and Krolzig (1998), and a comparison
of the forecasting ability of AR, CDR, and STAR models of industrial production
by Jansen and Oh (1999).

Comparisons of point forecasts are useful for model selection, but they do
not directly address the interests of forecast users. Business-cycle analysts are
generally more interested in forecasts of future turning points or predictions of
events such as recessions. In this paper, we compare models according to their
ability to predict recessions. Previous related work includes that of Neft¸ci (1982),
Diebold and Rudebusch (1989), Zellner et al. (1991), and Fair (1993).

It is difficult to take expectations in nonlinear contexts, and simulation tech-
niques generally are used when forecasting. The relevant issues are discussed by
Granger and Ter¨asvirta (1993), and Koop et al. (1996) provide a closely related
discussion on nonlinear impulse response analysis. Clements and Smith (1997)

https://doi.org/10.1017/S1365100501023033 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023033


NONLINEAR LEADING-INDICATOR MODELS 485

discuss and compare the various Monte Carlo methods that are used to obtain
multiperiod forecasts. Fair (1993) bases probability estimates of events on sim-
ulations of sequences of multistep conditional forecasting densities, and we use
his approach and our leading-indicator models to predict the probability of reces-
sion. The main idea behind this approach is that one defines the event of interest
as a property of a sequence of predictions, and then classifies each predicted se-
quence from the Monte Carlo as either having or not having that property. The
predicted probability of the event is then based on the proportion of the Monte
Carlo sequences that have the property of interest.

2.1. Stochastic Simulations of Event Probabilities

Let yt be anm-vector of endogenous variables, letYt−1 be the history ofyt , that
is, Yt−1={yt−1, yt−2, . . . , y1}, and define the forecasting modelf for yt as

yt = f (Yt−1;β)+ ut ,

whereβ is ak-vector of parameters,E(ut )= 0, and Var(ut )=6. The model can
be linear or nonlinear inYt−1 and/orβ, but we specify it so that theut are i.i.d.
For the simulations that follow, we assume that theut have a multivariate normal
distribution but, in principle, one could make other distributional assumptions
aboutut without affecting the forecasting procedure.

Given consistent estimateŝβ and 6̂, we construct a trial sequence of fore-
casts foryt+1, yt+2, . . . , yt+h conditional onYt as follows: We draw a random
m-vectorεt+1 from the distributionε∼ N(0, 6̂), calculatêyt+1= f (Yt ; β̂)+ εt+1

and formŶt+1={ŷt+1 ∪ Yt }. Then we draw anεt+2 from ε∼ N(0, 6̂), calcu-
late ŷt+2= f (Ŷt+1; β̂)+ εt+2 and formŶt+2={ŷt+2 ∪ Ŷt+1}. We continue doing
this until we have an entire forecast sequence consisting of{ŷt+1, ŷt+2, . . . , ŷt+h}.
We label this forecast sequence asS1 (for simulation 1) and then repeat the trial
many times to obtain a set ofn forecast sequencesS1, S2, . . . Sn, each of which has
been based on independent draws ofh observations from the distribution ofε. We
use the empirical density of thesen trial sequences to approximate the density of
(yt+1, yt+2, . . . , yt+h|Yt ), and to ensure a reasonable approximation in our case,
we setn= 2000.

Forecasters often use the simulated density of (yt+1, yt+2, . . . , yt+h |Yt ) to ob-
tain one- toh-step-ahead point forecasts (i.e.,ŷt+ j |Yt for j = 1, 2 . . . h) together
with their associated confidence intervals. Here, however, we are interested in fore-
casting the conditional probability of aneventrather than a conditional mean, but
this simply involves analyzing the trial sequences in a different way. One starts by
defining the event of interest as some characteristic of{yt+1, yt+2, . . . , yt+h}. Then
one simply determines the proportion of the trial sequences that are predicted to
have this particular characteristic and uses this as the estimated probability of the
event of interest.

In this paper, we are interested in the event of a recession, and this could be
defined in many ways. Most definitions of recession involve notions of a slowdown
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in output growth (and other procyclical variables) over some period of time, but
researchers differ in opinions as to what a “slowdown” is, and how long economic
activity should decline before we declare a recession. Here, we use Fair’s (1993)
two definitions of a recession, which are

(a) at least twoconsecutivequarters of negative growth in real GDP over the next five
quarters and

(b) at least two quarters of negative growth in real GDP over the next five quarters.

As noted by Fair, the first of these definitions is in common use. The other definition
is broader, and allows us to assess how predictions might change as we change the
event that we are trying to predict. Our definitions do not necessarily coincide with
turning points or even “slowdowns” in growth, and negative values ofyt , . . . yt−3

are not given special treatment, even though one might want to count them as part
of an ongoing recession. One could, of course, use other definitions of recession or
calculate the probabilities of other sorts of events, all using the same set of Monte
Carlo simulations.

All of our estimated models relate to the sample period from 1960:1 to 1996:4.
For each observation in this sample, we take lagged observations and our esti-
mated parameters as given, and then we use the simulation process to estimate the
probabilities of events A and B. We discuss evaluation in the next section.

At this point, note the similarities and differences between our probability pre-
dictions and those of others. First, we define a recession as an observable event.
Therefore, we do not need to make an inference about an unobservable state,
as is done in Markov-switching models. Moreover, since our definition of reces-
sion is directly related to one- to five-period-ahead forecasts of output, an ap-
propriate model for forecasting the probability of recession is one that delivers
the one- to five-period-ahead predictive density of output. In this context, bi-
nary dependent-variable models ignore available and relevant information. Also,
the binary dependent-variable models are problem-specific, and if there is in-
terest in estimating the probabilities associated with other events, then the de-
pendent variable needs to be redefined in each case, and the model needs to be
reestimated.

2.2. Evaluation of Probability Forecasts

There are many available procedures for evaluating probability forecasts, and we
use the two well-known measures that are described by Diebold and Rudebusch
(1989). DefiningPt to be the estimated probability that an event of interest will
occur between time(t + 1) and(t + h), and a dummy variableDt to be equal
to 1, if, according to the realized sequence of the relevant{yt+1, yt+2, . . . , yt+h},
the event actually occurred, then each of these evaluation methods assesses the
accuracy of the forecasts, by comparing the estimatedPt with the observedDt .

If we use a modelf to generate a sequence ofT forecasts of the probability of
some event, then Brier’s (1950) quadratic probability score, defined by
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QPS = 1

T

T∑
t=1

2(Pt − Dt )
2 (0< QPS < 2),

provides a probability analogue to the usual mean squared error (MSE) criterion.
Like the MSE measure, a low QPS implies that forecasts are accurate. The penalties
for over- and underprediction are symmetric, but since QPS grows with the square
of the prediction error, large mistakes are penalized more heavily.

The other common measure of the accuracy of probability forecasts is given by
the log probability score, which is defined by

LPS = − 1

T

T∑
t=1

[(1− Dt ) ln(1− Pt )+ Dt ln Pt ] (0< LPS <∞).

Like QPS, this measure will be low when forecasts are accurate, but LPS penalizes
large mistakes more heavily than QPS. LPS is the negative of the average log
likelihood of the observed sequence ofDt for t = 1, 2, . . . T , given the model.

Our forecasts about recessions are not genuine out-of-sample forecasts, but the
QPS and LPS criteria differ from the loss functions that are minimized when
the parameters are estimated. Although these criteria are not independent of in-
sample sum of squared errors, there is little reason to believe that they necessarily
improve with the fit of the model. We evaluate our forecasts over the estimation
sample so that our analysis relates to all phases of the business cycle. Further, we use
nine out-of-sample observations (1997:1–1999:1) to provide conventional MSE
of one-step-ahead forecasts for each model that we estimate. These are reported
in the Appendices, with the estimated models.

3. DATA

Our empirical analysis is based on data for the United States drawn from the
Federal Reserve Data Base (FRED), and it consists of quarterly series on real
GDP (seasonally adjusted, in billions of chained 1992 dollars), real M2 (seasonally
adjusted M2, in billions of dollars, deflated by the chained GDP implicit price
deflator), and an interest-rate spread (the 10-year Treasury Bond rate minus the
3-month Treasury Bill rate, expressed as a percentage). The longest sample period
available for all of these series extends from 1959:1 to 1999:1. However, our
estimated models relate to an effective sample of 148 observations, which starts
in 1960:1 and ends in 1996:4. We left out the early observations to allow for the
lagging of variables, and we left out the last nine observations because they would
change as a result of the two-sided seasonal adjustment process.

The variables that we use in our models areyt (100×1 ln real GDPt ) for output
growth, mt (100×1 ln real M2t ) for money growth, andst for the interest-rate
spread [see Figure 1a–c]. The logarithms of real GDP and real M2 are both I(1), but
there is no evidence of a stable long-run relationship between these two series, as is
clear from Figure 1d. The interest-rate spread is I(0). Since there is no cointegration
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FIGURE 1. Data from FRED for empirical analysis.

between output and money and our models use only first differences of these
variables, we refer to the growth rates of real GDP and real M2 as “output” and
“money” for the remainder of the paper.

4. UNIVARIATE MODELS OF OUTPUT

Although our goal is to develop a nonlinear leading-indicator model, we begin by
investigating how well several univariate models of GDP perform in predicting
recessions. We estimate an AR(2), which is the best linear model according to
AIC. Table 1, which tests the null hypothesis of linearity against several nonlinear
alternatives, shows that there is only weak evidence of an omitted lagged CDR
term in the residuals of this model. However, we fit a TAR model, a STAR model,
a CDR model, and a Markov-switching model to see how well they can predict
recessions relative to the AR(2). The estimated models are reported in Appendix A,
and are discussed briefly below.

4.1. TAR Model

Following Potter (1995), we estimated a TAR(5) withyt−2 < 0 defining the
recessionary regime. For this model, and for the others discussed below, we exper-
imented with leaving in insignificant lags or dropping them, but we found that our
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TABLE 1. p-Values of linearity tests

Test Omitted nonlinear terms p-Value

Luukkonen et al. (1988) yt−1yt−2, y2
t−1, y2

t−2, y3
t−1, y3

t−2 0.44
Omitted CDR CDRt−1 0.09
Ramsey (1969) Reset ŷ2

t , ŷ3
t 0.40

Tsay (1989)a NA 0.66

aThe Tsay test is a test of linearity against a TAR alternative. It is based on the recursive residuals of a regression
in which variables are ordered according to the assumed threshold variable. The reportedp-value is the smallest we
found for thresholds corresponding toyt−1, . . . , yt−5.

final conclusions do not depend on our specification strategy. Our reported results
correspond to the most parsimonious specification.

4.2. STAR Model

Using the AR(2) as a baseline and the results of STAR (Luukkonen et al. 1988)
specification tests, we started by estimating a logistic STAR(2), withyt−2 as the
transition variable. Our tests did not support nonlinearity, but the transition variable
yt−2 had led to the lowestp-value. In this and all subsequent STAR specifications,
we restricted the smoothing parameter to lie between 0 and 16 (to avoid difficulties
with numerical precision), and we also restricted the centrality parameter to lie
between the tenth and the ninetieth percentile of the observed transition variable
(to avoid identification problems). Given that the smoothing parameter is rather
large, the resulting transition function is close to that of a TAR model with the
transition indicator function 1(yt−2 > −0.55).

4.3. CDR Model

This model is the same as that specified by Beaudry and Koop (1993), and relative
to the other nonlinear models, it is the only model justified at the 10% significance
level, by the tests in Table 1.

4.4. Markov-Switching Model

Our estimated model contains two states with two lags. As in Clements and Krolzig
(1998), we found that the third and fourth lags in Hamilton’s original four-lag
specification were insignificant.

The event-forecast performance of our univariate models is illustrated in Fig-
ure 2A and 2B, which compare the predicted probabilities of events A and B,
respectively, with observed indicators for these events. We see that none of the
univariate models provide clear signals of recessions, and that their probability
predictions are not much better than an unconditional model (i.e., a model that al-
ways predicts a constant probability for an event, equal to the observed frequency
of that event).
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FIGURE 2A. Performance of univariate models in predicting event A. The shaded areas
indicate the times that the event occurs. The unconditional probability of event A is
0.149.

This observation is reinforced by the summary statistics in Table 2. There is very
little difference between the accuracy of these probability predictions, although
the CDR model appears to be marginally better than the rest. Overall, our results
are similar to those in the literature that relate to the accuracy of multistep-ahead
point forecasts of univariate models of output.
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FIGURE 2B. Performance of univariate models in predicting event B. The shaded areas
indicate the times that the event occurs. The unconditional probability of event B is 0.209.

5. MULTIVARIATE LEADING-INDICATOR MODELS

There is a large historical literature that documents evidence that financial vari-
ables Granger-cause output. M2 traditionally has been recognized as a particularly
reliable indicator of economic conditions. Recently, however, with the introduction
of new financial instruments and the increasing importance of credit markets, the
value of M2 as a leading indicator has been questioned. For example, Stock and
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TABLE 2. Performance of univariate models in predicting recessions

Event A Event B

Model QPS LPS QPS LPS

Constant 0.253 0.420 0.331 0.513
AR(2) 0.249 0.410 0.323 0.503
TAR 0.256 0.423 0.326 0.505
STAR(2) 0.242 0.399 0.323 0.515
CDR 0.237 0.392 0.318 0.498
MS-AR(2) 0.250 0.412 0.322 0.500

Watson (1989) decided against including M2 in their index of leading indicators.
In 1993, the Federal Reserve Chairman, Alan Greenspan, informed Congress that
M2 had been “downgraded as a reliable indicator of financial conditions in the
economy” and that “the historical relationships between money and income had
broken down” [see Ragan and Trehan (1998)].

The spread between long-term and short-term interest rates is now becoming
popular as a leading indicator for output. For example, Estrella and Mishkin (1998),
through a series of probit regressions, found that interest-rate spread provides better
predictions of the NBER recessions than a large list of other candidate leading
indicators. Karunaratne (1999) confirms the power of interest-rate spread as the
best single leading indicator for Australian output.

We therefore begin by developing a possibly nonlinear bivariate leading-indicator
model of output and the spread, and we then pose the question of whether using
money instead of or as well as the spread in this model can significantly improve
the prediction of recessions.

5.1. Output–Spread Models

Our starting point is a VAR for output and the spread. Although AIC selects a
lag order of 2, residual analysis on the VAR(2) shows that a third lag of spread
is needed in the spread equation to eliminate the serial correlation in the errors of
that equation. Since the validity of our nonlinearity tests depends on the absence
of serial dependence in the errors of the linear model, we start from a VAR(3).

After the omission of insignificant lags, the VAR(3) forms the benchmark for
our bivariate analysis. We refer to this model as a linear autoregressive leading-
indicator (ARLI) model, following Zellner and Hong’s (1989) terminology. We
reduce the VAR(3) once, equation by equation, using OLS, and then again us-
ing iterative SUR estimation. We end up with the same final specification, but of
course with slightly different parameter estimates. The estimated models are re-
ported under ARLI-OLS and ARLI-SYS in Appendix B, and their event-forecast
performance is illustrated in Figures 3A(a), 3A(b), 3B(a), and 3B(b). We report
the probability scores in the first two lines of Table 4.
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FIGURE 3A. Performance of output–spread models in predicting event A. The shaded areas
indicate the times that the event occurs. The unconditional probability of event A is 0.149.

A comparison of the performance of the bivariate ARLI models with the uni-
variate models shows that the addition of the spread to the output equation im-
proves the accuracy measure over an AR(2) by more than 25% in all cases. It is
informative to compare these improvements with those reported by Fair (1993),
even though his sample period (1954:1–1990:1) is not exactly the same as ours
(1960:1–1996:4) and his real GDP series is also different from ours (we use the
new BEA real GDP series in 1992 chained dollars). Fair’s model is a structural
model with 30 stochastic equations, 98 identities, and 82 exogenous variables.
When the exogenous variables are predicted by adding autoregressive specifica-
tions for them to the system, Fair’s model predicts event A slightly worse and event
B slightly better than his AR(2) model. When the exogenous variables are taken
as known, his model can predict events A and B better than the AR(2) model, by
20% and 30%, respectively.

Having established that the use of the spread in a linear specification increases
the ability to predict recessions, we next ask whether the data support the linear
specification of the AR-LI models. We find no evidence of an omitted lagged CDR
term in the AR-LI equation for output (thep-value for this is 0.22). However,
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TABLE 3. p-Values of STAR nonlinearity tests

Transition Output Spread
variable equation equation

yt−1 0.712 0.006
yt−2 0.272 <0.001
yt−3 0.528 0.030
st−1 0.004 0.001
st−2 0.002 0.045
st−3 0.065 <0.001

FIGURE 3B. Performance of output–spread models in predicting event B. The shaded areas
indicate the times that the event occurs. The unconditional probability of event B is 0.209.

augmented first-order tests1 for STAR nonlinearities [Luukkonen et al. (1988)]
reject the null of linearity in each equation, as shown in Table 3.

Often, in practice, these linearity tests can reject the null for more than one
hypothesized transition variable, especially when the transition variables are highly
correlated. This happens here. In such cases, it is usual to choose the transition
variable that minimizes thep-value of the linearity tests for each equation, but
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sometimes a common nonlinear factor model might account for the nonlinearity
in both equations [Anderson and Vahid (1998)]. Here, a general test that allows for
any of the three lags of the spread to be the transition variable rejects the hypothesis
of common nonlinearity. Thep-value for this test is 0.001.

Based on minimump-values, the transition variables in the output and spread
equations are the second and third lags of the spread. We estimate this bivariate
nonlinear leading-indicator (YS Bi-NARLI) model equation-by-equation, and re-
port the coefficients in Appendix B. The reported equation for output incorporates
the restriction that all coefficients on lagged terms except the AR(1) term are zero2

when fyt(st−2)= 1. Thus, in normal times whenst−2 is positive,yt is essentially
an AR(1) process, but when the yield curve is steep and negatively sloped, then
the dynamic behavior ofyt becomes more complicated.

The event-forecast performance of this nonlinear output–spread model is illus-
trated in Figures 3A(c) and 3B(c). Relative to the linear models, this model provides
much stronger signals for the 1974, 1979, and 1981 recessions, but a weaker signal
for the 1990 recession. One reason our model [and those of many others including
Sims (1993) and Stock and Watson (1993)] produced a weak signal for the 1990
recession is that this recession was very short (and mild). Another reason that many
models (including ours) had difficulty predicting this recession is that the 1990
recession was quite atypical. Unlike other recessions, it was not preceded by tight
monetary policy, and although the spread fell prior to 1990, this fall was due to a
fall in the long rate, rather than a rise in the short rate that normally accompanies
tighter monetary policy. The linear models produce a stronger signal for the 1990
recession, but then the linear models also signal recessions on every occasion that
the spread falls.3 Thus, the linear models give misleading probability predictions
of recession all through the 1960’s and in 1995. The probability scores for our
YS Bi-NARLI model are reported in the third row of Table 4. Unlike the univari-
ate case, moving from a linear to a nonlinear specification, makes a noticeable
difference in the accuracy of the predictions.

Although the general common nonlinearity test rejected the null hypothesis,
we followed a referee’s suggestion and conditioned on both equations having
the same transition variable. Conditional on this assumption, common nonlinear
factor tests [Anderson and Vahid (1998)] supported the null only whenst−2 was
used as a common transition variable. The estimated common nonlinear factor

TABLE 4. Performance of output–spread models in predicting recessions

Event A Event B

Model QPS LPS QPS LPS

YS ARLI-OLS 0.172 0.296 0.223 0.375
YS ARLI-SYS 0.172 0.295 0.223 0.374
YS Bi-NARLI 0.127 0.238 0.171 0.301
YS Com-NARLI 0.149 0.265 0.206 0.350
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(YS Com-NARLI) model is reported in Appendix B, its event predictions are
shown in Figures 3A(d) and 3B(d), and its probability scores are in the last line of
Table 4. This model does not perform as well as the YS Bi-NARLI model.

LM tests for additional nonlinearity [Eitrheim and Ter¨asvirta (1996)] find no
evidence of further nonlinearity in the output equation, but they indicate unmodeled
nonlinearity in the spread equation. Thep-values for these tests are 0.88 and 0.001.
A system test for additional nonlinearity in our YS Com-NARLI model has a
p-value of 0.0001. We discuss this issue further in our conclusion.

5.2. Does M2 Help?

Economists have started to exclude M2 from the list of the leading indicators,
believing that the relationship between money and output has changed in the
past decade or so. Figure 1(d) indicates why this might be so. Clearly, the long-
run relationship between money and output has changed. However, this does not
necessarily imply that money does not Granger-cause output in the short run. The
evidence that monetary growth Granger-causes output growth is still strong. Zellner
and Min (1999) find that autoregressive models that include monetary growth as
a leading indicator can predict turning points well. Also, the probit regressions
reported by Estrella and Mishkin (1998, Appendix) show that M2 growth can
predict recessions in addition to interest-rate spreads. This leads us to ask whether
we can improve our bivariate models by adding M2.

The starting point for the three-variable model is a trivariate VAR(3). Our mod-
eling methodology is the same as for the bivariate model. In Appendix C, we report
the equation-by-equation OLS, and the system-estimated linear models. The ev-
idence of nonlinearity in the output equation is weak (the minimump-value for
LSTAR tests is 0.05 withst−2 as the transition variable, and thep-value for an
omitted lagged CDR term is 0.89). However, there is strong evidence of nonlin-
earity in the money and spread equations. The final estimated trivariate nonlinear
leading-indicator (Tri-NARLI) model is reported in Appendix C, and since the ev-
idence of nonlinearity in the linear output equation is weak, we have also reported
a model (Tri-NARLI0) that uses a linear specification for the output and nonlinear
specifications for money and spread.

The probability forecasts obtained from the trivariate models are illustrated in
Figures 4A and 4B. These models are able to predict the recessions of 1974, 1979,
and 1982, but relative to the output–spread models they provide misleading indi-
cations of recession around 1966 and 1995. The probability scores of the trivariate
models are provided in the first four rows of Table 5. Comparing Tables 4 and
5, we conclude that even though adding money improves the predictive ability
of the linear ARLI model, it does not improve the performance of the nonlin-
ear ARLI model. The same conclusion can be drawn from a comparison of the
forecast MSE measures for 1997:1–1999:1, reported below each model in the
appendices.

https://doi.org/10.1017/S1365100501023033 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100501023033


NONLINEAR LEADING-INDICATOR MODELS 497

TABLE 5. Performance of models that include M2

Event A Event B

Model QPS LPS QPS LPS

ARLI-OLS 0.169 0.284 0.231 0.377
ARLI-SYS 0.169 0.284 0.232 0.379
Tri-NARLI 0.160 0.264 0.202 0.328
Tri-NARLI0 0.165 0.277 0.224 0.367
YM ARLI-OLS 0.226 0.365 0.303 0.464
YM Bi-NARLI 0.227 0.368 0.305 0.466

FIGURE 4A. Performance of trivariate models in predicting event A. The shaded areas
indicate the times that the event occurs. The unconditional probability of event A is 0.149.

We conclude that the addition of M2 does not help in predicting recessions. To
check that this conclusion is not influenced by the order in which we added the
spread and M2, we also estimated bivariate linear and nonlinear output–money
models. We do not report the estimated models, but their probability forecasts
are in Figure 5, and their probability scores are in the last two rows of Table 5.
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FIGURE 4B.Performance of trivariate models in predicting event B. The shaded areas indicate
the times that the event occurs. The unconditional probability of event B is 0.209.

It is clear that the output–money models are inferior to output-spread models,
and that our conclusion was not influenced by the order of our investigation. The
output–money models are only slightly better than the univariate models, and their
event-probability forecasts from the late eighties onward are erratic. This provides
further evidence that the relationship between M2 and output has changed.

6. CONCLUSION AND DIRECTIONS FOR FURTHER RESEARCH

In this paper we develop a bivariate nonlinear model of output and the interest-rate
spread, and compare its ability in predicting recessions with linear and nonlinear
models of output. We corroborate the recent results in the literature that the spread
is a better leading indicator for output growth than money. We also establish that,
conditional on the spread, the marginal contribution of M2 growth in predicting
recessions is negligible. We find that a nonlinear model of output and the spread
seems to give fewer false warnings of recession than a linear model. This leads us
to conclude that future research should concentrate on developing and comparing
alternative bivariate nonlinear models of output and the spread.
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FIGURE 5A. Performance of output–money models in predicting event A. The shaded areas
indicate the times that the event occurs. The unconditional probability of event A is 0.149.

FIGURE 5B. Performance of output–money models in predicting event B. The shaded areas
indicate the times that the event occurs. The unconditional probability of event B is 0.209.

Our method of evaluation uses the same data that are used to estimate the pa-
rameters, but a different loss function from the loss function that is minimized to
estimate the parameters. Even though this is not a genuine out-of-sample evalua-
tion, given the sparsity of events of particular interest such as recessions, we think
that it is an informative exercise in evaluating the practical usefulness of nonlinear
models. In practice, we did not observe that this evaluation criterion moved in any
systematic way as the number of parameters increased. Nevertheless, more theoret-
ical research should be done on characterizing the exact nature of the dependence
between the event-probability scores and the sum of squared errors of a model.

In this paper we only consider logistic smooth-transition models for our mul-
tivariate nonlinear models. The strategy that we use for developing these models
starts from a linear specification and augments the model in the direction that is
most favored by the results of LSTAR nonlinearity tests. This method leads to
models for output that show no further evidence of nonlinearity. However, there is
still strong evidence of further nonlinearity in the residuals of the spread equation.
One direction is to patch up the nonlinear model of spread with a second transition
function. This strategy, however, would quickly exhaust the degrees of freedom in
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a multivariate model, and lead to a very complicated likelihood function with many
flat regions. An alternative direction might be to consider the joint data generation
process of short and long interest rates. Such an approach might incorporate non-
linearities in the cointegration between these two interest rates, as in Balke and
Fomby (1997) and Anderson (1997).

NOTES

1. This test is based on the joint significance of a set of nonlinear test regressors in a regression of the
residuals of the linear model on the explanatory variables in the linear model and these test regressors.
The set of nonlinear regressors consists of the products of the hypothesized transition variable and the
lagged explanatory variables, and the cubic power of the transition variable.

2. The first draft of this paper did not impose this restriction. Following a referee’s suggestion, we
tested this restriction and could not reject it. Both models lead to very similar predictions, and we report
only the restricted version.

3. It is interesting to observe that the graphs of probabilities predicted by the linear models resemble
the upside-down image of the graph of the spread.
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APPENDIX A: UNIVARIATE MODELS OF OUTPUT
(1960:1–1996:4)

Note that MSE is the mean squared forecast error for 1997:1–1999:1.
AR(2) model of output:

ŷt = 0.49 + 0.25yt−1+ 0.13yt−2

(0.11) (0.08) (0.08)

σ̂MLE = 0.89, MSE= 0.12

TAR model of output:

ŷt = 0.52 + 0.26yt−1+ 0.20yt−2− 0.16yt−5+ ft × (0.43yt−5)

(0.12) (0.08) (0.09) (0.08) (0.20)

ft = (yt−2 < 0)

σ̂MLE = 0.87, MSE= 0.15

LSTAR model of output:

ŷt = −1.51 − 1.40yt−2 + ft × (2.04 + 0.26yt−1+ 1.50yt−2)

(0.88) (0.64) (0.90) (0.09) (0.64)

ft = [1+ exp{−11(yt−2 + 0.55)}]−1

σ̂MLE = 0.86, MSE= 0.12

CDR model of output:

ŷt = 0.35 + 0.24yt−1 + 0.22yt−2 + 0.20 CDRt−1

(0.13) (0.08) (0.10) (0.13)

CDRt = max{CDRt−1, yt } − yt

σ̂MLE = 0.89, MSE= 0.15
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Markov-switching model of output:

ŷt = µst + 0.24
(

yt−1 − µst−1

)+ 0.11
(

yt−2 − µst−2

)
(0.14) (0.11)

µst=1 = −0.80, µst=0 = 0.95, P =

 0.52 0.05
(0.28)
0.48 0.95

(0.03)


(0.51) (0.12)

σ̂MLE = 0.76, MSE= 0.12

APPENDIX B: BIVARIATE MODELS OF OUTPUT
AND THE SPREAD (1960:1–1996:4)

Note that MSE is the mean squared forecast error for 1997:1–1999:1.
ARLI-OLS model of output and spread:

ŷt = 0.26 + 0.19yt−1 + 0.12yt−2 + 0.20st−2

(0.12) (0.08) (0.08) (0.06)

σ̂MLE = 0.86, MSE= 0.16

ŝt = 0.28 − 0.14yt−2 + 1.05st−1 − 0.36st−2 + 0.20st−3

(0.08) (0.05) (0.08) (0.12) (0.08)

σ̂MLE = 0.56

ARLI-SYS model of output and spread:

ŷt = 0.26 + 0.17yt−1 + 0.13yt−2 + 0.21st−2

(0.12) (0.08) (0.08) (0.06)

σ̂MLE = 0.86, MSE= 0.16

ŝt = 0.28 − 0.14yt−2 + 1.04st−1 − 0.35st−2 + 0.18st−3

(0.08) (0.05) (0.08) (0.11) (0.08)

σ̂MLE = 0.56

Bi-NARLI model of output and spread:

ŷt = −0.45 − 0.55yt−1+ 0.51yt−2+ 0.55yt−3− 0.59st−1+ 1.04st−2

(0.50) (0.24) (0.24) (0.29) (0.32) (0.56)

+ fyt × (1.22 + 0.77yt−1− 0.51yt−2− 0.55yt−3+ 0.59st−1− 1.04st−2)

(0.52) (0.26) (0.24) (0.29) (0.32) (0.56)

fyt = [1+ exp{−7.66(st−2 − 0.009)}]−1

σ̂MLE = 0.75, MSE= 0.10
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ŝt = 1.15 + 0.66yt−1− 0.16yt−2+ 1.54st−1− 2.89st−2+ 2.16st−3

(0.69) (0.20) (0.04) (0.24) (0.39) (0.66)

+ fst× (−0.88 − 0.73yt−1− 0.46st−1+ 2.67st−2− 2.09st−3)

(0.70) (0.20) (0.25) (0.40) (0.66)

fst = [1+ exp{−13.75(st−3 + 0.555)}]−1

σ̂MLE = 0.43

Com-NARLI model of output and spread:

ŷt = −1.48 − 0.40yt−1+ 0.76yt−2+ 0.30st−3− 1.96comt ,

(0.44) (0.25) (0.25) (0.18) (0.58)

σ̂MLE = 0.77, MSE= 0.11

ŝt = 1.20 + 0.24yt−1− 0.44yt−2+ 1.03st−1− 0.20st−2+ comt ,

(0.30) (0.12) (0.17) (0.08) (0.12)

σ̂MLE = 0.52

comt = [1+ exp{−2.14(st−2 + 0.55)}]−1

× [−1.19 − 0.33yt−1+ 0.37yt−2+ 0.18st−3]
(0.39) (0.13) (0.18) (0.08)

APPENDIX C: TRIVARIATE MODELS OF OUTPUT,
SPREAD, AND MONEY (1960:1–1996:4)

Note that MSE is the mean squared forecast error for 1997:1–1999:1.
ARLI-OLS model of output, spread, and money:

ŷt = 0.26 + 0.17st−2+ 0.17mt−1+ 0.27mt−2

(0.11) (0.06) (0.10) (0.10)

σ̂MLE = 0.80, MSE= 0.10

ŝt = 0.28 − 0.14yt−2+ 1.05st−1− 0.36st−2+ 0.20st−3

(0.08) (0.05) (0.08) (0.12) (0.08)

σ̂MLE = 0.56

m̂t = 0.14 + 0.15st−1− 0.13st−3+ 0.63mt−1+ 0.10mt−3

(0.09) (0.07) (0.07) (0.07) (0.07)

σ̂MLE = 0.67
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ARLI-SYS model of output, spread, and money:

ŷt = 0.26 + 0.17st−2+ 0.14mt−1+ 0.31mt−2

(0.10) (0.06) (0.09) (0.09)

σ̂MLE = 0.80, MSE= 0.10

ŝt = 0.28 − 0.13yt−2+ 1.04st−1− 0.34st−2+ 0.19st−3

(0.08) (0.06) (0.08) (0.11) (0.08)

σ̂MLE = 0.56

m̂t = 0.14 + 0.16st−1− 0.13st−3+ 0.64mt−1+ 0.10mt−3

(0.09) (0.07) (0.07) (0.07) (0.07)

σ̂MLE = 0.67

Tri-NARLI model of output, spread, and money:

ŷt = −1.13 + 0.88yt−2+ 0.24mt−2− 1.57mt−3

(0.31) (0.26) (0.09) (0.49)

+ fyt × (1.83 − 0.89yt−2+ 1.67mt−3)

(0.33) (0.27) (0.50)

fyt = [1+ exp{−9.94(st−2 + 0.036)}]−1

σ̂MLE = 0.74,MSE= 0.09

ŝt = 0.29 − 0.09yt−1− 0.16yt−2+ 1.06st−1− 0.14st−2+ 0.06mt−2

(0.08) (0.05) (0.04) (0.07) (0.07) (0.04)

+ fst× (−2.80 + 2.40yt−1− 0.86yt−3+ 1.12st−1− 4.98st−2− 2.49mt−2)

(0.61) (0.60) (0.32) (0.40) (0.92) (0.81)

fst = [1+ exp{−9.23(st−3 + 0.593)}]−1

σ̂MLE = 0.42

m̂t = 1.02 + 0.91st−1− 0.61st−2+ 0.85st−3+ 0.79mt−1− 0.29mt−3

(1.44) (0.29) (0.39) (0.31) (0.11) (0.17)

+ fmt× (−15.18 + 0.33yt−3− 3.07st−1+ 7.78st−2− 3.21st−3

(10.62) (0.24) (0.70) (1.72) (0.70)

− 0.64mt−1+ 1.38mt−3)

(0.37) (0.51)

fmt = [1+ exp{−0.82(st−2 − 3.26)}]−1

σ̂MLE = 0.52
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