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IDENTIFICATION OF THE BINARY
CHOICE MODEL WITH
MISCLASSIFICATION

ARTHUR LEWBEL
Boston College

Misclassification in binary choic¢binomial responsemodels occurs when the
dependent variable is measured with ertbat is when an actual “one” response

is sometimes recorded as a zero and vice vefsés paper shows that binary
response models with misclassification are semiparametrically identiéeeh
when the probabilities of misclassification depend in unknown ways on model
covariates and the distribution of the errors is unknown

1. INTRODUCTION

This paper shows that binary response models with misclassification of the de-
pendent variable are semiparametrically identifieden when the probabilities
of misclassification depend in unknown ways on model covariates and the dis-
tribution of the errors is unknown

Let x; be a vector of covariates that may affect both the response of obser-
vationi and the probability that the response is observed incorrdetlyiden-
tification, assume there exists a covariatehat affects the true response but
does not affect the probability of misclassificatidhmore than one such co-
variate existslet v; be any one of the available candidatéisat satisfies the
regularity conditions listed subsequentland the others can without loss of
generality be included in the vectay.

Let y" be an unobserved latent variable associated with observiatipven
by

Y'=uvy+xB+e,

where theg are independently and identically distributed errdrse true re-
sponse is given by

g =1y =0),
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wherel (-) equals one if is true and zero otherwis®#heny; is observedthis
is the standard latent variable specification of the binary response r{smiel
e.g., McFadden1984).

Now permit the true respongee., classification of observation) to be ob-
served with errarLettingy; denote the observed binary dependent variahke
misclassification probabilities are

a(x) = Pr(y, =19 = 0,%),
a*(x;) = Pr(y; = 0|9 =1,%).

So a(x;) is the probability that an actual zero response is misclassified
incorrectly recordeflas a onganda*(x;) is the probability that a one response
is misclassified as a zerdhese misclassification probabilities are permitted to
depend in an unknown way on observed covariate$his framework encom-
passes models where misclassification probabilities may also depend on vari-
ables that do not affect the true resparisecause any covariatg that affects
aora* but noty* is just a covariate that has a coefficigs)tthat equals zero
Defineb(x) as

b(x;) =[1—a(x) —a*(x)]

and define the functiog to be the conditional expectation gf which in this
model is

a(vi, X)) = E(yi|vi, %) = a(x;) + b(x)F vy + X B), 1)

whereF is the cumulative distribution function of the random variable.
Another model that corresponds to equati@his when a fractiora(x) of
respondents having characteristicalways answers ona fractiona*(x) al-
ways answers zerand the remainder respond wittvy + x8 + e = 0). In this
interpretation some respondents give “natural responses” that are due to factors
other than the latent variablevhereas the other respondents follow the latent
variable modelAlthough this model is observationally equivalent to the mis-
classification modelthe interpretation of the natural response mddepartic-
ular, the implied marginal effecjds quite different(see e.g., Finney 1964).
Examples of recent papers that consider estimation of misclassification model
parameters or misclassification probabilities include Mari$RB5, Chua and
Fuller (1987, Brown and Light(1992, Poterba and Summef4995, Abre-
vaya and Hausmaf1997), and Hausmambrevaya and Scott-Mortor(1998.
These last two papers provide parametriaximum likelihood estimators of
the model when the functioR is known and a semiparametric estimator for
the case wher& is unknown and the misclassification probabilit@snd a*
are constantg§independent of all covariatesThey also show that wheh is
unknown the coefficients of covariates that do not affect the misclassification
probabilities can be estimated
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This paper shows thdgiven some regularifythe entire model is identified
even when the functiong a* andF are unknown

Assumption A1l Assume for allx that 0= a(x), 0 = a*(x), and a(x) +
a*(x) < 1. Assume thaw, conditional onx, is continuously distributedAs-
sume thatF(w) is three times differentiable with(w) = dF(w)/dw # 0 and
f’(w) = df(w)/dw. Assume|y| = 1 and for all B* # B, prob([ f'(vy + x8)/
f(oy + xB)] # E[ f'(vy + xB8)/f(vy + xB)|vy + x8*]) > 0.

The assumption that the sum of misclassification probabilities is less than
one is what Hausman et.&l1998 call the monotonicity conditigrand it holds
by construction in the “natural response” form of the modelting |y| =1 is
an arbitrary free normalizatioras long asy # 0. Only the covariate is as-
sumed to be continuou$he final condition in Assumption Al is a parametric
identification assumption that would provide identification@from the score
function if f was a known function and there was no misclassification

Define the functiong (v, X) by

929(v,x)/v? { (89(0, X))]
¢ (v, x) = 99(0. X)) sign| E Py . (2)
Let r(v,x) be any function such that(v,x) = 0, supr (v, x) is finite, and
Elr(v,x)] =1

LEMMA 1. Given Assumptioll, ¢ (v, x) = f'(vy + x8)/f(vy + XB), v =
Sign(E[r (v, X)ag(v, X)/dv]), and B = arg ming- E[(¢ (v, X) — E[¢ (v, X)|vy +
x8*1)?]. Alsq B = E(r (v, X)[9¢ (v, X)/0x]/[0¢ (v, X)/dv]) y.

This lemma shows identification of the model coefficiefEstimation based
on this lemma could proceed as follow&rst estimateg as a nonparametric
regression of/ on v andx. Next define¢ by equation(2), replacingg with ¢
and the expectation with a sample averageen lety equal the sign of any
weighted average derivative &f(y|v, X) with respect ta (using e.g., the es-
timator of Powel) Stock and Stoker1989.

The lemma suggests two different estimators forLet £(vy + x8*) =
E[¢ (v, x)|vy + x8*] for any B* and leté (vy + xB*) be a nonparametric re-
gression ofé (v, x) on vy + xB* The estimate3 is then the value of8* that
minimizes the sample average[a(v, x) — £(vy + xB*)]2 This is essentially
Ichimura’s (1993 linear index model estimatousing¢ (v, x) as the dependent
variable

Another estimator foB suggested by the lemma is to Jetequal the sample
average ofr (v, X)[0¢ (v, X)/0x] /[0 (v, X)/dv]7. This is an average derivative
type estimatgrwhich is only feasible for continuously distributed regressors
because of the need to estimate the tétin(\u, X)/0X.

More generallyLemma 1 shows thab(v,x) = £(vy + XB), SO 8 can be
estimated using any of a variety of linear index model estimataatingé (v, x)
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as the dependent variablEor example the method of Powell et a(1989
could be used to estimate the coefficients of the continuous regressors and that
of Horowitz and Hardlg1996 for the discrete regressorEhe limiting distri-
butions of these estimators will be affected by the use of an estimated depen-
dent variableﬁ(u, X) instead of an observed artdowever all of these estimators
involve unconditional expectationsstimated as averages of functions of non-
parametric regressiongVith sufficient regularity(including judicious selection
of the functionr, e.g., havingr be a density function that equals zero wherever
¢ might be small, such expectations can typically be estimated at rate moot
(see e.g., Newey and McFadderi994). Also, some relevant results on the uni-
form convergence and limiting distribution of nonparametric kernel estimators
based on estimatetheneratell variables include Andrew$1995 and Ahn
(1997).
Definew = vy + xB, which by Lemma 1 is identifiedLet f,(w) denote

the unconditional probability density function @f. Define h by h(w, x) =
E(y|w, x) = a(x) + b(x)F(w). Define the functiony by the indefinite integral
a2h(w, x)/ow? >

oh(w, x)/ow W

p(w) = E<
3)
(@) = exp f ¢(@) do

Let Q,, and Q. denote the supports of and —e, respectivelyDefine the con-
stantc by ¢ = [q (W) dw.

LEMMA 2. Given Assumptioi1, f(w) = ¢ (w)/c and k(x) = E([oh(w, x)/
ow]/p(w)|x)c. If Qcis a subset of),, then c= E[(w)/f,,(W)].

This lemma shows that the density functibfw) and the misclassification
functionb(x) are identified up to the constaatand the constantis also iden-
tified (and can be estimated as a sample averggevided that the data gen-
erating process fow has sufficiently large suppart

Estimators based directly on Lemma 2 would consist of the following steps
First constructw = vy + xB and leth(\, x) be a nonparametric regressionyof
onw andx. Next, let £ (W) be a nonparametric regression[6fh(W, x)/ow?]/
[oh(W, x)/0W] on W and define the functios (w) = expf ¢ (w) dw. The scalac
then equals the sample averagejiéfi)/f, (W), wheref,, is a nonparametric es-
timator (e.g., a kernel estimatorof the density ofi. Finally, f, (W) = ¢ (w)/¢,
andb(x) equals¢ times a nonparametric regression[of (W, x)/0W] /4 (W) on
X. The resulting estimates should be consistaationg as uniformly consistent
nonparametric estimators are used at each stégie that consistency may re-
quire trimming(possibly asymptotic trimmingto a compact subset @f,,, be-
cause of division by the densify,.
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The preceding lemmas show that the marginal effée®s§ = 1|v, x)/0x =
f(vy + xB8)B andd Pr(y = 1|v, X)/dv = f (vy + xB)y are identified and that the
misclassification error functioh(x) is also identified If a(x) = a*(x), that is
if the probability of misclassification does not dependypthen Lemma 2 im-
plies that the misclassification probabiligfx) = a*(x) = [1 — b(x)]/2 is also
identified

Instead of using Lemma, 20g derivatives ofb(x) (and hence of(x) and
a*(x) when they are equplwith respect to continuously distributed elements
of x can be directly estimatedithout requiring numerical integratiothe “large
w support” assumptigror the generated variabig, by the following lemma

LEMMA 3. Let x be any continuously distributed element of x ang3jgbe
the corresponding element Bf Let Assumptio1 hold and assume that(k)
is differentiable in x Then

dInb(x) (azg(v,x)/auaxj

% ag(v, X)/dv (. %)B| X)

_BylLemma3a nonparametric regression[ofg(v, x)/dvox; 1/[3(v, X)/dv] —
¢ (v,x)B; on x is an estimator of) In b(x)/dx;. Dividing this estimate by-2
yields an estimate af In a(x)/dx; andd In a*(x)/dx; whena(x) = a*(x).

Next, consider identification ofa(x) and a*(x) when they are not equal
Let F,(w|x) denote the conditional cumulative distribution functionmogjiven
X, let fo(w|x) = oF,(w|x)/ow be the conditional probability density function
of w given x, and let(Q,,x denote the support ok givenx. Let (x) =1 —
EL f(w)Fw(W|x)/fw(w|x)|x].

LEMMA 4. Let Assumptio®1 hold and assume thdl, is a subset of),.
Then dx) = E[h(w, X)|x] — b(x)8(x), a*(x) = b(x) — 1 + a(x), and F(w) =
E([h(w, x) — a(x)]/b(x)|w).

Estimation off(x) requires extreme values of given x, and hence ob, to
be observableSome intuition for this result comes from the observation that
g(v, X) =~ a(x) for very largev andg(v, x) ~ 1 —a*(x) for very smallv. Hence
analogous to the estimation ofdata in the tails are required for estimation of
a(x) anda*(x). Estimation proceeds as in the previous lemntlaat is employ-
ing W in place ofw, nonparametric estimation of the density functigw|x),
and nonparametric regression to estimate conditional expectations

Taken togetherthese lemmas show that the entire model is identifidte
parametery andB can be consistently estimatédith regularity at rate root
n), and the functiong(x), a*(x), andF(w) can be consistently estimated non-
parametricallyThe estimators provided here are not likely to be very pragtical
because they involve up to third-order derivatives and repeated applications of
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nonparametric regressipand they do not exploit some features of the model
such as monotonicity df. However the demonstration that the entire model is
identified suggests that the search for better estimators would be worthwhile
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APPENDIX

Proof of Lemma 1. dg(v, X)/dv = b(x) f(vy + xB)y, b(x) > 0, andf (vy + xB) > 0,
soy = signag(v, X)/dv]. Here d%g(v, X)/dv? = b(x)f'(vy + xB)y? andy? = 1, so
¢ (v,x) =f'(vy + xB)/f(vy + xB). Let £(vy + xB*) = E[¢ (v, X)|vy + xB*]. It follows
from the previous expression farthat¢ (v, x) and the final equality in Assumption A1
that prol ¢ (v, X) = £(vy + xB8*)] > 0 for all 8 # B* and¢ (v, X) = é(vy + XB), SOB =
arg mirg- E[(¢(v,x) — E[$(v, X)|vy + xB*])?].

The alternative expressig@dyy = [d¢ (v, X)/0x]/[d¢ (v, X)/dv] follows becauseb de-
pends onx andwv only throughvy + X8, so E(r (v, X)[d¢ (v, X)/dX]/[0¢p (v, X)/ov])y =
E[r(v,x)B/yly = B. u
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Proof of Lemma 2. ah(w,X)/ow = b(x)f(w), a2h(w, x)/ow? = b(x)f’(w), so
[92h(w, x)/ow?]/[oh(w, x)/ow] = f'(w)/f(w) = E([92h(w, x)/ow?>]/[oh(w, x)/dw]|w).
Theny (w) = exp [ f'(w)/f (w) dw] = f(w@)c, where Inc is the constant of integration

E([oh(w, x)/ow] /i (w)|x)/c = E([b(x) f (w)]/i (w)[x)/c
= E([b(x)f(w)]/[ f(w)c]|x)/c=b(x).

Here E[¢(W)/fu(W)] = [, [&W)/f,(W)] f,(W) dw = [ (W) dw = [ f(w)cdw=
¢, where the last equality holds as long@g contains every value af for whichf (e) is
nonzero

Proof of Lemma 3. 42g(v, X)/dvdx; = f (yv + Bx)ab(x)/dx; + b(X)f'(yv + BX)B;, SO
[929(v, X)/0vdx;1/[99(v, X)/dv] = [ab(x)/9%;]1/b(x) + [ ' (yv + BX)/f(yv + BX)]B; =
dInb(x)/0x; + ¢ (v, x) B;j. The lemma then follows immediately

Proof of Lemma 4. Let dQ,,, denote the boundary of the suppox} .. Applying an
integration by parts give&[F(w)|x] = [q, . F(W)f,(W[x) dw= F(W)F,(W|X)|w-sq,,, —
fﬂw‘x f(w)F,(w|x)dw. Having Q. be a subset ofQ,x ensures thatF(w)F, X
Wlyoso,, = L and s00(x) = 1 = [ [FW)F, WX/ W], WX dw =
E[F(w)|x]. Therefore E[h(w, x)|x] = a(x) + b(x) E[ F (w)| x] = a(x) + b(x)8(x), which
gives the identification of(x). The expressiom*(x) = b(x) — 1 + a(x) then follows
from the definition ofb(x), andh(w, x) = a(x) + b(x)F(w) is then used to obtaif (w).
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