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Misclassification in binary choice~binomial response! models occurs when the
dependent variable is measured with error, that is, when an actual “one” response
is sometimes recorded as a zero and vice versa+ This paper shows that binary
response models with misclassification are semiparametrically identified, even
when the probabilities of misclassification depend in unknown ways on model
covariates and the distribution of the errors is unknown+

1. INTRODUCTION

This paper shows that binary response models with misclassification of the de-
pendent variable are semiparametrically identified, even when the probabilities
of misclassification depend in unknown ways on model covariates and the dis-
tribution of the errors is unknown+

Let xi be a vector of covariates that may affect both the response of obser-
vation i and the probability that the response is observed incorrectly+ For iden-
tification, assume there exists a covariatevi that affects the true response but
does not affect the probability of misclassification+ If more than one such co-
variate exists, let vi be any one of the available candidates~that satisfies the
regularity conditions listed subsequently!, and the others can without loss of
generality be included in the vectorxi +

Let yi
* be an unobserved latent variable associated with observationi, given

by

yi
* 5 vi g 1 xi b 1 ei ,

where theei are independently and identically distributed errors+ The true re-
sponse is given by

Iyi 5 I ~ yi
* $ 0!,

This research was supported in part by the National Science Foundation through grant SBR-9514977+ I thank the
associate editor and two referees for helpful comments and suggestions+ Any errors are my own+ Address corre-
spondence to: Arthur Lewbel, Department of Economics, Boston College, 140 Commonwealth Ave+, Chestnut
Hill , MA 02467, USA; e-mail: lewbel@bc+edu+

Econometric Theory, 16, 2000, 603–609+ Printed in the United States of America+

© 2000 Cambridge University Press 0266-4666000 $9+50 603

https://doi.org/10.1017/S0266466600164060 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466600164060


whereI ~{! equals one if{ is true and zero otherwise+When Iyi is observed, this
is the standard latent variable specification of the binary response model~see,
e+g+, McFadden, 1984!+

Now permit the true response~i+e+, classification of observationi ! to be ob-
served with error+ Letting yi denote the observed binary dependent variable, the
misclassification probabilities are

a~xi ! 5 Pr~ yi 5 16 Iyi 5 0, xi !,

a*~xi ! 5 Pr~ yi 5 06 Iyi 5 1, xi !+

So a~xi ! is the probability that an actual zero response is misclassified~i+e+,
incorrectly recorded! as a one, anda*~xi ! is the probability that a one response
is misclassified as a zero+ These misclassification probabilities are permitted to
depend in an unknown way on observed covariatesxi + This framework encom-
passes models where misclassification probabilities may also depend on vari-
ables that do not affect the true response, because any covariatexji that affects
a or a* but noty* is just a covariate that has a coefficientbj that equals zero+

Define b~x! as

b~xi ! 5 @12 a~xi ! 2 a*~xi !#

and define the functiong to be the conditional expectation ofy, which in this
model is

g~vi , xi ! 5 E~ yi 6vi , xi ! 5 a~xi ! 1 b~xi !F~vi g 1 xi b!, (1)

whereF is the cumulative distribution function of the random variable2e+
Another model that corresponds to equation~1! is when a fractiona~x! of

respondents having characteristicsx always answers one, a fractiona*~x! al-
ways answers zero, and the remainder respond withI ~vg 1 xb 1 e$ 0!+ In this
interpretation some respondents give “natural responses” that are due to factors
other than the latent variable, whereas the other respondents follow the latent
variable model+ Although this model is observationally equivalent to the mis-
classification model, the interpretation of the natural response model~in partic-
ular, the implied marginal effects! is quite different~see, e+g+, Finney, 1964!+

Examples of recent papers that consider estimation of misclassification model
parameters or misclassification probabilities include Manski~1985!, Chua and
Fuller ~1987!, Brown and Light~1992!, Poterba and Summers~1995!, Abre-
vaya and Hausman~1997!, and Hausman, Abrevaya, and Scott-Morton~1998!+
These last two papers provide parametric~maximum likelihood! estimators of
the model when the functionF is known and a semiparametric estimator for
the case whereF is unknown and the misclassification probabilitiesa anda*

are constants~independent of all covariates!+ They also show that whenF is
unknown, the coefficients of covariates that do not affect the misclassification
probabilities can be estimated+
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This paper shows that~given some regularity! the entire model is identified
even when the functionsa, a*, andF are unknown+

Assumption A1+ Assume for allx that 0 # a~x!, 0 # a*~x!, and a~x! 1
a*~x! , 1+ Assume thatv, conditional onx, is continuously distributed+ As-
sume thatF~w! is three times differentiable withf ~w! 5 dF~w!0dw Þ 0 and
f '~w! 5 df ~w!0dw+ Assume6g 6 5 1 and, for all b* Þ b, prob~ @ f '~vg 1 xb!0
f ~vg 1 xb!# Þ E @ f '~vg 1 xb!0f ~vg 1 xb!6vg 1 xb*# ! . 0+

The assumption that the sum of misclassification probabilities is less than
one is what Hausman et al+ ~1998! call the monotonicity condition, and it holds
by construction in the “natural response” form of the model+ Letting 6g 65 1 is
an arbitrary free normalization, as long asg Þ 0+ Only the covariatev is as-
sumed to be continuous+ The final condition in Assumption A1 is a parametric
identification assumption that would provide identification ofb from the score
function if f was a known function and there was no misclassification+

Define the functionf~v, x! by

f~v, x! 5
]2g~v, x!0]v2

]g~v, x!0]v
signFES ]g~v, x!

]v DG+ (2)

Let r ~v, x! be any function such thatr ~v, x! $ 0, supr ~v, x! is finite, and
E @r ~v, x!# 5 1+

LEMMA 1 + Given AssumptionA1, f~v, x! 5 f '~vg 1 xb!0f ~vg 1 xb!, g 5
sign~E @r ~v, x!]g~v, x!0]v# !, and b 5 arg minb* E @~f~v, x! 2 E @f~v, x!6vg 1
xb*# !2# + Also, b 5 E~r ~v, x!@]f~v, x!0]x#0@]f~v, x!0]v# !g+

This lemma shows identification of the model coefficients+ Estimation based
on this lemma could proceed as follows+ First, estimate [g as a nonparametric
regression ofy on v andx+ Next define Zf by equation~2!, replacingg with [g
and the expectation with a sample average+ Then let [g equal the sign of any
weighted average derivative ofE~ y6v, x! with respect tov ~using, e+g+, the es-
timator of Powell, Stock, and Stoker, 1989!+

The lemma suggests two different estimators forb+ Let j~vg 1 xb* ! 5
E @f~v, x!6vg 1 xb*# for any b* and let Zj~v [g 1 xb*! be a nonparametric re-
gression of Zf~v, x! on v [g 1 xb*+ The estimate Zb is then the value ofb* that
minimizes the sample average of@ Zf~v, x! 2 Zj~v [g 1 xb*!# 2+ This is essentially
Ichimura’s~1993! linear index model estimator, using Zf~v, x! as the dependent
variable+

Another estimator forb suggested by the lemma is to letZb equal the sample
average ofr ~v, x!@] Zf~v, x!0]x#0@] Zf~v, x!0]v# [g+ This is an average derivative
type estimator, which is only feasible for continuously distributed regressors
because of the need to estimate the term] Zf~v, x!0]x+

More generally, Lemma 1 shows thatf~v, x! 5 j~vg 1 xb!, so b can be
estimated using any of a variety of linear index model estimators, treating Zf~v, x!
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as the dependent variable+ For example, the method of Powell et al+ ~1989!
could be used to estimate the coefficients of the continuous regressors and that
of Horowitz and Härdle~1996! for the discrete regressors+ The limiting distri-
butions of these estimators will be affected by the use of an estimated depen-
dent variable Zf~v, x! instead of an observed one+ However, all of these estimators
involve unconditional expectations, estimated as averages of functions of non-
parametric regressions+With sufficient regularity~including judicious selection
of the functionr, e+g+, havingr be a density function that equals zero wherever
f might be small!, such expectations can typically be estimated at rate rootn
~see, e+g+, Newey and McFadden, 1994!+ Also, some relevant results on the uni-
form convergence and limiting distribution of nonparametric kernel estimators
based on estimated~generated! variables include Andrews~1995! and Ahn
~1997!+

Define w 5 vg 1 xb, which by Lemma 1 is identified+ Let fw~w! denote
the unconditional probability density function ofw+ Define h by h~w, x! 5
E~ y6w, x! 5 a~x! 1 b~x!F~w!+ Define the functionc by the indefinite integral

w~w! 5 ES ]2h~w, x!0]w2

]h~w, x!0]w *wD
c~Ã! 5 expEw~Ã! dÃ

(3)

Let Vw andVe denote the supports ofw and2e, respectively+ Define the con-
stantc by c 5 *Vw

c~w! dw+

LEMMA 2 + Given AssumptionA1, f ~w! 5 c~w!0c and b~x! 5 E~ @]h~w, x!0
]w#0c~w!6x!c+ If Ve is a subset ofVw, then c5 E @c~w!0fw~w!# +

This lemma shows that the density functionf ~w! and the misclassification
functionb~x! are identified up to the constantc, and the constantc is also iden-
tified ~and can be estimated as a sample average!, provided that the data gen-
erating process forw has sufficiently large support+

Estimators based directly on Lemma 2 would consist of the following steps+
First, construct [w 5 v [g 1 x Zb and let Zh~ [w, x! be a nonparametric regression ofy
on [w andx+ Next, let Zz~ [w! be a nonparametric regression of@]2 Zh~ [w, x!0] [w2#0
@] Zh~ [w, x!0] [w# on [w and define the functionZc~w! 5 exp* Zz~w! dw+ The scalar [c
then equals the sample average ofZc~ [w!0 Zfw~ [w!, where Zfw is a nonparametric es-
timator ~e+g+, a kernel estimator! of the density of [w+ Finally, Zfw~w! 5 Zc~w!0 [c,
and Zb~x! equals [c times a nonparametric regression of@] Zh~ [w, x!0] [w#0 Zc~ [w! on
x+ The resulting estimates should be consistent, as long as uniformly consistent
nonparametric estimators are used at each stage+ Note that consistency may re-
quire trimming~possibly asymptotic trimming! to a compact subset ofVw, be-
cause of division by the densityfw+
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The preceding lemmas show that the marginal effects] Pr~ Iy 5 16v, x!0]x 5
f ~vg 1 xb!b and] Pr~ Iy 5 16v, x!0]v5 f ~vg 1 xb!g are identified and that the
misclassification error functionb~x! is also identified+ If a~x! 5 a*~x!, that is,
if the probability of misclassification does not depend onIy, then Lemma 2 im-
plies that the misclassification probabilitya~x! 5 a*~x! 5 @1 2 b~x!#02 is also
identified+

Instead of using Lemma 2, log derivatives ofb~x! ~and hence ofa~x! and
a*~x! when they are equal! with respect to continuously distributed elements
of x can be directly estimated, without requiring numerical integration, the “large
w support” assumption, or the generated variable[w, by the following lemma+

LEMMA 3 + Let xj be any continuously distributed element of x and letbj be
the corresponding element ofb+ Let AssumptionA1 hold and assume that b~x!
is differentiable in xj + Then

] ln b~x!

]xj

5 ES ]2g~v, x!0]v]xj

]g~v, x!0]v
2 f~v, x!bj 6xD

By Lemma 3, a nonparametric regression of@]2 [g~v, x!0]v]xj #0@] [g~v, x!0]v# 2
Zf~v, x! Zbj on x is an estimator of] ln b~x!0]xj + Dividing this estimate by22

yields an estimate of] ln a~x!0]xj and] ln a*~x!0]xj whena~x! 5 a*~x!+
Next, consider identification ofa~x! and a*~x! when they are not equal+

Let Fw~w6x! denote the conditional cumulative distribution function ofw given
x, let f2~w6x! 5 ]Fw~w6x!0]w be the conditional probability density function
of w given x, and letVw6x denote the support ofw given x+ Let u~x! 5 1 2
E @ f ~w!Fw~w6x!0fw~w6x!6x# +

LEMMA 4 + Let AssumptionA1 hold and assume thatVe is a subset ofVw6x+
Then a~x! 5 E @h~w, x!6x# 2 b~x!u~x!, a*~x! 5 b~x! 2 1 1 a~x!, and F~w! 5
E~ @h~w, x! 2 a~x!#0b~x!6w!+

Estimation ofu~x! requires extreme values ofw given x, and hence ofv, to
be observable+ Some intuition for this result comes from the observation that
g~v, x! ' a~x! for very largev andg~v, x! ' 1 2a*~x! for very smallv+ Hence,
analogous to the estimation ofc, data in the tails are required for estimation of
a~x! anda*~x!+ Estimation proceeds as in the previous lemmas, that is, employ-
ing [w in place ofw, nonparametric estimation of the density functionfw~w6x!,
and nonparametric regression to estimate conditional expectations+

Taken together, these lemmas show that the entire model is identified+ The
parametersg andb can be consistently estimated~with regularity, at rate root
n!, and the functionsa~x!, a*~x!, andF~w! can be consistently estimated non-
parametrically+ The estimators provided here are not likely to be very practical,
because they involve up to third-order derivatives and repeated applications of
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nonparametric regression, and they do not exploit some features of the model
such as monotonicity ofF+ However, the demonstration that the entire model is
identified suggests that the search for better estimators would be worthwhile+
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APPENDIX
Proof of Lemma 1. ]g~v, x!0]v5 b~x! f ~vg 1 xb!g, b~x! . 0, andf ~vg 1 xb! . 0,

so g 5 sign@]g~v, x!0]v# + Here ]2g~v, x!0]v2 5 b~x! f '~vg 1 xb!g2, and g2 5 1, so
f~v, x! 5 f '~vg 1 xb!0f ~vg 1 xb!+ Let j~vg 1 xb*! 5 E @f~v, x!6vg 1 xb*# + It follows
from the previous expression forf thatf~v, x! and the final equality in Assumption A1
that prob@f~v, x! 5 j~vg 1 xb*!# . 0 for all b Þ b*, andf~v, x! 5 j~vg 1 xb!, sob 5
arg minb* E @~f~v, x! 2 E @f~v, x!6vg 1 xb*# !2# +

The alternative expressionb0g 5 @]f~v, x!0]x#0@]f~v, x!0]v# follows becausef de-
pends onx and v only throughvg 1 xb, so E~r ~v, x!@]f~v, x!0]x#0@]f~v, x!0]v# !g 5
E @r ~v, x!b0g#g 5 b+ n
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Proof of Lemma 2. ]h~w, x!0]w 5 b~x! f ~w!, ]2h~w, x!0]w2 5 b~x! f '~w!, so
@]2h~w, x!0]w2#0@]h~w, x!0]w# 5 f '~w!0f ~w! 5 E~ @]2h~w, x!0]w2#0@]h~w, x!0]w# 6w!+
Thenc~Ã! 5 exp@* f '~Ã!0f ~Ã! dÃ# 5 f ~Ã!c, where lnc is the constant of integration+

E~ @]h~w, x!0]w#0c~w!6x!0c 5 E~ @b~x! f ~w!#0c~w!6x!0c

5 E~ @b~x! f ~w!#0@ f ~w!c#6x!0c 5 b~x!+

HereE @c~w!0fw~w!# 5 *Vw
@c~w!0fw~w!# fw~w! dw 5 *Vw

c~w! dw 5 *Vw
f ~w!c dw5

c, where the last equality holds as long asVw contains every value ofe for which f ~e! is
nonzero+

Proof of Lemma 3. ]2g~v, x!0]v]xj 5 f ~gv1 bx!]b~x!0]xj 1 b~x! f '~gv1 bx!bj , so
@]2g~v, x!0]v]xj #0@]g~v, x!0]v# 5 @]b~x!0]xj #0b~x! 1 @ f '~gv 1 bx!0f ~gv 1 bx!#bj 5
] ln b~x!0]xj 1 f~v, x!bj + The lemma then follows immediately+

Proof of Lemma 4. Let ]Vw6x denote the boundary of the supportVw6x+ Applying an
integration by parts givesE @F~w!6x# 5 *Vw6x

F~w! fw~w6x! dw5 F~w!Fw~w6x!6w5]Vw6x
2

*Vw6x
f ~w!Fw~w6x! dw+ Having Ve be a subset ofVw6x ensures thatF~w!Fw 3

~w6x!6w5]Vw6x
5 1, and so u~x! 5 1 2 *Vw6x

@ f ~w!Fw~w6x!0fw~w6x!# fw~w6x! dw 5
E @F~w!6x# + Therefore, E @h~w, x!6x# 5 a~x! 1 b~x!E @F~w!6x# 5 a~x! 1 b~x!u~x!, which
gives the identification ofa~x!+ The expressiona*~x! 5 b~x! 2 1 1 a~x! then follows
from the definition ofb~x!, andh~w, x! 5 a~x! 1 b~x!F~w! is then used to obtainF~w!+
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