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In this paper we study the following problem.

Discrete partitioning problem (DPP). Let FqP
n denote the n-dimensional finite projective

space over Fq . For positive integer k � n, let {Ai}Ni=1 be a partition of (FqP
n)k such that:

(1) for all i � N, Ai =
∏k

j=1 A
i
j (partition into product sets),

(2) for all i � N, there is a (k − 1)-dimensional subspace Li ⊆ FqP
n such that Ai ⊆ (Li)k .

What is the minimum value of N as a function of q, n, k? We will be mainly interested in

the case k = n.

DPP arises in an approach that we propose for proving lower bounds for the query

complexity of generating random points from convex bodies. It is also related to other

partitioning problems in combinatorics and complexity theory. We conjecture an asymp-

totically optimal partition for DPP and show that it is optimal in two cases: when the

dimension is low (k = n = 2) and when the factors of the parts are structured, namely

factors of a part are close to being a subspace. These structured partitions arise naturally

as partitions induced by query algorithms. Our problem does not seem to be directly

amenable to previous techniques for partitioning lower bounds such as rank arguments,

although rank arguments do lie at the core of our techniques.

2010 Mathematics subject classification: Primary 68Q17

Secondary 68R05, 51E20

1. Introduction

In this paper we study the following problem.

Discrete partitioning problem (DPP). Let FqP
n denote the n-dimensional finite projective

space over Fq (see Section 2 for a quick introduction to finite projective spaces and
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some related definitions). For positive integer k � n, let {Ai}Ni=1 be a partition of (FqP
n)k

such that:

(1) for all i � N, Ai =
∏k

j=1 A
i
j (partition into product sets),

(2) for all i � N, there is a (k − 1)-dimensional subspace Li ⊆ FqP
n such that Ai ⊆ (Li)k .

What is the minimum value of N as a function of q, n, k? We will be mainly interested in

the case k = n.

DPP seems interesting in its own right and several related problems have been studied

in the past; we discuss these later. Before stating our results for DPP we discuss another

motivation for studying it. DPP arises in our approach for proving lower bounds for the

query complexity of random sampling from convex bodies. It is standard in this problem

to give the convex body to an algorithm as a membership oracle, that is, a black box

that when queried with a point in Rn answers YES if the point is in the body and

answers NO if the point is outside the body (e.g., [13, 16]). Given a convex body K ∈ Rn

via a membership oracle, by sampling from K we mean generating a random point

from K whose distribution is approximately uniform. Sampling is one of the most useful

primitives in the algorithmic theory of convex bodies (e.g., [16, 5]). The currently best

known algorithm [16] for sampling makes O(n4) membership oracle queries to generate one

random point. Improving this bound will directly improve the complexity of algorithms for

volume computation and convex optimization. On the other hand, the best known lower

bound is just Ω(n). Thus, understanding the query complexity of sampling is an important

problem. Notice that we are working with oracle algorithms, and so the lower bounds are

on the query complexity and not on the computational complexity of sampling.

In this paper, we propose an approach for proving an Ω(n2) lower bound on the query

complexity of sampling. The approach, discussed in the Appendix, involves proving a

lower bound on the number of queries for a problem that we call SPAN: given n − 1

vectors in Rn via a natural oracle, find a hyperplane close to all of them. The problem

SPAN reduces efficiently to sampling from convex bodies, so that a lower bound for SPAN

implies a lower bound for sampling. Randomized oracle algorithms can be interpreted

as distributions over deterministic decision trees. As is standard in lower bounds for

randomized decision trees, it suffices to prove a lower bound on the size of a partition

of the input space induced at the leaves of any small-depth deterministic decision tree

with the following property: in most parts of this partition the value of the function

being computed is nearly constant. We call the problem of lower-bounding the size of

this partition the continuous partitioning problem (CPP). While we do not solve CPP, we

get insights into it by formulating an analogue of SPAN and its associated partitioning

problem over finite fields and proving results in this setting. The rest of the Introduction

is devoted to discussion of these discrete problems.

As the continuous problem SPAN only cares about the linear span of the input vectors,

it is more conveniently stated not in a vector space but in the corresponding projective

space, the space of all lines through the origin. The same can be said about the discrete

analogue. Working over projective space makes counting arguments simpler.

Discrete span problem (DSPAN). The input consists of n points v1, . . . , vn ∈ FqP
n, where

FqP
n is the finite projective space of dimension n over the finite field Fq . The input can
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only be accessed via the following oracle. A query x is an (n − 1)-dimensional flat in FqP
n;

if x contains all the points then the oracle answers YES, else it gives the least index i such

that vi does not lie in x. The problem is to find an (n − 1)-flat (this is an abbreviation

for (n − 1)-dimensional subspace) containing all vi. The discrete SPAN problem is easily

solved with O(qn2) queries using a deterministic algorithm.

We interpret algorithms for such a problem as randomized decision trees, namely a

distribution on (deterministic) decision trees. The leaves of such a deterministic decision

tree induce a partition of (FqP
n)n, and the problem of lower-bounding the size of this

partition is the discrete partitioning problem (DPP) stated at the beginning of this paper.

The oracle described may seem a bit unnatural at first. It is motivated by the continuous

problem and is chosen to be a mild strengthening of the ‘membership oracle’ (which in

this case would just answer whether or not all vi lie in x). A lower bound under the

stronger oracle is also a valid lower bound for the weaker membership oracle because

the algorithm can always ignore the additional information provided by the stronger

oracle. At the same time, the strengthening adds the property that the parts of the

induced partition are product sets (see the Appendix for more details).1 Lower bounds for

partitions with product parts seem easier to prove than the general case, and the product

property is crucial to our proofs. Each such product is of the form A1 × A2 × · · · × An,

such that there is an (n − 1)-flat F ⊂ FqP
n with A1 × A2 × · · · × An ⊆ Fn. Moreover, each

Ai is somewhat structured: it can be represented as a flat minus a small number of other

flats; thus each Ai is close to a flat. See Lemma 5.1 for a precise statement.

There are a few ways of formally relating DPP and DSPAN that we will sketch now.

A simple but weak way is to consider DSPAN and use Yao’s minimax principle with cost

giving the probability of failure of the randomized algorithm [17, Section 2.2.2], reducing

the lower bound problem to proving a lower bound on the expected running time of

a deterministic decision tree as in DSPAN (with the input drawn from a probability

distribution) that is allowed to err with a small probability. This leads to a variation

of DPP with condition (2) relaxed so that each part is not necessarily fully contained

in the power of a (k − 1)-flat, but only mostly contained in such a flat. In this paper

we do not address this harder version of DPP. A stronger connection is given by first

observing that the correctness of a solution to DSPAN can be verified efficiently by

querying the conjectured solution: the solution is correct if and only if the oracle answers

YES. Thus, the worst-case expected2 running time of the best Las Vegas (i.e., always

correct) algorithm is within a constant factor of the best Monte Carlo (i.e., correct with

some probability) algorithm [17, Exercise 1.3]. That is, it is enough to prove a lower bound

on the complexity of Las Vegas algorithms. The use of Yao’s minimax principle with cost

1 In other words, for the DSPAN problem with membership oracle, parts are not necessarily product sets.

When a membership query results in NO, we learn that some input vector vi is not in the queried hyperplane

and the set of tuples consistent with this is not a product: it is actually the complement of a product. After

h queries, the part is the intersection of some product sets, resulting from YES queries, minus the union of

some other product sets, resulting from NO queries. In particular, it is a product set minus the union of at

most h product sets. It is easy to show that any such set can be partitioned into nh product sets. The modified

oracle is one way of showing this in our case.
2 Worst case over inputs of a given length, expected over the randomness of the algorithm.
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equal to the running time reduces the lower bound for DSPAN problem to proving a

lower bound on the average running time of deterministic algorithms against some input

distribution (uniform, in our case), that is, a lower bound on the average depth of leaves

(according to the input distribution). For clarity we focus on the number of leaves in the

main statement, but we actually prove that most (all but nearly a 1/q fraction) leaves are

small (according to the input distribution). See Lemma 6.3 and the proof of Theorem 1.3

for a precise statement, as well as Section 1.3 for an overview of the argument.

Let us make some easy observations about DPP. The kind of partitions we are looking

for always exist. Take any element (p1, . . . , pk) in (FqP
n)k , where each pi is a point in FqP

n.

Together p1, . . . , pk span a (k − 1)-flat. Thus the trivial partition in which each part is a

singleton is a valid partition, giving an upper bound on N of size ((qn+1 − 1)/(q − 1))k ,

the total number of elements in (FqP
n)k . For q > k, this is at most eqkn.

A lower bound of Ω(qk(n−k+1)) (again assuming q > k) is obtained by a volume argument.

The number of elements in (FqP
n)k , as we noted, is ((qn+1 − 1)/(q − 1))k . The maximum

number of elements in a part is ((qk − 1)/(q − 1))k . This is because each factor is contained

in a (k − 1)-flat which has (qk − 1)/(q − 1) points. Thus N must be at least

(
qn+1 − 1

q − 1

)k

·
(

q − 1

qk − 1

)k

.

For q > k this is at least qkn/eqk(k−1) � qk(n−k+1)/e. Note that if we just wanted to cover

instead of partition, then Θ(qk(n−k+1)) is the tight upper and lower bound (when q > k).

The covering given by the kth powers of all (k − 1)-flats achieves the lower bound; it is

well known that the number of (k − 1)-flats in FqP
n is

(qn+1 − 1)(qn+1 − q) · · · (qn+1 − qk−1)

(qk − 1)(qk − q) · · · (qk − qk−1)
� eqk(n−k+1).

For the case k = n, the upper and lower bounds above become O(qn
2
) and Ω(qn).

1.1. Related work

Problems with similar flavour, namely finding a small partition of a product set into

product sets with certain properties, abound in communication complexity, and are also

studied in combinatorics. Many techniques used to prove such lower bounds actually

prove lower bounds on the covering number, with a few exceptions, such as the rank

method [15] and certain lower bounds on the non-negative rank [11, 6]; see also [14] for

some more recent work on partition lower bounds. The covering problem is easy in our

setting, but the smallest covering seems to be much smaller than the smallest partition

and thus does not provide insight into the size of the smallest partition. Our problem

does not seem to be directly amenable to rank arguments or other techniques, although

rank arguments do lie at the core of our techniques. We now discuss some specific results

related to our topic.

Alon, Bohman, Holzman and Kleitman [2] consider the problem of partitioning a finite

set A = A1 × · · · × An (where |Ai| � 2 for all i) into parts of the form B1 × · · · × Bn, where

∅ �= Bi � Ai for i = 1, . . . , n. They show that any such partition has size at least 2n. Our

problem (DPP) is essentially a q-analogue of their problem.

https://doi.org/10.1017/S0963548314000704 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000704


Query Complexity of Sampling and Small Geometric Partitions 737

Razborov [19] considers a more general partitioning problem in the context of

formula complexity, albeit only for k = 2. Briefly, suppose we have a covering of a set

U × V = ∪i C
i
1 × Ci

2. We say that a partition {Ai
1 × Ai

2} of U × V (so ∪̇i A
i
1 × Ai

2 = U × V ,

where ∪̇ denotes disjoint union) is a refinement of the covering {Ci
1 × Ci

2} if, for each

part Ai
1 × Ai

2, there is a j such that Ai
1 × Ai

2 ⊆ C
j
1 × C

j
2. Razborov considers the problem

of proving a lower bound on the size of partitions refining certain coverings. Clearly,

our problem for k = 2 is such a problem, as our partitions refine the covering of the kth

powers of (k − 1)-flats. Razborov gives a method of proving lower bounds for the size of

such partitions. This method seems to be specific to the k = 2 case; for k = 2, specialized

to our problem, this method does not seem to give a bound better than Ω(q2).

A lower bound for DPP would imply a lower bound for a deterministic number in hand

multiparty communication complexity problem (see [15] for an account of communication

complexity). There are k players. Each player is given a private (unknown to other players)

point from FqP
n. The players want to determine a (k − 1)-flat containing the points of all

the players. Notice that the output of the communication problem is not unique, and thus

here we are interested in the communication complexity of a relation rather than that of

a function.

Our problem fits into the category of problems where one obtains a discrete model of

a problem over the real field by changing the real field to a finite field. There are many

examples of this interaction between the continuous and the discrete. The Kakeya problem

over finite fields is one recent example with connections to the theory of computing; see,

e.g., [9]. Here too the problem becomes more tractable in the finite field setting.

1.2. Our results

For k = n = 2, the upper and lower bounds in Section 1 for the general problem become

O(q4) and Ω(q2). The truth turns out to be Θ(q3).

Theorem 1.1. In the discrete partitioning problem for k = n = 2, the size of the smallest

partition satisfies N = Θ(q3).

For the general problem, we get an upper bound improving the trivial upper bound

from Section 1, and generalizing the upper bound in Theorem 1.1.

Theorem 1.2. The discrete partitioning problem for k = n and q � 2n has a partition of

size q(
n+1
2 )(1 + O(n/q)).

In the previous theorem, the partition is made of parts whose factors are either a flat

or a flat minus a lower-dimensional flat, which we call an almost-flat. For partitions of

this kind we have a lower bound that matches our upper bound up to a multiplicative

constant for q � n, and the constant approaches 1 for large q.

Theorem 1.3 (partitioning lower bound for almost-flats). For the discrete partitioning prob-

lem, if k = n and each factor of every part is an almost-flat, then the partition size satisfies

N � qn(n+1)/2

(
1 − 1

q

(
q + 1

q − 2

)n)
.
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Another motivation for studying such structured partitions comes from the fact that

the partitions induced by decision trees for the DSPAN problem involve parts whose

factors are flats minus a small number of flats. This is shown in Section 5. Our proof of

Theorem 1.3 does not seem to immediately generalize to this case.

Our approach for DPP, namely the idea of using the fraction of dependent tuples as

a parameter of a part to lower-bound the size of the partition in Theorem 1.3, suggests

using a similar idea for CPP, perhaps the density of ‘approximately dependent’ tuples.

While there remain technical difficulties in carrying out this approach in the continuous

setting, it appears promising, and is the direct result of considering DPP.

1.3. Techniques

In the proof of Theorem 1.1 the key idea is that the partitioning problem can be

decomposed into smaller instances of simpler partitioning problems (Lemma 3.1). These

smaller problems admit rank arguments for their lower bounds and are thus easy. Our

decomposition shows that on average each of these smaller problems requires a large

partition via a rank argument, giving us a good overall bound. While the rank lower

bounds are fairly standard, the decomposition idea seems to be new.

The high level idea of the proof of Theorem 1.3 is as follows. We classify parts into

two types, large and small (defined according to the dimensions of its factors, later called

‘non-dominated’ and ‘dominated’ parts), where small parts contain at most about qn
2/2

tuples each, while the total number of tuples is about qn
2
. On the other hand, each large

part contains at least roughly a 1/q fraction of dependent tuples (meaning that their span

has dimension less than n − 1: see Lemma 6.3), while the set to be partitioned, (FqP
n)n,

contains only about a 1/q2 fraction of dependent tuples, which implies that large parts

can only cover about a 1/q fraction of all tuples. The rest must be covered by small

parts, which by the previous discussion needs about qn
2/2 parts (proof of Theorem 1.3).

We remark that this high level idea has the flavour of the so-called corruption bound in

communication complexity (see [4]) and its subsequent generalizations (e.g., [7, 14]). Most

of the work in our proof is in the lower bound for the fraction of dependent tuples in large

parts (Lemma 6.3), which is done by first partitioning any such part into parts having

only one-dimensional factors, and then handling this case by induction (Lemma 6.2) with

the aid of a Sylvester–Gallai-type property (Lemma 6.1).

1.4. Organization

The rest of the paper is organized as follows. Section 2 contains relevant definitions.

Section 3 shows an optimal lower bound (up to constant factors) for DPP when k = n = 2.

In Section 4 we present a non-trivial partition construction with structured parts; Section 5

shows that this construction is essentially optimal for structured partitions. The Appendix

gives more details about how a solution to CPP would lead to a lower bound for sampling

from convex bodies.

2. Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. We will work with projective spaces over finite fields.

Projective spaces over finite fields are basic and extensively studied objects; see, e.g., [3]
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for an introduction. Here we define projective spaces and note their relevant properties. In

this paragraph, we follow the exposition of [3] closely. Consider the (n + 1)-dimensional

linear space W := Fn+1
q (where Fq is the finite field of cardinality q and q is a prime

power), and set W× := W \ {0}. Points in the n-dimensional projective space FqP
n over

Fq correspond to lines in W through the origin. More precisely, for p ∈ W×, consider

the sets {ap | a ∈ Fq \ {0}}. Clearly, two such distinct sets are disjoint. These sets together

give a partition of W×. The projective space W consists of these sets as points. We

define the dimension of W to be n and denote this projective space by FqP
n. It is easy

to see that |FqP
n| = (qn+1 − 1)/(q − 1); in particular, the cardinality of the projective

plane FqP
2 is (q3 − 1)/(q − 1) = q2 + q + 1. A flat or subspace of W is a set of the

form U for a subspace U of W . The dimension of U is defined to be dim(U) − 1; thus

dim(∅) = −1. We will often use the term k-flat for a k-dimensional flat. For S ⊆ FqP
n,

denote by span(S) the intersection of all flats containing S . For a tuple (p1, . . . , pk) of k

points in FqP
n, clearly dim span{p1, . . . , pk} � k − 1. We say that (p1, . . . , pk) is dependent if

dim span{p1, . . . , pk} < k − 1. Clearly, if a sub-tuple of a tuple is dependent then the whole

tuple is dependent. A projective space of dimension 2 is called a projective plane, and

flats of dimension 1 are called (projective) lines. Projective planes have nice combinatorial

properties; e.g., each point lies in exactly q + 1 lines, each line contains q + 1 points, every

pair of points lies on a unique line, and every pair of lines intersects in a unique point.

Higher-dimensional spaces also have similar regularity properties.

Definition 1. We say that a subset of FqP
n is an almost-flat if it is either a flat or a

k-flat minus a flat of dimension at most k − 1. Let the dimension of an almost-flat be the

dimension of the minimal flat containing it. In particular, an almost-line is a line or a line

minus a point.

We will need an appropriate counterpart for our setting (projective spaces over finite

fields) of the familiar notion of orthogonal projection in projective spaces over the reals.

This requires care because the notion of orthogonality can behave very differently over

finite fields. In particular, a point can be orthogonal to itself.

We define the projection using quotient by a flat. We will only use elementary properties

of quotients and our discussion here is mostly self-contained; see, e.g., [10] for a detailed

treatment of quotients. Let F and S be two flats in FqP
n. An equivalence relation on F \ S

(an almost-flat) is given by p ∼ q if and only if span((F ∩ S) ∪ {p}) = span((F ∩ S) ∪ {q}).
The equivalence classes of ∼ are of the form span((F ∩ S) ∪ {p}) \ S =: [p] for p ∈ F \ S .

The set of equivalence classes of F \ S given by ∼ is called the quotient set and is denoted

by F/S . Note that in our definition we did not require that S ⊆ F . Quotient set F/S

inherits the projective structure from F in the natural way: for p, q ∈ F \ S with [p] �= [q],

the points are given by [p], the lines are given by

{[r] : r ∈ span((F ∩ S) ∪ {p} ∪ {q}) \ S},

and so on. Thus F/S is a projective space of dimension dim(F) − dim(F ∩ S) − 1 living

in FqP
n−dim(S )−1 = FqP

n/S . Notice that when F ∩ S = ∅, then dim(F/S) = dim(F), as

dim(∅) = −1 according to our convention.
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For a flat F ′ ⊆ F , define

F ′|F/S := {x ∈ F \ S : [x] ∈ [F ′]},

where [F ′] := {[x] : x ∈ F ′ \ S}. In words, F ′|F/S is the union of equivalence classes in

F \ S that intersect F ′.

We will use the following easy facts, which we state without proof. The first claim deals

with invariance of dependence under quotient.

Claim 2.1. Consider t = (p1, . . . , pk), pi ∈ FqP
n, p1 /∈ {p2, . . . , pk}, and let [p2], . . . , [pk] be

the images of p2, . . . , pk in the quotient of the space by p1. Then t is dependent if and only

if ([p2], . . . , [pk]) is dependent.

The next claim shows that intersection of sub-flats with equivalence classes behaves

nicely.

Claim 2.2. For all equivalence classes C ∈ F/S with non-empty intersection with a given

flat F ′, the intersection size |C ∩ F ′| is the same.

The last claim shows that dependence is a property of the equivalence classes.

Claim 2.3. Let t = (p1, . . . , pk, qk+1, . . . , qj , . . . qm), where pi and qj are points in FqP
n. Let t′

be obtained from t by replacing qj by q′
j . Also assume that qj , q

′
j are in the same equivalence

class in the quotient of FqP
n by S = span(p1, . . . , pk), i.e., span(S ∪ {qi}) = span(S ∪ {q′

i}).
Then either both t and t′ are dependent or both are independent.

3. The discrete partitioning problem for n = 2

In this section, instead of the projective space FqP
n, we restrict ourselves to the projective

plane FqP
2. Let us restate the problem for the projective plane. We want a partition of

(FqP
2)2 of the form

(FqP
2)2 =

·⋃N

i=1
Ai

1 × Ai
2, (3.1)

such that for all i we have Ai
1 × Ai

2 ⊆ (Li)2, where Li is a line in FqP
2.

We have |(FqP
2)2| = (q2 + q + 1)2 ≈ q4. The upper and lower bounds we discussed in

Section 1 for the general problem now become O(q4) and Ω(q2). However, it turns out

that N = Θ(q3).

The upper bound. First, for any point p ∈ FqP
2 there are q + 1 lines L

p
1, L

p
2, . . . , L

p
q+1

through p. These lines only intersect in p and together they cover all of FqP
2. Thus

L
p
1 and L

p
2 \ {p}, Lp

3 \ {p}, . . . , Lp
q+1 \ {p} partition FqP

2. Now we can state our O(q3) size

partition of (FqP
2)2. Each part is of the form p × L

p
1 or p × (Lp

i \ {p}) for i ∈ {2, . . . q + 1}
and p ∈ FqP

2. Clearly these parts are mutually disjoint. For any two parts, either the

first factors are different and disjoint, or if they are the same, then the second factors are
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disjoint by our construction of the partition of FqP
2. It is also clear that we cover all of

(FqP
2)2 in this way. The size of this partition is (q2 + q + 1)(q + 1) = O(q3).

We now show that the above upper bound is the best possible up to a constant:

N = Ω(q3).

Theorem 1.1 restated. In the discrete partitioning problem for k = 2 = n the partition size

satisfies N = Θ(q3).

Proof. The key idea of the proof is that the partitioning problem can be decomposed

into smaller instances of simpler partitioning problems (Lemma 3.1 below). These smaller

problems admit rank arguments (similar to the one used in some proofs of a theorem

by Graham and Pollak [12]) for their lower bounds. Our decomposition shows that on

average each of these smaller problems requires a large partition, giving us a good overall

bound.

It will be useful to work without loss of generality with what we will call canonical

partitions, as it is easier to prove a lower bound for this restricted kind of partition. We

say that a partition of (FqP
2)2 as in (3.1) is canonical if each of its parts is canonical.

We say that a part A1 × A2 is canonical if either A1 = A2 (square parts) or A1 ∩ A2 = ∅
(non-square parts). In other words, either the two factors are equal or they are disjoint.

Given any partition {Ai
1 × Ai

2}, we can construct a canonical partition with at most four

times as many parts, as follows. For each part, decompose it into four canonical parts:

Ai
1 × Ai

2 = [(Ai
1 ∩ Ai

2) × (Ai
1 ∩ Ai

2)]∪̇[(Ai
1 \ Ai

2) × (Ai
1 ∩ Ai

2)]

∪̇[(Ai
1 ∩ Ai

2) × (Ai
2 \ Ai

1)]∪̇[(Ai
1 \ Ai

2) × (Ai
2 \ Ai

1)].

Henceforth we assume that our partitions are canonical.

It will be helpful to think of (FqP
2)2 as a complete bipartite graph, with one copy of

FqP
2 in the product representing one side of vertices and the other copy representing the

other side. Edges in this graph are then the elements of (FqP
2)2. Each canonical part can

be thought of as an induced complete bipartite subgraph.

Clearly, the number of square parts in any canonical partition is at most q2 + q + 1 =

O(q2). We will show that the number of non-square parts is Ω(q3).

Notice that if {Si × Si | i ∈ [N]} is the set of square parts, then {Si} form a partition of

FqP
2. Thus, {Si | i ∈ [N]} also induce a partition of each line L; let φ(L) be the number

of parts in such a partition of L. Clearly φ(L) � q + 1. The following lemma shows that

on average φ(L) is almost as large as q + 1.

Lemma 3.1.
∑

L φ(L) � q(q2 + q + 1), where the summation is over all lines.

Proof. For any point a there is some square part Si × Si such that a ∈ Si. Now a

lies in q + 1 lines, say, L1, . . . , Lq+1. Since our requirement on the partition is that Si

should be completely in some line, we have that for all but at most 1 of the q + 1 lines

L ∈ {L1, . . . , Lq+1} we have |L ∩ Si| = 1. Thus a appears as a singleton in the partitions

(induced by the square parts) for at least q lines. So each of the q2 + q + 1 points

contributes at least q to the sum, which gives the bound in the lemma.
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Remove the edges covered by square parts, then we are left with a bipartite graph

whose edge set is partitioned by non-square parts. In this graph, each line L induces a

bipartite subgraph G(L) defined as follows: G(L) is the bipartite subgraph induced by

a copy of L in the left vertices and a copy of L in the right vertices. In other words,

the edges of G(L) are the edges in L × L not covered by square parts. This implies that

the edge set of each G(L) is covered by non-square parts. Also, the edge sets of graphs

{G(L)}L are disjoint by our construction. But a stronger property holds: each non-square

part completely lies in one of the G(L)s. More precisely, if Ri
1 × Ri

2 is a non-square part

such that Ri
1 ⊆ L and Ri

2 ⊆ L for some line L, then (Ri
1 × Ri

2) ∩ (L′ × L′) = ∅ for all lines

L′ �= L.

We know that G(L) looks like this. Let L = S1∪̇ · · · ∪̇Sφ(L) be the partition of L

induced by square parts as above. Then G(L) has all the edges in sets Si × Sj for

i, j ∈ [φ(L)], i �= j. Now an easy adaptation of the matrix proof of the Graham–Pollak

theorem [12] (see Lemma 3.2 below) gives that G(L) needs φ(L) non-square parts. To see

this, choose one point pi from each Si, and consider the subgraph of G(L) induced by the

vertices in both colour classes of G(L) corresponding to points {p1, . . . , pφ(L)}. Applying

Lemma 3.2 to this subgraph gives the required bound on the number of non-square

parts. Thus the total number of parts we need is
∑

L φ(L) � q(q2 + q + 1) by the lemma

above.

We note that the proof did not make use of the algebraic structure of the projective

plane, and it holds for combinatorial projective planes as well.

Lemma 3.2. Let B = ((U,V ), E) be a bipartite graph with |U| = |V | = n, and let

E = {(ui, vj) | i, j ∈ [n] and i �= j}.

(In other words, B is a complete n × n bipartite graph minus a perfect matching.) Any

partition of E into complete bipartite graphs requires at least n graphs.

Proof. Consider the bipartite adjacency matrix A(B) of B (rows indexed by U and

columns by V , and A(B)(u,v) = 1 if (u, v) ∈ E else A(B)(u,v) = 0). Let B1, . . . , Br be complete

bipartite subgraphs whose edges sets partition E. Then we can write

A(B) =
∑
i∈[r]

A(Bi). (3.2)

The algebra in the rest of the proof is over R. Now, notice that rankA(B) = n (this is

because A(B) = J − I , where J is the all ones matrix and I is the identity matrix, after

a suitable reordering of the vertices), but rankA(Bi) = 1 for i ∈ [r]. The subadditivity of

rank implies that r � n.

We remark that there are generalizations of the Graham–Pollak theorem for hyper-

graphs [1, 8] and it is natural to try to use these to solve the partitioning problem for

higher k. However, we have not succeeded in this.
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4. A small size partition

We construct a partition of (FqP
n)n with size O(q(

n+1
2 )), by generalizing our partition

construction for the product of two projective planes (Section 3). More generally, the

same ideas give a partition of (FqP
n)k with size O(q(

k+1
2 )) (independent of n). Informally,

for the product of two projective planes the parts were of type (point × almost-line). For

(FqP
n)n, parts are of type (point × almost-line × almost-2-flat × · · · × almost-(n − 1)-flat),

where an almost-r-flat is either an r-flat or an r-flat minus an (r − 1)-subflat. We now

describe our construction in detail.

Proof of Theorem 1.2. Let 1 � r < n. For an (r − 1)-flat F consider r-flats F1, F2, . . .

containing F . There are (qn+1 − qr)/(qk+1 − qr) such flats and any two of them intersect

precisely in F . This provides a partition of FqP
n into almost-r-flats with size (qn+1 −

qr)(qk+1 − qr). The first part is F1 and other parts are F2 \ F, F3 \ F, . . . . We call this

partition a partition around F .

Now to construct a partition of (FqP
n)n, it will be convenient to index the n copies of

FqP
n as P1, . . . , Pn. So we are considering a partition of P1 × P2 × · · · × Pn. We start by

partitioning P1. Let P1 be the partition of P1 into singletons. For each S1 ∈ P1, consider

a partition of P2 around span(S1) = S1. Denote this by P2(S1). For S2 ∈ P2(S1), consider

a partition of P3 around span(S2), and so on.

Our partition of (FqP
n)n is then made up of all the parts of the form S1 × · · · × Sn. The

number of choices for the first factor is |P1| = (qn+1 − 1)/(q − 1). Having fixed the first

factor S1, the number of choices for the second factor is |P2(S1)| = (qn+1 − q)/(q2 − q),

and so on. So the total number of choices is

qn+1 − 1

q − 1
· q

n+1 − q

q2 − q
· q

n+1 − q2

q3 − q2
· · · q

n+1 − qn−1

qn − qn−1
=

qn+1 − 1

q − 1
· q

n − 1

q − 1
· q

n−1 − 1

q − 1
· · · q

2 − 1

q − 1

� q(
n+1
2 )

(1 − 1/q)n

� q(
n+1
2 )

1 − n/q
.

For q � 2n we have 1/(1 − n/q) � 1 + 2n/q. The claim follows.

5. The structure of decision trees for DSPAN

In this section we prove the claim from the Introduction on the structure of the partition

induced by a decision tree for the DSPAN problem. Each part is a product set, where

each factor is a flat minus a few flats.

Lemma 5.1. Consider a deterministic decision tree for DSPAN making at most h queries.

Let A be a part of the partition of (FqP
n)n induced by the leaves of the tree. Then:

(1) there is an (n − 1)-flat F ⊂ FqP
n with A ⊆ Fn,

(2) we can write A = A1 × A2 × · · · × An, where each Ai is of the form G \ (G1 ∪ G2 ∪ · · · ∪
Gh), where G,G1, . . . , Gh are flats.
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Proof. Part (1) must hold because the output of the tree is correct for DSPAN.

We prove the stronger version of (2) that it holds for the set of tuples A associated to

any node of the decision tree with h equal to the depth of the node. We use induction

on h. It is clearly true for h = 0 (no queries, the root) as in this case A = (FqP
n)n. For

the inductive step, let A ⊆ (FqP
n)n be the part associated to a node of depth h. By the

inductive hypothesis, its parent part A′ is of the form A1 × A2 × · · · × An, where each Ai

is of the form G \ G1 ∪ G2 ∪ · · · ∪ Gh−1, where G,G1, . . . , Gh−1 are (possibly empty) flats.

The query that restricts A′ to get A is some (n − 1)-flat p ⊆ FqP
n. If the result of the

query is YES, the interpretation of the query means that the restriction is to intersect each

A1, . . . , An with p. If the result of the query is NO and index i ∈ [n], the interpretation

of the query means that the restriction is to intersect each A1, . . . , Ai−1 with p, subtract p

from Ai and leave Ai+1, . . . , An unchanged. The claimed structure holds in both cases.

6. Lower bound for structured partitions

In this section we show a lower bound for the discrete partitioning problem when factors

of each part are almost-flats (Theorem 1.3, Definition 1). The outline of the proof in

Section 1.3 will be useful for reading the proof below.

Definition 2 (projective lines in general position). We say that a set of at most n + 1

projective lines in FqP
n is in general position if, for any k ∈ [n − 1], no k + 1 of them are

contained in a k-flat.

Lemma 6.1 (Sylvester–Gallai-type property). Let L be a set of at most n + 1 projective

lines in FqP
n in general position (Definition 2). Then there exists a projective line l ∈ L that

intersects the other projective lines in L in at most two points, i.e., there are (at most) two

points p, q ∈ l such that l ∩ l′ ∈ {p, q} for all l′ ∈ L \ {l}.

Proof. We use induction on n. It is true for n = 1. For general n, we will define a sequence

l1, l2, . . . of lines in L. We will add lines incrementally preserving dim span{l1, . . . , li} = i.

Start by picking any line l1 ∈ L. Pick a line l2 ∈ L \ {l1} that intersects l1 (if there is no such

line then l1 is the desired line). In general, if there exists li ∈ L \ {l1, . . . , li−1} that intersects

at least one of l1, . . . , li−1, then we have dim span{l1, . . . , li} = dim span{l1, . . . , li−1} + 1 = i

(li cannot be contained in span{l1, . . . , li−1} if L is in general position). If no such li exists,

then the inductive hypothesis applied to {l1, . . . , li−1} gives the line desired in the statement.

Suppose we pick all lines in L in this way and the last line is lk . If k < n + 1, then lk
intersects the others in one point. If k = n + 1, then the fact that L is in general position

implies that lk intersects at most one of l1, . . . , ln−1, and it can possibly intersect ln. Thus,

lk is the desired line.

The previous lemma is tight in the following sense: for n = 2, the case of the projective

plane, any three lines in general position intersect pairwise.
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Lemma 6.2 (fraction of dependent tuples in products of almost-lines). Let L = (li)
n+1
i=1 be

a family of almost-lines in FqP
n with q � 3. Then the number of dependent tuples in T =∏n+1

i=1 li is at least (q − 2)n−1(q − 1).

Proof. We use induction on n. For n = 1, we are in the projective line of cardinality

q + 1, the two lines in L coincide except for the missing points, and the dependent tuples

are pairs of equal points. Thus, there are at least q − 1 dependent tuples.

For general n, if L is not in general position, use the inductive hypothesis on the

subfamily of k lines not in general position. The number of dependent tuples in that

subset is at least (q − 2)k−2(q − 1), any completion of such a dependent tuple to an

(n + 1)-tuple is also dependent, and each can be completed in at least qn+1−k ways. Thus

the number of dependent tuples in L is at least qn−k+1(q − 2)k−2(q − 1).

Otherwise, consider the line in L given by Lemma 6.1 (applied to the completion of

each almost-line to a line), say this line is l1, and let p be a point in this line that is not

missing from it and such that no other line in L goes through it. Consider the quotient

of the whole space by p. In the quotient, the image of a point p′ �= p is [p′], and the

image of a line l not containing p is the union of the images of the points in l. As the

almost-lines in (li)
n+1
i=2 do not contain p, their images in the quotient are also almost-lines.

Thus the inductive hypothesis can be used on the quotient space of dimension n − 1 and

the n quotient lines to conclude that the product of the quotient lines contains at least

(q − 2)n−2(q − 1) dependent tuples.

Now, by the invariance of dependence (Claim 2.1), there are at least (q − 2)n−2(q − 1)

dependent tuples in T whose first coordinate is p. Also, there are at least q − 2 choices of

p, so there are at least (q − 2)n−1(q − 1) dependent tuples overall.

Definition 3. For Q =
∏k

i=1 Qi, a product of subsets of FqP
n, where each Qi is an almost-

flat, the dimension pattern of Q, denoted by dimQ, is the k-tuple of dimensions of the Qi

sorted in non-decreasing order. We will consider the partial order on dimension patterns

defined by (s1, . . . , sk) 
 (t1, . . . , tk) if and only if for all i we have si � ti.

Lemma 6.3 (dependence of non-dominated almost-flats). Let Q =
∏n

i=1 Qi be a product of

subsets of FqP
n−1, where each Qi is an almost-flat. Assume

dimQ � (0, 1, . . . , n − 1). (6.1)

Then the fraction of dependent tuples in Q is at least

1

q + 1

(
q − 2

q + 1

)n−1

.

Proof. The proof will reduce estimating the fraction in the general case to the case of

lines, given by Lemma 6.2. We will do this by first reducing to the case of partitions

consisting of parts with minimal dimension patterns satisfying (6.1) and then reducing to

the case of products of lines.
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The minimal dimension patterns satisfying (6.1) are the following n − 1 patterns:

(1, 1, . . . , 1), (0, 2, 2, . . . , 2), (0, 0, 3, . . . , 3), . . . , (0, . . . , 0, n − 1, n − 1).

Formally, they are given by (s1, . . . , sn) for j = 1, . . . , n − 1, where

si =

{
j i � j,

0 i < j.

It suffices to prove the lemma for Q with minimal dimension patterns satisfying (6.1),

because of the following two facts.

• A Q with a non-minimal dimension pattern can be partitioned into parts with minimal

dimension patterns. This is shown in the next claim.

• The fraction of dependent tuples in Q is at least the minimum of such fractions for

the parts in a partition of Q.

Claim 6.4. Let Q =
∏n

i=1 Qi be a product of subsets of FqP
n−1, where each Qi is an almost-

flat, and let Q satisfy (6.1). Then Q can be partitioned into parts with minimal dimension

patterns and satisfying the assumptions of Lemma 6.3.

Proof. Let k + 1 be the least index i such that (dimQ)i � i; such an i exists because of

our assumption that (6.1) is satisfied. Then we claim that we can partition Q into parts of

the form

p1 × · · · × pk × Rk+1 × · · · × Rn, (6.2)

where pi ∈ Qi, for i � k, are points, and Ri ⊆ Qi is an almost-flat of dimension k + 1 for

i > k. We construct this partition by first partitioning individual factors in Q, and then

the resulting (refined) product partition of Q will be our desired partition.

Partitioning into flats of dimension 0 (points) is straightforward. For partitioning into

higher-dimensional parts there are three cases depending on the factor being partitioned

and the dimension of the target parts. We will also assume that when we need to partition

an almost flat it’s of type Fd \ Fd′′ with Fd′′ ⊆ Fd. We have the following three cases.

Case 1. We want to partition a d-flat Fd into almost-flats of dimension d′ for some

0 < d′ � d. Fix a (d′ − 1)-flat Fd′ ⊆ Fd arbitrarily, and consider the d′-dimensional flats

F(p) := span({p} ∪ Fd′) for p ∈ Fd \ Fd′ .

For two such points p, p′ we either have F(p) = F(p′) or F(p) ∩ F(p′) = Fd′ . Thus we can

construct a partition of Fd with one flat of the form F(p) and almost-flats of the form

F(p) \ Fd′ . More precisely, fix any point p∗ ∈ Fd \ Fd′ . Then the partition is

{F(p∗)} ∪ {F(p) \ Fd′ : p ∈ Fd \ F(p∗)}.

Case 2. We need to partition Fd \ Fd′′ , a d-flat minus a d′′-flat, into almost-flats of

dimension d′ for d > d′′ � d′ > 0. This is a slight modification of the previous argument.

We fix a (d′ − 1)-flat Fd′ ⊆ Fd′′ arbitrarily and we can construct a partition of Fd \ Fd′′

https://doi.org/10.1017/S0963548314000704 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000704


Query Complexity of Sampling and Small Geometric Partitions 747

with almost-flats of the form F(p) \ Fd′ . The partition is

{F(p) \ Fd′ : p ∈ Fd \ Fd′′ }.

Case 3. We need to partition Fd \ Fd′′ , a d-flat minus a d′′-flat, into almost-flats of

dimension d′ for d > d′ > d′′ > 0. This is again a slight modification of the previous

argument. We arbitrarily fix a (d′ − 1)-dimensional flat Fd′ ⊆ Fd containing Fd′′ and we

construct a partition of Fd \ Fd′′ with one almost-flat of the form F(p) \ Fd′′ and almost-flats

of the form F(p) \ Fd′ . More precisely, fix any point p∗ ∈ Fd \ Fd′ . The partition is

{F(p∗) \ Fd′′ } ∪ {F(p) \ Fd′ : p ∈ Fd \ F(p∗)}.

Applying the above procedure to each factor Qi for i > k with d′ = k, we get the desired

partition, completing the proof of the claim.

To complete the proof of the lemma, we now reduce the case of minimal dimension

patterns to the case of lines, which is handled by Lemma 6.2. That lemma gives a lower

bound for the fraction of dependent tuples for the product of n + 1 lines in FqP
n. At this

point in the proof we are dealing with parts as in (6.2), which have as factors k points

and n − k almost-flats of dimension k + 1. We could partition the almost-flats into lines

to apply Lemma 6.2 and ignore the first k points of each tuple, but then the lines would

be living in FqP
n−1 with only n − k lines, and Lemma 6.2 would not apply for k � 1.

To fix this, we confine the almost-flats into a common (n − k − 1)-dimensional space

by ‘projecting them orthogonal to p1, . . . , pk ’, or more precisely by taking the quotient

by S = span(p1, . . . , pk) and then appropriately modifying the Ri. We now describe this

procedure.

Let Q be as in (6.2). If (p1, . . . , pk) is dependent, there is nothing more to prove for this

part as the fraction of dependent tuples is 1.

Otherwise, we sequentially go over Rk+1, . . . , Rn and replace them by Pk+1, . . . , Pn,

as described below. The new product set Q′ = p1 × · · · × pk × Pk+1 × · · · × Pn has the

following properties: (1) f(Q′) � f(Q), where f(Q) is defined to be the fraction of dependent

tuples in Q; (2) each Pi is an almost-flat; (3) each Pi is the union of some of the equivalence

classes induced by the quotient of Ri by S . Thus, if we take the quotient, then each Pi

can be identified with an almost-flat living in a space isomorphic to FqP
n−k−1, and hence

Lemma 6.2 is applicable after partitioning each Pi into lines.

Now we explain the construction of the Pi, which depends on two cases. (1) If Ri is a

flat, then set Pi := Ri \ S . (2) Suppose Ri is an almost-flat, i.e., Ri = Fi \ F ′
i , where Fi is a

(k + 1)-flat and F ′
i is a sub-flat of dimension at most k. Then set Pi to either Fi \ S or

(Fi \ S) \ (F ′
i |Fi/S ), whichever makes the current density of dependent tuples smaller. If the

second option is empty, pick the first, which is never empty. (By the current density of

dependent tuples we mean the density of dependent tuples in p1 × · · · × pk × Pk+1 × · · · ×
Pi × Ri+1 × · · · × Rn.)

We do not use the more natural choice of a straightforward quotient in the case of

almost-flats (that is, Pi = Ri/S), as in that case the fraction of dependent tuples may

increase or decrease. With our choice we will now show that the fraction of dependent

tuples never increases.

https://doi.org/10.1017/S0963548314000704 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000704


748 N. Goyal, L. Rademacher and S. Vempala

Claim 6.5. The fraction of dependent tuples in Q is at least that in Q′.

Proof. We will see the effect on the fraction of dependent tuples in each step of our

procedure of replacing Ri by Pi as defined above. There will be several cases.

Case 1. If Ri is a (k + 1)-flat, then we set Pi := Ri \ S . This cannot increase the fraction

of dependent tuples because we removed S and the tuples involving points of S in the ith

position are all dependent.

Case 2. If Ri = Fi \ F ′
i , with Fi ⊃ F ′

i , is an almost-flat, then we use a refinement of the

previous argument. First, we replace Ri by R′
i = (Fi \ F ′

i ) \ S = (Fi \ S) \ (F ′
i \ S); as before,

this cannot increase the fraction of dependent tuples. Now we have two cases depending

on the intersection pattern of F ′
i with the equivalence classes in Fi/S .

Case 2(a). Fi/S = [F ′
i ], that is, F ′

i intersects all equivalence classes of the quotient Fi/S , and

in this case each intersection is of the same cardinality by Claim 2.2. Therefore, by Claim 2.3

the fraction of dependent tuples does not change when we replace R′
i = (Fi \ S) \ (F ′

i \ S)

by Pi = Fi \ S .

Case 2(b). Fi/S � [F ′
i ], that is, F ′

i does not intersect all equivalence classes of Fi/S . For

U ⊆ R′
i , define f(U) to be the fraction of dependent tuples in3

p1 × · · · × pk × Pk+1 × · · · × Pi−1 × U × Ri+1 × · · · × Rn.

Informally, we will either ‘remove the equivalence classes intersected by F ′
i ’ or ‘complete

them’, whichever does not increase f(·). More precisely, we will show that for one of the

following choices of Pi we have f(Pi) � f(R′
i): set Pi = (Fi \ S) \ (F ′

i |Fi/S ) (‘remove’), or set

Pi = Fi \ S (‘complete’).

It remains to prove that one of these choices will not increase f(·). We need some

notation. Denote the equivalence classes in Fi/S by

C1, . . . , Cr, Cr+1, . . . , Cr+s.

Let c := |C1| = |C2| = · · · = |Cr+s|. Of these, C1, . . . , Cr have non-empty intersection with

F ′
i . Let c := |C1| = |C2| = · · · = |Cr+s|. By Claim 2.2, |C1 ∩ F ′

i | = · · · = |Cr ∩ F ′
i | and let us

denote this common intersection size by c′. Let α be the fraction of dependent tuples

induced by C1 ∪ · · · ∪ Cr = F ′
i |Fi/S , and let β be the fraction of dependent tuples induced

by Cr+1 ∪ · · · ∪ Cr+s. Then we have

f(R′
i) =

α(c − c′)r + βcs

(c − c′)r + cs
,

f(Fi \ S) =
αcr + βcs

cr + cs
,

f((Fi \ S) \ (F ′
i |Fi/S )) =

βcs

cs
= β.

3 We are overloading the function f as it was used with a different type of argument (Q) earlier, but this should

not cause confusion.
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From the above expressions we see that if β > α then f(Fi \ S) < f(R′
i), if β < α then

f((Fi \ S) \ (F ′
i |Fi/S )) < f(R′

i), and if α = β then either choice works.

This completes the proof of the claim.

Let P = Pk+1 × · · · × Pn. By our construction, the fraction of dependent tuples in Q′ is

no less than that in P . Define P/S := (Pk+1/S) × · · · × (Pn/S), the result of taking the

quotient with respect to S , where (Pj/S) ⊆ FqP
n−k−1 for k < j � n. Note that Pj/S is an

almost-flat. We have f(P/S) = f(p1 × p2 × · · · × pk × P ).

Claim 6.5 with the fact just noted implies that a lower bounding of the fraction of

dependent tuples of Q is given by a lower bound of the fraction of dependent tuples of

a part having all factors of dimension 1 or more. Applying the partitioning argument

from the first half of the proof once more to such a part, it is enough to lower-bound the

fraction of dependent tuples for a part having factors of dimension exactly 1 (minimal

dimension pattern). The estimate in Lemma 6.2 gives that each such part with n − k

factors has at least (q − 2)n−k−2(q − 1) dependent tuples. A part like that also has at most

(q + 1)n−k tuples and therefore a fraction of at least

(q − 2)n−k−2(q − 1)

(q + 1)n−k

dependent tuples. As a function of k only, this fraction is smallest when k = 0, and thus

it is at least

(q − 2)n−1

(q + 1)n
.

We showed that this is a lower bound on the fraction of dependent tuples in Q. This

completes the proof of the lemma.

Proof of Theorem 1.3. We will first estimate the fraction of dependent tuples in (FqP
n)n.

Probabilistic language is helpful here. We consider a random tuple T = (t1, . . . , tn) and we

want an upper bound on the probability that it is dependent. Recall that the cardinality

of an i-dimensional flat is 1 + q + · · · + qi. Then

Pr(T is dependent) =

n∑
i=2

Pr((t1, . . . , ti−1) is independent and (t1, . . . , ti) is dependent)

�
n∑

i=2

Pr((t1, . . . , ti) is dependent | (t1, . . . , ti−1) is independent)

=

n∑
i=2

1 + q + · · · + qi−2

1 + q + · · · + qn

�
n∑

i=2

1

qn−i+2
�

∞∑
i=2

1

qi
=

1

q(q − 1)
.
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Thus the fraction of dependent tuples in (FqP
n)n is at most 1/(q(q − 1)).4 This and

Lemma 6.3 imply that parts whose dimension pattern is not less than or equal to

(0, 1, . . . , n − 1) (non-dominated) can cover at most a

1

q(q − 1)

(
1

q + 1

(
q − 2

q + 1

)n−1)−1

� 1

q

(
q + 1

q − 2

)n

fraction of (FqP
n)n. The rest has to be covered with ‘dominated’ parts, that is, parts whose

dimension pattern is less than or equal to (0, 1, . . . , n − 1). Any such part has cardinality

at most 1(q + 1) · · · (qn−1 + · · · + 1). The total number of tuples to be covered by these

parts is at least (
1 − 1

q

(
q + 1

q − 2

)n)
(qn + · · · + 1)n.

This needs at least

qn(n+1)/2

(
1 − 1

q

(
q + 1

q − 2

)n)

parts.
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Appendix: From sampling lower bound to the continuous partitioning problem

A question that immediately arises when trying to prove a lower bound on sampling is

that sampling is not a computational task in the usual sense of having a definite output.

A way to get around this problem is to prove lower bounds for a problem that can be

solved using sampling. An Ω(n) lower bound is easy. Consider the following set of n bodies

in Rn. For i ∈ [n], define body Bi = [0, 1]i−1 × [0, 2] × [0, 1]n−i. In other words, Bi is an

axis-parallel cuboid with length 1 along all but the ith axis. Now consider a randomized

algorithm that gets as input (via membership oracle) a uniformly randomly chosen body

from the set of bodies just defined and its output is the index of the input body. A

straightforward application of Yao’s minimax principle shows that any such algorithm

must make Ω(n) membership queries to achieve a constant probability of success. On the

other hand, if sampling can be done with q queries, then the body can be identified in

4 This estimate is not too far from the true value. By picking the points in the tuple in sequence and considering

the chance that the last point makes the tuple dependent (i.e., lies in a certain (n − 2)-dimensional flat), we

have that the fraction of dependent tuples is at least

qn−1 − 1

qn+1 − 1
� 1

q2
− 1

qn+1
.
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O(q) queries with constant probability of success. Suppose that the input body was Bi.

Sample a point by making q queries. With probability about 1/2 its ith coordinate is

greater than 1, thus telling us that the body is Bi. We can improve the probability of

success by repeating this. This gives q = Ω(n).

For a quadratic lower bound as a function of the dimension, our candidate hard

algorithmic problem is the following. We are given a membership oracle for a convex

body given by {x ∈ Rn | 〈x, vi〉 � 1 for i ∈ [n − 1], 〈x, v〉 � p(n)}, for n − 1 unit vectors

v1, . . . , vn−1 ∈ Sn−1 (the unit sphere in Rn) spanning a hyperplane, v a normal to that

hyperplane and p(n) some fixed polynomial in n. The problem is to find v approximately,

or more precisely, a vector whose direction makes an angle with v that is at most 1/ poly(n).

As usual in algorithmic convexity, the oracle complexity of problems of this kind depends

on the roundness of the input body [13], and our problem as stated can have very high

complexity as there is no a priori bound on the roundness of the input. For a meaningful

worst-case lower bound for randomized algorithms one needs to restrict the input body

so that it contains rBn and is contained in RBn for R/r = poly(n) (where Bn is the unit

ball in Rn). It is easy to show algorithms solving the problem in this case with essentially

quadratic number of queries. Yao’s lemma implies that the probability of success of any

randomized algorithm against the worst such input is at least the probability of success of

the best deterministic algorithm against a distribution on inputs of our choice. Choosing

vi uniformly and independently at random in Sn−1 and restricting the distribution to

bodies satisfying the roundness condition is a natural option. But it seems cleaner simply

to choose vi ∈ Sn−1 uniformly at random without any additional constraint, prove a lower

bound for deterministic algorithms against this distribution (say, an algorithm that fails

with probability at most p needs to make q queries), and then argue that for a suitable

choice of r and R the fraction of the distribution that is not well-rounded is at most p/2.

So any algorithm when running on a distribution of well-rounded bodies needs to make

at least q queries to fail with probability at most

p/2

1 − (p/2)
= p/(2 − p).

As before, it is easy to see that if we can sample with O(q) queries then we can find a

vector whose direction is within a 1/ poly(n) angle of v in O(q polylog(n)) queries with

constant probability.

The next observation is that any deterministic algorithm against our distribution can

be thought of as a decision tree (if we only care about the number of queries and not

the computational complexity). Every node represents a query, the children of a node

represent different choices depending on the result of a query, and on leaves the algorithm

stops and has to output a candidate vector. The leaves induce a partition of the support

of the input distribution, which can be thought to be (Sn−1)n−1. The algorithm succeeds

with high probability if, for most parts, most tuples of n − 1 vectors in the part have

their normal direction near a fixed vector that depends on the part (‘most’ here according

to the input distribution). It simplifies the problem somewhat to assume that the oracle

gives a bit more information than just YES or NO. Instead, the modified oracle answers

YES when the query point is in the body (as usual), but when the query point x ∈ Rn
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is not in the body it answers NO and gives the least index among violated constraints

(that is, min{i : |x · vi| > 1}). This idea was introduced in [18] and it has the following

consequence (as shown there). The partition induced by the corresponding decision tree is

made of product sets, namely, every part is of the form P1 × · · · × Pn−1, where Pi ⊆ Sn−1.

Clearly a lower bound on the number of queries for algorithms with the modified oracle

is a valid lower bound for the original oracle.

For any given part that is a product set, it can be shown that if the angle of localization

of the normals to its tuples is forced to be small enough (say, normal directions are within

an angle 1/nO(1) of a given direction for a 1 − α fraction of the part, for a small constant

α), then most of the part lies in a narrow ‘band’, that is, it satisfies the following ‘band

condition’. For a set of the form P1 × · · · × Pn−1 ⊆ (Sn−1)n−1, there is a vector v ∈ Sn−1

such that

μ(Pi ∩ {x : |v · x| � 1/nO(1)}) � (1 − α)μ(Pi) for all i

(where μ denotes surface area).

The previous discussion reduces the problem of proving a lower bound Ω(n2/ log n) for

sampling to the following partitioning problem.

Continuous partitioning problem (informal). Suppose Q1, . . . , Qk is a partition of (Sn−1)n−1

where each part is a product set and satisfies the above ‘band condition’. A lower bound

of k � 2Ω(n2) would translate to a quadratic query lower bound for the sampling problem.

(The loss of a log factor is explained by the fact that the decision tree associated to the

modified oracle has fan-out Θ(n).)

A natural approach to solving the partitioning problem is to try to discretize the

problem perhaps by subdividing the sphere into sufficiently small cells, and then working

with these cells as atoms. However, we found the discretization considered in this paper

cleaner and more useful to work with. Although we do not have a formal connection

between the two problems, they have a very similar flavour, and insights from the discrete

version can be directly useful for the continuous version. For example, the partition in the

proof of Theorem 1.2 translates into a non-trivial partition of (Sn−1)n−1 satisfying the band

condition above. We now briefly describe the construction of this partition. We first give

an infinite size partition, which is essentially the one in the proof of Theorem 1.2 except

that now we are working over the real field; the parts are of the form P1 × P2 × · · · × Pn−1.

The first factor P1 ⊂ Sn−1 is a point and its antipode in Sn−1 (this corresponds to a single

point in projective space). The second factor P2 ⊂ Sn−1 is obtained from a great circle C

in Sn−1 containing P1; factor P2 is either C itself or C \ P1 (this corresponds to a line in

the projective space). Factor P3 is obtained from the intersection of Sn−1 with a three-

dimensional subspace of Rn containing P2 (this corresponds to a plane in the projective

space), and so on. To turn this into a finite partition, we ‘fatten’ each factor by 1/p′(n),

where the polynomial p′(n) is related to the precision with which we have to determine v,

the normal to v1, . . . , vn−1. For points, this fattening is achieved by subdividing Sn−1 into

regions of diameter at most 1/p′(n). For a given P1, the second factor P2 is obtained by

similarly partitioning Sn−1 into a finite number of regions such that for each region there

is a great circle with every point in the region within distance 1/p′(n) from the great circle,
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and one of these regions contains P1 and the others are disjoint from P1. We proceed

similarly for higher-dimensional factors.
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