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Frequency distributions from 49 published wildlife host–macroparasite systems were analysed by maximum likelihood for

goodness of fit to the negative binomial distribution. In 45 of the 49 (90%) data-sets, the negative binomial distribution

provided a statistically satisfactory fit. In the other 4 data-sets the negative binomial distribution still provided a better

fit than the Poisson distribution, and only 1 of the data-sets fitted the Poisson distribution. The degree of aggregation was

large, with 43 of the 49 data-sets having an estimated k of less than 1. From these 49 data-sets, 22 subsets of host data

were available (i.e. host data could be divided by either host sex, age, where or when hosts were sampled). In 11 of these

22 subsets there was significant variation in the degree of aggregation between host subsets of the same host–parasite

system. A common k estimate was always larger than that obtained with all the host data considered together. These

results indicate that lumping host data can hide important variations in aggregation between hosts and can exaggerate the

true degree of aggregation. Wherever possible common k estimates should be used to estimate the degree of aggregation.

In addition, significant differences in the degree of aggregation between subgroups of host data, were generally associated

with significant differences in both mean parasite burdens and the prevalence of infection.
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The basic measure of parasite burden is the fre-

quency distribution of parasites within a host

population. If all host–parasite encounters were

random and there were no host effects on parasite

numbers or parasite-induced host mortality, and

parasite burdens quickly reach equilibrium with

different host ages, then parasite burdens would be

expected to follow a Poisson distribution, where the

variance is equal to the mean (σ#¯µ). In practice,

burdens are generally aggregated (that is most of the

hosts have very low parasite burdens, and a few hosts

have very high burdens) (e.g. Crofton, 1971;

Pennycuick, 1971b ; Anderson & May, 1978;

Anderson & Gordon, 1982; Dietz, 1982; Dobson,

1985; Grenfell, Smith & Anderson, 1986; Pacala &

Dobson, 1988; Guyatt & Bundy, 1991; Shaw &

Dobson, 1995). The degree of aggregation can be

measured in a number of ways. One statistical

distribution that is extensively used to describe

parasite aggregation, is the negative binomial dis-

tribution (NBD) (e.g. Pennycuick, 1971a ; May &

Anderson, 1978; Dietz, 1982; Keymer, 1982;

Kennedy, 1984; Scott, 1987; Guyatt et al. 1990).
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This general use may bring about the situation

where parasite burdens are de facto assumed to fit the

NBD. In human parasite infections, this assumption

has been examined in detail and found to be justified

(e.g. Anderson & May, 1982; Bundy & Medley,

1992; Maizels et al. 1993). However, no comparable

review of animal–parasite infections has been under-

taken. Such an analysis is the aim of this paper.

The NBD is described by 2 parameters, µ – the

mean, and k – an inverse measure of aggregation

(Fisher, 1941). The parameter k can be estimated

crudely using either prevalence of infection, or s# and

x- . A more accurate estimate can be obtained by

maximum likelihood techniques applied to a fre-

quency distribution of parasites within a host

population (Bliss & Fisher, 1953; Anderson &

Gordon, 1982; Dietz, 1982; Lawless, 1987; Pacala &

Dobson, 1988).

We use 49 host–parasite frequency distributions

obtained from a literature review of over 250 parasite

infections of wildlife (Shaw & Dobson, 1995), and

make maximum likelihood estimates of the degree of

parasite aggregation. In all cases, the fit of the data-

sets to the NBD was compared to the fit to the

Poisson distribution (in effect acting as a null random

distribution).

For a given infection, there are often differences in

the sex or age of hosts and where and when the hosts

were sampled. That is, the degree of aggregation is

not likely to be homogeneous in all host groups. In
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fact, most of the mechanisms that have been

proposed to generate the observed aggregated dis-

tribution of parasites depend on heterogeneities in

infection rates between particular groups of hosts. If

encounters with parasites were Poisson distributed

within each host group, this would lead to a

compound Poisson distribution; where the Poisson

mean varies between groups. The NBD is a flexible

compound Poisson distribution, with gamma-dis-

tributed means (Feller, 1943; Anderson, 1976a). A

number of authors (Crofton, 1971; Anderson &

Gordon, 1982; Pacala & Dobson, 1988; Grenfell,

1988, 1992; Grenfell et al. 1986, 1990, 1995a) have

proposed biological explanations for such a dis-

tribution. (1) A series of random infections, with

different densities of infectious stages (Feller, 1943;

Anderson, 1976a). (2) Host individuals vary in

susceptibility to infection, e.g. with sex, or age

(Pennycuick, 1971b ; Anderson, 1974; Anderson,

1976b ; Anderson & May, 1978; Anderson &

Gordon, 1982; Guyatt et al. 1990). (3) Non-random

distribution of infective stages in the habitat, e.g.

laid in clutches, or aggregated in the vicinity of host

individuals (Quenouille, 1949; Keymer & Anderson,

1979; Anderson & Gordon, 1982). Given the above

diversity in mechanisms which all can generate

heterogeneity, an analysis of variations in aggre-

gation within host populations needs to be under-

taken (Anderson & Gordon, 1982; Dietz, 1982;

Scott, 1988; Pacala & Dobson, 1988). Fourteen of

the 49 data-sets could also be split according to the

following host characteristics (Table 2). (1) Host age

(Chubb, 1963, 1964; James & Llewellyn, 1967;

Folstad et al. 1991), (2) host sex (Folstad et al. 1991;

James & Llewellyn, 1967), (3) where hosts were

sampled (Folstad et al. 1991; Stromberg, Toussant

& Dubey, 1978), (4) when hosts were sampled

(Boxshall, 1974; Stromberg & Crites, 1975;

Skorping, 1981; Evans, 1983; Brattey, 1988; Folstad

et al. 1991; Kennedy, 1984). These 14 host–parasite

systems were therefore subdivided according to the

host characteristics provided for each infection

(sometimes more than 1 host characteristic was

present), with the net result 22 sets of data containing

host subsets (Table 2).

We then require a method for testing the signifi-

cance of heterogeneities in aggregation between host

groups. This problem is complicated by the fact that

the mean burden, as well as k, may vary with host

sex, age etc (Pacala & Dobson, 1988). As described

below, we can express this method as an extension of

analysis of variance, in which the degree of ag-

gregation may vary between groups as well as the

mean. As a shorthand, we call this procedure

‘analysis of dispersion’.

In the following sections, we begin by introducing

the data-sets and methods of analysis. The first part

of the results is concerned with whether NBD

provides the best fit to the observed frequency

distributions. Analysis of dispersion is then applied

to the 22 data-sets outlined above. In addition, in

order to help the interpretation of the results, we also

analysed patterns of prevalence and means, which

influence estimates of aggregation (Scott, 1987).

Finally, all the results are then brought together in

the discussion.

  

Data-sets

All but 1 of the 49 data-sets are taken from published

papers on wildlife host–parasite systems. Only

parasite counts were used – no egg count data were

considered. The criteria for selection was a frequency

distribution of the number of parasites}host that was

sufficiently complete to apply maximum likelihood

techniques. The data-sets (Table 1) were divided by

host type as follows. (1) Five invertebrate–parasite

systems ([1] Orconectes rusticus (Stromberg et al.

1978), [2] Herpetocypris reptans (Evans, 1983), [15]

Pisidium subtruncatum, and [16] Valvata piscinalis

(Evans, Whitfield & Dobson, 1981), and [17]

Culicoides crepuscularis (Schmid & Robinson, 1972)).

(2) Fifteen fish–parasite systems ([3–5] Perca fluvi-

atilis (Brattey, 1988; Chubb, 1964; Skorping, 1981),

[6] Esox lucius (Chubb, 1963), [7] Dorosoma cepedi-

anum (Stromberg & Crites, 1975), [8] Pleuronectes

platessa (Boxshall, 1974), [9] Anguilla anguilla

(Kennedy, 1984), [18] Sebastes marinus, and [19]

Sebastes mentella (Williams, 1963), [20] Tristopterus

luscus (Evans et al. 1983), [21] Carassius aurotus

(Breyev, 1973), [22] Rutilus rutilus (Evans, 1978),

and [23–25] Salvelinus alpinus (Henricson, 1977;

Halvorsen & Andersen, 1984)). (3) Four am-

phibian–parasite systems ([26] Rana nigromaculata,

[27, 28] Bufo bufo gargazins (Li & Hsu, 1951) and

[29] Notophthalmus viridescens (Jarroll, 1979)). (4)

Thirteen bird–parasite systems ([10, 38] Sturnus

vulgaris and [11, 39] Turdus musicus (James &

Llewellyn, 1967), and [30–37] Gallus gallus (Hodasi,

1969; Li & Hsu, 1951)). (5) Twelve mammal–

parasite systems ([13] Pedetes capensis (Butynski,

1982), [14] Rangifer tarandus (Folstad et al. 1991),

[40] Peromyscus maniculatus (Ignoffo, 1959), [41, 42]

Mus mus, [43, 44] Rattus rattus, and [46–48] Canis

canis (Li & Hsu, 1951), [45] Mustela vison (Nuorteva,

1966) and [49] Ovis ovis (Milne, 1943)).

In a number of the host–parasite systems (‡ in

Tables 1 and 2) parasite categories were lumped (e.g.

hosts with 10–20 parasites were counted as 1

observed frequency count), and the maximum

likelihood fits to the NBD were calculated from these

lumped categories.

The negative binomial distribution

Only a relatively brief outline of the fitting of the

NBD is presented here, but see Bliss & Fisher
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Table 1. Summary of fits to the NBD

(P values for goodness of fit were calculated as described in the text; k# – maximum likelihood estimate of k ; N – host

sample size; %inf – prevalence of infection; x- – arithmetic mean burden; PD – P values for goodness of fit of data to a

Poisson distribution.)

Host species Parasite species NBD k# N %inf xa PD

1 Orconectes rusticus Paragonimus kellicotti 0±006 0±676 796 58±7 1±775 !0±001

2 Herpetocypris reptans Hymenolepis tenerrima 0±072 0±431 2271 10±3 0±125 !0±001

3 Perca fluviatilis Triaenophorus nodulosus 0±010 6±014 490 57±6 0±873 !0±001

4 Perca fluviatilis Acanthocephalus lucii 0±985 0±542 412 79±6 7±964 !0±001

5 Perca fluviatilis‡ Bunodera luciopercae 0±547 0±228 212 46±2 3±266 !0±001

6 Esox lucius Triaenophorus nodulosus 0±019 0±650 99 75±8 9±000 !0±001

7 Dorosoma cepedianum Camallanus oxycephalus 0±270 2±959 238 56±4 0±979 0±011
8 Pleuronectes platessa Lepeophtheirus pectoralis 0±152 0±792 2261 63±2 1±993 !0±001

9 Anguilla anguilla Acanthocephalus clavula 0±407 0±502 140 60±0 2±450 !0±001

10 Sturnus vulgaris Porrocaecum ensicaudatum 0±605 0±356 122 27±0 0±500 !0±001

11 Turdus musicus Aploparakis dukardinii 0±159 0±252 159 22±6 0±453 !0±001

12 Turdus musicus‡ Prosthorhynchus cylindraceus 0±025 0±329 159 49±1 2±327 !0±001

13 Pedetes capensis† Physaloptera capensis 0±290 0±124 404 42±1 10±983 !0±001

14 Rangifer tarandus‡ Hypoderma tarandi 0±253 1±083 2597 98±8 59±077 !0±001

15 Pisidium subtruncatum Echinoparyphium recurvatum 0±547 0±414 374 40±7 1±441 !0±001

16 Valvata piscinalis Echinoparyphium recurvatum 0±324 0±843 954 71±2 3±038 !0±001

17 Culicoides crepuscularis Chandlerella quiscali 0±305 0±471 143 59±0 2±594 !0±001

18 Sebastes marinus Chondracanthopsis nodusus 0±104 0±223 585 15±2 0±244 !0±001

19 Sebastes mentella Chondracanthopsis nodusus !0±001 0±607 1380 31±9 0±527 !0±001

20 Tristopterus luscus Lernaeocera lusci 0±121 0±774 293 34±8 0±573 !0±001

21 Carassius aurotus Digramma interrupta 0±300 0±118 102 11±8 0±225 !0±001

22 Rutilus rutilus‡ Asymphylodora kubanicum 0±059 0±294 153 62±1 7±164 !0±001

23 Salvelinus alphinus‡ Diphyllobothrium dendriticum 0±948 2±102 50 98±0 12±934 !0±001

24 Salvelinus alphinus‡ Diphyllobothrium ditremum 0±483 1±366 50 98±0 60±379 !0±001

25 Salvelinus alphinus‡ Diphyllobothrium ditremum !0±001 0±521 235 80±0 7±525 !0±001

26 Rana nigromaculata‡ Spiroxys japonica 0±544 0±038 690 12±6 1±298 !0±001

27 Bufo bufo gargarzins‡ Baerietta baeri 0±035 0±085 317 15±8 0±575 !0±001

28 Bufo bufo gargarzins‡ Oswaldocruzia peipingensis 0±003 0±258 162 62±3 11±181 !0±001

29 Notophthalmus viridescens‡ Bothriocephalus rarus 0±028 0±283 272 55±5 4±490 !0±001

30 Gallus gallus Raillietina echinobothrida 0±197 0±653 108 85±2 11±021 !0±001

31 Gallus gallus Raillietina tetragona 0±964 0±266 108 58±3 7±639 !0±001

32 Gallus gallus Ascardia galli 0±021 0±167 108 26±9 0±926 !0±001

33 Gallus gallus Cheilospirura hamulosa 0±023 0±186 108 25±0 0±704 !0±001

34 Gallus gallus Tetrameres fissipina 0±823 0±130 108 32±4 2±722 !0±001

35 Gallus gallus‡ Heterakis gallinae 0±010 0±208 183 55±7 9±111 !0±001

36 Gallus gallus‡ Ascardia galli 0±011 0±246 201 58±7 10±109 !0±001

37 Gallus gallus‡ Cheilospirura hamulosa 0±012 0±188 254 42±1 3±532 !0±001

38 Sturnus vulgaris Brachylaemus fuscatus 0±037 0±100 122 20±5 0±869 !0±001

39 Turdus musicus Brachylaemus fuscatus !0±001 0±126 167 31±7 2±701 !0±001

40 Peromyscus maniculatus Hoplopleura hesperomydis 0±066 0±242 188 48±9 3±205 !0±001

41 Mus mus‡ Syphacia obvelata 0±276 0±271 150 68±0 24±117 !0±001

42 Mus mus‡ Aspiculum tetraptera 0±041 0±257 133 74±4 39±843 !0±001

43 Rattus rattus‡ Heterakis spumosa 0±023 0±297 165 60±6 8±477 !0±001

44 Rattus rattus‡ Cysticerus fasciolaris !0±001 0±640 358 46±1 0±938 !0±001

45 Mustela vison Corynosoma semerne 0±547 1±958 190 75±3 2±242 !0±001

46 Canis canis‡ Ancylostoma caninum 0±001 0±233 202 46±0 3±446 !0±001

47 Canis canis‡ Diroflaria immitis 0±009 0±315 697 51±9 3±017 !0±001

48 Canis canis‡ Diplyidium caninum 0±001 0±307 101 63±4 5±548 !0±001

49 Ovis ovis Ixodes ricinus 0±998 0±590 492 88±2 16±364 !0±001

‡ Probabilistic frequency distributions fitted to ‘ lumped’ categories.

(1953), Elliott (1977), Pielou (1969), or Southwood

(1966) for a more detailed background. Fitting the

NBD required estimates of the mean, µ, and k ; k is

an inverse measure of aggregation. If k approaches

infinity, the NBD converges to a Poisson (i.e. σ#¯µ),

but if k approaches zero, then the NBD converges

to the logarithmic series distribution (Fisher, Corbet

& Williams, 1943; Elliott, 1977). The most accurate

way to calculate k from observed frequency data is

by ML. Bliss & Fisher (1953) proposed an iterative

method for this ; however, here we achieve this by

maximizing the log likelihood directly. Neglecting
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Table 2. Summary of analysis of dispersion for various subsets of host data

(N
s
– the number of subsets host data divided into; k

c
– estimate of common k when differences between mean burdens is

taken into account; P value – significance level associated with the common k analysis test ; x- – significance level associated

with the common mean analysis test ; % – significance level associated with prevalence of infection in subsets.)

Parasite species Subset N
s

k
c

P value x- %

Orconectes rusticus Paragonimus kellicotti Place 2 0±852 !0±001 !0±001 !0±001

Herpetocypris reptans Hymenolepis tenerrima Time 12 0±807 0±003 !0±001 !0±001

Perca fluviatilis Triaenophorus nodulosus Age 3 6±800 !0±001 0±161 !0±001

Perca fluviatilis Acanthocephalus luci Time 6 0±632 0±030 0±001 0±004

Perca fluviatilus‡ Bunodera luciopercae Time 3 0±289 0±005 !0±001 !0±001

Esox lucius Triaenophorus nodulosus Age 2 1±502 !0±001 !0±001 !0±001

Dorosoma cepedianum Camallanus oxycephalus Time 3 4±145 0±168 !0±001 !0±001

Pleuronectus platessa Lepeophtheirus pectoralis Time (year) 2 0±810 !0±001 !0±001 !0±001

Pleuronectus platessa Lepeophtheirus pectoralis Month (1972) 12 2±351 !0±001 !0±001 !0±001

Pleuronectus platessa Lepeophtheirus pectoralis Month (1973) 12 2±922 0±112 !0±001 !0±001

Anguilla anguilla Acanthocephalus clavula Time 3 0±507 0±799 0±667 0±970

Sturnus vulgaris Porrocaecum ensicaudatum Age 2 0±364 0±106 0±986 0±441

Turdus musicus Aploparakis dujardinii Sex 2 0±261 0±337 0±318 0±233

Turdus musicus‡ Prosthorhynchus cylindraceus Sex 2 0±361 0±876 0±005 0±087

Pedetes capensis‡ Physaloptera capensis Sex 2 0±127 0±874 0±002 0±364

Rangifer tarandus‡ Hypoderma tarandi Time (year) 2 1±217 !0±001 !0±001 !0±001

Rangifer tarandus‡ Hypoderma tarandi Age (1985) 5 1±638 !0±001 !0±001 0±049

Rangifer tarandus‡ Hypoderma tarandi Sex (1985) 2 1±657 !0±001 !0±001 0±580

Rangifer tarandus‡ Hypoderma tarandi Herd (1985) 7 1±640 0±288 !0±001 0±638

Rangifer tarandus‡ Hypoderma tarandi Age (1988) 5 0±973 !0±001 !0±001 !0±001

Rangifer tarandus‡ Hypoderma tarandi Sex (1988) 2 0±967 !0±001 !0±001 !0±001

Rangifer tarandus‡ Hypoderma tarandi Herd (1988) 9 1±000 !0±001 !0±001 !0±001

‡ See Table 1 footnote.

constant terms, we minimize L, (minus the log

likelihood):

L¯®3
F

i=!

f
i
\log (e(k)

i
),

where F is the maximum observed frequency, e(k)
i
is

the expected relative frequency of hosts having i

parasites as a function of k and f
i

is the observed

absolute frequency of hosts with i parasites. The

overall goodness of fit can then be tested by

calculating D
i
(the deviance associated with the fit

(Crawley, 1993)) :

D
i
¯2(L®L

prob
),

where L
prob

¯®3
F

i=!

f
i
\log 0 fiN1, f

i
"0,N is the total

number of hosts in the sample and D
i
is approxi-

mately χ# distributed, with B®3 degrees of freedom,

where B¯ the number of categories}bins that

burdens are divided into (maximum parasite bur-

den1 complete frequency distributions, and num-

ber of categories for lumped frequency distri-

butions). This therefore provides a test of goodness

of fit of the distribution (Crawley, 1993). However,

this method tends to overestimate the deviance of the

goodness of fit. In addition 100 goodness of fits were

employed in the analysis and taking the standard P

value of 0±05 to indicate significant differences,

increased the possibility of Type I errors (incorrectly

ascribing significant differences between observed

and expected frequency distributions). Therefore,

using a Bonferroni correction, a more conservative P

value of 0±001 was taken to indicate significance.

Analysis of dispersion

We use maximum likelihood fits to various models in

order to test for significant variations in the mean

and k. An interesting discussion of the possibilities

and pitfalls of this approach is given by Pacala &

Dobson (1988). The methodology is best explained

via a simple example. If we have a worm burden

frequency distribution, collected for male and female

hosts, then in ANOVA terms this corresponds to a

single factor with 2 levels. Given that the mean

and}or k could vary significantly between the 2

groups, we have 4 possibilities. (1) Both the mean

and k vary significantly between groups. Essentially

we fit a separate distribution to each group. (2) The

mean varies significantly, but k does not. In this case

a ‘common k ’ can be assumed. (3) The mean is not

significantly different (‘common mean’), but k varies

between groups. (4) Neither the mean or k vary

(‘common mean and k ’) – the distribution is com-

pletely homogenous with respect to sex.

Given estimates of the deviance associated with

these 4 possibilities we can use an analysis of deviance

(Venables & Ripley, 1995; Wilson, Grenfell & Shaw,

1996) to assess the significance of the various
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(A) (B)

(C) (D)

(E)

Fig. 1. Observed parasite frequency distributions in the host–parasite infections where the Poisson distribution fitted

the data (A), and where the calculated negative binomial distribution was significantly different from the observed

frequency distribution (B–E). In all cases the open bars (*) are the observed frequency distribution, the solid bars

(+) the calculated negative binomial distribution, and the hatched bars ()) the calculated Poisson distribution.

(A) Shad, Dorosoma cepedianum, infected by the nematode Camallanus oxycephalus (Stromberg & Crites, 1975);

(B) Redfish, Sebastes mentella, infected by the copepod Chondracanthopsis nodusus (Williams, 1963); (C) Arctic charr,

Salvelinus alphinus, infected by the cestode Diphyllobothrium ditremum (Halvorsen & Andersen, 1984); (D) the

redwing, Turdus turdus, infected by the digenean Brachylaemus fuscatus (James & Llewellyn, 1967); (E) the rat,

Rattus rattus, infected by the cestode Cysticerus fasciolaris (Li & Hsu, 1951).

heterogeneities. It does not matter in which order

differences between k’s and µ’s are tested, as we are

dealing with the substraction of particular deviances.

In the present paper, we first test whether there

are significant differences in the estimates of k

between groups, by calculating:

D
a
¯D(µ

m
µ
f
k
c
)®[D(µ

m
k
m
)D(µ

f
k
f
)],

where m¯male, f¯ female, c¯ common, and

D(µ
m

µ
f
k
c
)¯deviance associated with separate

means for the male and female data, but a common k,

and D(µ
m

k
m
) and D(µ

f
k
f
)¯ the deviances if separate

distributions are fitted to the male and female data,

respectively. D
a
is approximately χ# distributed, and

the degree of freedom associated with this value is

the number of host groups minus one, i.e. 1. If the

resultant P value (P
a
) is less than 0±001, then there

are significant differences in the degree of aggre-

gation between groups and a common k cannot be

assumed.

If P
a
!0±001, then we test whether there are also

significant differences in the mean burdens between

groups, by calculating

D
b
¯D(µ

c
k
m

k
f
)®[D(µ

m
k
m
)D(µ

f
k
f
)],

where D(µ
c
k
m

k
f
)¯deviance associated with sep-

arate k’s for the male and female data, but a common

mean: and D(µ
m

k
m
) and D(µ

f
k
f
)¯ as for D

a
. D

b
is
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(A)

Fig. 2. For legend see opposite.
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(B)

Fig. 2. (A and B) Observed parasite frequency distributions of those infections in Table 1 where the negative

binomial provided a good fit to the data. In all cases the x-axis is the number of parasites per host, the y-axis the

frequency of particular numbers of parasites per host, the bars (*) are the observed frequency distributions, and the

points (E) the expected negative binomial distribution. The numbers in the top left of the figures correspond to the

host–parasite systems in Table 1.

also approximately χ# distributed, and the degrees of

freedom associated with this value is also the number

of host groups minus one, i.e. 1. If the resultant P

value (P
b
) is less than 0±001, then there are significant

differences in both the mean and k between groups

and a common mean and k cannot be assumed.

Finally, if P
a
"0±001, then we test whether there

are significant differences in the mean burdens

between groups, by calculating

D
c
¯D(µ

c
k
c
)®D(µ

m
µ
f
k
c
),

where D(µ
c
k
c
)¯deviance associated with both a

https://doi.org/10.1017/S0031182098003448 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182098003448


D. J. Shaw, B. T. Grenfell and A. P. Dobson 604

common mean and k, and D(µ
m

µ
f
k
c
)¯ as for D

a
. D

c

is also approximately χ# distributed, and the degrees

of freedom associated with this value is again the

number of host groups minus one, i.e. 1. If the

resultant P value (P
c
) is less than 0±001, then there are

significant differences in the mean burden between

groups, but not k and only a common k can be

assumed.

This method is easily extended to examine

heterogeneities as a function of age, season, etc. The

analyses were carried out using the S-Plus statistical

package (MathSoft, Inc., 1993; Seattle, USA).

Differences in the prevalence of infection between

subgroups were investigated by calculating Pearson

χ# statistics for differences in the proportion of

individuals positive in each subgroup. The degree

of freedom was the number of subgroups minus 1,

and a P value of !0±01 was taken to indicate

significant differences (to reduce Type I errors) in

the prevalence of infection. Correlations between

estimates of k, µ and prevalence of infection were

calculated using Spearman Rank correlations.



NBD fits

Table 1 summarizes the 49 data-sets and the

associated χ# P values testing the fit to both the NBD

and Poisson distribution. Of 49 data-sets 45 (92%)

fitted the negative binomial (Fig. 2), and only 1 fitted

the Poisson (Fig. 1A). However, even with this data-

set the NBD provided a better fit than the Poisson

distribution, and Fig. 1B–E shows that in the 4 data-

sets where the NBD did not fit statistically, the fit

was always better than for the Poisson distribution.

This indicates that all but 1 of the parasite

distributions show significant aggregation, compared

to the Poisson distribution. The estimated degree of

aggregation calculated is quite large – in 43}49

studies k# is less than 1. The variance}mean ratios

(Southwood, 1966) are also significantly greater than

1 in all these cases (Shaw & Dobson, 1995). Mean

burdens varied from 0±125 to over 60, with the

prevalence of infection varying from 10 to 99%.

There are significant positive correlations between

the prevalence of infection, and k# (rho¯0±646, P!
0±001; Fig. 3A), and mean burdens (rho¯0±787,

P!0±001; Fig. 3B).

Heterogeneity in mean burdens and k

Table 2 summarizes the results from the common k

and common mean analyses on the 22 data-sets with

host subdivisions. One feature apparent from Table

2 is that the common k estimate (k
c
) is always greater

than the k# calculated by simply lumping the data

together (see Table 1 for comparison of values).

In 11}22 of the data-sets there was significant

variation in the degree of aggregation between host

subsets (Table 2). Of 22 data-sets 16 (73%) had

significant variation in mean burdens between host

subgroups, even after taking into account whether or

not there was significant variation in the degree of

aggregation. Finally, 14}22 (64%) of the data-sets

had significant variation in the prevalence of in-

fection between host subgroups.

In addition, of the 11 data-sets with significant

differences in the degree of aggregation there were

significant differences in mean burden in 10 (91%)

data-sets and in prevalence of infection 9 (82%)

data-sets (Table 2). Another general result from the

analyses of dispersion (details not shown), was that

both increases in mean burden and prevalence of

infection in host subsets were generally associated

with increases in k# estimates. To illustrate these

latter results Fig. 4A and B show the change in k#

estimates, mean and prevalence for 2 of the 14 data-

sets : perch, Perca fluviatilis, infected by the cestode

Triaenophorus nodulosus (Chubb, 1964); and plaice,

Pleuronectes platessa, caught in 1972 infected by the

copepod, Lepeophtheirus pectoralis, (Boxshall, 1974).

As the figures show, a change in the value of 1 of the

parameters is generally associated with the same

direction of change in the other 2 parameters.



These results provide the broadest evidence to date

for the almost ubiquitous fit of the negative binomial

distribution to parasite burden data (Crofton, 1971;

Anderson & May, 1978; May & Anderson, 1978;

Anderson & Gordon, 1982; Keymer, 1982; Pacala &

Dobson, 1988; Guyatt et al. 1990). This reflects the

fundamentally aggregated distribution of parasites

between hosts. Other probability distributions have

also been proposed to quantify this aggregation – the

Logarithmic series (Williams, 1964), Neyman (1939)

Type A, Thomas (1949) and Po! lya-Aeppli distri-

butions (Po! lya, 1931). However, these latter 3

distributions are limited in their biological appli-

cation (Elliott, 1977), particularly in terms of parasite

frequency data, and the logarithmic series distri-

bution ignores zero counts – which Crofton (1971)

argued often constitute the most important group of

hosts. In addition, they are less flexible distributions

and rarely provide better fits for parasite frequency

data than the NBD.

This excellent fit to the NBD is despite the many

differences between the systems: diversity of host

types (invertebrates–mammals) ; host habitat

(aquatic and terrestrial) ; and parasite taxonomic

class (digeneans–ectoparasites). In addition, the high

degree of aggregation estimated is in agreement with

reviews on human–parasite infections (Anderson,

1978; Anderson & May, 1978; Bundy & Medley,

1992; Guyatt et al. 1990).
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(A)

(B)

Fig. 3. Logit transformed prevalence of infection

(log
"!

(%}(100-%)) of the studies in Table 1 against (A)

the negative binomial parameter estimate, k# on a log
"!

scale and (B) arithmetic mean burden on a log
"!

scale.

Biological sources of aggregation

Crofton (1971) and Pacala & Dobson (1988) and

Grenfell et al. (1995a) have proposed a number of

biological conditions under which a NBD could

arise. A key mechanism is provided by systematic

variation in the acquisition or loss rate of parasites

between different groups of hosts. This analysis has

revealed many such patterns and we discuss these

below. These patterns can be summarized as season,

aggregation of infection stages, and host effects. In

the present paper no specific experimental work was

carried out for each system. Nevertheless, reasonable

hypotheses can be made, based on population

dynamic information.

(1) Seasonality. The occurrence of infectious stages

of parasites in aquatic systems (whether they are

present within invertebrate intermediate hosts or in

water column) is highly seasonal (Gemmell, 1977;

Heyneman, 1958; Keymer, 1982). In general, the

developmental rate of aquatic-living parasitic stages

and invertebrate hosts is temperature dependent.

There are also likely to be differences in climatic

regimes between years. Therefore when a host

population is sampled, a cross-section of individuals

which have experienced varying infection rates is

removed, and the end result will be aggregation.

(2) Aggregation of parasitic stages. The distribution

of infection stages of parasites within a habitat tends

to be heterogeneous (Keymer & Anderson, 1979).

While hosts may encounter infectious stages at

random, the burden associated with an encounter

will be very different, resulting in aggregated

burdens in hosts (Anderson & Gordon, 1982). The

filarial nematode Chandlerella quiscali provides an

interesting illustration of this. There is a diurnal

pattern of the density of nematodes circulating in

definitive host blood (Hawking, 1967), and therefore

gnats are likely to encounter different infection

intensities depending on when they feed (Schmid &

Robinson, 1972).

(3) Host effects. Finally, variation between hosts can

generate aggregated parasite burdens. This variation

can be behavioural, physiological or immunological.

An example of behavioural differences is provided

by the pike, Esox lucius, infected by Triaenophorus

nodulosus (Chubb, 1963). Pike undergo marked

dietary changes as they get older; younger pike eat

minnows and loach (which are not thought to be

principal intermediate hosts for T. nodulosus),

whereas older pike eat perch and gwyniad (which

are).

Host immune responses to parasite infection, can

also alter observed frequency distributions

(Anderson & Gordon, 1982). The strength of the

response can be modulated by host stress (Christian

& Davis, 1964). Male reindeer were associated with

higher mean Hypoderma tarandi burdens and higher

degrees of aggregation. A possible reason for this is

a testosterone-induced immune depression at a

crucial period in the parasite life-cycle; the migration

of larvae towards the dorsal region of the reindeer

(Folstad et al. 1989).

Exceptions to the NBD

Only 1 data-set fitted the Poisson: shad, Dorosoma

cepedianum infected by a nematode, Camallanus

oxycephalus, (Stromberg & Crites, 1975). Further

empirical work is required to see whether a lack of

aggregation is always present in this system, and

whether such factors as little variation in trans-

mission between hosts, or a relatively homogeneous

distribution of infectious stages are causing the

random distribution of parasites. However, even in

this system the negative binomial provided a stat-

istically better fit than the Poisson.

With the 4 observed distributions which did not fit

the NBD, the distributions were all aggregated

(s#}xa "1±7), and again the NBD always provided a

better fit than the PD, emphasizing the plasticity of

the NBD applied to overdispersed distributions.

Analysing dispersion

At present much of the analysis of parasite burdens

concentrates on differences in mean burden, and only
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(A)

(B)

Fig. 4. Negative binomial parameter estimate, k# (_——_), arithmetic mean burden (V[[[[[[V) and prevalence of

infection (n----n) from (A) Perch, Perca fluviatilis, infected by the cestode, Triaenophorus nodulosus, and subdivided

into 3 age-groups, based on size (Chubb, 1964); (B) plaice, Pleuronectus platessa, caught in 1972 infected by the

copepod, Lepeophtheirus pectoralis, and subdivided into the month that the plaice were caught (Boxshall, 1974).

occasionally is account taken of the underlying

aggregated distribution of parasites (Wilson et al.

1996). However, even when authors do take into

account aggregation (e.g. general linear models

(GLM) with negative binomial errors (Venables &

Ripley, 1994)), these GLM’s assume a common k

and therefore just test for differences in mean

burdens. While differences in mean burdens are

important in terms of determining relative levels of

parasite load, of equal importance is how the parasite

burden is distributed between hosts, particularly in

terms of morbidity and the dynamics of transmission

(Guyatt et al. 1990). What is required are statistical

models which consider whether there are significant

differences in the degree of aggregation and mean

burdens between hosts.

The analysis of dispersion technique used in this

paper provides a useful and powerful methodology

to examine differences in both the degree of

aggregation and mean burdens between subgroups

of hosts. As described above, for each of the 22 data

sets with host groups we were able to establish

whether there was just variation in the degree of

aggregation, or mean burden or whether both

parameters varied. Unfortunately, one major dis-

advantage is that the use of ML techniques are

cumbersome and iteratively intense. Of course, a

better approach would be to use a GLM which
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considers both k and the mean, but at present these

are not available (W. N. Venables, personal com-

munication).

Observed patterns of dispersion

When differences in mean burdens between host

groups were taken into account when estimating the

degree of aggregation, then k
c
was always larger than

if all the host data were put together and k# estimated.

That is, putting together host data from different

categories (e.g. age group, sex, location, season),

consistently exaggerates the actual degree of ag-

gregation (see (Dietz, 1982; Pacala & Dobson,

1988)). In addition, as Grafen & Woolhouse (1993)

have shown there are potential problems with

lumping host data which consists of different NBD.

Therefore, wherever possible, k
c
estimates should be

used to describe the degree of aggregation within a

host–parasite system.

The observed positive relationships between the

degree of aggregation, arithmetic mean burden and

prevalence of infection, reveal another generality of

our results : higher mean burdens and k’s are

generally associated with higher prevalence of in-

fection. However, Shaw & Dobson (1996) have

demonstrated that very different mean burdens can

be found with a similar prevalence of infection (and

vice versa) – it depends which host–parasite systems

are being compared. In other words, we cannot

predict what k or the mean burden are likely to be

purely on the basis of the prevalence of infection.

In over half of the data-sets where subsets of host

data were available, significant differences in the

degree of aggregation were observed. Such variations

indicate that the degree of aggregation estimated

from 1 sample, may not be that representative of a

particular host–parasite system as a whole. Indeed

changes in k with age are frequently observed (e.g.

Fig. 4A; Pacala & Dobson, 1988; Quinnell, Grafen

& Woolhouse, 1995), indicating that as large and

representative a sample of a host population is

required before reasonable estimates on the degree of

parasite aggregation present can be made (Gregory

& Woolhouse, 1993).

Overall, the observed k# estimates tended to vary

with the mean burden for the subsets of host data;

with 10}16 data-sets have significant variation in k#

estimates, when the mean burdens were significantly

different. Such ‘tracking’ of the mean by k has been

observed in theoretical work on the relationships

between infection parameters (Gregory & Wool-

house, 1993; Grenfell, Dietz & Roberts, 1995b), and

is related to the fact that the dispersion parameter of

the NBD – k – is not independent of the mean

(Pennycuick, 1971a ; Scott, 1987). In many cases, k

tends to be roughly proportional to the mean (see

Grenfell et al. 1995a)), though in some cases,

immunity or parasite-induced host mortality can

cause k to rise with age as the mean falls (Anderson

& Gordon 1982; Dobson & Pacala 1988; Grenfell et

al. 1995a). The correlation between the mean and k

also suggests that only particular subsets of all the

possible NBDs are actually observed in parasite

frequency distributions. However, further work is

required to actually see whether this is the case.

In conclusion, the NBD is a powerful and robust

tool for describing how parasites are distributed

amongst animal hosts. As illustrated above, a number

of mechanisms are likely to be generating aggregated

distributions. However, subdivisions of host data

also reveal significant (and biologically explicable)

differences in the degree of aggregation within the

data-sets. In addition, the common k value assuming

different group means (k
c
), was always larger than

the k# value calculated when the data are lumped

together. That is, we potentially exaggerate the

overall degree of aggregation of parasites by lumping

data across important host dynamics (Dietz, 1982;

Pacala & Dobson, 1988). Wherever possible, po-

tential heterogeneities within a sample host popu-

lation should be analysed explicitly. Prevalence of

infection, mean burden and k# estimates were posi-

tively related, and changes in one of the parameters

was generally associated with changes in the other

two parameters, indicating the lack of independence

between the parameters used to study infection

(Grenfell et al. 1995a ; Scott, 1987). This paper has

also outlined a powerful method to test for differ-

ences in aggregation and worm burden between host

groups. At present there are no specific GLM which

test for differences in both the degree of aggregation

and mean burdens, and therefore this analysis of

dispersion, while cumbersome, could be extended to

look at other host–parasite dynamics.
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