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From Steklov to Neumann and Beyond, via
Robin: The Szegő Way

Pedro Freitas and Richard S. Laugesen

Abstract. he second eigenvalue of the Robin Laplacian is shown to be maximal for the disk among
simply-connected planar domains of ûxed areawhen theRobin parameter is scaled by perimeter in the
form α/L(Ω), and α lies between −2π and 2π. Corollaries include Szegő’s sharp upper bound on the
second eigenvalue of the Neumann Laplacian under area normalization, andWeinstock’s inequality
for the ûrst nonzero Steklov eigenvalue for simply-connected domains of given perimeter.

he ûrst Robin eigenvalue is maximal, under the same conditions, for the degenerate rectangle.
When area normalization on the domain is changed to conformal mapping normalization and the
Robin parameter is positive, themaximiser of the ûrst eigenvalue changes back to the disk.

1 Introduction

he eigenvalue problem for the Robin Laplacian on a domain Ω ⊂ R2 with Lipschitz
boundary is

−∆u = λu in Ω,
∂u
∂ν

+ αu = 0 on ∂Ω,

where α is a real parameter and ν is the outward unit normal. he corresponding
eigenvalues, denoted λk(Ω; α) for k = 1, 2, . . . , are increasing and continuous as func-
tions of the Robin parameter α, and for each ûxed α satisfy

λ1(Ω; α) < λ2(Ω; α) ≤ λ3(Ω; α) ≤ ⋅ ⋅ ⋅Ð→∞.

Isoperimetric eigenvalue inequalities in the literature typically assume an area nor-
malization of the domain; see, for instance, [2,9,14] and the survey [4],which includes
many related results on Robin eigenvalues.

While this area normalization is natural for Dirichlet and Neumann problems, it
provides onlypart of the story for Robin, because the rescaling relation t2λ(tΩ; α/t) =
λ(Ω; α) shows that the area-normalized product ∣Ω∣λ(Ω; α) is not scale-invariant.
his observation has prompted us to look for natural, scale-invariant isoperimetric
inequalities for eigenvalues of problem (1.1). We claim the most natural formulation
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for planar domains is to keep the domain normalized by area while considering the
Robin parameter scaled by the perimeter of the domain. he eigenvalues under con-
sideration thus become

λ1(Ω;
α

L(Ω)) < λ2(Ω;
α

L(Ω)) ≤ λ3(Ω;
α

L(Ω)) ≤ ⋅ ⋅ ⋅Ð→∞,

where L(Ω) denotes the length of the boundary ∂Ω. Under this new scaling, the be-
havior of eigenvalues changes dramatically with regard to the existence and character-
ization of extremal domains. One consequence is that area-normalized eigenvalues
can now remain bounded from both above and below; we prove in heorem A that
for each real α the scaled and normalized ûrst eigenvalue is maximal for the degen-
erate rectangle, and for each positive α the eigenvalue is bounded below (since it is
positive). Inheorem Ewe show that if one normalizes not the area of the domain but
rather its conformal mapping radius, while maintaining the perimeter scaling, then
the disk is promoted to maximise the ûrst eigenvalue.

he above result for the ûrst eigenvalue hints at a possible prolongation of the
Szegő–Weinberger upper bound [30, 31] for the second eigenvalue from α = 0 to
α ≠ 0. he ûrst Neumann eigenvalue is zero for all domains and so has no preferred
extremal domain. he second Neumann eigenvalue is maximal for the disk by the
Szegő–Weinberger result, and one hopes for this to extend to the Robin eigenvalues,
at least when ∣α∣ is small. Indeed, for α ∈ [−2π, 2π] we show in heorem B that the
second eigenvalue is maximal for the disk among simply-connected planar domains
when the Robin parameter is scaled by perimeter and the domain is normalized by
area.

Hence,we unify two results:Weinstock’s upper bound on the ûrst nonzero Steklov
eigenvalue for domains with given perimeter and Szegő’s upper bound on the ûrst
nonzero Neumann eigenvalue for domains with given area. We also provide an esti-
mate on the value of α > 0 a�er which the disk can no longer remain the maximal
domain.

When α < 0,maximality of the disk for λ2(Ω; α/L(Ω)) implies maximality of the
disk for the unscaled eigenvalue λ2(Ω; α), aswewill show inCorollaryC. he point is
that theunscaled eigenvalueunder areanormalization is equivalent to λ2(Ω; α/∣Ω∣1/2),
where the Robin parameter is scaled not by perimeter but by the square root of area,
and then the (geometric) isoperimetric inequality can be applied. his corollary re-
covers a planar case of our earlier result that the ball maximizes the second Robin
eigenvalue among domains of ûxed volume [14]. hus, under some circumstances,
length scaling of the Robin parameter yields a stronger result than for the unscaled
problem.

In this paperwe concentrate on the 2-dimensional problem, but our proposed scal-
ing and normalization extend naturally to the general dimension n by considering
quantities of the form,

∣Ω∣2/nλ(Ω;
∣Ω∣1−2/n

∣∂Ω∣ α) .

he upper bound on the ûrst eigenvalue in heorem A extends to higher dimensions
in this manner, with an analogous proof. For maximising the second eigenvalue,
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we raise a higher dimensional conjecture for convex domains in section 3,where some
other open problems are discussed too.

2 Notation and Main Results

We consider the quantity

λk(Ω; α/L(Ω))A(Ω), k = 1, 2, . . . ,

in which each eigenvalue is multiplied by the area A(Ω), and the Robin parameter
is scaled by the perimeter L(Ω). his quantity is scale invariant; i.e., its value does
not change when Ω is scaled by a positive constant factor t, thanks to the rescaling
relation t2λ(tΩ; α/t) = λ(Ω; α). In terms of Rayleigh quotients, the one associated
with λk(Ω; α) in equation (1.1) is

Q[u] =
´
Ω ∣∇u∣2 dx + α

´
∂Ω u2 ds´

Ω u2 dx
,

where u ∈ H1(Ω). A�er multiplying by area and replacing α with α/L(Ω), the
Rayleigh quotient takes an appealing “mean value” form

Q[u] =
A(Ω)

ffl
Ω ∣∇u∣2 dx + α

ffl
∂Ω u2 dSffl

Ω u2 dx
,

where we observe that each of the three terms is scale invariant by itself.
he distinction between the normalizing factor that multiplies the eigenvalue and

the scale factor that divides the Robin parameter is central to this paper. hese two
distinct factors lie behind theuniûcation (inCorollaryD) ofWeinstock’s bound on the
ûrst Steklov eigenvalue for given perimeter and Szegő’s bound on the ûrst (nontrivial)
Neumann eigenvalue for given area.

The First Eigenvalue

Undernormalization byAand scaling by L, the ûrst eigenvalue is bounded from above
on general domains for all α, being maximal in the limiting case of a degenerate rec-
tangle. his upper bound is elementary, yet suggestive of the diòerent type of results
we should expect now that the Robin parameter is appropriately scaled. he theorem
also has the virtue of holding for all domains and for both positive and negative values
of the parameter α.

heorem A (Sharp upper bound on λ1 for all α) Fix α ≠ 0. If Ω is a bounded,
Lipschitz planar domain, then

λ1(Ω; α/L(Ω))A(Ω) < α

with equality holding in the limit for rectangular domains that degenerate to a line
segment.

In the omitted case of vanishing α, equality holds for all domains, since
λ1(Ω; 0) = 0.
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Although sharp among all domains, the theorem is not sharp for a ûxed domain
Ω in the limit as α approaches ±∞, in the sense that the ûrst Robin eigenvalue for
any given domain approaches a ûnite number (the Dirichlet eigenvalue) as α → +∞,
and approaches −∞ quadratically rather than linearly as α → −∞, by the asymptotic
formula of Lacey et al. [17,heorem 4.14].

heorem A in the nonstrict, unscaled form λ1(Ω; α) ≤ αL(Ω)/A(Ω) was noted
by several authors previously. he novelty here consists rather of the scaling form and
the asymptotic sharpness of the strict inequality.
Asmentioned in the introduction, in n dimensions,heoremA can be generalized

in a straightforward fashion to apply to λ1(Ω; αV 1−2/n/S)V 2/n whereV is volume and
S is surface area.

The Second Eigenvalue

A Jordan domain is a simply-connected, bounded planar domain Ω whose bound-
ary is a Jordan curve. A Jordan–Lipschitz domain is a Jordan domain with Lipschitz
boundary.

heorem B (perimeter scaling⇒ λ2 maximal for disk) Fix α ∈ [−2π, 2π]. If Ω is a
Jordan–Lipschitz domain then the scale invariant quantity

λ2(Ω; α/L(Ω))A(Ω)

is maximal for the disk. Equivalently,

λ2(Ω; α/L(Ω)) ≤ λ2(D; α/L(D))

where D is a disk with the same area as Ω. Equality holds if and only if Ω is a disk.

he endpoint value α = −2π is special, because it is where λ2(D; α/L(D)) = 0;
indeed, by Proposition 4, the disk D of radius R and perimeter L(D) = 2πR has re-
peated second eigenvalue λ2(D;−1/R) = λ3(D;−1/R) = 0. he corresponding eigen-
functions are u = x1 and u = x2.

he interval of α-values on which heorem B holds could perhaps be expanded.
he theorem must fail as α →∞, though, due toDirichlet eigenvalues being arbitrar-
ily large on long thin domains. In fact, such domains show that the theorem deûnitely
fails for α ≥ 32.7, as explained at the end of section 7. Notice here the reason we can
state the interval in terms of absolute constants ±2π and state the counterexample
with absolute constant 32.7 is because α was divided by L(Ω). Otherwise the perime-
ter would need to be included in all the relevant intervals and constants.

heLipschitz assumption on the boundary inheoremBcouldbeweakened some-
what, since it is used only to guarantee compactness of the imbedding H1 ↪ L2 and
existence of the trace operator on the boundary, and to ensure the chord–arc condi-
tion in Case (ii) of section 7.
A corollary with ûxed negative α (not scaled by perimeter) follows easily from the

theorem with the help of the isoperimetric inequality. Let R(Ω) =
√
A(Ω)/π be the

radius of the disk D having the same area as Ω.
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Corollary C (no scaling⇒ λ2 maximal for disk) If Ω is a Jordan–Lipschitz domain
and α ∈ [−1/R(Ω), 0], then λ2(Ω; α) ≤ λ2(D; α), with equality if and only if Ω is a
disk.

his corollary is a special case of our earlier result [14, heorem A] for arbitrary
domains in all dimensions,whichwas proved using aWeinberger-typemethod. hus,
for the second Robin eigenvalue on simply-connected planar domains, the Szegő
method gives a deûnitely stronger inequality (heorem B) than the Weinberger
method (Corollary C). On the other hand, theWeinberger method oòers additional
�exibility, which we exploited in [14, heorem A] to prove the result of Corollary C
for a larger range of α-values, all the way down to −3/2R(Ω). Further,Weinberger’s
method works regardless of connectivity, whereas heorem B fails for certain doubly
connected domains (annuli), as explained below.

We shall now relate our results to the Neumann and Steklov spectra. To this end
write 0 = µ0 < µ1 ≤ µ2 ≤ ⋅ ⋅ ⋅ for the spectrumof theNeumann Laplacian, and 0 = σ0 <
σ1 ≤ σ2 ≤ ⋅ ⋅ ⋅ for the Steklov spectrum (corresponding to harmonic functions with
∂u/∂ν = σu on the boundary). For an introduction to Steklov spectral geometry, we
highly recommend Girouard and Polterovich’s survey paper [16].

he next result uniûes Weinstock’s upper bound on σ1 under perimeter normal-
ization with Szegő’s upper bound on µ1 under area normalization. Until now these
results have been regarded as diòerent due to their diòerent normalizing factors, al-
though the proofs are clearly closely related [15]. By inspecting the horizontal and
vertical intercepts of α ↦ λ2(Ω; α/L)A, we discover that the Steklov and Neumann
inequalities are in fact two facets of one underlying result,heorem B.

Corollary D (Weinstock [32], Szegő [30]) For Ω a Jordan–Lipschitz domain, the
scale invariant quantities

σ1(Ω)L(Ω) and µ1(Ω)A(Ω)
aremaximal for the disk, and only for the disk.

heWeinstock inequality on σ1(Ω)L(Ω) fails for certain annuli [17, Example 5.14].
Hence, the above corollary and heorem B both fail for general domains that are
not simply connected. On the other hand, by weakening the normalization to area
and considering σ1(Ω)

√
A(Ω), Brock did obtain a result valid for all domains, and

which extends to all dimensions [3]. he Szegő inequality on µ1(Ω)A(Ω) likewise
holds for all domains and extends to all dimensions, as was shown by Weinberger
[31]. hese Brock andWeinberger inequalities are uniûed by our recent work on the
Robin spectrum under volume normalizationwith no scaling of the Robin parameter
[14, Corollary B].

Other Normalizations

If instead of normalizing theRobin eigenvaluewith areawe normalizewith the square
of the conformal mapping radius, then for positive α a geometrically sharp result can
be obtained for the ûrst eigenvalue. he Robin parameter continues to be scaled by
perimeter in what follows.
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heorem E (conformal radius normalization⇒ λ1 maximal for the disk) Suppose
F ∶ D → Ω is a conformal map of the unit disk onto a Jordan–Lipschitz domain Ω. If
α > 0, then the scale invariant quantity

λ1(Ω; α/L(Ω)) ∣F′(0)∣2

is maximal if and only if F is linear and Ω is a disk.

By letting α → ∞, one recovers the result of Pólya and Szegő [28, §5.8] that the
ûrst Dirichlet eigenvalue normalized by conformal mapping radius, λDir

1 ∣F′(0)∣2, is
maximal for the disk.

3 Open Problems and Conjectures

A stronger result than Corollary D is known to hold, namely, that the normalized
harmonicmeans

L
(σ−1

1 + σ−1
2 )/2 and

A
(µ−1

1 + µ−1
2 )/2

of the ûrst two Steklov and Neumann eigenvalues are maximal for the disk, among
simply-connected domains; see [31, p. 634]. A natural question iswhether heorem B
can be strengthened in a similarway to handle the harmonicmean of theRobin eigen-
values λ2 and λ3.
Another open problem is to generalize heorem B to higher dimensions, where

convexity might provide a reasonable substitute for simply connectedness. Given a
domain Ω in higher dimensions, write V for its volume and S for its surface area. Let
B be the unit ball.

Conjecture 1 (perimeter-volume scaling⇒ λ2 maximal for ball) he ball maximises
the scale invariant quantity

λ2(Ω; αV 1−2/n/S)V 2/n

among all convex bounded domains in Rn , when α ∈ [−S(B)/V(B)1−2/n , 0].
Consequently, λ2(Ω; α) ≤ λ2(B; α) for all α ∈ [−1/R, 0], where B = B(R) is a ball

having the same volume as Ω.

Taking n = 2 reduces the conjecture back to λ2(Ω; α/L)A, as in heorem B.
Maximality of the ball among convex domains for the normalized Steklov eigen-

value σ1S/V 1−2/n would follow from Conjecture 1, by arguing as in the plane for
Corollary D. In fact, this maximality of the Steklov eigenvalue at the ball, among
convex domains, has been proved directly by Bucur et al. [5], and one would like to
extend their method to the Robin eigenvalue in order to prove Conjecture 1.
Does heorem E also hold for the second Robin eigenvalue? It does in the limit

α →∞, becauseAshbaugh andBenguria [1, §4]proved for the secondDirichlet eigen-
value that λDir

2 ∣F′(0)∣2 is maximal for the disk. Curiously, this result was not proved
by employing conformal mapping to create trial functions for the second eigenvalue.
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Instead, they combined their sharp PPW inequality on the ratio of the ûrst two eigen-
values with Pólya and Szegő’s bound on the ûrst eigenvalue, using the decomposition

λDir
2 ∣F′(0)∣2 = λDir

2

λDir
1

( λDir
1 ∣F′(0)∣2) ,

where each factor on the right side is maximal for the disk. In view of this Dirichlet
result, it seems natural to conjecture that the second Robin eigenvalue is maximised
at the disk.

Conjecture 2 (conformal radius normalization⇒ λ2 maximal for the disk) Suppose
F ∶ D → Ω is a conformal map of the unit disk onto a Jordan–Lipschitz domain Ω. If
α > 0, then the scale invariant quantity

λ2(Ω; α/L(Ω)) ∣F′(0)∣2

is maximal when F is linear and Ω is a disk.

We already discussed the limit α → ∞. At the other extreme, when α = 0 the
conjecture says µ1∣F′(0)∣2 is maximal when F is linear and Ω is the disk, where µ1 is
the ûrst positive eigenvalue of the Neumann Laplacian. his claim is certainly true,
as it follows from Szegő’s theorem [30] maximising µ1A for the disk, noting that the
ratio ∣F′(0)∣2/A = ∣F′(0)∣2/

´
D ∣F′(z)∣2 ∣dz∣2 is maximal when F′ is constant, that is,

when F is linear and Ω is a disk.
heorem E could perhaps be generalized to cone metrics on the disk and other

geometric situations considered in theDirichlet case by Laugesen andMorpurgo [23].

Eigenvalue Sums

he methods of this paper do not seem to extend to eigenvalue sums of the form
λ1 + ⋅ ⋅ ⋅ + λm , because composition with a conformal map does not preserve L2-
orthogonality of trial functions,while pre-compositionwith aMöbius transformation
of the disk can help only to the extent of a few degrees of freedom.
Composition with a linear transformation, on the other hand, does preserve L2-

orthogonality. hat observation has generated a number of sharp upper bounds on
sums of Robin and magnetic Robin eigenvalues for domains that are linear images
of rotationally symmetric domains, in work by Laugesen et al. [22,heorem 3.2] and
Laugesen and Siudeja [24,heorem 3.3], [25,heorem 3],with generalizations to star-
like domains aswell [26,heorem 3.5]. he Robin parameter in these results is scaled
by various geometric factors of the domain such as its moment of inertia [24, Lemma
5.3], and thus the scaling is more complicated than the perimeter factor used in this
paper.

he methods of this paper also do not appear to extend to reciprocal sums of the
form1/λ1+ ⋅ ⋅ ⋅ +1/λm or to spectral zeta functions, because thenumerator

´
Ω ∣∇u∣2 dx+

α
´
∂Ω u2 ds of the Robin Rayleigh quotient is not conformally invariant.
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Lower Bounds—Literature and Discussion

To complete the context for this paper’s upper bounds on eigenvalues, we mention
the Faber–Krahn type lower bound on the ûrst eigenvalue, λ1(Ω; α)A(Ω) ≥ λ1(D; α)
A(D), proved for α > 0 by Bossel [2] and extended to the n-dimensional case by
Daners [9]. An alternative approach via the calculus of variations was found more
recently by Bucur and Giacomini [7, 8], with a quantitative version by Bucur et al.
[6]. Among the family of rectangles of given area, the square is the minimizer [12,
heorem 4.1], as shown byKeady andWiwatanapataphee [19] by using appealing con-
vexity arguments (see also [12,heorem 4.1]). Many more results for rectangles, and
conjectures for general domains, are presented by Laugesen [21].
For the reverse inequality when α < 0, which is known as the Bareket conjecture,

a great deal is now known for domains near the disk by Ferone et al. [11], and for
general domains when ∣α∣ is small by Freitas and Krejčiřík [13], while annular coun-
terexamples have been discovered for large ∣α∣. References and a fuller discussion are
provided in our earlier paper [14, §1].
For a lower bound on the second eigenvalue, Kennedy [20] observed that Krahn’s

two-disk argument for the Dirichlet Laplacian carries across to the Robin case as a
corollary of Bossel’s inequality for the ûrst eigenvalue. For more on spectral shape
optimization, we recommend the survey volume edited by Henrot [17].

4 Proof of Theorem A

Substituting the constant trial function u(x) ≡ 1 into the Rayleigh quotient gives the
upper bound

λ1(Ω; α/L)A ≤
0 + (α/L)

´
∂Ω 12 ds´

Ω 12 dx
A = α.

We show that this inequality must be strict. If equality held, then the constant trial
function u would be a ûrst eigenfunction, and so λ1(Ω; α/L)u = −∆u = 0, which
means λ1(Ω; α/L) = 0. From equality holding we would deduce α = 0, contradicting
a hypothesis in the theorem. Hence, equality cannot hold and the inequality is strict.

To show equality is attained asymptotically for rectangles degenerating to a line
segment, consider the family of rectangles Ωt having side lengths t and 1/t, area
A(t) = 1, and perimeter L(t) = 2(t + t−1), where t ≥ 1. By separation of variables
and using a known lower bound on the ûrst eigenvalue of an interval [12, Appendix
A.1], one gets for ûxed α > 0 that

λ1(Ωt ; α/L(t))A(t) ≥ α − Oα(t−2) as t →∞.

Hence,

(4.1) λ1(Ωt ; α/L(t))A(t)→ α as t →∞,

and so equality is attained asymptotically in the theorem.
he argument is similar when α < 0, by using hyperbolic trigonometric instead of

trigonometric functions for the separated eigenfunctions. ∎
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Figure 1: Plot of the ûrst Robin eigenfunction g(r) of the unit disk, for various values of α,
normalized with g(0) = 1. When α = 0, one sees g(r) is the constant Neumann eigenfunction
with eigenvalue 0, and when α = ∞ it is the Dirichlet eigenfunction J0( j0,1r) with eigenvalue
j20,1 . Between these extremes, g(r) = J0(

√

λ1 r) where λ1 = λ1(D; α) > 0 is the eigenvalue.

5 The Robin Spectrum on the Disk

he proof of heorem B will require some properties of the Robin eigenvalues and
eigenfunctions on the unit diskD. Separating variables in the Robin eigenvalue prob-
lem (1.1) with u(r, θ) = g(r)T(θ) implies that the angular part satisûes T ′′(θ) +
κ2T(θ) = 0, where κ ≥ 0 is an integer. When κ = 0 (giving a constant function T)
the eigenfunctions on the disk are purely radial. For positive values of κ the angular
function T(θ) equals cos κθ or sin κθ, and the eigenvalues havemultiplicity 2.

he radial part g satisûes the Bessel-type equation

g′′(r) + 1
r
g′(r) + ( λ − κ2

r2
) g(r) = 0

due to the eigenfunction equation −∆u = λu, while the boundary condition

∂u
∂ν

+ αu = 0

at r = 1 implies g′(1) + αg(1) = 0. he key facts about the ûrst and second eigen-
values and eigenfunctions are summarized in the next propositions and in Figure 1
and Figure 2, which are taken from [14, Section 5], where the ball was handled in all
dimensions. he spectral curves for the disk are illustrated in [14, Figure 3].
For simplicity, since the domain is ûxed in this section, we do not rescale α by the

perimeter 2π of the disk. hus, the range α ∈ [−2π, 2π] in heorem B corresponds
here to α ∈ [−1, 1].

Proposition 3 (First Robin eigenfunction of the disk) he ûrst eigenvalue of D is
simple, and changes sign at α = 0 according to

λ1(D; α)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

< 0 when α < 0,
= 0 when α = 0,
> 0 when α > 0.
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Figure 2: Plot of the radial part g(r) of the second Robin eigenfunction of the unit disk, for
various values of α, normalized with g′(0) = 1. When α = −1, it is the straight line g(r) = r
and λ2(D;−1) = 0. When α > −1, one has g(r) = (const.)J1(

√

λ2 r) where λ2 = λ2(D; α) > 0
is the eigenvalue. he eigenfunctions are g(r) cos θ and g(r) sin θ.

he ûrst eigenfunction is radial (κ = 0), with g(0) > 0 and g′(0) = 0. If α < 0, then
g′(r) > 0; if α = 0, then g′(r) = 0; and if α > 0, then g′(r) < 0, when r ∈ (0, 1).

Proposition 4 (Second Robin eigenfunctions of the disk) he eigenfunctions for the
double eigenvalue λ2(D; α) = λ3(D; α) have angular dependence (κ = 1),meaning they
take the form

g(r) cos θ and g(r) sin θ .
he radial part has g(0) = 0, g′(0) > 0, g(r) > 0 for r ∈ (0, 1), and g(1) > 0. When
α ≤ 0, one ûnds g(r) is strictly increasing,with g′(r) > 0. When α > 0, the derivative g′
is positive on some interval (0, rα) and negative on (rα , 1), for some number rα ∈ (0, 1).

he eigenvalue changes sign at α = −1, with

λ2(D; α) = λ3(D; α)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

< 0 when α < −1,
= 0 when α = −1,
> 0 when α > −1.

A couple of the assertions in Proposition 4 when α > 0 are not included in [14,
Section 5], and so we justify them here. he radial part of the second Robin eigen-
function is g(r) = (const.)J1(

√
λ2(D; α) r). As α increases from 0 to ∞, the eigen-

value increases from the second Neumann eigenvalue to the second Dirichlet eigen-
value of the unit disk, and so j′1,1 <

√
λ2(D; α) < j1,1. (Numerically, j′1,1 ≃ 1.84 and

j1,1 ∼ 3.83.) he Bessel function J1 vanishes at 0 and at j1,1, and has positive derivative
on (0, j′1,1) and negative derivative on ( j′1,1 , j1,1). Hence, g(1) > 0, and g′ is positive
on the interval (0, rα) and negative on (rα , 1),where the number rα = j′1,1/

√
λ2(D; α)

lies between 0 and 1.

6 Center of Mass Argument

In this section, Ω is a simply-connected planar domain, and g(r) is a continuous
function for 0 ≤ r ≤ 1 with 0 = g(0) < g(1). Deûne continuous functions
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u2 = g(r) cos θ and u3 = g(r) sin θ ,
on the unit disk D. he following center of mass result will be used in proving
heorem B.

Lemma 5 (Center of mass) If v1 is an integrable real-valued function on Ω with´
Ω v1 dx > 0, then a conformal map f to D → Ω can be chosen such that the functions

v2 = u2 ○ f −1 and v3 = u3 ○ f −1 are orthogonal to v1:ˆ
Ω
v2v1 dx = 0 and

ˆ
Ω
v3v1 dx = 0.

Szegő [30, Section 2.5] treated the case v1 ≡ 1 by an approximate identity argument
and elementary index theory. Hersch [18] reformulated the argument more geomet-
rically, avoiding Szegő’s use of approximate identities. For the sake of completeness,
we include a version ofHersch’s proof below.

Proof of Lemma 5 Fix a conformal map F ∶ D → Ω, and let H(z) = g(r)e iθ where
z = re iθ ∈ D. Note that H is continuous on the closed disk, including at the origin,
since g(0) = 0. Deûne a complex-valued function (vector ûeld) on the disk by

V(ζ) =
ˆ

Ω
H(Mζ(F−1(x)))v1(x) dx , ζ ∈ D,

where

Mζ(z) =
z + ζ
1 + zζ

, z ∈ D,

is aMöbius map of the unit disk D to itself.
Notice that Mζ(z) remains continuous as a function of (ζ , z) ∈ D×D (where now

we allow ∣ζ ∣ = 1), taking values in D. hus, the vector ûeld V(ζ) is well deûned for
ζ ∈ D, and is continuous at each point by a simple application of dominated con-
vergence, using continuity and boundedness of H. he boundary behavior is easily
determined: when ζ = e iϕ , one has Mζ(z) = e iϕ for all z ∈ D, and so

V(e iϕ) = g(1)e iϕ
ˆ

Ω
v1 dx , ϕ ∈ [0, 2π].

hus, the continuous vector ûeldV points radially outward on the unit circle, because
g(1)
´
Ω v1 dx > 0 by construction.

Index theory, or the Brouwer ûxed point theorem, implies that V vanishes some-
where in the interior of the disk. hat is, V(ζ) = 0 for some ζ ∈ D, which means
H ○ f −1 is orthogonal to v1, where f = F ○M−1

ζ . Because H = u2 + iu3 by deûnition,
we conclude that u2 ○ f −1 and u3 ○ f −1 are orthogonal to v1. ∎

7 Proof of Theorem B

A�er rescaling, we can suppose Ω has area π, so that D is the unit diskD. Our goal is
to show

λ2(Ω; α/L(Ω)) ≤ λ2(D; α/2π) , α ∈ [−2π, 2π].
Note on the right side that λ2(D; α/2π) ≥ 0 by Proposition 4, since α/2π ≥ −1.
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Let u2 and u3 be the second Robin eigenfunctions of the unit disk with Robin
parameter α/2π, which from Proposition 4 have the form

u2 = g(r) cos θ and u3 = g(r) sin θ ,

where g is smooth with 0 = g(0) < g(1). Take a conformal map f from D onto Ω,
and deûne

v2 = u2 ○ f −1 and v3 = u3 ○ f −1 .

hese functions belong to H1(Ω), because they are bounded and smooth with

(7.1)
ˆ

Ω
∣∇vk ∣2 dx =

ˆ
D
∣∇uk ∣2 dx <∞, k = 2, 3,

by conformal invariance of the Dirichlet integral. Note v2 and v3 extend continuously
to ∂Ω, since f −1 extends continuously (using that ∂Ω is a Jordan curve).

he conformal map can be chosen by Lemma 5 to ensure the orthogonality rela-
tions ˆ

Ω
v2v1 dx = 0 and

ˆ
Ω
v3v1 dx = 0,

where v1 is the ûrst Robin eigenfunction on Ω for Robin parameter α/L(Ω); note
here that v1 does not change sign, and so we can assume its integral is positive. hus
v2 and v3 are valid trial functions for λ2(Ω; α/L(Ω)). Taking v2 as a trial function in
the Rayleigh principle for the second eigenvalue shows that

λ2(Ω; α/L(Ω))
ˆ

Ω
v2
2 dx ≤

ˆ
Ω
∣∇v2∣2 dx +

α
L(Ω)

ˆ
∂Ω

v2
2 ds.

his formula pulls back under the conformal map to

λ2(Ω; α/L(Ω))
ˆ
D
u2

2 ∣ f ′∣2 dx ≤
ˆ
D
∣∇u2∣2 dx +

α
L(Ω)

ˆ
∂Ω

v2
2 ds,

due to the conformal invariance in (7.1). Substituting the deûnition u2 = g(r) cos θ
gives

λ2(Ω; α/L(Ω))
ˆ
D
g(r)2(cos θ)2∣ f ′∣2 dx ≤
ˆ
D
( g′(r)2 cos2 θ + r−2g(r)2 sin2 θ) dx + α

L(Ω)

ˆ
∂Ω

v2
2 ds.

An analogous formula holds for u3, with the roles of cos and sin interchanged.
Adding that formula to the preceding one and using that cos2 θ+ sin2 θ = 1 and hence
v2
2 + v2

3 = g(1)2 on ∂Ω, we deduce

(7.2) λ2(Ω; α/L(Ω))
ˆ
D
g(r)2∣ f ′∣2 dx ≤

ˆ
D
( g′(r)2 + r−2g(r)2) dx + αg(1)2 .

Equality holds if Ω is the unit disk and f is the identity map, since u2 and u3 are the
second eigenfunctions of the disk, which means

(7.3) λ2(D; α/2π)
ˆ
D
g(r)2 dx =

ˆ
D
( g′(r)2 + r−2g(r)2) dx + αg(1)2 .
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Combining (7.2) and (7.3) gives that

(7.4) λ2(Ω; α/L(Ω))
ˆ
D
g(r)2∣ f ′∣2 dx ≤ λ2(D; α/2π)

ˆ
D
g(r)2 dx .

To make further progress, we will compare the integrals of g2 on the le� and right.
Suppose Ω is not a disk. We will show when α ≤ 2π that

(7.5)
ˆ
D
g(r)2 dx <

ˆ
D
g(r)2∣ f ′∣2 dx .

Szegő proved inequality (7.5) under the assumption that g is increasing, which in our
Robin situation holds when α ≤ 0. We will extend his method to handle α ≤ 2π. To
start with,

ˆ
D
g(r)2∣ f ′∣2 dx −

ˆ
D
g(r)2 dx = −

ˆ 1

0
g(r)2 d

dr
(πr2 −

ˆ
D(r)

∣ f ′∣2 dx)dr

=
ˆ 1

0
2g(r)g′(r)(πr2 −

ˆ
D(r)

∣ f ′∣2 dx)dr

by integration by parts, noting that the boundary terms vanish, because

(7.6) π = A(Ω) =
ˆ
D
∣ f ′∣2 dx .

Hence,

(7.7)
ˆ
D
g(r)2∣ f ′∣2 dx −

ˆ
D
g(r)2 dx =

ˆ 1

0
2g(r)g′(r)πr2( 1 −M(r))dr,

where

M(r) = 1
πr2

ˆ
D(r)

∣ f ′∣2 dx

is the mean value function. he mean value is increasing due to subharmonicity of
∣ f ′∣2. More directly, one can write f (z) = ∑∞n=0 anzn as a power series and substitute
into M(r) to obtain

(7.8) M(r) = 1
πr2

ˆ
D(r)

∣ f ′(ρe iθ)∣2 ρ dρdθ =
∞

∑
n=1

n∣an ∣2r2(n−1) ,

which plainly increases as a function of r. Further, since Ω is not a disk we have
f (z) /≡ a0 + a1z, and so an ≠ 0 for some n ≥ 2, which implies by (7.8) that M(r) is
strictly increasing as a function of r.

he area normalization (7.6) gives M(1) = 1, and so M(r) < 1 for r ∈ (0, 1).
If α ≤ 0, then g and g′ are both positive on (0, 1) byProposition 4, and so inequality

(7.5) follows from (7.7).
Next assume 0 < α ≤ 2π. Deûne

G(r) =
ˆ r

0
2g(ρ)g′(ρ)πρ2 dρ, r ∈ [0, 1].
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Formula (7.7) becomes
ˆ
D
g(r)2∣ f ′∣2 dx −

ˆ
D
g(r)2 dx =

ˆ 1

0
G′(r)( 1 −M(r))dr

=
ˆ 1

0
G(r)M′(r) dr

a�er integrating by parts, since G(0) = 0 and M(1) = 1. We want this last integral to
be positive, so that (7.5) holds. Because M′(r) > 0, it suõces to show that G(r) > 0
for r ∈ (0, 1). Recall from Proposition 4 that when α > 0, the function g is positive
on (0, 1), while g′ is positive on some interval (0, rα) and negative on (rα , 1). hus,
G′ is positive on (0, rα) and negative on (rα , 1), and so to show G(r) is positive for
r ∈ (0, 1), we need only show that G(1) ≥ 0. he next lemma shows that indeed
G(1) ≥ 0, and so inequality (7.5) is proved when 0 < α ≤ 2π.

Lemma 6 If 0 < α ≤ 2π and g is the radial part of the eigenfunction for λ2(D; α/2π),
then ˆ 1

0
2g(r)g′(r)πr2 dr ≥ 0.

Proof By section 5, one has g(r) = J1(
√

λ2r), where λ2 = λ2(D; α/2π) > 0. Apply-
ing this formula for g and making a change of variable, we are reduced to showing
that ˆ √λ2

0
2J1(r)J′1(r) r2 dr ≥ 0.

he antiderivative for the le� side is J0(r)J2(r)r2, as one can check using standard
Bessel formulas [27, Eq. (10.6.1) and (10.6.2)]. Hence, the inequality to be proved is

J0(
√

λ2)J2(
√

λ2)λ2 ≥ 0.

Note that the second Robin eigenvalue λ2 of the disk is less than the second Dirichlet
eigenvalue j21,1 of the disk, which in turn is less than j22,1. herefore, J2(

√
λ2) > 0, and

so the last displayed inequality holds if and only if J0(
√

λ2) ≥ 0. hus, we want to
show

√
λ2 ≤ j0,1, or λ2(D; α/2π) ≤ j20,1.

he Robin eigenvalue increases with α, and since α ≤ 2π by hypothesis, it suõces
to take α = 2π and show λ2(D; 1) ≤ j20,1. For this, observe that u = J1( j0,1r) cos θ is
a nonradial eigenfunction of the Laplacian on the unit disk with eigenvalue j20,1. We
conûrm that u satisûes theRobin boundary conditionwith α = 1, namely, ∂u/∂ν+u =
0 at r = 1, by computing

j0,1 J′1( j0,1) + J1( j0,1) = − j0,1 J′′0 ( j0,1) − J′0( j0,1) = 0,

where we used the relation J1 = −J′0 and the Bessel equation r2 J′′0 (r) + rJ′0(r) +
r2 J0(r) = 0. Since u is nonradial it is not the ûrst eigenfunction, and so λk(D; 1) = j20,1
for some k ≥ 2, which implies λ2(D; 1) ≤ j20,1, as needed. ∎

To complete the proof ofheorem B, we divide into two cases.
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Case (i): −2π < α ≤ 2π. he positivity of λ2(D; α/2π) when α > −2π enables us
to use inequality (7.5) on the right side of (7.4), concluding that λ2(Ω; α/L(Ω)) <
λ2(D; α/2π) when Ω is not a disk. hat proves the theorem.

Case (ii): α = −2π. In this case λ2(D; α/2π) = λ2(D;−1) = 0 and so (7.4) gives that
λ2(Ω;−2π/L(Ω)) ≤ 0 = λ2(D;−1), which is the inequality in the theorem. Suppose
now that equality holds, so that

λ2(Ω;−2π/L(Ω)) = 0.

he remaining task is to show Ω is a disk.
his part of the argument follows Weinstock’s equality case [32, §3]. He assumed

the boundary of Ω to be analytic, whereas we assume only Lipschitz smoothness.
We invoke subtle results from complex analysis to ensure that the harmonic function
log ∣ f ′∣ equals thePoisson integral of its boundary values. heneed for such care in the
Lipschitz casemay not have been recognized in earlier treatments [15,heorem 1.3].

Suppose equality holds above, meaning λ2(D; α/2π) = 0. hen α = −2π and the
eigenfunctions u2 and u3 for the disk are the coordinate functions x1 and x2, by the
case “α = −1” in Proposition 4, with g(r) = r.
Equality holds in (7.2), because both sides of the inequality equal 0. By theRayleigh

principle, the trial functions v2 and v3 used to derive (7.2) must therefore be eigen-
functions onΩwith eigenvalue 0. hus, v2 and v3 satisfy the (weak formof) theRobin
boundary condition, which we proceed to investigate.

Since ∂Ω is a rectiûable Jordan curve, the derivative f ′ of the conformal map
belongs to the analytic Hardy space and the boundary values f ′(e iθ) provide the
Jacobian factor for arclength (see [10, heorem 3.12] and remarks following it). hat
is, ds = ∣ f ′(e iθ)∣ dθ where ds denotes the arclength element on ∂Ω. We will show
that ∣ f ′(e iθ)∣ is constant a.e.

he weak formulation of the eigenfunction equation for v2 on Ω, with α = −2π
and eigenvalue 0 as above, saysˆ

Ω
∇v2 ⋅ ∇ψ dx − 2π

L(Ω)

ˆ
∂Ω

v2ψ ds = 0, ψ ∈ H1(Ω).

Pulling back to D, we deduce by conformal invariance thatˆ
D
∇u2 ⋅ ∇ϕ dx = 2π

L(Ω)

ˆ
∂D

u2ϕ∣ f ′∣ dθ , ϕ ∈ C∞(D),

wherewe note thatψ = ϕ○ f −1 belongs toH1(Ω). Recall u2 = x1 = r cos θ. By applying
Green’s theorem on the le� side of the last equation, we ûndˆ 2π

0
(cos θ)ϕ(e iθ) dθ = 2π

L(Ω)

ˆ 2π

0
(cos θ)ϕ(e iθ)∣ f ′(e iθ)∣ dθ , ϕ ∈ C∞(D).

Since ϕ is arbitrary, it follows that

cos θ = 2π
L(Ω)(cos θ)∣ f

′(e iθ)∣

for almost every θ, which means ∣ f ′(e iθ)∣ = L(Ω)/2π a.e. hus, ∣ f ′∣ is constant a.e.
on the unit circle.
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Wewill show ∣ f ′∣ is constant on the unit disk. We start by proving the Jordan curve
J = ∂Ω has the chord–arc property,meaning

length ( J(x , y)) ≤ C∣x − y∣, x , y ∈ J ,

for some constant C, where J(x , y) is the shorter arc of J between x and y. Suppose
the chord-arc property fails. By considering C = 1, 2, 3, . . . , one constructs sequences
xn , yn ∈ J such that

(7.9) length ( J(xn , yn)) > n∣xn − yn ∣.

Notice ∣xn− yn ∣→ 0, since the length of J(xn , yn) is bounded by the length of J,which
is ûnite. Further, by compactness we can assume the sequences xn and yn converge
to some point x ∈ J. he domain Ω has Lipschitz boundary by hypothesis, and so the
curve J can be represented near x as the graph of a Lipschitz function. hat is, a�er
suitably rotating the coordinate system, there is a disk B centered at x and a Lipschitz
function b ∶ R → R such that B ∩ J = B ∩ {(t, b(t)) ∶ t ∈ R}. Let β be the Lipschitz
constant. For all n large enough that the points xn and yn lie in the disk B, choose sn
and tn such that xn = (sn , b(sn)) and yn = (tn , b(tn)). hen

length ( J(xn , yn)) ≤
√

1 + β2 ∣sn − tn ∣ ≤
√

1 + β2 ∣xn − yn ∣,

which contradicts (7.9) as n →∞. herefore, J must satisfy the chord–arc property.
he chord–arc property of ∂Ω implies that Ω is Ahlfors-regular [29, Proposition

7.7], and hence the conformal map f satisûes the Smirnov condition [29, Proposi-
tion 7.5 andheorem 7.6], which says that on D the harmonic function log ∣ f ′∣ equals
the Poisson integral of its boundary values. Its boundary values are constant a.e., by
our work above, and so log ∣ f ′∣ is constant on D. hus, ∣ f ′∣ is constant, and so f ′ is
constant, which means f is linear and Ω is a disk, as we wanted to show. ∎

Next we justify the claim made earlier in the paper that heorem B fails when
α > 32.7. Speciûcally, we show that

(7.10) λ2(D; α/L(D))A(D) < α when α > 32.7,

so that by (4.1) the diskD gives a smaller value than a long thin rectangleΩt , for large
t, and hence the disk is not themaximizer.

To prove (7.10), recall from section 5 (see Figure 2) that the second eigenfunction
of the disk with positive Robin parameter α/L(D) = α/2π has radial part g(r) =
J1(

√
λ2 r) where

√
λ2 ∈ ( j′1,1 , j1,1) is chosen to satisfy the Robin boundary condition

g′(1) + (α/2π)g(1) = 0. hat condition can be rearranged to say

(7.11) α = −2π
√

λ2 J′1(
√

λ2)
J1(

√
λ2)

.

Since λ2 is a strictly increasing function of α,we can invert and regard α as a function
of λ2 (see [14, Section 5] with n = 2 and κ = 1). By the last formula, the condition
α > λ2π in (7.10) is equivalent to

−2 J′1(x)
x J1(x)

> 1,
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where x =
√

λ2 ∈ ( j′1,1 , j1,1). Solving numerically, the inequality holds for 3.2261 ≤
x < j1,1 where we rounded the root up to 3.2261. Substituting this root into (7.11) and
again rounding up, we obtain a range 32.7 ≤ α <∞ on which (7.10) holds.

8 Proof of Corollary C

We can assume Ω has area π, a�er rescaling, and so the task is to show λ2(Ω; α) ≤
λ2(D; α) when α ∈ [−1, 0].

he isoperimetric inequality L(Ω) ≥ 2π implies α ≤ 2πα/L(Ω) when α ≤ 0, and
so

λ2(Ω; α) ≤ λ2(Ω; 2πα/L(Ω)) ,

because the Robin eigenvalues are increasing functions of α. he assumption α ∈
[−1, 0] ensures 2πα ∈ [−2π, 0], and so heorem B can be applied with α replaced by
2πα, giving

λ2(Ω; 2πα/L(Ω)) ≤ λ2(D; 2πα/L(D)) = λ2(D; α).

Combining the last two inequalities proves the corollary.
If equality holds, then Ω must be a disk, by the equality statement in heorem B.

9 Proof of Corollary D

hat µ1(Ω)A(Ω) is maximal for the disk, under area normalization, is the case α = 0
ofheorem B.

Weinstock’s result, saying the diskmaximises the ûrst nontrivial Steklov eigenvalue
under perimeter normalization, requires a littlemore explanation. he Steklov spec-
trumof the Laplacian is denoted 0 = σ0 < σ1 ≤ σ2 ≤ ⋅ ⋅ ⋅,where the eigenvalue problem
is

∆u = 0 in Ω,
∂u
∂ν

= σu on ∂Ω.

hus, σ belongs to the Steklov spectrum exactlywhen 0belongs to theRobin spectrum
with α = −σ .
A�er rescaling Ω we can suppose it has area π. he task is to prove σ1(Ω)L(Ω) ≤

2π, since σ1(D) = 1. Choosing α = −2π in heorem B yields

λ2(Ω;−2π/L(Ω)) ≤ λ2(D;−2π/L(D)) = λ2(D;−1) = 0.

Also, λ2(Ω; 0) = µ1(Ω) > 0. Since the Robin eigenvalues vary continuously with
α, a value α̃ ∈ [−2π, 0) must exist for which λ2(Ω; α̃/L(Ω)) = 0. Choose α̃ to be
the greatest such number, so that λ2(Ω; α/L(Ω)) > 0 for all α > α̃. hen −α̃/L(Ω)
belongs to the Steklov spectrumofΩ, and is in fact the smallest positive Steklov eigen-
value, σ1(Ω). Hence, σ1(Ω)L(Ω) = −α̃ ≤ 2π, as we needed to show.

If equality holds then α̃ = −2π, and so the equality statement in heorem B (with
α = −2π) implies that Ω is a disk.
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10 Proof of Theorem E

Fix α > 0. he Robin eigenfunction on the disk corresponding to λ1(D; α/2π) has
radial form u1 = g(r), by Proposition 3. Adapting Pólya and Szegő’s method [28],
we deûne v1 = u1 ○ F−1 on Ω. his function is smooth and bounded, and belongs
to H1(Ω) by conformal invariance of the Dirichlet integral. Employing v1 as a trial
function in the Rayleigh principle for the ûrst eigenvalue yields

λ1(Ω; α/L(Ω))
ˆ

Ω
v2
1 dx ≤

ˆ
Ω
∣∇v1∣2 dx +

α
L(Ω)

ˆ
∂Ω

v2
1 ds,

which pulls back under the conformal map F to

λ1(Ω; α/L(Ω))
ˆ
D
u2

1 ∣F′∣2 dx ≤
ˆ
D
∣∇u1∣2 dx +

α
L(Ω)

ˆ
∂Ω

v2
1 ds,

by conformal invariance of the Dirichlet integral.
Substituting u1 = g(r), which in particular gives v1 = g(1) on ∂Ω, we obtain

(10.1) λ1(Ω; α/L(Ω))
ˆ
D
g(r)2∣F′∣2 dx ≤

ˆ
D
g′(r)2 dx + αg(1)2 .

For the le� side of the inequality, note that

(10.2) ∣F′(0)∣2
ˆ
D
g(r)2 r drdθ ≤

ˆ
D
g(r)2∣F′(re iθ)∣2 r drdθ ,

because

(10.3) ∣F′(0)∣2 = ∣ 1
2π

ˆ 2π

0
F′(re iθ) dθ∣

2
≤ 1

2π

ˆ 2π

0
∣F′(re iθ)∣2 dθ .

Multiply inequality (10.2) by λ1(Ω; α/L(Ω)), which is positive, since α > 0, and then
substitute into (10.1), getting

λ1(Ω; α/L(Ω)) ∣F′(0)∣2 ≤
´
D g′(r)2 dx + (α/2π)

´
∂D g(1)2 ds´

D g(r)2 dx
= λ1(D; α/2π),

as we wanted to prove.
If equality holds in the theorem, then equality must hold in (10.2), and hence also

in (10.3) for r ∈ (0, 1). By substituting the power series for F into (10.3) and setting
the two sides equal, we deduce that F′ is constant, and hence F is linear.

Note added in proof. he third Robin eigenvalue of a simply connected planar do-
main is maximal for the disjoint union of two equal disks (which are approached in a
suitable limiting sense), under the same scaling and normalization as imposed in this
paper, when α ∈ [−4π, 0]. See A. Girouard and R. S. Laugesen, Robin spectrum: two
disks maximize the third eigenvalue, preprint, https://arxiv.org/abs/1907.13173.
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