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The paper presents a low-order prediction scheme for the noise change in multistream
jets when the nozzle geometry is altered from a known baseline. The essence of the
model is to predict the changes in acoustics due to the redistribution of the mean flow
as computed by a Reynolds-averaged Navier–Stokes (RANS) solver. A RANS-based
acoustic analogy framework is developed that addresses the noise in the polar direction
of peak emission and uses the Reynolds stress as a time-averaged representation of the
action of the coherent turbulent structures. The framework preserves the simplicity of
the Lighthill acoustic analogy, using the free-space Green’s function, while accounting
for azimuthal effects via special forms for the space–time correlation combined with
source–observer relations based on the Reynolds stress distribution in the jet plume.
Results are presented for three-stream jets with offset secondary and tertiary flows
that reduce noise in specific azimuthal directions. The model reproduces well the
experimental noise reduction trends. Principal mechanisms of noise reduction are
elucidated.
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1. Introduction
The exhaust of jet engines continues to be a significant contributor to aircraft

noise. The problem is particularly acute for medium-bypass ratio, high-performance
turbofan engines that are envisioned to power the next generation of supersonic
transports. Even for large-bypass ratio engines on commercial subsonic aircraft, jet
noise remains a problem and an active area of research. For fixed engine cycle,
jet noise reduction is achieved through some sort of modification of the exhaust
nozzle. Such modifications have included chevrons (Brown, Bridges & Henderson
2011), fluidic injection (Henderson 2010; Powers, McLaughlin & Morris 2015),
plasma excitation (Samimy et al. 2004) and offset-stream nozzles (Papamoschou &
Debiasi 2001; Papamoschou 2004; Henderson 2012; Papamoschou, Xiong & Liu
2014; Henderson, Leib & Wernet 2015; Huff & Henderson 2016; Papamoschou et al.
2016), the last having motivated the present study. These approaches have been
subjected to numerous experimental and computational investigations. Computational
tools like large eddy simulation (LES) have progressed to the point where they can

† Email address for correspondence: dpapamos@uci.edu

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0001-9867-6209
mailto:dpapamos@uci.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2017.730&domain=pdf
https://doi.org/10.1017/jfm.2017.730


556 D. Papamoschou

provide high-fidelity, time-resolved solutions to the flow field (Bridges & Wernet
2012). Combined with surface integral methods, these computations yield far-field
noise spectra that are becoming increasingly reliable (Brès et al. 2017). However, the
high computational cost, long turnaround times and enormity of data sets associated
with LES-based approaches render them impractical for design purposes. There is
need for low-order tools that can provide rapid guidance to the designer of exhaust
systems regarding their potential to reduce noise. The robustness of such tools
hinges on capturing the salient physics of noise generation and noise reduction.
Identifying the salient physical processes of noise reduction is relevant not only to
the development of rapid prediction tools but also to the interpretation of the vast
data sets generated by experiments and time-resolved computations. It is therefore the
goal of this effort to provide the framework of a physics-based methodology for the
treatment of complex nozzle configurations considered for advanced flight vehicles.

The predominant low-order modelling tool used today consists of an acoustic
analogy coupled with a Reynolds-averaged Navier–Stokes (RANS) solution of the
flow field. The original acoustic analogy formulation by Lighthill (1952) uses the
free-space Green’s function and can yield satisfactory results for round jets (Morris
& Farassat 2002). Improvements have included the effect of refraction by the mean
flow, which requires solving the linearized Euler equations (Morris & Boluriaan
2004; Goldstein & Leib 2008). Simplification is often sought through the locally
parallel-flow approximation, in which case the Green’s function can be reduced
to analytical forms. This approach has yielded accurate predictions for jets from
round nozzles as well as nozzles with chevrons and fluidic injection (Depuru Mohan
& Dowling 2016). For the chevron and fluidic-injection jets, azimuthal effects on
propagation were not considered, which is a reasonable simplification given that the
mean flow is mostly axisymmetric.

For asymmetric jets, inclusion of refraction effects becomes a much larger challenge.
Yet, it is critical to account for them in some fashion in order to capture the azimuthal
variation of noise emission and the noise suppression enabled by offset-stream
concepts. Even under the simplification of the parallel-flow approximation, the
construction of the Green’s functions involves complex numerical procedures (Leib
2014). The parallel-flow approximation itself poses the risk of disregarding flow
features that could play a critical role in the generation or suppression of noise.
Application to three-stream jets with offset tertiary duct has shown initial promise
(Henderson et al. 2015), although the asymmetry in the modelled azimuthal directivity
was weaker than the experimental one. There is no question that the rigorous acoustic
analogy approach that involves numerical solutions for the Green’s functions is a
direction that should be pursued and ultimately will yield accurate results. However,
the computational complexity and cost motivate the search for a simpler option
that will give the designer initial guidance in real time, once the RANS solution is
available.

The present effort therefore seeks the development of a practical, physics-based
methodology for predicting the changes in acoustics imparted by nozzle modifications,
with emphasis on techniques that induce asymmetry in the nozzle plume. The focus
is on predicting the change in peak noise, relative to a known reference jet, due
to the redistribution of the time-averaged flow field as computed by a RANS
solver. It is widely agreed that the peak noise is generated by coherent turbulent
structures, so this will be a central element in the theoretical development. The
approach is influenced by the large body of work on acoustic analogy, starting with
Lighthill (1952) and including Harper-Bourne (1999), Morris & Farassat (2002) and
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Noise modelling of complex jets 557

many others cited in following sections. The model maintains the simplicity of the
free-space Green’s function used in the original Lighthill acoustic analogy and induces
azimuthal directivity through a novel formulation of the space–time correlation of
the Lighthill stress tensor. Moreover, we avoid the complication of connecting the
volumetric source to a surface source in an attempt to induce azimuthal directivity,
as was done in a predecessor effort (Papamoschou & Rostamimonjezi 2012). The
present model is based solely on a volumetric source.

2. Framework of the approach

This section provides context for the analysis that follows. The concepts presented
here will have direct impacts on the development of the predictive model.

2.1. Representation of coherent structures
The focus of this work is on the peak jet noise, which is widely agreed to originate
from ‘large-scale’ or ‘coherent’ turbulent structures in the jet (McLaughlin, Morrison
& Troutt 1975; Tam & Burton 1984). The RANS flow field, of course, is devoid
of any time-resolved information that one could connect to coherent structures. To
bridge this gap, we look at the main contributions of the large eddies: the transport
of quantities such as momentum, heat, species, etc., across the jet. Focusing on the
momentum transport, in a statistical sense the effect of turbulent eddies is captured
by the velocity correlation u′u′, where ( ) denotes the ensemble average, or the
associated Reynolds stress tensor −ρu′u′. The coherent structures induce the largest
contributions to the Reynolds stress. The Reynolds stress itself controls the production
of turbulence, as expressed by the evolution equation for the turbulent kinetic energy
(Mathieu & Scott 2000)

Dk
Dt
=−u′u′ : ∇u− ε. (2.1)

Here D/Dt means the total derivative associated with the mean flow, ∇u is the mean
velocity gradient and ε is the dissipation. Even though this equation is written in
a simplified form for homogeneous turbulence, it nevertheless captures the essential
premise of the current work: the action of the turbulent eddies is best represented
by the Reynolds stress, not the turbulent kinetic energy. The turbulent kinetic energy
k is an integral effect of the production and dissipation terms in (2.1). It will be
shown that there are significant differences in the distributions of the Reynolds stress
and turbulent kinetic energy in the jet flow field, which have a direct impact on the
modelling attempted here.

In summary, the Reynolds stress will be a central element of the modelling effort. It
will guide the appropriate definition of a convective Mach number, and will influence
the amplitude of the space–time correlation.

2.2. Suppressed communication through the jet flow
A central assumption of the model is that the sound generated by coherent structures
in the direction of peak emission (shallow polar angles to the jet axis) radiates
mostly outward, with minimal radiation inward (through the jet flow). For a physical
explanation, consider first a single-stream jet. The convective velocity of the shear
layer eddies has been measured by a number of studies to be in the range of 60–70 %
of the jet exit velocity (Doty & McLaughlin 2005; Morris & Zaman 2010b). As a
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result, the convective Mach number of the eddies relative to the ambient is larger
than the convective Mach number relative to the jet flow. For exhaust conditions
typical for aeroengines, the outer convective Mach number is high subsonic or
supersonic, while the inner convective Mach number is low subsonic. This means
high radiation efficiency (a term that will be defined in § 3.7) for outward propagation
and very low radiation efficiency for inward propagation. The sound that propagates
inward and emerges from the opposite side of the jet is very weak compared to the
outward-propagated sound. This concept will be generalized to a multistream jet in
§ 3.7.

The suppression of inward radiation is supported by measurements of the azimuthal
coherence of the jet pressure field. For separation angle of 180◦, and for frequencies
of relevance to aircraft noise (Strouhal numbers of the order of one or higher), the
azimuthal coherence is zero (Viswanathan, Underbrink & Brusniak 2011). If even
a tiny fraction of the eddy-generated sound ‘leaked’ through the other side of the
jet, a finite coherence would be expected. In fact, the azimuthal coherence is very
weak for much smaller separation angles, indicating (i) the finite azimuthal scale of
the eddies and (ii) the suppression of inward propagation. Finally, the suppression of
inward propagation, and finiteness of the azimuthal scales, are evident by a wealth
of data on the sound emission of jets with induced asymmetry (including data in this
paper) which show azimuthal variations of up to 15 dB, a factor of 30 in pressure
amplitude. Such large azimuthal changes would not be possible if inward propagation
were appreciable. The experimental evidence is not limited to asymmetric jets. Jets
from nozzle with inserts or lobes show distinct azimuthal variations in the far-field
sound (Powers et al. 2015).

The picture becomes murkier and more complex at large polar angle to the jet axis.
There, the outward radiation efficiency can be very weak, even at high convective
Mach number. So, the inner and outward propagation could be of competing strengths.
Indeed, experiments show that, at large polar angles, loud events on one side of the
jet can increase the sound emission on the opposite side. Until a better physical
understanding of sound refraction at large polar angle is developed, the arguments
presented in the previous two paragraphs can only be confidently applied in or near
the direction of peak emission. Consequently, the scope of the analysis that follows
is confined to the peak radiated sound.

2.3. Dominance of outer shear layer
As a corollary to the notion of suppressed communication through the jet flow, we
argue that the sound generated by the coherent structures of the outermost shear layer
of the jet is not significantly effected by refraction effects. In past works refraction has
been approached from the standpoint of localized sources embedded in a mean flow
(Mani 1976; Tam & Auriault 1998). This concept is questionable as far as outward
radiation from large-scale coherent structures is concerned. These coherent structures
are in direct contact with the irrotational ambient medium, so the sound generation
involves a direct coupling between the turbulent motion and the pressure field. Mean
flow–acoustic interactions are deemed negligible, except in polar directions close to
the angle of growth of the jet flow. We will further argue that, in multistream jets of
relevance to aircraft propulsion, the outermost shear layer is the strongest contributor
to peak noise. This is because, for velocity ratios typical of turbofan engines, the
convective Mach numbers of the inner shear layers are expected to be much lower
than the convective Mach number of the outer shear layer (Papamoschou 2004), and
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Noise modelling of complex jets 559

thus the inner shear layers are expected to radiate sound at a reduced efficiency
compared to the outer shear layer. This point will be illustrated by the data of the
present study and is further supported by recent investigation of the pressure in the
very near field of single- and dual-stream jets (Papamoschou & Phong 2017).

3. Acoustic analogy model
3.1. Fundamental solution

We review briefly the Lighthill acoustic analogy (Lighthill 1954), emphasizing features
that are salient to the present modelling effort. Referring to figure 1, the noise source
region occupies a volume V , locations y and y′ refer to points inside the source
region, and location x is a field point outside the source region. The distances
between the field point and the source locations are r= |x–y| and r′= |x–y′|. Through
a rearrangement of the Navier–Stokes equations, the pressure fluctuation p′ outside
the source region can be shown to satisfy the linear inhomogeneous wave equation

1
a2
∞

∂2p′

∂t2
−

∂2p′

∂xi∂xi
=
∂2T ij

∂yi∂yj
, (3.1)

where a∞ is the speed of sound of the uniform stationary medium surrounding the
source and T ij is the Lighthill stress tensor

T ij = ρuiuj + (p− a2
∞
ρ)δij − τij. (3.2)

Here ρ is the density, p is the pressure, ui is the velocity vector and τij denotes the
viscous stress tensor. The exact solution of (3.1) in three-dimensional free space is

p′(x, t)=
∂2

∂xi∂xj

∫
V

T ij

(
y, t−

r
a∞

)
1

4πr
d3y, (3.3)

where 1/(4πr) represents the spatial distribution of the free-space Green’s function.
Applying the chain rule, and neglecting terms that decay faster than the inverse first
power of the distance, the double divergence is converted to a second time derivative,

p′(x, t)=
1

a2
∞

∫
V
ϑiϑj

∂2T ij

∂t2

(
y, t−

r
a∞

)
1

4πr
d3y, (3.4)

where

ϑi =
xi − yi

r
(3.5)

is the direction cosine between observer and source. Even though the derivative
transformation in (3.4) is commonly associated with a far-field approximation, it is
important to note that (3.4) gives the acoustic pressure everywhere, that is, in the
near field and in the far field (Lighthill 1954; Harper-Bourne 2002, 2003). This is
because the neglected terms in the transformation decay faster than r−1 and thus
comprise the hydrodynamic pressure.
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560 D. Papamoschou

FIGURE 1. Set-up of the Lighthill acoustic analogy model.

3.2. Spectral density
Using (3.4) the autocorrelation of the pressure at observer location x0 is

p′(x0, t)p′(x0, t+ τ)=
1

16π2a4
∞

∫
V

∫
V
[ϑiϑjϑ

′

kϑ
′

l ]0

×
∂2T ij(y, t− r0/a∞)

∂t2

∂2T kl(y′, t+ τ − r′0/a∞)
∂t2

1
r0r′0

d3y′ d3y. (3.6)

Here ( ) denotes the expected value or ensemble average, r0= |x0− y|, and r′0= |x0−

y′|. We assume stationarity in time and define accordingly the space–time correlation
of the Lighthill stress tensor as

Rijkl(y, y′, τ )= T ij(y, t)T kl(y′, t+ τ). (3.7)

The stationarity allows us to take the time differentiation outside the correlation of
(3.6), writing it as ∂4/∂τ 4( ) (Papoulis 1965). In addition, it enables the time shift
t− r0/a∞→ t. These steps result in

p′(x0, t)p′(x0, t+ τ) =
1

16π2a4
∞

∫
V

∫
V
[ϑiϑjϑ

′

kϑ
′

l ]0

×
∂4

∂τ 4
Rijkl

(
y, y′, τ +

r0 − r′0
a∞

)
1

r0r′0
d3y′ d3y. (3.8)

The spectral density is the Fourier transform of the autocorrelation,

S(x0, ω)=

∫
∞

−∞

p′(x0, t)p′(x0, t+ τ) e−iωτ dτ . (3.9)

Inserting (3.8),

S(x0, ω)=
α4

16π2

∫
V

∫
V

∫
∞

−∞

[ϑiϑjϑ
′

kϑ
′

l ]0Rijkl(y, y′, τ )
exp[iα(r0 − r′0)− iωτ ]

r0r′0
dτ d3y′ d3y,

(3.10)
where α = ω/a∞ is the acoustic wavenumber. Equation (3.10) gives the acoustic
component of the spectral density everywhere. At this point the only assumption is
the stationarity in time of the flow statistics.
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3.3. Coordinate system
The study of azimuthal effects necessitates the use of a cylindrical polar coordinate
system in the implementation of (3.10). The complexity of the problem requires the
inclusion of Cartesian and spherical coordinates. The three coordinate systems used
here are illustrated in figure 2: Cartesian (X, Y, Z); cylindrical polar (X, y, φ); and
spherical (R, θ, φ). The Cartesian coordinate system will also be described by indices
1 (X), 2 (Y) and 3 (Z), with the index 23 referring to combined properties on the
cross-stream (Y–Z) plane. Index 4 will refer to time.

Selection of an appropriate jet axis, on which the definitions of radial distance y and
azimuthal angle φ are based, is critical for capturing the azimuthal effects on noise
emission. In this regard, the nozzle axis is a poor choice because asymmetric jets have
distorted mean velocity profiles and could be vectored in directions off the nozzle axis.
In § 3.6 the Lighthill stress tensor will be connected to the Reynolds stress, whose
dominant component scales with the magnitude of the mean velocity gradient

G= |∇u|. (3.11)

The decision then is to define the centre of the jet as the point where the Reynolds
stress vanishes, or G = 0, within the jet flow. This definition is straightforward for
the region past the end of the primary potential core, where the profile of the mean
flow is Gaussian-like. There, the location of G = 0 coincides with the location of
the maximum mean velocity umax. For the region of the jet comprising the primary
potential core, the locations of G = 0 or umax are ill defined. However, one can
calculate fairly reliably the centroid of the high-speed region defined by a criterion
like u > 0.9umax. In fact, this criterion can be extended to the region past the end
of the primary potential core where, for noisy experimental or numerical data, it
provides a more reliable estimate of the location of umax. Therefore, for a given axial
station X = X1, we identify the region of high-speed flow using the criterion

u(X1, Y, Z) > 0.9umax(X1). (3.12)

Considering a flow with symmetry about the X–Y plane, we denote Yi, i= 1, . . . ,N,
the Y locations at which this criterion is satisfied. Then, the jet centroid is computed
according to

Yc(X1)=
1
N

N∑
i=1

Yi. (3.13)

Subsequently, the Y-coordinates of all the data points at this axial station are
decremented by Yc, so that Y = 0 becomes the centroid location. This process is
applied to all the axial stations within the computational domain.

3.4. Far-field approximation
The far-field version of (3.10) is now developed, using the coordinate systems depicted
in figure 2. The source locations are described in cylindrical polar coordinates

y= (X, y, φ), y′ = (X′, y′, φ′). (3.14a,b)

In the spherical coordinate system, the observer is situated at

x0 = (R, θ0, φ0). (3.15)
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Centroid

FIGURE 2. Coordinate systems.

For R� `, where ` is a characteristic dimension of the source, ϑi ≈ ϑ
′

i ≈ xi/R and
1/(r0r′0)≈ 1/R2. Further,

r0 − r′0 ≈ (X
′–X) cos θ0 + sin θ0[y′ cos(φ′ − φ0)− y cos(φ − φ0)]. (3.16)

Although the axial source separation X′–X readily appears on the right-hand side, the
radial and azimuthal separations are interconnected and cannot be separated cleanly
into distinct terms. This is an important consequence of using the polar-cylindrical
coordinate system to express the source location; it will prevent the formulation of the
spectral density as a four-dimensional Fourier transform of the space–time correlation,
a common procedure in past treatments of the acoustic analogy (Morris & Farassat
2002; Dowling & Hynes 2004).

On defining the projection of Rijkl along the observer direction as

R0000(y, y′, τ )= [ϑiϑj ϑkϑl]0 Rijkl(y, y′, τ ) (3.17)

the spectral density for the far-field observer becomes

S(x0, ω)=
α4

16π2R2

∫
V

∫ π

−π

∫
∞

0

∫
∞

0

∫
∞

−∞

R0000(y, y′, τ )

× exp(iα cos θ0(X′–X)− iωτ)
× exp{iα sin θ0[y′ cos(φ′ − φ0)− y cos(φ − φ0)]} dτ dX′y′ dy′ dφ′ d3y. (3.18)

In (3.18) the integrals over the shifted space and time coordinates are shown explicitly,
while the integration over the source volume V is displayed compactly. The spatial
coordinates in the exponent arise from the free-space Green’s function in the frequency
domain.

3.5. Model for the space–time correlation
The space–time correlation model used here is defined in a fixed frame of reference.
It is guided by experimental measurements of space–time correlations in the flow or
near acoustic field of turbulent jets (Harper-Bourne 2003; Doty & McLaughlin 2005;
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FIGURE 3. Illustration of the typical shape of the axial space–time correlation.

Morris & Zaman 2010b; Viswanathan et al. 2011), with important simplifications and
modifications. Figure 3 sketches the typical shape of the axial space–time correlation
of a fluctuating quantity (velocity, velocity squared, pressure, etc.). The evolution
of the timewise correlation R4 reflects the convection of turbulence with a velocity
Uc and its decorrelation with increasing axial separation |X′–X|. At zero spatial
separation, R4 is the autocorrelation and decays approximately exponentially with
the time separation τ . With increasing |X′–X|, the timewise correlation peaks at
τ = (X′–X)/Uc and is modulated by the axial correlation R1(X′–X); in addition, the
shape of R4 broadens and becomes more Gaussian-like. Negative loops are evident
throughout the evolution of R4. For finite axial separation, the space–time correlation
is not symmetric around τ = 0, reflecting the non-stationarity of spatial statistics and
the associated increase of length and time scales with downstream distance.

Having noted the principal features of the axial space–time correlation, we outline
the simplifications and modifications implemented here. The timewise and axial
correlations will be treated as symmetric functions, thus neglecting the effects of
spatial non-stationarity on their distributions. The timewise correlation R4 will have
fixed shape with axial separation and will include a transverse propagation time, in
addition to the axial propagation time noted above. In the transverse dimensions of
the problem, we will employ a mixed correlation R23 whose precise form will be the
subject of detailed analysis. The resulting correlation has the form

Rijkl(y, y′, τ ) = Aijkl(y)R1

(
X′–X
L1(y)

)
R23(y, y′, φ, φ′, L23(y))

×R4

τ −
X′–X
Uc(y)

−
d

Vc(y)
τ∗(y)

 . (3.19)

Here Aijkl is the amplitude of the correlation; R1 and R4 are the axial and timewise
correlations, respectively; R23 is a mixed radial/azimuthal correlation; L1 and L23 and
are the correlation length scales in the axial and transverse directions, respectively;
and τ∗ is the correlation time scale. The timewise correlation R4 includes axial and
transverse propagation times. The axial propagation time (X′–X)/Uc is connected
to the streamwise eddy convection at velocity Uc. The transverse propagation time
d/Vc is a special construct that will be shown to induce azimuthal directivity in
the emission of the sound. It is based on a transverse distance d and a transverse
propagation velocity Vc. The axial and transverse convective Mach numbers are
Mc = Uc/a∞ and µc = Vc/a∞, respectively. Equation (3.19) shows explicitly the
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dependence of the amplitude and correlation scales on the source location y. This
notation will be henceforth dropped to reduce clutter.

The notion of a transverse propagation time scale can be found in the works of
Harper-Bourne (2003), Raizada & Morris (2006) and Miller (2014). In this study,
the concept should not be seen as anything more than a mathematical construct
to induce azimuthal influence, as will be demonstrated in the analysis of § 3.5.3.
Nevertheless, it is helpful to have some insight as to the physical meaning of Vc.
Consider two points separated laterally at the same axial location. If the turbulence
is highly uncorrelated spatially, so that the correlation scale is much smaller than
the separation of the two points, the speed at which a disturbance propagates from
the first point to the second point cannot exceed the local acoustic velocity. On the
other hand, if the turbulence convects downstream in highly organized patterns whose
correlation scale is much larger than the separation of the two points, then the lateral
propagation speed depends on the axial convective velocity and the shape of the
‘wavefronts’. If a given wavefront arrives simultaneously at the two points, the lateral
propagation speed is infinite. Experimental measurements of the second-order radial
cross-correlation in subsonic jets by Morris & Zaman (2010a) suggest a very fast,
yet finite, lateral convection velocity. In the uncorrelated case, a transverse convective
Mach number of the order of 1 (µc ∼ 1) represents an upper bound. In the strongly
correlated case, µc can be as high as ∞ in which case the transverse term drops out
from the argument of R4.

3.5.1. Generic shape for the correlations
The correlation shapes employed here fall under the class of the ‘stretched

exponential’

Rj(t)= e−|t|
βj
, (3.20)

also called the Kohlrausch function (Wuttke 2012). The flexibility provided by this
function will be used in the axial ( j= 1) and timewise ( j= 4) dimensions, where the
range 0.7 6 βj 6 2 will be allowed. On the transverse plane ( j= 23) only the integer
value β23 = 2 will be considered for the sake of numerical efficiency.

Since Rj is an even function, its Fourier transform is real and equal to twice the
cosine transform:

R̂j(η)= 2
∫
∞

0
Rj(t) cos(ηt) dt. (3.21)

Note that R̂j assumes the analytical forms

R̂j(η)=
2

1+ η2
, βj = 1

R̂j(η)=
√

πe−(1/4)η
2
, βj = 2.

 (3.22)

For powers βj other than 1 (exponential) or 2 (Gaussian) the Fourier transform
does not have an analytical expression and needs to be calculated numerically. For
computational efficiency, the transform R̂j(η) was computed once and was tabulated
versus η and βj; subsequent operations used two-dimensional interpolation of the
table. Great care is required in evaluating near βj = 2 where the shape of the Fourier
transform is extremely sensitive on 2− βj.
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FIGURE 4. Correlation function (a) and its Fourier transformation (b) for various values
of β.

The stretched exponential will be used here with a reference scale, that is, Rj(t)=
exp(−|t/τ |βj). Its Fourier transform is simply τ R̂j(τη). Evaluated at η= 0, it gives the
integral scale τ R̂j(0). It can be shown that

R̂j(0)=
1
βj
Γ

(
1
βj

)
, (3.23)

where Γ is the gamma function (Wuttke 2012). For 0.7 6 βj 6 2, the corresponding
range for R̂j(0) is 1.266 > R̂j(0)> 0.886. Thus, the integral scale is not too different
from the reference scale.

Figure 4 illustrates the behaviour of the stretched exponential and its transform for
0.7 6 βj 6 2, the range allowed in this study. For clarity the transform is shown in
decibels. The sensitivity of the transform on the power β is apparent and represents
a key ingredient of the optimization process employed here. For the selected range of
βj, the Fourier transform is non-negative for all frequencies.

3.5.2. Axial and timewise Fourier transforms
The timewise integration in (3.18) amounts to a Fourier transform in the time

separation τ . Given the slow axial development of the flow, the X′ integral can be
approximated as an integral over the axial separation X′–X ranging from −∞ to
∞, and thus can also be treated as a Fourier transform in X′–X. This assumes that
the scale of the axial correlation is much smaller than the distances X or X′ and
neglects the fact that X and X′ have a finite origin at zero. Fourier transforms in the
transverse dimensions of the problem are not feasible or appropriate. As indicated in
the discussion of (3.16), the radial and azimuthal components of the Green’s function
cannot be expressed in terms of separations y′ − y and φ′ − φ. Even if one were
to overlook this fact, the concept of a Fourier transform in the radial separation
y′ − y breaks down because of the rapid evolution of the flow in the radial direction:
the radial correlation scale cannot be considered small compared to either y′ or y.
Similarly, the azimuthal correlation scale is not necessarily small compared to 2π to
attempt a Fourier transform in φ′.

We conclude that Fourier transformation is only possible in the timewise and axial
directions; the procedure is rigorous in the timewise dimension and acceptable as an
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approximation in the axial dimension. Inserting the correlation form (3.19) in (3.18),
and carrying out the Fourier transforms in τ and X′–X, we obtain

S(x0, ω)=
α4

16π2R2

∫
V

A0000τ∗L1R̂1

[
αL1

(
1

Mc
− cos θ0

)]
R̂4[ωτ∗] exp

(
−i
αd
µc

)
×

∫ π

−π

∫
∞

0
R23 exp{iα sin θ0[y′ cos(φ′ − φ0)− y cos(φ − φ0)]}y′ dy′ dφ′ d3y. (3.24)

Omitting the arguments, we write this compactly as

S(x0, ω)=
α4

16π2R2

∫
V

A0000τ∗L1πL2
23R̂1R̂4R̃23 d3y, (3.25)

where

R̃23 =
1

πL2
23

∫ π

−π

∫
∞

0
R23(y, y′, φ, φ′)

× exp
{

iα sin θ0[y′ cos(φ′ − φ0)− y cos(φ − φ0)] − iα
d
µc

}
y′ dy′ dφ′. (3.26)

In (3.25) the term πL2
23 represents a cross-stream correlation area, and the product

τ∗L1πL2
23 can be viewed as a four-dimensional correlation ‘volume’. As discussed in

§ 3.5.1, the functions R̂1 and R̂4 are real and non-negative. The meaning and behaviour
of R̃23 will be the topic of the discussion that follows.

3.5.3. Cross-stream correlation
As noted in § 3.5.2, the transverse correlation R23 is not amenable to Fourier

transforms. Instead, the spectral transformation of R23 takes the form of the integral
of (3.26). Evaluation of this integral, and determination of allowable forms for R23
and the separation distance d, are governed by the requirement that the power spectral
density S(x0, ω), given by (3.25), be real and non-negative. To satisfy this requirement
for an arbitrary source distribution, R̃23 must be real and non-negative (recall that R̂1

and R̂4 are real and non-negative for the class of correlation functions selected here).
A further requirement is that R23 be periodic in the azimuthal separation φ′ − φ.

Equation (3.26) entails integration over the cross-stream plane. Its evaluation is
facilitated by examining key geometric relations on this plane. Figure 5 depicts the
projections of source elements y and y′ and the resulting geometric relations on the
cross-stream plane, with the observer located at azimuthal angle φ0. All the distances
discussed here will be projected distances on the cross-stream plane. The distance
between elements y and y′ is

s=
√

y′2 + y2 − 2yy′ cos(φ′ − φ) (3.27)

and the projection of this distance on the observer radial line is y′ cos(φ′ − φ0) −
y cos(φ−φ0). This is precisely the term that appears in the exponent of (3.26). It thus
becomes evident that a coordinate system centred at the source location y, rather than
at the centroid, is preferred for evaluating (3.26). Accordingly, the origin is shifted
from the centroid to the location of source element y, as shown in figure 6. All the
azimuthal angles are now defined with respect to the observer angle φ0. The observer
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Centroid

FIGURE 5. Geometric relations on the cross-stream plane.

Centroid

FIGURE 6. Geometric relations in shifted coordinate system on the cross-stream plane.
Without loss of generality, the observer is placed at φ0 = 0.

being in the far field, the coordinate shift does not change the angular relations. In the
new coordinate system, the azimuthal angle of element y′ is ψ . The term y′ cos(φ′ −
φ0)− y cos(φ−φ0) reduces to s cosψ . Changing the integration variables from (y′, φ′)
to (s, ψ) we obtain

R̃23 =
1

πL2
23

∫ π

−π

∫
∞

0
R23eiγ s cosψ−iδds ds dψ

γ = α sin θ0
δ = α/µc.

 (3.28)

Although an exhaustive treatise of this integral is beyond the scope of the current
work, a straightforward strategy for satisfying the requirement of real non-negativeness
will be set forth by invoking the integral representation of the Bessel function of the
first kind and of order zero:

2πJ0(x)=
∫ π

−π

eix cosψ dψ. (3.29)

First, if d is related to s through a projection of the type d= s cos(ψ − χ), where χ
is a reference angle, integration over ψ yields 2πJ0(ζ s), where ζ is a real positive
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number. Then, on selecting R23 = R23(s), the integral over s becomes the Hankel
transform of R23. Here the natural choice for d is

d= s cos(ψ − φ)= y′ cos(φ′ − φ)− y, (3.30)

that is, d is the projection of s on the radial φ. Integration over ψ results in a Bessel
function, and (3.28) becomes

R̃23 =
2

L2
23

∫
∞

0
R23(s)J0

(
s
√
γ 2 + δ2 − 2γ δ cos(φ − φ0)

)
s ds (3.31)

yielding the Hankel transform of R23(s). For computational efficiency, we seek forms
for R23(s) that result in analytical, non-negative solutions (see appendix A for further
discussion). Among several candidates, a Gaussian kernel satisfies these conditions and
yields a simple analytical solution (Bateman 1954). Accordingly, we select

R23(s)= exp

[
−

(
s

L23

)β23
]

(3.32)

and restrict β23 = 2. Evaluation of the Hankel transform gives

R̃23 = exp

{
−

(
αL23

2

)2 [
sin2 θ0 +

1
µ2

c

− 2
sin θ0

µc
cos(φ − φ0)

]}
. (3.33)

Therefore, we satisfy the requirement for a real non-negative spectral density. Note
that R23 is periodic with the azimuthal separation φ′ − φ, as is readily observed by
inserting (3.27) in (3.32). Importantly, the term cos(φ − φ0) in (3.33) induces an
azimuthal influence that simulates the effect of suppressed communication through
the jet flow discussed in § 2.2.

3.5.4. Azimuthal influence
The azimuthal directivity of R̃23 arises from the term cos(φ − φ0) in (3.33) and

is directly controlled by the transverse convective Mach number µc. For µc = ∞,
R̃23 does not have an azimuthal variation. For µc finite and positive, the azimuthal
influence has an extent that is controlled by µc and by the transverse non-dimensional
wavenumber αL23. Figure 7 illustrates these dependencies for observer polar angle
θ0=30◦. At fixed αL23, the strongest azimuthal directivity is obtained for µc=1/ sin θ0
(µc = 2 in this example). At fixed µc, the directivity sharpens with increasing αL23
(increasing frequency). These observations would tempt one to set µc = 1/ sin θ0 to
maximize the azimuthal influence. Of course, this is not a legitimate step because the
correlation parameters should be independent of observer location. The approach in
this study is to set

µc =
1

sin θpeak
, (3.34)

where θpeak is the angle of peak emission, in terms of the overall sound pressure
level, for the baseline axisymmetric jet. The combined influence of µc and L23 on
the azimuthal influence places some constraints on the transverse correlation scale
L23. Specifically, a lower constraint should be placed on the coefficient that controls
L23 such that, at given frequency, αL23 is not too small. The present model for µc
is selected for its simplicity. More sophisticated models, where µc depends on flow
conditions and frequency, may provide higher levels of fidelity.
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FIGURE 7. Azimuthal distribution of R̃23 for observer polar angle θ0 = 30◦. (a) Fixed
αL23 and varying µc; (b) fixed µc and varying αL23.

3.6. Amplitude of the correlation
The amplitude Aijkl in (3.19) represents the correlation

Rijkl(y, y, 0)= T ij(y, t)T kl(y, t). (3.35)

It is important to recall, however, that the source term in (3.8) is not Rijkl itself but
∂4Rijkl/∂τ

4. This means that only terms that depend on τ can contribute to Aijkl. It is
thus convenient to express Aijkl as

Aijkl(y)= [T ij]a[T kl]b, a→ b, (3.36)

where a and b represent different times. Only correlations that involve both a and b
are to be retained.

We assume that the principal component of the Lighthill stress tensor is T ij= ρuiuj
and write the velocity components as

u1 = u+ u′

u2 = v
′

u3 =w′,

 (3.37)

where u′, v′,w′ are the fluctuating velocity components in Cartesian coordinates. The
distinct Lighthill tensor components are

T 11 = ρ(u2
+ 2uu′ + u′u′)

T 12 = ρ(uv′ + u′v′)
T 13 = ρ(uw′ + u′w′)

T 22 = ρv
′v′

T 23 = ρv
′w′

T 33 = ρw′w′.


(3.38)

Following the rule accompanying (3.36), only cross-terms like u′av
′

b will be retained;
terms like u′av′a do not contribute to the source. Under the assumption of isotropic
turbulence, the volume integral of the third-order correlations vanishes (Ribner 1969).
Although the validity of this assumption needs to be evaluated thoroughly, here
we will neglect third-order correlations like u′av

′2
b . The resulting evaluation of Aijkl
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FIGURE 8. Azimuthal relationships of source and observer.

leads to terms containing second-order correlations u′iu′j, usually referred to as ‘shear
noise’; and terms containing fourth-order correlations u′iu′ju′ku

′

l, typically described as
‘self-noise’. A preliminary evaluation of the self-noise terms, using the quasi-normal
hypothesis (Morris & Zaman 2010b) and the approximations that follow, indicates
that their contribution to peak noise is at least 10 dB below the contribution of the
shear-noise terms. Therefore, the fourth-order correlations are deemed irrelevant to
the prediction of peak noise.

Thus, the problem boils down to modelling the second-order correlations, that is,
the components of the Reynolds stress tensor. To this end, we use the constitutive
relation that forms the foundation of turbulence modelling (Mathieu & Scott 2000)

u′iu′j =
2
3 kδij − νTSij, (3.39)

where νT is the turbulent viscosity, δij is the Kronecker delta and

Sij =
∂ui

∂xj
+
∂uj

∂xi
. (3.40)

Given that the jet flow is slowly diverging, the dominant component of Sij is the
transverse gradient of the mean axial velocity. The approximate magnitude of this
gradient is

G=

√[
∂u
∂Y

]2

+

[
∂u
∂Z

]2

(3.41)

and its azimuthal direction is φg. Figure 8 describes the azimuthal relations between
source and observer. The convention here is to assign an outward azimuthal direction
for an inward gradient, and vice versa. For an axisymmetric jet with monotonically
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declining radial velocity profile (that is, without a wake component), φg coincides with
the geometric azimuthal angle φ. For a jet whose velocity isocontours are not circular,
or that has a wake defect, φg and φ will generally be different.

It is now argued that the principal turbulent transport is in the direction of the mean
flow gradient with an associated turbulent velocity fluctuation q′. The corresponding
velocity correlation

g= 〈u′q′〉 = νTG (3.42)

is deemed the dominant contributor to the momentum transport and hence to the
Reynolds stress. The transport normal to the direction of the mean flow gradient
is considered negligible. The correlation g will henceforth be loosely referred to as
the ‘Reynolds stress’ and will be treated as non-negative. The direction of the mean
flow gradient, and its impact on the individual terms of the Reynolds stress tensor,
will be accounted for by the angle φg. Returning to the constitutive relation (3.39),
using v′ = −q′ cos φg and w′ = q′ sin φg, we are now able to make the following
approximations:

u′u′ ≈ 2
3 k

v′v′ ≈ 2
3 k

w′w′ ≈ 2
3 k

u′v′ =−〈u′q′〉 cos φg ≈−g cos φg

u′w′ = 〈u′q′〉 sin φg ≈ g sin φg

v′w′ ≈ 0.


(3.43)

It is recognized that in the actual jet the axial velocity fluctuations are stronger
than the transverse fluctuations, as measured by a variety of experiments (for
example, Morris & Zaman 2010b). However, here it is preferred to stay faithful
to the constitutive relation (3.39).

Based on the convention of figure 2, the direction cosines for the far-field observer
are

ϑ1 = cos θ0
ϑ2 =−sin θ0 cos φ0
ϑ3 = sin θ0 sin φ0.

 (3.44)

Due to the symmetry of T ij and the resulting pairwise symmetry of Aijkl (that is,
Aijkl = Aklij), the 81 elements of Aijkl comprise single or multiple occurrences of 21
distinct terms. Of those, only 6 terms have the potential to contribute to shear noise;
these are the terms where the index 1 appears at least once in ij and at least once in
kl. Table 1 lists the shear-noise terms, their multipliers (frequencies), their expressions
according to (3.38), their approximations according to (3.43) and their directivities
according to (3.44).

The total contribution in the direction of the far-field observer is

A0000

ρ2u2 =
8
3

k cos2 θ0 + 8g cos3 θ0 sin θ0 cos(φg − φ0). (3.45)

The second term on the right-hand side arises from the 1112 and 1113 components
of the Lighthill stress tensor. In past works on axisymmetric jets, these components
were neglected because they were thought to integrate to zero when inserted in the
formula for the spectral density (Ribner 1969). This is not the case if we accept
that the space–time correlation induces an azimuthal directivity along the lines of
(3.33). Then, the second term of (3.45) does not integrate to zero and makes a finite,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.730


572 D. Papamoschou

Aijkl Mult.
Aijkl

ρ2u2

Aijkl

ρ2u2 Directivity ϑiϑjϑkϑl

(Expression) (Approximation)

A1111 1 4u′u′ 8
3 k cos4 θ0

A1112 4 2u′v′ −2g cos φg −cos3 θ0 sin θ0 cos φ0

A1113 4 2u′w′ 2g sin φg cos3 θ0 sin θ0 sin φ0

A1212 4 v′v′ 2
3 k 1

4 sin2(2θ0) cos2 φ0

A1213 8 v′w′ 0 −
1
8 sin2(2θ0) sin(2φ0)

A1313 4 w′w′ 2
3 k 1

4 sin2(2θ0) sin2 φ0

TABLE 1. Distinct shear-noise terms of Aijkl and associated directivities.

positive contribution to the spectral density. Of course, the components A1112 and A1113

must be retained for asymmetric jets regardless of the chosen form of the space–time
correlation.

The azimuthal dependencies contained in the cosine terms of (3.33) and (3.45)
complicate the evaluation of the spectral density (3.25) when the computational
domain is restricted to one of the symmetric halves of the jet flow. In addition, for
axisymmetric jets, it is desirable to cut down the expense of computing the spectral
density by considering only an azimuthal slice of the domain, a task also complicated
by the cosine terms. These issues are addressed in appendix A.

3.7. Outer surface of peak stress (OSPS)
In the expression for the spectral density (3.25), the effect of the axial convection of
the turbulent eddies is captured by the term

R̂1

[
αL1

(
1

Mc
− cos θ0

)]
. (3.46)

We will call this term ‘radiation efficiency’, realizing that this term has been used
in the past under varying contexts. Here it means the efficiency with which a
four-dimensional correlation volume τ∗L1πL2

23 radiates sound to the far field at fixed
amplitude, frequency and correlation functions. The radiation efficiency is controlled
by the convective Mach number Mc = Uc/a∞. We gain insight into the underlying
physics by considering special values of Mc. For a very low-speed jet where Mc→ 0,
the argument of R̂1 becomes very large and thus R̂1 → 0. This is the limit of
zero radiation efficiency. The limit Mc = ∞ signifies disturbances being transmitted
instantaneously throughout the length of the object, like in the case of an oscillating
solid cylinder. Then the radiation efficiency becomes R̂1(−αL1 cos θ0) and the peak
radiation occurs at θ0= 90◦. In general, the radiation efficiency peaks at cos θ0= 1/Mc,
where the argument of R1 is zero. For Mc > 1, this represents the well-known Mach
wave emission in high-speed jets that occurs near θ0 = arccos(1/Mc). For Mc < 1 the
radiation efficiency does not reach its peak value and increases monotonically towards
θ0 = 0. A physical constraint in applying the above arguments is the spreading rate
of the jet flow, which is around 10◦. Sound emission at observer angles close to the
spreading angle is bound to be influenced by flow–acoustic interactions.
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The importance of the radiation efficiency term, coupled with the need to connect
it to sound generated by coherent structures, make the selection of Mc one of the
most critical decisions in the modelling. Here we argue that radiation efficiency
is governed by the eddies of the outermost shear layer of the jet. This follows the
observation that just outside the jet, in the near pressure field, the pressure distribution
reflects the ‘footprint’ of the most energetic eddies, as confirmed by several studies
of single-stream jets (Ho 1985; Zaman 1986). For multistream jets, we pose an
additional condition that these eddies be in direct contact with the ambient fluid, a
position supported by recent measurements of the convective velocity in the near
field of dual-stream jets (Papamoschou & Phong 2017). The noise radiated by the
outer eddies involves a direct coupling between the turbulent motion and the sound
field; this does not involve mean flow/acoustic interaction or propagation effects
as long as the observer polar angle is not too close to the jet spreading angle. In
terms of the mean flow, and following the arguments presented in § 2.1, the action
of these eddies is represented by the peak Reynolds stress of the outermost shear
layer. Accordingly, we define the outer surface of peak stress (OSPS) as the locus
of the first peak of the Reynolds stress as one approaches the jet from the ambient
towards the jet axis. Denoting the radial location of the OSPS as yOSPS(X, φ), and
letting y= (X, y, φ) represent the location of a volume element in polar coordinates
(figure 2), the convective Mach number of that element is defined as

Mc(X, y, φ)=
u(X, yOSPS(X, φ), φ)

a∞
. (3.47)

This means that all the volume elements at a particular X and φ are assigned the same
value of Mc as determined by (3.47).

Accurate detection of the OSPS requires very good resolution of the thin layers
near the nozzle exit. The near-field region affects the mid to high frequencies and
is thus of paramount importance to aircraft noise. The detection scheme is illustrated
in figure 9. The RANS flow field is divided into axial slices of very fine spacing
near the nozzle exit and coarser spacing downstream. Each axial slice is divided into
fine azimuthal segments, typically in 2.5◦ increments. Within each azimuthal segment,
the data (velocity, Reynolds stress) are sorted in order of the decreasing radius y.
The search process for the first (outermost) peak of the Reynolds stress starts at the
radial location where the mean axial velocity is one third of the tertiary exit velocity,
a position that is well outside the dividing streamline of the outermost shear layer
but still within the jet flow. Starting the search within the jet flow prevents spurious
detection of peaks that may occur if one started the search further out where the
velocity is very low and the data can be noisy. Denoting gj the discrete values of
the Reynolds stress, the operation hj=max(gj, gj+1) is carried out as we move inward
towards the jet axis. We seek the first occurrence where hj remains invariant for J
consecutive points. This indicates that the first peak of the Reynolds stress occurred
at point j− J. The proper value of J will depend on the resolution of the RANS data
(population of each axial/azimuthal segment) and needs to be determined carefully by
the user. Examples of the OSPS will be shown figures 16–18.

3.8. RANS-based scales
The correlation length and time scales follow the traditional definitions, based on the
RANS flow field, used in past acoustic analogy models (Morris & Farassat 2002).
They are constructed from the turbulent kinetic energy k and the dissipation ε. The
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J consecutive zero slopes

j

FIGURE 9. (Colour online) Detection scheme for the location of the outer peak of the
Reynolds stress (triangular marker).

specific dissipation is defined as Ω = ε/k. The equation that follows describes the
axial and transverse length scales, and the time scale.

L1 =C1
k3/2

ε
=C1

k1/2

Ω

L23 =C23
k3/2

ε
=C23

k1/2

Ω

τ∗ =C4
k
ε
=C4

1
Ω
.


(3.48)

The turbulent viscosity νT in (3.39) is obtained from the usual dimensional construct

νT = cµ
k
Ω
. (3.49)

The value cµ = 0.09 was used here.

4. Parameterization of the space–time correlation

The preceding sections described the theoretical framework for calculating the far-
field spectral density as summarized in (3.25). The specific implementation of (3.25)
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requires selection of the parameters that control the shapes of the correlation functions
R1, R23 and R4 that comprise the space–time correlation of the Lighthill stress tensor
given by (3.19). Here we discuss the process by which these parameters are selected.

4.1. Source parameters
The prediction of the far-field spectral density is dependent on a parameter vector
V= (V1, . . . ,VK) that defines the correlation functions used in formulating the space–
time correlation in (3.19). Here the parameter vector comprises the scale coefficients
C1,C23,C4 in (3.48) and the exponent powers β1, β4 in (3.20). Recall that the exponent
power for the cross-stream correlation is fixed at β23 = 2.

We denote the parameter vector

V = [C1,C23,C4, β1, β4]. (4.1)

The far-field power spectral density can then be expressed as

S(V,R, θ0, φ0, ω). (4.2)

It is convenient to work with the sound pressure level (SPL) spectrum, in units of
decibels. The modelled SPL spectrum is

SPLmod(V,R, θ0, φ0, ω)= 10 log10

[
S(V,R, θ0, φ0, ω)

Snorm

]
, (4.3)

where Snorm = 4 × 10−10 Pa2 is the commonly used normalization value. The
experimental SPL spectrum is SPLexp(Rexp, θ0, φ0, ω) where Rexp is the microphone
distance or the distance to which the experimental spectrum is referenced.

4.2. Determination of parameter vector
Determination of the parameter vector is based on knowledge of the spectral density
of the axisymmetric reference jet. Specifically, we seek a parameter vector that
minimizes the difference between the modelled and experimental SPL spectra for the
reference jet: SPLref

mod(V, R, θ0, ω) and SPLref
exp(Rexp, θ0, ω), respectively. We facilitate

the optimization by normalizing the experimental and modelled spectral densities
by their respective maximum values versus frequency. Equivalently, in units of
decibels we subtract the maximum values. The normalization removes the effect of
the distances R and Rexp, so the normalized spectra depend only on the parameter
vector (for the modelled spectrum), the observer polar angle and the frequency. The
normalized modelled and experimental SPL spectra for the reference jet are:

SPL
ref
mod(V, θ0, ω)= SPLref

mod(V,R, θ0, ω)− SPLref
mod,max(V,R, θ0)

SPL
ref
exp(θ, ω)= SPLref

exp(Rexp, θ0, ω)− SPLref
exp,max(Rexp, θ0).

}
(4.4)

This normalization removes the amplitude as a variable, so we are concerned only
with matching the shape of the spectra.

We seek to minimize the difference between the modelled and experimental spectra
at observer polar angle θ0 and at a set of frequencies ωn, n= 1, . . . ,N. We construct
the cost function

F(V)=

√√√√ 1
N

N∑
n=1

[SPL
ref
mod(V, θ0, ωn)− SPL

ref
exp(θ0, ωn)]2 +

K∑
k=1

Pk(Vk). (4.5)
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The square root term represents the ‘error’ between model and experiment in
units of decibels; Pk are appropriately defined penalty functions that constrain the
parameters within reasonable ranges. The parameter vector V is determined by
minimizing the cost function. The minimization process of (4.5) utilized the restarted
conjugate-gradient method of Shanno & Phua (1976) (ACM TOM Algorithm 500).
The minimization typically used N = 10 frequencies spaced at equal logarithmic
intervals, covering the entire relevant part of the spectrum. The scheme converged
after approximately 30 function calls to an error around 1.0 dB and zero penalty
function.

4.3. Application to non-reference jets
Upon a satisfactory match of the reference modelled and experimental spectra, the
parameter vector V becomes determined. This parameter vector is now applied to
the non-reference (typically asymmetric) jet, yielding SPLmod(V,R, θ0, φ0, ω). Direct
comparison with the SPL spectrum of the experimental non-reference jet is enabled
by the amplitude adjustment

SPLmod(V,Rexp, θ0, φ0, ω)= SPLmod(V,R, θ0, φ0, ω)+ SPLref
exp,max − SPLref

mod,max. (4.6)

5. Application fields
So far we have described a methodology for the acoustic prediction of multistream

symmetric and asymmetric jets, and the parameterization of the problem based the
far-field sound of the baseline (symmetric) jet. Again, we are interested in predicting
the noise change from a known baseline. In this section we describe briefly the
experimental and computational data for the jets to which this methodology will be
applied. An extensive review of the experimental results is available in Papamoschou
et al. (2016) and Phong & Papamoschou (2017).

5.1. Experimental
5.1.1. Experimental set-up

The experiments utilized three-stream nozzles as part of UCI’s recent effort in
characterizing and suppressing noise from three-stream jets representative of the
exhausts of future supersonic aircraft. The nozzles comprised axisymmetric (reference)
configurations as well as asymmetric configurations that involved reshaping of the
secondary and tertiary ducts that surround the primary duct. The intent of the
asymmetric nozzles was to reduce noise directed downward, that is, towards airport
communities. This report covers two sets of nozzles, nominal plug and enlarged plug.
The enlarged-plug nozzles were motivated by sonic-boom compatibility, as explained
in Phong & Papamoschou (2017). Nozzle naming is consistent with that used in
past reports for ease of reference. The subscripts p, s and t are used to denote the
primary, secondary and tertiary streams, respectively. Key features of the nozzles are
presented in figures 10 and 11 for the nominal- and enlarged-plug sets, respectively,
including the azimuthal distributions of the widths of the annuli at the terminations
of the secondary and tertiary ducts. All the nozzles share the same exit areas. The
effective (area-based) primary exit diameter is Dp,eff = 13.33 mm and the area ratios
are As/Ap= 1.44 and At/Ap= 1.06. The plug diameter and length (the latter measured
from the exit plane of the primary duct) are 6.08 and 18.26 mm, respectively, for
the nominal-plug set; and 11.90 and 38.40 mm, respectively, for the enlarged-plug
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Quantity Primary Secondary Tertiary

U (m s−1) 591 370 282
M 1.07 1.06 0.81
A/Ap 1.00 1.44 1.06
U/Up 1.00 0.63 0.48

TABLE 2. Cycle point for three-stream jets.

set. Denoting the width of the tertiary annulus Wt, and noting that Dp,eff provides a
scale for the lateral extent of the strongest noise sources, we use the ratio Wt/Dp,eff

to describe the relative size of the tertiary stream. Similarly, for the secondary stream
we use the ratio Ws/Dp,eff , where Ws is the width of the secondary annulus. The
azimuthal angle φ is defined relative to the downward vertical direction.

Considering first the set of nominal-plug designs (figure 10), variation of the nozzle
shape involved changing the exit shape of the tertiary duct only. Nozzle AXI03U is a
coaxial design, and is used as the reference nozzle for this set. The tertiary annulus
thickness is uniform with Wt/Dp,eff = 0.119. Nozzle ECC06U features a shaped offset
tertiary duct wherein the tertiary annulus becomes thicker over the azimuthal range
−110◦ 6 φ 6 110◦ and thinner outside this range. The ratio Wt/Dp,eff is constant at
0.155 over −60◦ 6 φ 6 60◦ and thins gradually to 0.05 near the top of the nozzle.
The tertiary outer wall is recessed at the top of the nozzle to prevent formation of
a long thin duct. Nozzle ECC08U retains the same features of ECC06U but adds a
wedge deflector at the top of the tertiary duct. The deflector dimensions are `/Dp,eff =

1.50 and δ = 25◦, where ` is the deflector length and δ is the wedge half-angle. The
deflector blocks an azimuthal extent of 40◦ at the top of the nozzle, which allows
thickening of the tertiary annulus on the underside of the nozzle while preserving the
cross-sectional area. The ratio Wt/Dp,eff increases to 0.165 over −60◦ 6 φ 6 60◦. The
tertiary exit diameters are Dt=31.15, 32.09 and 32.19 mm for AXI03U, ECC06U and
ECC08U, respectively. The slight variation in outer diameter is due to the reshaping
of the tertiary duct while maintaining constant area.

The investigation of the enlarged-plug nozzles (figure 11) included variations
of the shapes of the secondary and tertiary ducts. Nozzle AXI04U is a coaxial
reference design, with uniform distributions of the secondary and tertiary annuli
at Ws/Dp,eff = 0.219 and Wt/Dp,eff = 0.127, respectively. Nozzle ECC12U features
asymmetric distributions of both the secondary and tertiary annuli. The overall design
of the tertiary duct is similar to that of ECC08U, with a wedge deflector having
`/Dp,eff = 1.20 and δ= 18◦. The tertiary exit diameters are Dt = 38.10 and 40.60 mm
for AXI04U and ECC12U, respectively.

The nozzles were tested at cycle conditions that were representative of three-stream
turbofan engines operating at take-off power. Table 2 lists the main flow conditions
at the nozzle exit. The Reynolds number of the primary stream, based on Dp,eff , was
280 000. The exit velocities (U) and Mach numbers (M) were matched exactly using
helium–air mixture jets (Papamoschou 2006).

Noise measurements were conducted inside an anechoic chamber equipped with
twenty-four 1/8-in. condenser microphones (Bruel & Kjaer, Model 4138) with
frequency response up to 120 kHz. Twelve microphones were mounted on a downward
arm (azimuth angle φ = 0◦) and twelve were installed on a sideline arm (φ = 60◦).
On each arm, the polar angle θ ranged approximately from 20 to 120◦ relative to
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FIGURE 10. Three-stream nozzles with nominal plug. Left to right: perspective view,
cross-sectional view and azimuthal distribution of the tertiary annulus width. Azimuthal
angle φ is defined relative to the downward vertical direction.
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FIGURE 11. Three-stream nozzles with enlarged plug. Left to right: perspective view,
cross-sectional view and azimuthal distributions of the widths of the secondary and tertiary
annuli. Azimuthal angle φ is defined relative to the downward vertical direction.

the downstream jet axis, and the distance to the nozzle exit Rexp ranges from 0.92
to 1.23 m. This arrangement enabled simultaneous measurement of the downward
and sideline noise at all the polar angles of interest. In selected cases, rotation of
the nozzle enabled a richer coverage of azimuthal angles. The microphones were
connected, in groups of four, to six conditioning amplifiers (Bruel & Kjaer, Model
2690-A-0S4). The 24 outputs of the amplifiers were sampled simultaneously, at 250
kHz per channel, by three 8-channel multi-function data acquisition boards (National
Instruments PCI-6143) installed in a Dell Precision T7400 computer with a Xeon
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quad-core processor. National Instruments LabView software is used to acquire the
signals. The temperature and humidity inside the anechoic chamber are recorded
to enable computation of the atmospheric absorption. The microphone signals were
conditioned with a high-pass filter set at 300 Hz. Narrowband spectra were computed
using a 4096-point fast Fourier transform, yielding a frequency resolution of 61 Hz.
The spectra were corrected for microphone actuator response, microphone free field
response and atmospheric absorption, thus resulting in lossless spectra.

5.1.2. Acoustic results
Figure 12 plots narrowband SPL spectra in the downward direction (φ0 = 0◦) for

jets ECC06U and ECC08U, with comparison to AXI03U; and for jet ECC12U, with
comparison to AXI04U. The spectra of the two reference coaxial jets, AXI03U
(nominal plug) and AXI04U (enlarged plug), are very similar, with AXI04U
having a 1–2 dB benefit at medium to high frequencies. This is partly attributed
to source–observer shielding by the enlarged plug (Bauer, Kibens & Wlezien 1982;
Chase, Garzón & Papamoschou 2013). Considering the nominal-plug asymmetric
jets, ECC06U offers reductions of the order of 10 dB at polar angles near the
angle of peak emission and in the medium to high frequency range. Addition of the
wedge deflector in nozzle ECC08U increases these reductions to ∼15 dB. For the
enlarged-plug asymmetric jet ECC12U, the combined asymmetry of the secondary and
tertiary streams increases the noise reduction to ∼17 dB. Change in noise emission in
the broadside direction (θ ≈ 90◦) is dependent on the aggressiveness of the asymmetry,
with jets ECC06U and ECC08U showing a slight increase, and jet ECC12U causing
a moderate increase. Spectra at different azimuthal angles will be presented later in
the discussion of the model predictions. Considering the sideline direction φ0 = 60◦,
jets ECC06U and ECC08U do not produce a significant benefit, while jet ECC12U
provides a distinct reduction at low frequency.

5.2. Computational
5.2.1. Code and grid

The computational fluid dynamics code used here is known as PARCAE
(Papamoschou, Xiong & Liu 2008) and solves the unsteady three-dimensional
Navier–Stokes equations on structured multiblock grids using a cell-centred finite-
volume method. Information exchange for flow computation on multiblock grids
using multiple CPUs is implemented through the MPI (message passing interface)
protocol. In its time-averaged implementation, the code solves the RANS equations
using the Jameson–Schmidt–Turkel dissipation scheme (Jameson, Schmidt & Turkel
1981) and the shear stress transport (SST) turbulence model (Menter 1994). The SST
model combines the advantages of the k −Ω and k − ε turbulence models for both
wall-bounded and free-stream flows.

The governing equations were solved explicitly in a coupled manner using five-stage
Runge–Kutta scheme towards steady state with local time stepping, residual smoothing
and multigrid techniques for convergence acceleration. Only the steady-state solution
was considered because we are interested in the time-averaged features of the
flow. The computation encompassed both the internal nozzle flow as well as the
external plume. The computational domain extended to 38 tertiary nozzle diameters
Dt downstream and 8Dt radially. As all the configurations were symmetric about the
meridian plane, only one half of the domain was modelled to save computational cost.
The typical grid contained 8 million points. The grid was divided into multiblocks
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FIGURE 12. Narrowband far-field spectra at various polar angles θ for jets (a) ECC06U
and (b) ECC08U, with comparison to reference jet AXI03U (red); and (c) jet ECC12U
with comparison to reference jet AXI04U (red). Azimuthal direction φ = 0◦ (downward).

to implement parallelization on multiprocessor computers to reduce the convergence
time. For the primary, secondary and tertiary duct flows, uniform total pressure
was specified at the inlet surface corresponding to the perfectly expanded exit Mach
number. For the ambient region surrounding the nozzle flow, a characteristic boundary
condition was defined and the downstream static pressure was set equal to the ambient
pressure. Adiabatic no-slip boundary condition was specified on all nozzle walls.

The code has been used in past research on dual-stream symmetric and asymmetric
jets, and its predictions have been validated against mean velocity measurements
under cold conditions (Xiong et al. 2010). Cold-flow comparisons for three-stream
jets similar to those discussed here have shown similar level of agreement. In
addition to providing information on the plume flow field, the code also predicts the
aerodynamic performance of the nozzles. Here the code was applied at the conditions
shown in table 1 and the experimental Reynolds numbers.

Using a filter based on the amplitude of the space–time correlation (3.45),
computational elements with negligible impact on the spectral prediction were
removed from the domain prior to running the acoustic analogy algorithms. This cut
down the total number of elements to about two million, thus reducing significantly
the computational cost. Additional cost-saving measures are discussed in appendix A.

5.2.2. Relevant statistics
For conciseness, the presentation of the RANS solutions will focus on the

nominal-plug jets AXI03U, ECC06U and ECC08U. The trends delineated will apply
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FIGURE 13. Distribution of normalized mean axial velocity u/Up on the symmetry plane
of jets: (a) AXI03U; (b) ECC06U; and (c) ECC08U.

broadly to the enlarged-plug jets AXI04U and ECC12U, and distinctions will be
pointed out in § 5.2.3. The discussion starts with contour maps of the mean axial
velocity on the symmetry (X–Y) plane, shown in figure 13. X= 0 signifies the location
of the plug tip. For the axisymmetric jet AXI03U, the high-speed region extends to
approximately seven tertiary diameters. The asymmetric delivery of the tertiary
stream shortens moderately the high-speed region to x/Dt ≈ 6.5 for jet ECC06U and
x/Dt ≈ 6.0 for jet ECC08U. For the asymmetric jets, the thickening of the low-speed
flow on the underside of the jet is evident. Some distortion of the high-speed region
is also noticeable. The plug wake is evident for all the jets.

Figure 14 plots the corresponding distributions of the normalized turbulent kinetic
energy k/U2

p . For jet AXI03U, in the vicinity of the nozzle exit we can distinguish
clearly the outer shear layer (between the tertiary stream and the ambient) and
the weaker inner shear layer (between the primary and secondary streams). The
middle shear layer (between the secondary and tertiary streams) is not apparent. We
gain an understanding of the relative strengths of the shear layers by considering
that the turbulent kinetic energy (or any component of the Reynolds stress) scales
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FIGURE 14. Distribution of normalized turbulent kinetic energy k/U2
p on the symmetry

plane of jets: (a) AXI03U; (b) ECC06U; and (c) ECC08U.

approximately as (1U)2, where 1U is the velocity difference across a particular
shear layer. It is insightful to assess the strengths in terms of the dimensionless ratio

rk =
(1U)2

(Umax −U∞)2
, (5.1)

where the denominator signifies the largest possible strength, with Umax the maximum
fully expanded velocity (in this case, the primary exit velocity) and U∞ the ambient
velocity (in this case, zero). From the values of table 2 we have rk = 0.139, 0.022
and 0.228 for the inner, middle and outer shear layer, respectively. This dimensional
argument helps explain the dominance of the outer shear layer and the near invisibility
of the middle shear layer. At approximately x/Dt = 2.5 the secondary and tertiary
streams are completely merged with primary shear layer. Now the primary eddies
are in direct contact with the ambient, resulting in a rapid increase in the turbulent
kinetic energy which reaches its maximum value near x/Dt = 5.5. Here the ratio rk
is close to unity. The location of peak turbulent kinetic energy is very close to the
end of the primary potential core, as delineated by the cone-like region of very low

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.730


Noise modelling of complex jets 583

0.5

0

0

 –0.5

 –1.0

 –1.5

1.0

1.5

0 2 4 6 8 10 12

(b)

(c)

(a)

0

0.002

0.004

0.006

0.008

0.5

 –0.5

 –1.0

 –1.5

1.0

1.5

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

0

0.5

 –0.5

 –1.0

 –1.5

1.0

1.5

0 2 4 6 8 10 12
0

0.002

0.004

0.006

0.008

FIGURE 15. Distribution of normalized Reynolds stress g/U2
p on the symmetry plane of

jets: (a) AXI03U; (b) ECC06U; and (c) ECC08U. Compare with the distribution of the
turbulent kinetic energy in figure 14, particularly past x/Dt = 5.

turbulent intensity. Further downstream, the turbulent kinetic energy declines as the jet
mean velocity drops. It is notable that at large downstream distances the profile for
the turbulent kinetic energy becomes Gaussian-like.

For the asymmetric jets ECC06U and ECC08U the secondary and tertiary streams
extend much longer on the underside of the jet, reaching x/Dt = 4 for ECC06U and
x/Dt = 5 for ECC08U. Their elongation prevents the contact of the primary eddies
with the ambient until past the end of the primary core. As a result, the turbulent
kinetic energy on the underside of the jet is significantly reduced; this effect is most
pronounced for jet ECC08U. The primary potential core is moderately reduced to
x/Dt = 5.2 for ECC06U and x/Dt = 4.8 for ECC08U. All these trends bode well for
noise reduction in the downward direction. However, looking at the distributions of
figure 14(b,c) one has difficulty drawing a line distinguishing unambiguously the upper
and lower sides of the jet.

We turn our attention to the distribution of the normalized ‘Reynolds stress’ g/U2
p ,

depicted in figure 15. The distribution of g near the nozzle exit is very similar
to that of k, so the same arguments apply there. However, further downstream we
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FIGURE 16. Location of the outer surface of peak stress (OSPS) on the symmetry plane
of jets (a) AXI03U and (b) ECC08U. Contour map shows the Reynolds stress field g/U2

p .
White dots indicate the location of the outermost peak of g. Solid white line is the jet
centroid as defined by (3.13).

note a significant difference between the g and k fields. The g field has a clear
minimum in the interior of the jet, which is practically zero once the wake region
dissipates. The location of the minimum coincides with the jet centroid defined by
(3.13). Downstream of the end of the potential core, the distribution of g has two
lobes representing the turbulence production near the edge of the jet. Compare with
the Gaussian-like profile for k in figure 14. We can clearly delineate the upper and
lower sides of the jet, as demarcated by the location of the minimum g. The lower
side experiences dramatic reductions in g, particularly in jet ECC08U. These results
reinforce the view discussed in § 2.1 that the Reynolds stress is the appropriate
statistical quantity to represent the action of the turbulent eddies.

5.2.3. OSPS
We now examine the geometry of the outer surface of peak stress. Figure 16 plots

the location of the OSPS on the symmetry plane of jets AXI03U and ECC08U. The
plots of the OSPS are overlaid on contour maps of the Reynolds stress g. For the
axisymmetric jet, the OSPS experiences a sudden convergence where the outer streams
become totally mixed with the primary shear later, near x/Dt = 2.5. This is followed
by a gradual convergence near the end of the primary potential core, downstream
of which the OSPS diverges slowly. For the asymmetric jet, the OSPS on the top
side of the jet is similar to that for the axisymmetric jet. On the bottom side, the
OSPS slightly diverges in the initial region of the jet, then suddenly shifts inward
near x/Dt= 5, the location where the outer streams are totally mixed with the primary
stream. For the first five diameters or so the OSPS on the bottom side is in a low
velocity region of the jet, meaning that the convective Mach number there is low
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FIGURE 17. Outer surface of peak stress (OSPS) for jets (a) AXI03U, (b) ECC06U and
(c) ECC08U. Contour levels show distribution of Mc on the OSPS.

subsonic. This has a large impact on the prediction of noise emission from this region.
Figure 16 also depicts the location of the centroid, which is seen to coincide with the
locus of minimum Reynolds stress.

We gain further insight by examining three-dimensional views of the OSPS, plotted
in figure 17. The distribution of the convective Mach number Mc is shown as contour
levels on the surfaces. The views cover the axial range −0.5 6 x/Dt 6 10. For jet
AXI03U, the transition of the OSPS from the tertiary to the secondary to the primary
shear layer is evident. The convective Mach number reaches the peak value of 1.20
shortly downstream of the transition to the primary shear layer. For jets ECC06U and
ECC08U we observe a progressively stronger reshaping of the OSPS, starting at the
lateral sides and progressing to the lower side. For jet ECC08U, on the underside of
the OSPS, the convective Mach number is as low as 0.35. This corresponds to of the
order of a 100-fold reduction in radiation efficiency in that region, as will be explained
in § 7. On the upper half of the jet, the shape of the OSPS and the Mc distributions
are similar to those of the axisymmetric case.
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FIGURE 18. Outer surface of peak stress (OSPS) for jets (a) AXI04U and (b) ECC12U.
Contour levels show distribution of Mc on the OSPS.

For completeness we also examine the OSPS of the enlarged-plug jets AXI04U and
ECC12U in figure 18. For jet AXI04U, the shape of the OSPS and Mc distribution
on it are similar to those of jet AXI03U. However, jet ECC12U shows a more
distorted OSPS relative to ECC06U or ECC08U, a result of the combined asymmetry
of the secondary and tertiary ducts. The secondary and tertiary flows are more evenly
distributed on the underside of the jet, which suggests that this jet may have better
sideline noise reduction than ECC06U or ECC08U.

It is also instructive to examine the distribution of Mc versus axial and azimuthal
directions, as is done in figure 19 for the nominal-plug jets. The largest reduction in
Mc occurs in the downward direction φ= 0. There the peak value of Mc reduces from
1.2 for AXI03U to 1.0 for ECC06U to 0.8 for ECC08U. It is also noted that the
distribution of the peak becomes confined to only about one diameter for ECC08U,
versus three diameters for AXI03U. For ECC08U, the low-Mc region persists up to
about φ=50◦, after which the distribution becomes similar to that of the axisymmetric
jet. The significant improvement in suppression of convective Mach number in jet
ECC08U, versus jet ECC06U, came from a rather subtle reshaping of the tertiary duct,
as illustrated in figure 10. This underscores the sensitivity of the offset-stream method
to the fine details of the duct reshaping. The convective Mach number distribution
for jet ECC12U, plotted in figure 20, shows a large suppression of Mc extending up
to φ = 40◦. It is evident that the combined asymmetry of the secondary and tertiary
streams results in a wider azimuthal sector with low Mc.

The information presented in figures 17–20 constitutes important feedback one
obtains from the RANS solution before proceeding to the acoustic analogy step.
Examinations of the OSPS and the associated Mc distribution provide strong clues
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FIGURE 19. Axial–azimuthal distribution of convective Mach number Mc on the OSPS
of jets AXI03U (a), ECC06U (b) and ECC08U (c).
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FIGURE 20. Axial–azimuthal distribution of convective Mach number Mc on the OSPS
of jets AXI04U (a) and ECC12U (b).

whether a particular nozzle arrangement will produce a quiet jet and in what azimuthal
directions. In the particular examples shown here, one can expect jet ECC08U to
bring significant noise benefit in the downward direction but probably little or no
benefit in the sideline direction, near φ0 = 60◦. On the other hand, jet ECC12U may
be expected to provide a strong downward reduction combined with a distinct, but
not as large, sideline reduction.

6. Results
This study has introduced several new elements in the acoustic analogy modelling

of peak noise from high-speed turbulent jets including: a broader class of functions
for expressing the space–time correlation; definition of convective Mach number based
on the locus of peak Reynolds stress; and azimuthal directivity formulation based on a
transverse space–time correlation. This section discusses representative results of this
modelling effort, with application to the jets reviewed in § 5. All the results shown are
in the direction of peak emission θ0 = 35◦. The transverse convective Mach number
was selected to be µc = 1.52 consistently with (3.34).
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FIGURE 21. Experimental and modelled spectra for jets AXI03U (red) and ECC06U
(blue) at polar angle θ0 = 35◦. (a) φ0 = 0◦; (b) φ0 = 60◦.

Parameter AXI03U AXI04U

C1 5.11 6.18
C23 3.89 4.13
C4 0.39 0.45
β1 1.73 1.98
β4 1.96 1.97

TABLE 3. Parameter vectors for the reference jets.

In the discussion of the sound pressure level spectra, the frequency will be presented
in the non-dimensional (Strouhal number) form

Sr =
fDt

Up
=
ωDt

2πUp
. (6.1)

This compound version of the Strouhal number tries to account for the overall
diameter of the jet, which is largely controlled by diameter of the tertiary duct, and
the maximum velocity of the flow.

Application of the conjugate-gradient method outlined in § 4.2, with β23 = 2,
resulted in the parameter vectors, for the reference jets AXI03U and AXI04U, listed
in table 3. The vectors for the two jets are similar, with AXI04U having moderately
higher scale coefficients. A sensitivity analysis indicated that all five of the parameters
are influential on the prediction of the modelled spectral density. Denoting 1SPL
the root-mean-square deviation of the modelled spectral density from a nominal
distribution (using a formulation similar to (4.5), but without the penalty component),
the magnitudes of the derivatives ∂1SPL/∂Vk are of the order of 10 to 100, depending
on the value of the parameter vector V. The sensitivity on the powers β1 and β4 is
typically very strong, as can be gleaned from figure 4, but the scale coefficients C1,
C23, and C4 are impactful as well.

Figure 21 plots the experimental and modelled spectra for jets AXI03U (reference)
and ECC06U at observer azimuthal angles φ0= 0◦ (downward) and φ0= 60◦ (sideline).
First we note the excellent match for the reference spectra; as mentioned in § 4.2, the
standard error is around 1.0 dB. In the downward direction, the model predicts the
noise reduction accurately up to Sr≈ 2, with a small overprediction at higher Strouhal
numbers. In the sideline direction, the model indicates marginal noise reduction, which
is in line with the experiment.
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FIGURE 22. Experimental and modelled spectra for jets AXI03U (red) and ECC08U
(blue) at polar angle θ0 = 35◦. (a) φ0 = 0◦; (b) φ0 = 30◦; (c) φ0 = 60◦; (d) φ0 = 90◦;
(e) φ0 = 135◦; and ( f ) φ0 = 180◦.

Similar information is displayed for jet ECC08U in figure 22. The acoustics of
this jet were surveyed at a larger set of azimuthal angles, ranging from φ0 = 0◦
(downward) to φ0 = 180◦ (upward). The larger downward noise reduction of jet
ECC08U is captured well by the model, as are the trends with increasing azimuthal
angle. For φ0 > 60◦, the experiment indicates moderate noise increase, which is
generally reproduced by the model. Jet ECC12U was likewise surveyed at a number
of azimuthal angles. The spectra plotted in figure 23 show that the model captures
the principal noise trends, albeit with some overprediction of the noise reduction at
low frequency. These trends include better reduction at a larger downward sector
(0◦ 6 φ0 6 60◦) and stronger excess noise in the upward direction φ0 = 180◦. In
particular, comparing figures 22(c) and 23(c) we note that the model indicates
that ECC12U provides better sideline reduction than ECC08U, which is generally
confirmed by the experiment.

The results of figures 22 and 23 can be summarized in the form of the change
in overall sound pressure level (OASPL) versus azimuthal angle. The OASPL was
computed by integrating versus frequency the modelled and experimental spectra. It is
presented in two forms, the unweighted version and the A-weighted version. The A-
weighted version accounts for the human perception of sound and is based on a scale
factor of 40, representing the typical engine size for a supersonic business jet. For the
A-weighted version, the SPL spectra were scaled up and ‘corrected’ with the A weight,
using the formula in the ANSI S1.43 standard (Rimmell, Mansfield & Paddan 2015).
The plots of 1OASPL are shown in figures 24 and 25 for jets ECC08U and ECC12U,
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FIGURE 23. Experimental and modelled spectra for jets AXI04U (red) and ECC12U
(blue) at polar angle θ0 = 35◦. (a) φ0 = 0◦; (b) φ0 = 30◦; (c) φ0 = 60◦; (d) φ0 = 90◦; and
(e) φ0 = 180◦.

respectively. It is seen that the model captures the azimuthal variation of the noise.
For the unweighted OASPL, the model overpredicts the reduction by approximately
2 dB in the downward direction. The agreement is better for the A-weighted OASPL
because it is strongly influenced by the mid-frequencies where the model generally
performs well. Comparing figures 24(b) and 25(b), the model predicts the superiority
of nozzle ECC12U in suppressing downward noise as well as providing better sideline
reduction.

One may inquire whether the coefficients listed in table 3 result in physically
meaningful correlation scales. Direct comparison with past acoustic analogy efforts
that determined scale coefficients (e.g. Karabasov et al. 2010) is not feasible because
of the different methodology employed here. Similarly, experimental measurements
of space–time correlations are largely confined to single-stream jets at moderate
velocities. Nevertheless, a broad comparison with single-stream experiments is
attempted here, using U and D as the single-stream jet velocity and diameter,
respectively. There is general agreement among several measurements of second-order
space–time correlations (Harper-Bourne 2003; Bridges 2006; Fleury et al. 2008;
Kerhervé, Fitzpatrick & Kennedy 2010; Morris & Zaman 2010b) that, near the end
of the potential core and at the lipline (which is expected to be reasonably close to
the OSPS), the width the spatial decorrelation envelope (R1 in figure 3) ranges from
roughly from L1/D= 0.5 for the radial velocity correlation to L1/D= 2.0 for the axial
velocity correlation. The corresponding width of the autocorrelation τ∗U/D ranges
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FIGURE 24. (Colour online) Experimental and modelled changes in the overall sound
pressure level versus observer azimuthal angle, in the direction of peak emission, for jet
ECC08U with jet AXI03U as reference. (a) No weighting; (b) A-weighting using scale
factor of 40.
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FIGURE 25. (Colour online) Experimental and modelled changes in the overall sound
pressure level versus observer azimuthal angle, in the direction of peak emission, for jet
ECC12U with jet AXI04U as reference. (a) No weighting; (b) A-weighting using scale
factor of 40.

from 0.2 for the radial velocity correlation to 0.8 for the axial velocity correlation. To
compare with the present model, we plot in figure 26 the axial distributions of L1/Dt

and τ∗Up/Dt on the OSPS of jet AXI03U. Near the end of the primary potential core
(x/Dt = 5.0), L1/Dt = 1.50 and τ∗Up/Dt = 0.55. These values are thus consistent, in
an overall sense, with the values measured in single-stream jets. The break in the
distribution of L1/Dt near x/Dt = 2 is due to the shift of the OSPS from the outer
shear layer to the inner shear layer. Assessment of the correlation scale L23 is not
straightforward because it is based on the transverse projected distance s (figure 5),
for which correlation measurements do not exist, and is subject to the constraints
mentioned in § 3.5.4. Similar trends are observed for jet AXI04U.
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FIGURE 26. Axial development of correlation length scale L1 and correlation time scale
τ∗ on the OSPS of jet AXI03U.

7. Noise reduction mechanisms
The compact expression for the spectral density (3.25) provides guidance for

fundamental ways to reduce noise within a fairly constant source volume. The first
approach is reduction of turbulence intensity. This influences directly the amplitude
term A0000, which is linear in turbulent kinetic energy k and Reynolds stress g.
Reduction of the turbulence level by 50 %, typical of the reductions seen in figures 14
and 15, is expected to reduce noise by about 3 dB, a relatively modest amount.
Thus, reduction in turbulence intensity does not explain the large spectral reductions
measured in the downward direction of peak emission (figure 12).

The second mechanism is reduction in correlation length and time scales, manifested
by the product L1L2

23τ∗. In theory, this can be an effective noise suppression
mechanism: if all these scales were reduced say by factor of two, the four-dimensional
correlation volume would be reduced by factor of 16, translating into a 12 dB noise
reduction. Breakup of eddies could be achieved with nozzle devices like chevrons,
microjets, or plasma actuators (see Introduction). For practical implementation,
the flow perturbations induced by such approaches would have to be small to
preserve aerodynamic efficiency or minimize their energy cost. While it is possible to
disorganize the turbulence in the vicinity of the nozzle, the extent to which structures
at large distances from the nozzle can be affected is not clear, given the natural
tendency of the shear layer to self-organize into large vortical motions (Fiedler 1988).

The third mechanism is reduction in radiation efficiency described by the R̂1 term;
see also the discussion of § 3.7. To illustrate the potential of this approach, assume
an exponential form for the correlation R1(t)= exp(−|t|), so its Fourier transform is
R̂1(η)= 2/(1+ η2). Then,

R̂1

[
αL1

(
1

Mc
− cos θ0

)]
=

2

1+ (αL1)2

(
1

Mc
− cos θ0

)2 . (7.1)

For Strouhal number of the order of 1, the RANS results indicate that αL1 ∼ 10 in
the most energetic regions of the flow. Now consider a reduction in Mc from 1.2 to
0.8, which is representative of the reduction noted in figure 19 for jet ECC08U near
x/Dt = 6. For Mc= 1.2, the argument of R̂1 is zero in the direction θ = 35◦, therefore
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FIGURE 27. Assessment of model with Mc = u/a∞ instead of (3.47). Experimental and
modelled spectra for jets AXI03U (red) and ECC08U (blue) at θ0 = 35◦ and φ0 = 0◦. (a)
Original parameter vector given in table 3; (b) parameter vector that minimizes difference
between baseline (AXI03U) experimental and modelled spectra. Compare to figure 22(a).

R̂1 = 2 and peak radiation efficiency is achieved (Mach wave emission). Maintaining
the same angle, and reducing Mc to 0.8 we obtain R̂1= 0.1, thus resulting in a 20-fold
decline of the radiation efficiency term. This is consistent with large spectral declines
measured in this study.

It is of course difficult to completely isolate these mechanisms in an experimental
or computational study. However, a rough assessment of the effect of the radiation
efficiency can be obtained by setting Mc = u/a∞ in the radiation efficiency
term R̂1, instead of using (3.47). This setting, which is typically used for noise
predictions in the 90 degree direction (Morris & Farassat 2002), does not consider
the organized structure of turbulence. Therefore, the reduction in Mc noted in
figures 17–20 is essentially lost. Figure 27 plots spectral comparisons analogous
to those of figure 22(a) with the setting Mc = u/a∞. In figure 27(a), the same
parameter vector (table 3, jet AXI03U) is used as with the previous approach,
so naturally the baseline spectra are not matched. In figure 27(b), the parameter
vector V = [5.00, 3.85, 0.53, 1.36, 2.00] gives the best match between modelled and
experimental spectra, although the match is much worse than that obtained with the
previous Mc model. In both cases, the model fails to predict noise reduction for
Strouhal numbers greater than 1, whereas in the previous approach the reductions
were 10–15 dB, matching the experimental measurements (figure 22a). These results
underscore the importance of proper modelling of the radiation efficiency term and the
large impact that this term has on noise prediction and noise reduction in high-speed
jets.

8. Concluding remarks

This study was motivated by the need for a physics-based, low-order model to
predict the noise changes in complex, multistream jets when the geometry of the
nozzle is altered. Particular emphasis is placed on asymmetric arrangements that
cause directional noise suppression. A RANS-based acoustic analogy framework
was developed that addresses the noise in the polar direction of peak emission
and uses the Reynolds stress as a time-averaged representation of the action of the
coherent turbulent structures. The framework preserves the simplicity of the original
acoustic analogy formulation by Lighthill, using the free-space Green’s function,
while accounting for azimuthal effects via special forms for the space–time correlation
combined with source–observer relations based on the Reynolds stress distribution
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in the jet plume. Below we summarize the main features of this framework and
comment on its application.

A central premise in the model is that the sound emission is strongly influenced
by the dynamics of the outer shear layer of the multistream jet. In a time-averaged
sense, we place attention on the outermost peak of the Reynolds stress, resulting
in the definition of the outer surface of peak Reynolds stress (OSPS). The mean
axial velocity on this surface is thought to best represent the convective velocity of
the eddies primarily responsible for peak noise emission. The axial convective Mach
number, which controls the radiation efficiency, is defined accordingly. The resulting
OSPS surface and convective Mach number distribution on this surfaces provide
strong clues as to the noise reduction potential of a particular nozzle configuration.

To model the azimuthal effects, it was necessary to utilize a polar coordinate system
centred around a properly redefined jet axis (figure 2). The new jet axis passes through
the minimum value of the magnitude of the Reynolds stress inside the jet plume, and
is computed practically as the centroid of the high-speed region of the jet. The use of
the polar coordinate system imposes certain constraints on the types of correlations
that can be used on the cross-stream plane. Source separations cannot be described in
separable coordinates, necessitating the use of a mixed radial–azimuthal correlation.
The usual four-dimensional Fourier transform, that gives the wavenumber–frequency
spectrum in conventional formulations, is no longer possible or physical. Instead,
a Hankel transform on the cross-stream plane is used in conjunction with Fourier
transforms in the timewise and axial dimensions.

Modelling of the space–time correlation of the Lighthill stress tensor is the most
critical step in any acoustic analogy effort. Here the space–time correlation is defined
in a fixed frame of reference. Its axial–timewise formulation is designed to reproduce
qualitatively the main features of the axial space–time correlation measured by a large
number of past works, and uses the aforementioned definition of axial convective
velocity. The cross-stream correlation is based on the projected distance between two
source elements, a formulation that helps ensure that the modelled power spectral
density is real and non-negative. An important feature is the inclusion of a transverse
space–time correlation and associated transverse convective velocity. In conjunction
with the Hankel transform, the transverse propagation induces an azimuthal directivity
in the far-field spectral density. The axial and timewise correlation functions are
modelled as stretched exponentials, enabling a flexibility that is very significant for
calibrating the model. The cross-stream correlation is limited to a Gaussian form for
numerical efficiency.

The acoustic analogy model is calibrated based on knowledge of the spectral density
of a reference (axisymmetric) jet. In the present study, a five-element parameter
vector controls the characteristic scales and shape coefficients of the correlation
functions. The vector is determined via conjugate-gradient minimization of a cost
function comprising the difference between the modelled and experimental spectra
of the reference jet as well as penalty functions that constrain the parameters. This
parameter vector is then applied to the non-reference jets.

Results were presented for two sets of triple-stream jets, each set comprising
a coaxial reference jet and at least one asymmetric variant. A total of three
asymmetric jets were covered in this study, two featuring eccentric tertiary ducts
and one combining eccentric secondary and tertiary ducts. There is an excellent
match between the experimental and modelled reference jets. The model captures
the azimuthal noise trends of the asymmetric jets, and reproduces reasonably well
the measured noise reduction. The azimuthal variation of the A-weighted OASPL, in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

73
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.730


Noise modelling of complex jets 595

particular, is reproduced with an accuracy of about 1 dB. A preliminary evaluation of
the noise suppression mechanisms indicates that the noise reduction of the asymmetric
jets is caused primarily by the reduction in radiation efficiency.

Regarding the numerical efficiency of the acoustic analogy scheme, once the RANS
solutions are available for the reference and non-reference jets, the prediction of their
spectral densities consumes on the order of one hour on a basic personal computer.
This includes the parameterization process of § 4, in conjunction with the methods
described in appendix A.
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Appendix A
Efficient computation of the power spectral density is important for the development

of practical predictive tools. Efficiency is particularly desirable for the baseline,
axisymmetric jets that will be subject to optimization routines requiring computation
of the power spectral density a large number of times.

A.1. General relations
Combining (3.25) and (3.45), we express the spectral density as the following set of
equations:

S(x0, ω)=

∫
V
[Q0 +Q1 cos(φg − φ0)]H d3y (A 1a)

Q0 =
8
3ρ

2u2k cos2 θ0 (A 1b)

Q1 = 8ρ2u2g cos3 θ0 sin θ0 (A 1c)

H =
α4

16πR2
τ∗L1πL2

23R̂1R̂4R̃23. (A 1d)

A.2. Treatment of half-jet
Time-averaged computations of jet flows having a plane of symmetry typically treat
only one half of the jet. In these cases, it is important to be able to compute the
power spectral density based on the half-jet data, that is, without creating the mirror
image and thus doubling the computational cost. Even for computations that treat the
entire jet, the ability to compute the power spectral density using only the symmetric
half of the data provides important computational savings.

Focusing on the azimuthal component of the integration of (A 1), and showing only
the azimuthal dependence of the variables involved, we examine the treatment of the
integral

Iφ =
∫ π

−π

[Q0(φ)+Q1(φ) cos(φg(φ)− φ0)]H(φ, φ − φ0) dφ. (A 2)

For the source term H, the notation H(φ, φ− φ0) indicates the azimuthal dependence
of the scales as well as the azimuthal directivity of R̃23 that involves the term
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cos(φ − φ0) in (3.33). We note the following dependencies across the symmetry
plane:

Q0(−φ)=Q0(φ)

Q1(−φ)=Q1(φ)

φg(−φ)=−φg(φ)

H(−φ,−φ − φ0)=H(φ, φ + φ0).

 (A 3)

It is now easy to show that the full-circle integral of (A 2) is equivalent to the integral
over the half-circle

Iφ =
∫ π

0
{Q0(φ)[H(φ, φ − φ0)+H(φ, φ + φ0)]

+Q1[H(φ, φ − φ0) cos(φg(φ)− φ0)+H(φ, φ + φ0) cos(φg(φ)+ φ0)]} dφ.
(A 4)

This procedure allows the evaluation of the power spectral density by integration over
the volume of the half-jet.

A.3. Special treatment for axisymmetric jets
For axisymmetric jets, the computational cost can be further reduced by confining the
volume integral to an azimuthal slice of the jet. This is not a simple reduction because
it needs to account for the source–observer azimuthal dependencies in A0000 (i.e. the
cosine terms in (A 1)) as well as the azimuthal influence contained in R̃23. Having an
analytical relation for R̃23 is very useful in this regard. Using (3.33), the source term
H of (A 1d) is expressed as

H =H′eσ cos(φ−φ0) (A 5a)

H′ =
α4

16πR2
τ∗L1πL2

23R̂1R̂4 exp

{
−

(
αL23

2

)2 (
sin2 θ0 +

1
µ2

c

)}
(A 5b)

σ =
(αL23)

2 sin θ0

2µc
. (A 5c)

Now it is assumed that the gradient-based azimuthal angle φg equals the geometric
azimuthal angle φ. This is valid for a mean velocity profile that is monotonically
decreasing with radius and is applicable to the dominant source region of the
axisymmetric jets under consideration here. Then (A 1a) becomes

S(x0, ω)=

∫
V

H′[Q0 +Q1 cos(φ − φ0)]eσ cos(φ−φ0) d3y. (A 6)

Noting that H′, Q0 and Q1 are all purely axisymmetric, the only azimuthal
dependence in the integrand comes from the cos(φ − φ0) terms. Invoking the integral
representations of the modified Bessel functions, the azimuthal component of the
integration results in the terms∫ π

−π

eσ cos(φ−φ0) dφ = 2πI0(σ ) (A 7)∫ π

−π

cos(φ − φ0)eσ cos(φ−φ0) dφ = 2πI1(σ ), (A 8)
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where I0 and I1 are the modified Bessel functions of the first kind and of orders zero
and one, respectively. Now (A 6) collapses into the two-dimensional integral

S(x0, ω)= 2π

∫
∞

0

∫
∞

0
H′[Q0I0(σ )+Q1I1(σ )]y dy dX. (A 9)

While in theory the reduction to two dimensions cuts down the computational
demands dramatically, the expectation of sufficiently resolved data on a given
meridional section is not realistic. Computational codes produce data in three-
dimensional grids that may not be purely axisymmetric (even for the treatment
of axisymmetric jets) and thus cannot be readily transformed into a radial set.
Interpolation on a meridional section presents numerical challenges that can introduce
errors with large impact on the noise prediction, particularly in the very thin shear
layers near the nozzle exit. On the other hand, restricting the integration to an
azimuthal slice containing a sufficient population of elements is a very simple
procedure. It is accomplished here by realizing that (A 9) is equivalent to

S(x0, ω)=
2π

Φ

∫ Φ

0

∫
∞

0

∫
∞

0
H′[Q0I0(σ )+Q1I1(σ )]y dy dX dφ. (A 10)

The integral now represents a volumetric integration over an azimuthal slice of angle
Φ, and can be expressed compactly as

S(x0, ω)=
2π

Φ

∫
VΦ

H′[Q0I0(σ )+Q1I1(σ )] d3y, (A 11)

where VΦ is the volume of the slice. Through experimentation it was determined
that a 5◦ azimuthal slice contained a sufficient number of elements to compute the
power spectral density with excellent accuracy, within a few tenths of a decibel, as
compared to integration over the entire volume. The resulting 36-fold reduction in
computational time, relative to treating the entire half-jet, benefits tremendously the
conjugate-gradient minimization process described in § 4.2, which requires evaluation
of the spectral density of the order of 100 times.
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