
Proceedings of the Royal Society of Edinburgh, 152, 780–801, 2022

DOI:10.1017/prm.2021.34

Spectral properties of a beam equation with
eigenvalue parameter occurring linearly in the
boundary conditions

Ziyatkhan S. Aliyev
Baku State University, Baku AZ1148, Azerbaijan
Institute of Mathematics and Mechanics NAS of Azerbaijan, Baku
AZ1141, Azerbaijan
National Aviation Academy of Azerbaijan, Baku AZ1045, Azerbaijan
(z aliyev@mail.ru)

Gunay T. Mamedova
Ganja State University, Ganja AZ2001, Azerbaijan
(gunaymamedova614@gmail.com)

(Received 6 September 2020; accepted 5 July 2021)

In this paper, we consider an eigenvalue problem for ordinary differential equations
of fourth order with a spectral parameter in the boundary conditions. The location
of eigenvalues on real axis, the structure of root subspaces and the oscillation
properties of eigenfunctions of this problem are investigated, and asymptotic
formulas for the eigenvalues and eigenfunctions are found. Next, by the use of these
properties, we establish sufficient conditions for subsystems of root functions of the
considered problem to form a basis in the space Lp, 1 < p < ∞.
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1. Introduction

We consider the following eigenvalue problem

�(y)(x) ≡ y(4)(x) − (q(x)y′(x))′ = λy(x), 0 < x < 1, (1.1)

y′′(0) = 0, (1.2)

Ty(0) − aλy(0) = 0, (1.3)

y′(1) cos γ + y′′(1) sin γ = 0, (1.4)

Ty(1) − cλy(1) = 0, (1.5)
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Spectral properties of a beam equation with eigenvalue parameter 781

where λ ∈ C is a spectral parameter, Ty ≡ y′′′ − qy′, q(x) is a positive absolutely
continuous function on [0, 1], a, c and γ are real constants such that a < 0, c < 0
and γ ∈ [0, π/2].

The study of spectral problems for ordinary differential equations with bound-
ary conditions depending on the spectral parameter has a long history which is
well reflected in [10, 21]. Problems of this type arise when solving various specific
problems of mechanics, physics and mathematical physics. The eigenvalue problem
(1.1)–(1.5) describes the bending vibrations of a homogeneous rod, in cross-sections
of which the longitudinal force acts, on the left end of which a mass is concentrated.
Moreover, the right end of the rod is fixed elastically by a spring that prevents it
from turning (the case of γ ∈ (0, π/2)), and on this end a tracking force acts (see
[19, pp. 152–154]).

The general theory of spectral problems for ordinary differential equations with
polynomial occurrence of the spectral parameter in the equations and boundary
conditions was constructed in [38] and [39]. In these papers, various classes of
boundary value problems (normal, regular and strongly regular) were distinguished,
and spaces W r

2,U ⊕ C
Nr were constructed in which these problems admit natural

linearization. For strongly regular problems, in [38] the Riesz basis property (after
normalization) of the system of eigenvectors and associated vectors of linearizing
operators in the space W r

2,U ⊕ C
Nr was established, and in [39] a condition was

found under which the system of eigen- and associated functions of the original
problem form a defective Riesz basis (with a finite number of defects) in space W r

2 .
Oscillatory properties of eigenfunctions and basis properties in various functional

spaces of root functions of Sturm-Liouville problems with a spectral parameter in
the boundary conditions were investigated in [1, 3, 4, 11, 15–18, 21, 24, 26–28,
31, 34, 36–38, 40]. These properties of the root functions of eigenvalue problems for
ordinary differential equations of the fourth order, one of the boundary conditions
of which depends on the spectral parameter, were studied in detail in [2, 12, 13, 22,
23, 29, 30, 32, 33, 39]. In the case when two of the boundary conditions contain a
spectral parameter, these problems were studied in [5, 6, 9, 10, 32], and when three
of the boundary conditions contain a spectral parameter, they were studied in [8].
The problems studied in these works describe bending vibrations of a rod, the left
end of which is either fixed or at this end a load is concentrated or a tracking force
acts, and at the right end an inertial load is concentrated (the tracking force can
also act at this end) (see. [19, Ch. 8, § 5]). In [7], the authors establish conditions
under which the Fourier series expansions of continuous functions in the system of
eigenfunctions of the problem converge uniformly.

The aim of this work is to study the position of the eigenvalues on the real axis, the
structure of root subspaces, and the oscillatory properties of the eigenfunctions, and
also to obtain asymptotic formulas for the eigenvalues and eigenfunctions of problem
(1.1)–(1.5). Moreover, using these properties and the operator interpretation of this
problem, we establish sufficient conditions for the subsystems of root functions to
form a basis in the space Lp, 1 < p <∞. It should be noted that the results of
this paper will allow us in the future to investigate the eigenvalue problem for the
equation (1.1) with boundary conditions, three of which depend on the spectral
parameter.
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The structure of this paper is as follows. In § 2, we consider the initial-boundary
value problem (1.1), (1.2), (1.4), (1.5), in contrast to [14] where initial-boundary
value problem (1.1)–(1.4) is considered for γ = π/2. This is due to the fact that
great difficulties arise in the study of the oscillatory properties of the solution to
the problem (1.1)–(1.4) for λ < 0. Here we show the existence and uniqueness of a
solution of problem (1.1), (1.2), (1.4), (1.5) for each λ ∈ C, and investigate some
properties of this solution, including its oscillatory properties depending on the
parameter λ ∈ R. In § 3, we study the location of the eigenvalues on the real axis,
the structure of root subspaces and the oscillation properties of the eigenfunctions
corresponding to both positive and negative eigenvalues of problem (1.1)–(1.5).
In § 4, using the oscillatory properties of the eigenfunctions, we find asymptotic
formulas for the eigenvalues and eigenfunctions of the considered problem. In § 5,
problem (1.1)–(1.5) is reduced to the eigenvalue problem for a some nonself-adjoint
operator in a Hilbert space H = L2(0, 1) ⊕ C

2 with corresponding scalar product.
This operator is J -self-adjoint in the Pontryagin space Π1 = L2(0, 1) ⊕ C

2 with
the corresponding inner product, and the system of its root vectors forms an uncon-
ditional basis in H. We also find the system adjoint to the system of root vectors
of this operator. Next, with the use of these results and oscillatory properties of
eigenfunctions we establish sufficient conditions for the system of root functions of
problem (1.1)–(1.5) to form a basis in the space Lp(0, 1), 1 < p <∞ after removing
two functions.

2. The existence and main properties of the solution of problem (1.1),
(1.2), (1.4), (1.5)

We consider the boundary condition

y(0) cosβ + Ty(0) sinβ = 0, β ∈ [0, π/2]. (2.1)

Alongside the problem (1.1)–(1.5) we also consider the eigenvalue problem (1.1),
(1.2), (2.1), (1.4), (1.5). The spectral properties of this problem in a more general
form of boundary conditions were investigated in [29, 30].

It follows from [30, lemma 2.2 and theorem 2.2] that the following result holds
for this problem.

Theorem 2.1. For each β and each γ the eigenvalues of the boundary value problem
(1.1), (1.2), (2.1), (1.4), (1.5) are real and simple, and form an unbounded increasing
sequence {λk(β, γ)}∞k=1 such that

0 < λ1(β, γ) < λ2(β, γ) < . . . < λk(β, γ) < . . . for β ∈ [0, π/2),

and

0 = λ1(π/2, γ) < λ2(π/2, γ) < . . . < λk(π/2, γ) < . . . .

Moreover, the eigenfunction yk,β, γ(x), k ∈ N, corresponding to the eigenvalue
λk(β, γ) has k − 1 simple zeros in the interval (0, 1).
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Let H̃ = L2(0, 1) ⊕ C be the Hilbert space with the scalar product

(ỹ, ṽ) = ({y, n}, {v, t}) =
∫ 1

0

u(x) v(x) dx+ |c|−1nt̄.

As is known [2] that problem (1.1), (1.2), (2.1), (1.4), (1.5) is equivalent the
following eigenvalue problem

L̃ỹ = λỹ, ỹ ∈ D(L̃),

where L is a self-adjoint bounded below operator in H̃ defined by

L̃ỹ = L{y, n} = {�y, Ty(0)} (2.2)

with the domain

D(L̃) =
{
ỹ = {y, n} ∈ H̃ : y ∈W 4

2 (0, 1), �y ∈ L2(0, 1), y′′(0) = 0,

y(0) cosβ + Ty(0) sinβ = y(1) cos γ + y′′(1) sin γ = 0, n = cy(1)} .

It is known that the eigenvalues of problem (2.2) are given by the max-min principle
[20]

λk(β, γ) = max
Ṽ (k−1)

min ỹ ∈L

(ỹ,Ṽ (k−1))=0

R [ỹ]

where R [ỹ] is the Rayleigh quotient

R [ỹ] =
(L̃ỹ, ỹ)
(ỹ, ỹ)

=

∫ 1

0

(
y′′2(x) + q(x)y′2(x)

)
dx+N [y]∫ 1

0
y2(x) dx− cy2(1)

,

N [y] = y2(0) cotβ + y′2(1) cot γ,

(we use the convention that if any of the parameters β or γ is zero, then the
boundary value of y at 0 or y′ at 1 is taken to be zero and the corresponding
term in N [y] does not appear), L is the set of vectors ỹ = {y, n} ∈ H̃ such that
the function y satisfies the boundary conditions (1.2), (2.1), (1.4), Ṽ (k−1) is an
arbitrary set of linearly independent vectors ṽj = {vj , tj}, 1 � j � k − 1, such that
the functions vj , 1 � j � k − 1, satisfy the boundary conditions (1.2), (2.1), (1.4).

Using this max-min characterization, by following the argument in theorem 9 of
[20, p. 419] for eigenvalues of (1.1), (1.2), (2.1), (1.4), (1.5) we have the following
property.

Lemma 2.2. The eigenvalues of problem (1.1), (1.2), (2.1), (1.4), (1.5) are contin-
uous, strictly decreasing functions of β and γ for β, γ ∈ [0, π/2].

By virtue of theorem 2.1 and lemma 2.2 for each γ ∈ [0, π/2] we have

λ1(π/2, γ) < λ1(0, γ) < λ2(π/2, γ) < λ2(0, γ) < ... (2.3)

Theorem 2.3. For each fixed λ ∈ C there exists a nontrivial solution y(x, λ) of
(1.1), (1.2), (1.4), (1.5) which is unique up to a constant coefficient.
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Proof. Let ψk(x, λ), k = 1, 2, 3, 4, denote the solutions of equation (1.1) normal-
ized for x = 1 by the Cauchy conditions

ψ
(s−1)
k (1, λ) = δks, s = 1, 2, 3, Tψk(1, λ) = δk4, (2.4)

where δks is the Kronecker delta.
As in [8, 33], we will seek the solution y(x, λ) of (1.1), (1.2), (1.4), (1.5) in the

form

y(x, λ) =
4∑

k=1

Akψk(x, λ), (2.5)

where Ak, k = 1, 2, 3, 4, are some constants.
By (1.4), (1.5) and (2.4) it follows from (2.5) that A2 cos γ +A3 sin γ = 0, A4 −

cλA1 = 0. Consequently, for the function y(x, λ) we have

y(x, λ) =

⎧⎪⎨
⎪⎩
A1 {ψ1(x, λ) + cλψ4(x, λ)} +A3 ψ3(x, λ) if γ = 0,
A1 {ψ1(x, λ) + cλψ4(x, λ)}

+A2{ψ2(x, λ) − ψ3(x, λ) cot γ} if γ ∈ (0, π/2].
(2.6)

By (1.2) from (2.6) we get

A1 (ψ′′
1 (0, λ) + cλψ′′

4 (0, λ)) +A3ψ
′′
3 (0, λ) = 0 if γ = 0,

A1 (ψ′′
1 (0, λ) + cλψ′′

4 (0, λ)) +A2 (ψ′′
2 (0, λ) − ψ′′

3 (0, λ) cot γ) = 0 if γ ∈ (0, π/2].
(2.7)

For brevity, we use the following notations:

C1(λ) = ψ′′
1 (0, λ) + cλψ′′

4 (0, λ),

C2(λ) =

{
ψ′′

3 (0, λ) if γ = 0,
ψ′′

2 (0, λ) − ψ′′
3 (0, λ) cot γ if γ ∈ (0, π/2].

(2.8)

It can be seen from (2.7) that to complete the proof of theorem it suffices to show
that for each λ ∈ C the relation

|C1(λ)| + |C2(λ)| > 0 (2.9)

holds.
If λ > 0, then by the second part of [14, lemma 2.1] we get

ψ1(0, λ) > 0, ψ′
1(0, λ) < 0, ψ′′

1 (0, λ) > 0, Tψ1(0, λ) < 0,

ψ2(0, λ) < 0, ψ′
2(0, λ) > 0, ψ′′

2 (0, λ) < 0, Tψ2(0, λ) > 0,

ψ3(0, λ) > 0, ψ′
3(0, λ) < 0, ψ′′

3 (0, λ) > 0, Tψ3(0, λ) < 0,

ψ4(0, λ) < 0, ψ′
4(0, λ) > 0, ψ′′

4 (0, λ) < 0, Tψ4(0, λ) > 0.

(2.10)

Indeed, by (1.1) and (2.4) for the function ψ1(x, λ) we have

lim
x→1
x< 1

(Tψ1(x, λ))′ = λ lim
x→1
x< 1

ψ1(x, λ) = λ > 0,
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which implies that there exists (Tψ1)′(1, λ) = λ > 0. Consequently, there exists
ψ

(4)
1 (1, λ) = (Tψ1)′(1, λ) + q(1)ψ′′

1 (1, λ) + q′(1)ψ′
1(1, λ) = (Tψ1)′(1, λ) > 0. Hence

Tψ1(x, λ) < 0 and ψ′′′
1 (x, λ) < 0 in a sufficiently small left punctured neighbour-

hood V −
1 of the point x = 1. Since x = 1 is a triple zero of the function ψ′

1(x, λ)
it follows that ψ′′

1 (x, λ) > 0, ψ′
1(x, λ) < 0 for x ∈ V −

1 . Moreover, ψ1(x, λ) > 0 for
x ∈ V −

1 . Then it follows from the second part of [14, lemma 2.1] that ψ1(0, λ) > 0,
ψ′

1(0, λ) < 0, ψ′′
1 (0, λ) > 0, Tψ1(0, λ) < 0. The remaining relations in (2.10) for the

functions ψ2(x, λ), ψ3(x, λ) and ψ4(x, λ) are proved similarly.
Let λ > 0. Then, in view of c < 0, by (2.8) we have C1(λ) = ψ′′

1 (0, λ) +
cλψ′′

4 (0, λ) > 0, and consequently, (2.9) holds.
Now let λ ∈ C \( 0,+∞). If (2.8) fails for some such λ, then C1(λ) = C2(λ) = 0.

Hence the functions ψ1(x, λ) + cλψ4(x, λ) and ψ3(x, λ) for γ = 0, ψ2(x, λ) −
ψ3(x, λ) cot γ for γ ∈ (0, π/2] are solutions of problem (1.1), (1.2), (1.4), (1.5) for
such λ. We consider the function u(x, λ) which is defined as follows:

u (x, λ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψ3(0, λ) (ψ1(x, λ) + cλψ4(x, λ)) − (ψ1(0, λ) + cλψ4(0, λ))
ψ3(x, λ) for γ = 0,
(ψ2 (0, λ) − ψ3 (0, λ) cot γ) (ψ1(x, λ) + cλψ4(x, λ))

− (ψ1(0, λ) + cλψ4(0, λ))
(ψ2 (x, λ) − ψ3 (x, λ) cot γ) for γ ∈ (0, π/2].

Note that u(0, λ) = 0. Hence the function u(x, λ) is an eigenfunction of the eigen-
value problem (1.1), (1.2), (2.1), (1.4), (1.5) for β = 0 and γ ∈ [0, π/2]. Then by
theorem 2.1 we have λ > 0 which contradicts the condition λ ∈ C \( 0,+∞). The
proof of this theorem is complete.

Remark 2.4. By (2.6)–(2.8), for each λ ∈ C the nontrivial solutions y(x, λ) of
problem (1.1), (1.2), (1.4), (1.5) are nonzero multiples of

v(x, λ) = C2(λ) {ψ1(x, λ) + cλψ4(x, λ)}

− C1(λ)
{
sgnγ ψ2(x, λ) − (−1)1−sgnγ (1 + sgnγ (cot γ − 1)) ψ3(x, λ)

}
.

(2.11)

As is known (see [35, Ch. 1, § 2.1]) that for each fixed x ∈ [0, 1] the func-
tions ψk(x, λ), k = 1, 2, 3, 4, and their derivatives are entire functions of λ, and
consequently, v(x, λ) is also an entire function of λ for each fixed x ∈ [0, 1].

Lemma 2.5. Let y(x, λ), λ ∈ C, be nontrivial solutions of problem (1.1), (1.2), (1.4),
(1.5). Then y(1, λ) �= 0 for λ > 0 and y(0, λ) �= 0 for λ � 0.

Proof. If y(1, λ) = 0 for some λ > 0, then from (1.5) we get Ty(1, λ) = 0. Since
γ ∈ [0, π/2] it follows from (1.4) that y′(1, λ)y′′(1, λ) � 0. Then by the second part
of [14, lemma 2.1] we have y′(0, λ) y′′(0, λ) < 0 which contradicts the condition
(1.2).

If y(0, λ) = 0 for some λ � 0, then y(x, λ) is an eigenfunction of problem (1.1),
(1.2), (2.1), (1.4), (1.5) for β = 0 and γ ∈ [0, π/2]. Then by theorem 2.1 we have
λ > 0 which contradicts the condition λ � 0. The proof of this lemma is complete.
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Now, using lemma 2.5, we can normalize the function y(x, λ), x ∈ [0, 1], λ ∈ R, as
follows:

y(1, λ) = 1 (2.12)

if λ > 0, and

y(0, λ) = 1 (2.13)

if λ � 0.
For λ ∈ R we consider the following equation

y(x, λ) = 0, x ∈ [ 0, 1].

It is obvious that the zeros of this equation are functions of the parameter λ.

Lemma 2.6. The zeros of function y(x, λ) contained in the half-open interval [0, 1)
are simple and continuously differentiable functions of λ, λ ∈ R.

Proof. Let λ0 be an arbitrary fixed positive number. If y(x0, λ0) = 0 for
x0 ∈ (0, 1), then it follows from [14, lemma 2.2] that y′(x0, λ0) �= 0. If y(0, λ0) =
y′(0, λ0) = 0, then in view of (1.2), by the first part of [14, lemma 2.1] we have
y′(1, λ0)y′′(1, λ0) > 0 in contradiction with the boundary condition (1.4).

Let λ0 � 0 and x0 ∈ [0, 1) such that y(x0, λ0) = y′(x0, λ0) = 0. Then y(x, λ0)
solves the eigenvalue problem defined on [x0, 1] and determined by equation (1.1)
with the boundary conditions y(x0) = y′(x0) = 0 and (1.4), (1.5). By theorem 2.1
the eigenvalues of this problem are simple and positive which contradicts the
condition λ0 � 0.

The continuous differentiability of the zeros contained in [0, 1) of the function
y(x, λ) follows from the well-known implicit function theorem, and the proof of this
lemma is complete.

By lemma 2.5, lemma 2.6 implies the following statement.

Corollary 2.7. As λ > 0 (λ � 0) varies the function y(x, λ) can lose or gain zeros
only by these zeros leaving or entering the interval [0, 1] through its endpoint x = 0
(x = 1).

We consider the function

H(x, λ) =
y(x, λ)
Ty(x, λ)

.

By theorem 2.3, remark 2.4 and lemma 2.6 the function H(x, λ) is a finite order
meromorphic function of λ for each fixed x ∈ [ 0, 1].

Let Dk = (λk−1(0, γ), λk(0, γ)), k ∈ N, where λ0(0, γ) = −∞.
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Obviously, the function

F (λ) =
1

H(0, λ)
=
Ty(0, λ)
y(0, λ)

which is well defined for

λ ∈ D ≡ (C\R) ∪
( ∞⋃

k=1

Dk

)

and is a meromorphic function of finite order. The eigenvalues λk(0, γ) and
λk(π/2, γ), k = 1, 2, . . . , of problem (1.1), (1.2), (2.1), (1.4), (1.5) for β = 0 and
β = π/2 are poles and zeros of function F (λ), respectively.

Lemma 2.8. For each λ ∈ D the relation

dF (λ)
dλ

= − 1
y2(0, λ)

{∫ 1

0

y2(x, λ) dx− cy2(1, λ)
}

(2.14)

holds.

Proof. By virtue of equation (1.1) we have

(Ty(x, μ))′ y(x, λ) − (Ty(x, λ))′ y(x, μ) = (μ− λ)y(x, μ)y(x, λ). (2.15)

Integrating equality (2.15) from 0 to 1, using the formula for the integration by
parts and taking boundary conditions (1.2), (1.4) and (1.5) into account we obtain

− Ty(0, μ) y(0, λ) + Ty(0, λ) y(0, μ)

= (μ− λ)
{∫ 1

0

y(x, μ) y(x, λ)dx− cy(1, μ) y(1, λ)
}
. (2.16)

By (2.16) for μ, λ ∈ D, μ �= λ, we have

Ty(0, μ)
y(0, μ)

− Ty(0, λ)
y(0, λ)

= −(μ− λ)
1

y(0, μ) y(0, λ)

{∫ 1

0

y(x, μ)y(x, λ)dx− cy(1, μ)y(1, λ)
}
. (2.17)

Dividing both sides of relation (2.17) by μ− λ (μ �= λ) and by passing to the limit
as μ→ λ we get (2.14). The proof of this lemma is complete.

Corollary 2.9. The function F (λ) strictly decreases on each of intervals Dk, k =
1, 2, . . . .
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Lemma 2.10. The following relation holds:

lim
λ→−∞

F (λ) = +∞. (2.18)

Proof. In equation (1.1) we set λ = ρ4. By theorem 1 of [35, Ch. II, § 4.5] in each
subdomain T of the complex ρ-plane this equation has four linearly independent
solutions ϕk(x, ρ), k = 1, 2, 3, 4, which are regular with respect to ρ (for sufficiently
large | ρ|) and satisfying the following relations

ϕ
(s)
k (x, ρ) = (ρωk)seρωkx

{
1 +O

(
ρ−1

)}
, k = 1, 2, 3, 4, s = 0, 1, 2, 3, (2.19)

where ωk, k = 1, 2, 3, 4, are distinct fourth roots of unity.
Let λ < 0. Then, without loss of generality, we can assume that ρ lies on the

bisector of the first quadrant, and the numbers ωk, k = 1, 2, 3, 4, are numbered in
the following order: ω1 = −1, ω2 = i, ω3 = −i and ω4 = 1.

For brevity, we introduce the notation

[1] = 1 +O(ρ−1).

Assuming that the initial condition y(0, λ) = 1 is imposed, the unique solution of
(1.1), (1.2), (1.4), (1.5) together with the initial condition y(0, λ) = 1 can be written
in the form

y(x, λ) =
4∑

k=1

Bk(ρ)ϕk(x, ρ).

Writing B = (B1, B2, B3, B4)T , the coefficients Ck(ρ) are solution of the linear
algebraic system

M(ρ)B(ρ) = (0, 0, 0, 1)T ,

where the matrix M(ρ) is given by

M(ρ) =

⎛
⎜⎜⎝

[1] −[1] −[1] [1]
−e−ρ[1] ieiρ[1] −ie−iρ[1] eρ[1]
e−ρ[1] eiρ[1] e−iρ[1] eρ[1]

[1] [1] [1] [1]

⎞
⎟⎟⎠

for γ = 0, and

M(ρ) =

⎛
⎜⎜⎝

[1] −[1] −[1] [1]
e−ρ[1] −eiρ[1] −e−iρ[1] eρ[1]
e−ρ[1] eiρ[1] e−iρ[1] eρ[1]

[1] [1] [1] [1]

⎞
⎟⎟⎠

for γ ∈ (0, π/2].
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The solution of the system M(ρ)B(ρ) = (0, 0, 0, 1)T is

B1(ρ) =
1
2
[1], B2(ρ) = − (1 + i) e− iρ

2((1 − i)eiρ − (1 + i)e−iρ)
[1],

B3(ρ) =
(1 − i) eiρ

2((1 − i)eiρ − (1 + i)e−iρ)
[1], B4(ρ) = − 2ie− ρ

2((1 − i)eiρ − (1 + i)e−iρ)
[1],

if γ = 0, and

B1(ρ) =
1
2
[1], B2(ρ) =

− e− iρ

2(eiρ − e− iρ)
[1],

B3(ρ) =
eiρ

2(eiρ − e− iρ)
[1], B4(ρ) =

1
2
e−2 ρ[1].

if γ ∈ (0, π/2]. Then for F (λ) = Ty(0, λ)/y(0, λ) we get the following representation

F (λ) = {((1− i)eiρ − (1+ i)e−iρ)[1] − (1+ i) e−iρ[1] + (1 − i) eiρ[1] + 2ie−ρ[1]}−1

ρ3{−((1 − i)eiρ − (1 + i)e−iρ)[1] − (1 − i) e−iρ[1] + (1 + i) eiρ[1] + 2ie−ρ[1]}

(2.20)
if γ = 0, and

F (λ) = ρ3{(eiρ − e−iρ)[1] − e−iρ[1] + eiρ[1] − e−2ρ(eiρ − e−iρ)[1]}−1

{−(eiρ − e−iρ)[1] + i e−iρ[1] + i eiρ[1] − e−2ρ(eiρ − e−iρ)[1]} (2.21)

if γ ∈ (0, π/2].
Since ρ lies on the bisector of the first quadrant it follows that ρ = (1 + i)u,

where u > 0, and consequently, |ρ| =
√

2u. Then, from (2.20) and (2.21) by a
straightforward computation, we obtain

F (λ) = −(1 − i)−1ρ3[1] = −(1 − i)−1(1 + i)3u3[1] = (
√

2)−1|ρ|3(1 +O(|ρ|−1)

= (
√

2)−1 4
√

|λ|3
(

1 +O

((
4
√

|λ|
)−1

))
asλ→ −∞. (2.22)

The proof of this lemma is complete.

Lemma 2.11. Let x ∈ [0, 1) and λ > 0 such that y(x, λ) = 0. Then

∂H(x, λ)
∂x

< 0. (2.23)

Proof. Let y(x, λ) = 0 for some x ∈ [0, 1) and λ > 0. If x ∈ (0, 1), then it follows
from [14, lemma 2.2] that y′(x, λ)Ty(x, λ) < 0. If y(0, λ) = 0, then in view of (1.2),
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by the first part of [14, lemma 2.1] we have y′(0, λ)Ty(0, λ) < 0. Therefore, by
virtue of (1.1), we get

∂H(x, λ)
∂x

=
∂

∂x

(
y(x, λ)
Ty(x, λ)

)
=
y′(x, λ)Ty(x, λ) − λy2(x, λ)

(Ty(x, λ))2
=

y′(x, λ)
Ty(x, λ)

< 0.

The proof of lemma 2.11 is complete.
By τ(λ) we denote the number of zeros of the function y(x, λ) contained in (0, 1).

Lemma 2.12. Let 0 < μ < ν. Then τ(μ) � τ(ν).

Proof. By corollary 2.7 as λ > 0 varies the zeros of the function y(x, λ) can enter
or leave the interval (0, 1) only through the endpoint x = 0. Moreover, by lemma
2.6 and the implicit function theorem for every zero x(λ) of the function y(x, λ) the
following relation holds:

x′(λ) = −H
′
λ(x, λ)

H ′
x(x, λ)

.

If x(λ) = 0, then it follows from this and relations (2.14), (2.23) that

x′(λ) > 0.

Therefore, as λ > 0 increases the zeros of the function y(x, λ) cannot leave the
interval (0, 1) through the point x = 0. Hence, as λ, μ < λ < ν, increases the number
of zeros of the function y(x, λ) cannot decrease, i.e. τ(μ) � τ(ν). The proof of this
lemma is complete.

Theorem 2.13. If λ ∈ [0,+∞) ∩ (λk−1(0, γ), λk−1(0, γ), then τ(λ) = k − 1.

Proof. It is obvious that ψ1(x, 0) ≡ 1. Then by (2.8), (2.13) it follows from
(2.11) that y(x, 0) ≡ 1. Hence, for all λ ∈ R sufficiently close to zero, the func-
tion y(x, λ) has no zeros in (0, 1). Moreover, by theorem 2.1 we have τ(λk(0, γ) =
k − 1, k = 1, 2, . . . . Therefore, by lemma 2.12 it follows that if λ > 0 and λ ∈
(λk−1(γ, 0), λk−1(γ, 0), then τ(λ) = k − 1. The proof of theorem 2.13 is complete.

It follows from lemma 2.6 that as λ < 0 varies then the zeros of the function
y(x, λ) can enter or leave the interval (0, 1) only through the endpoint x = 1. To
find the number of zeros contained in the interval (0, 1) of the function y(x, λ) for
λ < 0 consider the following spectral problem

�(y)(x) = λy(x), 0 < x < 1,

y′′(0) = y′(1) cos γ + y′′(1) sin γ = y(1) = Ty(1) = 0. (2.24)

It follows from the second part of [14, lemma 2.1] that the eigenvalues of problem
(2.24) cannot be positive. Let η be a real eigenvalue of this problem and ε > 0 be
the fixed sufficiently small number. The oscillation index of the eigenvalue η which
denotes by i(η) is the difference between the number of zeros of the function y(x, λ)
for λ ∈ (η − ε, η) contained in the interval (0, 1) and the number of the same zeros
for λ ∈ (η, η + ε). This definition directly implies that the number of zeros of the
function y(x, λ) for λ < 0 contained in the interval (0, 1) is equal to the sum of
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the oscillation indices of all eigenvalues of problem (2.24) contained in the interval
(λ, 0) (see [13, § 4]).

By following the arguments in theorem 4.1 of [13] one can justify the following
statement.

Theorem 2.14. There exists ξ < 0 such that the eigenvalues ηk, k = 1, 2, . . . , of
problem (2.24) are simple, lying on the interval (−∞, ξ), form an unbounded
decreasing sequence {ηk}∞k=1 such that i(ηk) = 1, k ∈ N, and

ηk = − 4π4k4 + o(k4).

Now, based on the above reasoning, we obtain the following formula for the
number of zeros contained in (0, 1) of the function y(x, λ) for λ < 0:

τ(λ) =
∑

ηk∈ (λ,0)

i(ηk). (2.25)

3. The location of eigenvalues and the oscillatory properties of
eigenfunctions of problem (1.1)–(1.5)

Lemma 3.1. The eigenvalues of the boundary value problem (1.1)–(1.5) are real and
form an at most countable set without finite limit point.

Proof. Note that the eigenvalues of problem (1.1)–(1.5) are the roots of the
equation

Ty(0, λ) − aλ y(0, λ) = 0. (3.1)

Let λ be the nonreal eigenvalue of this problem. Then λ̄ is also eigenvalue of
(1.1)–(1.5) because the coefficients q(x), a, c and γ are real. Moreover, in this case
y(x, λ̄) = y(x, λ), and consequently, equality (3.1) holds for λ̄ .

Setting μ = λ̄ in relation (2.16) and taking (1.4) into account we get

− a (λ− λ) |y(0, λ)|2 = (λ− λ)
{∫ 1

0

|y(x, λ)|2dx− c|y(1, λ)|2
}
, (3.2)

whence, by λ �= λ, implies that

∫ 1

0

|y(x, λ)|2dx+ a |y(0, λ)|2 − c|y(1, λ)|2 = 0. (3.3)

Putting y(x, λ) in (1.1)–(1.5), then multiplying both sides of (1.1) by y(x, λ),
integrating this relation from 0 to 1, using the formula for the integration by parts,
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and taking into account conditions (1.2)–(1.5), we obtain

∫ 1

0

|y′′(x, λ)|2dx+
∫ 1

0

q(x) |y′(x, λ)|2dx+ N [y(x, λ)]

= λ

{∫ 1

0

|y(x, λ)|2dx+ a |y(0, λ)|2 − c|y(1, λ)|2
}
, (3.4)

where N [y(x, λ)] = 0 for γ = 0, N [y(x, λ)] = |y′(1, λ)|2 cot γ for γ ∈ (0, π/2]. Hence
it follows from (3.3) and (3.4) that

∫ 1

0
|y′′(x, λ)|2dx+

∫ 1

0
q(x) |y′(x, λ)|2dx+ N [y(x, λ)] = 0. (3.5)

By the boundary condition (1.3), relation (3.5) implies that y(x, λ) ≡ 0, a contra-
diction.

By the above arguments the entire function on the left-hand side of (3.1) does
not vanish for non-real λ. Consequently, it does not vanish identically. Therefore,
its zeros form an at most countable set without finite limit point. The proof of this
lemma is complete.

Remark 3.2. If λ is an eigenvalue of (1.1)–(1.5), then y(0, λ) �= 0. Indeed, if
y(0, λ) = 0, then it follows from (1.2) that Ty(0, λ) = 0. Consequently, λ is an
eigenvalue of problem (1.1), (1.2), (2.1), (1.4), (1.5) for β = 0 and β = π/2 in
contradiction with relation (2.3).

Lemma 3.3. The nonzero eigenvalues of problem (1.1)–(1.5) are simple.

Proof. Let λ be an eigenvalue of (1.1)–(1.5). Then by remark 3.2 we have
y(0, λ) �= 0. Therefore each root (with regard of multiplicities) of equation (3.1)
is a root of the equation

F (λ) = aλ. (3.6)

Let λ = λ∗ be a multiple root of (3.6). Then the following relations hold:

F (λ∗) = aλ∗, F ′(λ∗) = a. (3.7)

By remark 3.2 and formula (2.14), the second relation of (3.7) implies that

∫ 1

0

y2(x, λ∗) dx+ a y2(0, λ∗) − c y2(1, λ∗) = 0. (3.8)

Since λ∗ ∈ R it follows from (3.4) that

∫ 1

0

y′′2(x, λ∗)dx+
∫ 1

0

q(x) y′2(x, λ∗)dx+ N [y(x, λ∗)]

= λ

{∫ 1

0

y2(x, λ∗)dx+ a y2(0, λ∗) − c y2(1, λ∗)
}
, (3.9)
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whence, by virtue of (3.8), we get∫ 1

0

y′′2(x, λ∗)dx+
∫ 1

0

q(x) y′2(x, λ∗)dx+ N [y(x, λ∗)] = 0. (3.10)

Consequently, by condition (1.3), from (3.10) we obtain y(x, λ∗) ≡ 0 which contra-
dicts the condition y(x, λ∗) �≡ 0. The proof of this lemma is complete.

Following the reasoning in [6, lemma 3.3], we can justify the following result.

Lemma 3.4. One has the following representation:

F (λ) =
∞∑

k=1

λck
λk(0, γ) (λ− λk(0, γ))

, (3.11)

where ck = res
λ=λk(0,γ)

F (λ) and ck > 0, k = 1, 2, . . . .

We have the following oscillation theorem for problem (1.1)–(1.5).

Theorem 3.5. For each γ ∈ [0, π/2] the eigenvalues of problem (1.1)–(1.5) form
an unbounded nondecreasing sequence {λk(γ)}∞k=1 such that

λ1(γ) < 0 = λ2(γ) < λ3(γ) < . . . < λk(γ) < . . . if a > c− 1,

λ1(γ) = λ2(γ) = 0 < λ3(γ) < . . . < λk(γ) < . . . if a = c− 1,

λ1(γ) = 0 < λ2(γ) < λ3(γ) < . . . < λk(γ) < . . . if a < c− 1,

(in the case c = a+ 1 the eigenvalue λ1(γ) = 0 is double, and it corresponds to the
chain consisting of the eigenfunction y1,γ(x) and the associated function y2,γ(x)).
The eigenfunction yk(x), corresponding to the eigenvalue λk, for k � 3 has exactly
k − 2 simple zeros in (0, 1); moreover, if a < c− 1, then the eigenfunctions y1,γ(x)
and y2,γ(x) have no zeros in (0, 1), if a = c− 1, then the eigenfunction y1,γ(x) has
no zeros in (0, 1), if a > c− 1, then y2,γ(x) has no zeros in (0, 1) and the number
of zeros of the eigenfunction y1,γ(x) in (0, 1) is equal

∑
ηk∈(λ1(γ),0)

i(ηk).

Proof. Recall that the eigenvalues of problem (1.1)–(1.5), taking into account
their multiplicities, are the roots of equation (3.6). It follows from (3.11) that

F ′′(λ) = 2
∞∑

k=1

ck

(λ− λk(0, γ))3
, λ ∈ D.

From this we obtain the relation

F ′′(λ) < 0 for λ ∈ D1, (3.12)

i.e. the function F (λ) is concave in D1. Moreover, by (2.14), (2.18) and (3.11) we
have

F (0) = 0, F ′(0) = c− 1, (3.13)

lim
λ→−∞

F (λ) = +∞, lim
λ→λ1(0,γ)− 0

F (λ) = −∞. (3.14)
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Let f(λ) = F (λ) − aλ. Then it follows from relations (3.12)–(3.14) that

f ′′(λ) < 0 for λ ∈ D1,

f(0) = 0 and f ′(0) = c− 1 − a.

Moreover, by (2.22) and (3.14) we have

lim
λ→−∞

f(λ) = −∞, lim
λ→λ1(0,γ)− 0

f(λ) = −∞. (3.15)

If a > c− 1, then f ′(0) < 0. Since f ′′(λ) < 0 in D1 it follows that f ′(λ) < f ′(0) <
0 for λ ∈ (0, λ1(0, γ)). Then f(λ) < 0 for λ ∈ (0, λ1(0, γ)). By the relations f(0) = 0
and f ′(0) < 0 we have f(λ) > 0 for all 0 > λ small. Then it follows from the first
relation of (3.15) that there exists λ∗(γ) ∈ (−∞, 0) such that f(λ∗(γ)) = 0. Hence
there exists λ∗∗(γ) ∈ (λ∗(γ), 0) such that f ′(λ∗∗(γ)) = 0. Consequently, f ′(λ) > 0
for λ ∈ (−∞, λ∗∗(γ)) and f ′(λ) < 0 for λ ∈ (λ∗∗(γ), λ1(0, γ)). Therefore, in this
case equation (3.6) in the interval D1 has two simple roots λ1(γ) < λ2(γ), where
λ1(γ) = λ∗(γ) < 0 and λ2(γ) = 0.

Let a = c− 1. Then we have f ′(0) = 0. Since f ′′(λ) < 0 in D1 it follows that
f ′(λ) > 0 for λ ∈ (−∞, 0) and f ′(λ) < 0 for λ ∈ (0, λ1(0, γ)). Hence by relations
(3.15) f(λ) < 0 for λ ∈ (−∞, 0) ∪ (0, λ1(0, γ)). Therefore, in this case f(0) =
f ′(0) = 0, f ′′(0) < 0 and f(λ) �= 0 for λ ∈ D1\{0}, i.e. equation (3.6) has one double
root λ1(γ) = λ2(γ) = 0 for a = c− 1.

If a < c− 1, then f ′(0) > 0. Hence f ′(λ) > f ′(0) > 0 for λ ∈ (−∞, 0). Then
f(λ) < 0 for λ < 0. Since f(0) = 0 and f ′(0) > 0 it follows that f(λ) > 0 for all
0 < λ small. Then by virtue of second relation of (3.15) there exists λ∗(γ) ∈
(0, λ1(0, γ) such that f(λ∗(γ)) = 0. Hence there exists λ∗∗(γ) ∈ (0, λ∗(γ)) such
that f ′(λ∗∗(γ)) = 0. Then f ′(λ) > 0 for λ ∈ (−∞, λ∗∗(γ)) and f ′(λ) < 0 for λ ∈
(λ∗∗(γ), λ1(0, γ)). Thus, in this case equation (3.6) in the interval D1 has two simple
root λ1(γ) < λ2(γ), where λ1(γ) = 0 and λ2(γ) = λ∗(γ) > 0.

By theorem 2.13 and formula (2.25) it follows from the above reasoning that
τ(λ1(γ)) =

∑
ηk∈ (λ1(γ),0) i(ηk) and τ(λ2(γ)) = 0 for a > c− 1, τ(λ1(γ)) = 0 for a =

c− 1, and τ(λ1(γ)) = τ(λ2(γ)) = 0 for a < c− 1.
From representation (3.11) we obtain the following relations

lim
λ→λk−1(0,γ)+ 0

F (λ) = +∞, lim
λ→λk(0,γ)− 0

F (λ) = −∞, k = 2, 3, . . . . (3.16)

If equation (3.6) has a root in the interval Dk for k � 2, then by lemma 3.3 this
root must be simple. Since F (λ) is continuous in each of intervals Dk, k ∈ N, by
(3.16) it follows that equation (3.6) has at least one root in each of intervals Dk,
k � 2. Let us show that this equation has only one simple root in Dk for k � 2.
Indeed, if (3.6) has more than one root, then the two smallest roots λ∗k1 < λ∗k2

satisfy

F ′(λ∗k1) − a < 0 andF ′(λ∗k2) − a > 0. (3.17)
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On the other hand it follows from (3.4) that

∫ 1

0

y′′2(x, λ∗k2)dx+
∫ 1

0

q(x) y′2(x, λ∗k2)dx+ N [y(x, λ∗k2)]

= λ∗k2

{∫ 1

0

y2(x, λ∗k2)dx+ a y2(0, λ∗k2) − c y2(1, λ∗k2)
}
,

whence, by λ∗k2 > 0, we get

∫ 1

0

y2(x, λ∗k2)dx+ a y2(0, λ∗k2) − c y2(1, λ∗k2) > 0.

By (2.14) we obtain from the last relation

F ′(λ∗k2) − a < 0,

which contradicts the second relation of (3.17). Therefore, problem (1.1)–(1.5) in
each interval Dk, k � 2, has a unique simple eigenvalue λk+1(γ). Then it follows
from theorem 2.13 that τ(λk+1(γ)) = k − 1. The proof of theorem 3.5 is complete.

4. Asymptotic behaviour of eigenvalues and eigenfunctions of problem
(1.1)–(1.5)

Let

νγ = (3 + sgnγ)/4, ν̃γ = νγ + 1, γ ∈ [0, π/2].

By [30, theorem 3.1] we have the following asymptotic formulas

4
√
λk(0, γ) = (k − νγ)π +O

(
k−1

)
, (4.1)

yk,0,γ(x) = sin (k − νγ)πx− (1 − sgnγ)(−1)k(
√

2 )−1e(k−νγ) π (x−1) +O
(
k−1

)
,

(4.2)

where relation (4.2) holds uniformly for x ∈ [ 0, 1].

Theorem 4.1. The following asymptotic formulas hold:

4
√
λk(γ) = (k − ν̃γ)π +O

(
k−1

)
, (4.3)

yk,γ(x) = sin (k − ν̃γ)πx+ (1 − sgnγ)(−1)k
(√

2
)−1

e(k−ν̃γ)π(x−1) +O
(
k−1

)
,

(4.4)

where relation (4.4) holds uniformly for x ∈ [ 0, 1].
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Proof. Taking (2.19) into account in the boundary conditions (1.2)–(1.4) we get

4
√
λk+i(γ) = (k − νγ + 1)π +O

(
k−1

)
, (4.5)

where i is some fixed integer. Then using (2.19) and (4.5), and following the
arguments in pp. 84–87 of [35] we obtain the following asymptotic formula

yk+i,γ(x) = sin (k − νγ + 1)πx+ (1 − sgnγ)(−1)k
(√

2
)−1

e(k−νγ+1)π(x−1)

+O
(
k−1

)
, (4.6)

which holds uniformly for x ∈ [ 0, 1]. Next, using the oscillation properties of the
eigenfunctions of problem (1.1)–(1.5) and following the proof of [30, theorem 3.1]
we get i = 2. Hence by setting i = 2 in (4.5) and (4.6) we obtain (4.3) and (4.4)
respectively. The proof of this theorem is complete.

5. Operator interpretation and basis properties of the root functions of
problem (1.1)–(1.5)

Let H = L2(0, 1) ⊕ C
2 be the Hilbert space with the scalar product

(ŷ, v̂)H = ({y,m, n}, {v, s, t})H =
∫ 1

0

y(x) v(x) dx+ |a|−1ms̄+ |c|−1nt̄.

In H we define the operator

Lŷ = L{y,m, n} = {�(y), T y(0), T y(1)}

with the domain

D(L) = {{y (x),m, n} ∈ H : y ∈W 4
2 (0, 1), �(y) ∈ L2(0, 1), y′′(0) = 0,

y′(1) cos γ + y′′(1) sin γ = 0,m = ay(0), n = cy(1)},

which dense everywhere in H. Then problem (1.1)–(1.5) is equivalent to the
eigenvalue problem

Lŷ = λŷ, y ∈ D(L). (5.1)

In this the eigenvalues λk,γ , k ∈ N, of problems (1.1)–(1.5) and (5.2) coincide con-
sidering their multiplicity, and between the root functions, there is a one-to-one
correspondence

yk,γ(x) ↔ ŷk,γ = {yk,γ(x),mk,γ , nk,γ},mk,γ = ayk,γ(0), nk,γ = cyk,γ(1), k ∈ N.

We define the operator J : H → H by

Jŷ = J{y,m, n} = {y,−m,n}.

Note that operator J generates the Pontryagin space Π1 = L2(0, 1) ⊕ C
2 equipped

with an inner product

(ŷ, v̂)Π1 = (Jŷ, v̂)H =
∫ 1

0

y(x) v(x) dx+ a−1ms̄− c−1nt̄,

where ŷ = {y,m, n}, v̂ = {v, s, t}.
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Theorem 5.1 (see [9, lemma 4.1, theorem 4.2]). L is a J-self-adjoint operator in
Π1; L∗ = JLJ , where L∗ is an adjoint operator of L in H; the system of root
vectors {ŷk,γ}∞k=1, ŷk,γ = {yk,γ(x),mk,γ , nk,γ}, mk,γ = ayk,γ(0), nk,γ = cyk,γ(1), of
problem (5.2) forms an unconditional basis in H.

Theorem 4.1 implies that

yk,γ(x) = y(x, λk(γ)) if a �= c− 1, k ∈ N, and a = c− 1, k � 3;

y1,γ(x) = y(x, λ1(γ)), y2,γ(x) = y∗2,γ(x) + b y1,γ(x) if a = c− 1, (5.2)

where y∗2,γ(x) = y′λ(x, λ1(γ)) and b is an arbitrary constant
Let {v̂∗k,γ}∞k=1, v̂

∗
k,γ = {v∗k,γ , s

∗
k,γ , t

∗
k,γ}, is the system of root vectors of the

operator L∗. Then by [25, formula (7)] we have

Lŷk,γ = λk(γ) ŷk,γ , L
∗v̂∗k,γ = λk(γ) v̂∗k,γ , if a �= c− 1, k ∈ N, and a = c− 1, k � 3;

Lŷ1,γ = λ1(γ) ŷ1,γ , Lŷ2,γ = λ1(γ) ŷ2,γ + ŷ1,γ , L
∗v̂∗1,γ = λ1(γ) v̂∗1,γ + v̂∗2,γ ,

L∗v̂∗1,γ = λ1(γ) v̂∗1,γ . (5.3)

In view of (5.2), by (5.3) we obtain

v̂∗k,γ = Jŷk,γ if a �= c− 1, k ∈ N, and a = c− 1, k � 3;

v̂∗1,γ = Jŷ∗2,γ + b̃J ŷ1,γ , v̂
∗
2,γ = Jŷ1,γ , if c = a+ 1, (5.4)

where b̃ is an arbitrary constant.
By following the arguments in lemma 4.1 of [9, pp. 15–16] we can show that the

following assertion holds.

Lemma 5.2. Let {v̂k,γ}∞k=1, v̂k,γ = {vk,γ , sk,γ , tk,γ}, be the system that is adjoint to
the system {ŷk,γ}∞k=1. Then

v̂k = δ−1
k,γ v̂

∗
k,γ , k ∈ N, (5.5)

where δk,γ = (yk,γ , yk,γ)Π1 , if a �= c− 1, k ∈ N, and a = c− 1, k � 3; δ1,γ = δ2,γ =
(ŷ1,γ , ŷ

∗
2,γ)Π1 if a = c− 1, and δk,γ �= 0 for k ∈ N, and b̃ = −(b+ δ−1

1,γ (ŷ∗2,γ , ŷ
∗
2,γ)Π1).

Let

Δr,l,γ =
∣∣∣∣ sr,γ sl,γ

tr,γ tl,γ

∣∣∣∣ . (5.6)

where r and l (r �= l) are arbitrary fixed positive integers.

Theorem 5.3. If Δr,l,γ �= 0, then the system of root functions {yk,γ(x)}∞k=1,k �=r,l of
problem (1.1)–(1.5) forms a basis in Lp(0, 1), 1 < p <∞, which is an unconditional
basis for p = 2; if Δr,l,γ = 0 then this system is incomplete and nonminimal in
Lp(0, 1), 1 < p <∞.
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Proof. The assertions of this theorem for p = 2 follow from [1, theorems 3.1,
3.2 and corollary 3.1]. The proof of theorem 5.3 for p ∈ (1,+∞), p �= 2, is similar
to that of [30, theorem 5.1] by using asymptotic formulas (4.1)–(4.4). The proof of
this theorem is complete.

Using the oscillatory properties of the eigenfunctions of problem (1.1)–(1.5), by
theorem 5.3 we can establish sufficient conditions for the system {yk,γ(x)}∞k=1,k �=r,l

of root functions of this problem to form a basis in Lp(0, 1), 1 < p <∞.

Theorem 5.4. Let r and l (r < l) be arbitrary fixed natural numbers. Then in the
cases (i) r, l � 3 and have different parities; (ii) a < c− 1, r = 1 or r = 2, and l
is odd; (iii) a > c− 1, r = 2 and l is odd; (iv) a > c− 1, r = 1, τ(λ1(γ)) and l
have different parities; (v) a = c− 1, r = 2 and l is odd; (vi) a = c− 1, r = 1 and
y∗2,γ(0) − y∗2,γ(1) y l,γ(0) �= 0, the system {yk,γ(x)}∞k=1,k �=r,l is a basis in Lp(0, 1), 1 <
p <∞, which is an unconditional basis in L2(0, 1).

Proof. By relations (5.4) and (5.5), it follows from (5.6) that

Δr,l,γ =
∣∣∣∣ −δ−1

r,γ mr,γ − δ−1
l,γ ml,γ

δ−1
r,γ nr,γδ

−1
l,γ nl,γ

∣∣∣∣ = − δ−1
r,γ δ

−1
l,γ

∣∣∣∣ mr,γ ml,γ

nr,γ nl,γ

∣∣∣∣
= − δ−1

r,γ δ
−1
l,γ

∣∣∣∣ a yr,γ(0) a yl,γ(0)
c yr,γ(1) c yl,γ(1)

∣∣∣∣ = −a c δ−1
r,γ δ

−1
l,γ

∣∣∣∣ yr,γ(0) y l,γ(0)
yr,γ(1) y l,γ(1)

∣∣∣∣ (5.7)

for r, l ∈ N in the case a �= c− 1, and for r, l � 3 in the case a = c− 1.
By (2.12) and (2.13), relation (5.7) implies that

Δr,l,γ = − a c δ−1
r,γ δ

−1
l,γ (y r,γ(0) − y l,γ(0)) (5.8)

for r, l ∈ N in the case a < c− 1, for r, l � 2 in the case a > c− 1, and for r, l � 3
in the case a = c− 1, and

Δ1,l,γ = − a c δ−1
r,γ δ

−1
l,γ (1 − y 1,γ(1) y l,γ(0)) (5.9)

for l � 2 in the case a > c− 1.
Moreover, in the case a = c− 1 for r = 2, l � 3, and for r = 1 and l � 2 we have

Δ2,l,γ = − δ−1
2,γδ

−1
l,γ

∣∣∣∣ m1,γ m l,γ

n1,γ n l,γ

∣∣∣∣ = − δ−1
2,γδ

−1
l,γ

∣∣∣∣ a y1,γ(0) a y l,γ(0)
c y1,γ(1) c y l,γ(1)

∣∣∣∣
= −a c δ−1

2,γδ
−1
l,γ

∣∣∣∣ y1,γ(0) y l,γ(0)
1 1

∣∣∣∣ = −a c δ−1
1,γ δ

−1
l,γ (y 1,γ(0) − y l,γ(0)) ,

(5.10)

and

Δ1,l,γ = −
∣∣∣∣∣ δ

−1
1,γ {m∗

2,γ + b̃ m1,γ} δ−1
l,γ ml,γ

δ−1
1,γ {n∗2,γ + b̃ n1,γ} δ−1

l,γ nl,γ

∣∣∣∣∣ = − δ−1
1,γ δ

−1
l,γ

∣∣∣∣ m∗
2,γ + b̃ m1,γ ml,γ

n∗2,γ + b̃ n1,γ nl,γ

∣∣∣∣
= −a c δ−1

1,γ δ
−1
l,γ

∣∣∣∣ y∗2,γ(0) + b̃ y1,γ(0) yl,γ(0)
y∗2,γ(1) + b̃ y1,γ(1) y l,γ(1)

∣∣∣∣ = − a c δ−1
1,γ δ

−1
l,γ

∣∣∣∣ y∗2,γ(0) y l,γ(0)
y∗2,γ(1) 1

∣∣∣∣
= −a c δ−1

1,γ δ
−1
l,γ { y∗2,γ(0) − y∗2,γ(1) y l,γ(0)}. (5.11)
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respectively.
Next, by (2.12) and (2.25), theorem 3.5 implies that

sgn yk,γ(0) = (−1)k for k � 3, (5.12)

y1,γ(0) = 1 for a � c− 1, y2,γ(0) > 0 for a < c− 1,

sgn y1,γ(1) = (−1)τ (λ1(γ)), y2,γ(0) = 1 for a > c− 1, (5.13)

where τ (λ1(γ)) =
∑

ξk∈(λ1(γ),0)

i(ξk).

Now the statements (i)–(vi) of this theorem follow from (5.8)–(5.13) in view of
theorem 5.3. The proof of this theorem is complete.
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