
 

Reactive approach to on-line path planning for robot
manipulators in dynamic environments*
Margarita Mediavilla, José Luis González, Juan Carlos Fraile and
José Ramón Perán
Departamento de Ingeniería de Sistemas y Automática, E.T.S.I.I., Universidad de Valladolid, Valladolid (Spain)
E-mail: marga@eis.uva.es

(Received in Final Form: February 1, 2002)

SUMMARY
This paper describes a new approach to path planning of
robot manipulators with many degrees of freedom. It is
designed for on-line motion in dynamic and unpredictable
environments. The robots react to moving obstacles using a
local and reactive algorithm restricted to a subset of its
configuration space. The lack of a long-term view of local
algorithms (local minima problems) is solved using an off-
line pre-planning stage that chooses the subset of the
configuration space that minimises the probability of not
finding collision free paths. The approach is implemented
and tested on a system of three Scorbot-er IX five link
robots.
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1. INTRODUCTION
It is well known that motion planning for robot manip-
ulators with many degrees of freedom is a complex task.
This is probably the reason why the research on this area has
been mostly restricted to static environments, where the
obstacles are still or at least follow known trajectories.1–4

Since most path planning is designed for static environ-
ments, robot manipulators (in industry as well as in many
research projects) are restricted to pre-calculated trajectories
and subject to rigid timings. These features make them too
rigid and unable to adapt to changes. Increasing the
reactivity of robot motion would have important advantages,
If the robots had reactive path planning algorithms they
could:

• react to unexpected events such as moving obstacles or
faults,

• move without a previous model of their environment,
based only on sensor information,

• be less dependent on pre-calculated trajectories, since
path planning could be done on-line.

In the last four years, our research group has been working
on a prototype of a multi-manipulator system5–8 located in

our laboratories of the University of Valladolid*. Our multi
manipulator system is designed as an assembling cell that
achieves a high production rate by removing the rigid
timings and delays from the system. The three robots of our
system share a good portion of their working space, but the
path planning method that we are developing enables them
to operate despite the fact that other robots might also be
moving in the same area. The high production rate is
achieved by making the robots depend only on the rate of
arrival of the supplies. This means that, when a supply
comes in, one of the robots starts its motion towards it,
irrespective of whether the rest of the robots are at that time
already in motion or not. This kind of behaviour needs the
robots to have an on-line and reactive planning method.

Path planning approaches for robotic manipulators can
broadly be categorized into the two classes of global and
local methods: Global methods9–12 are computationally very
expensive, and computational cost increases rapidly as a
function of the number of manipulator joints. Furthermore,
they are not applicable when the obstacles are unmodeled or
subject to uncertainties.

Local methods, on the other hand,13–15 are reactive and
can be used for real-time path planning, but most of them
are very limited in their capabilities and easily get trapped in
local minima. It is the problem of the local minima that has
avoided potential field methods from becoming a valid
reactive path planning framework for manipulators.

This paper presents a new approach to reactive on-line
path planning for robot manipulators. It is designed for
robots that move in a dynamic environment subject to
uncertainties. By dynamic environment subject to uncertain-
ties we understand a workplace with still and moving
obstacles where the position of the obstacles at each instant
of time is known, but where the entire trajectory of the
obstacles cannot, because the position is either influenced
by external perturbations, or conditioned by our own path
planning.

There are not many approaches to on-line motion
planning of robot manipulators in the literature. Li and
Latombe16 Ek describe an application of on-line path
plannning of two Scara robots. They use a non-reactive
method based on global planning. They obtain on-line path
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planning by reducing the problem to a set of subproblems
with three degrees of freedom each. It does not seem
possible to extend the use of these simplifications to other
types of robots. Hamilton and Dodds17 use a reactive
method based on a set of behaviours. This approach has a
problem similar to the local minima of potential fields. The
elastic band method of Quinlan and Khatib,18 combines
local and global information by planning the motion of the
entire path. Its main drawback is the fact that there must
always exist a collision free path between the initial and
final configurations of the robot. Seraji and Bon19 propose
an on-line path planning method based on the Cartesian
space of the robots. It is based on a set of heuristic
“strategies” that simplify the problem. Meng and Yang20 use
neural networks for on-line path planning of mobile robots
and manipulators with few degrees of freedom. This
approach seems very interesting, but the authors do not train
the neural networks, therefore it is difficult to know if this
approach is free from problems similar to the local minima
of potential fields.

The work by Li and Latombe16 and the one by Cao and
Dodds,21 are two of the few examples of path planning for
teams of robotic manipulators that can be found in the
literature. The planning problem we are facing is similar to
the one solved by Li and Latombe and by Cao and Dodds.
The work by Cao and Dodds obtains off-line path planning
of two robots in pick and place tasks, but the path planning
method they propose has long computing times (several
hours). The approach of Li and Latombe obtains on-line
path planning of two Scara robots. Our approach gets the
same results as Li and Latombe’s work, is on-line path
planning for two robots in pick and place tasks, but our
approach also has some other useful characteristics that Li
and Latombe’s does not have. Our method displays reactive
behaviour, and we also applied it to three robots.

This paper shows the basic ideas and the first results of a
new path planning method. These first results confirm the
validity of the ideas proposed, but the full capabilities of the
method are currently being explored by the authors. The
paper is organized as follows, Section 2 discusses the basic
ideas and presents a general description of the method,
while Section 3 shows some results. Finally, conclusions are
drawn in Section 4.

2. PATH PLANNING BASED ON MOTION
STRATEGIES
On-line path planning requires very short computing times.
The global methods that explore all the configuration space
of the robot, are too slow for this kind of motion. Some sort
of simplification must be carried out in order to perform on-
line motion for robot manipulators. All the approaches that
have dealt with this problem have carried out some sort of
simplification, many of them using heuristic rules.16,18,19 The
one we present is based on a simple but systematic method
that restricts the degrees of freedom of the planning
problem, and uses an off-line stage to ensure that this
restriction is acceptable.

The path planning approach presented in this paper is
based on what we call motion stragegies. Motion strategies
are simple and effective ways of moving a robot that are

designed for specific kinds of tasks. A motion strategy for a
robot arm is implemented by restricting its motion to a
subset of its configuration space, what we call reduced
subspace (R-subspace), or CR. We need to ensure that this
restriction is correctly chosen, which is why we use an off-
line stage that optimizes the choice of the reduced
subspaces, and minimizes the probability of not finding a
collision free path.

Therefore the path planning method we present is based
on two stages:

• The off-line stage. This stage decides which R-subspaces
(which strategies) are most suitable for thc robots.

• The on-line stage. In this stage the robots look for their
path inside the Rsubspace chosen in the offline stage,
using a fast and reactive algorithm based on local
information.

Reducing the configuration space of a five or six degrees of
freedom robot to a smaller subspace is a very strong
restriction. One cannot expect that a unique subspace will
solve all the motions. Our offline analysis is based on
grouping similar conflicts into what we call motion
problems. Motion problems are general types of conflicts
that can be successfully solved using one motion strategy.
Thus, when the robot faces a particular motion problem, it
would use the strategy that is most suitable for that kind of
conflict.

Once the motion problems of the system have been
defined, our goal is to assign one strategy to each motion
problem. In order to know which strategy is the most
suitable for each motion problem we test the strategies by
conducting a simulation that will give us an estimation of
the probability of finding a collision free path. This stage is
the main part of the off-line analysis and we call it
Estimation of the Probability of Faults (EPF).

The structure of the method is represented in Figure 1.
The off line stage starts with the definition of the motion
problems based on the tasks that the system is to perform
and the geometry of the robots. Next, the EPF analysis is
performed and the result is a set of strategies that are
suitable for each one of the motion problems. Once the
strategies have been chosen, they are used for on-line
motion using a local and reactive planning algorithm.

Fig. 1. Basic stages of stragtegy-based path planning.
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The following sections describe these stages: First, in
Section 2.1 the definition of strategies and R-subspaces is
given. Section 2.2 describes the EPF analysis. Finally,
Section 2.3 describes the on-line stage.

2.1. Strategies and reduced subspaces
The R-subspaces we have used in this first approach to the
method are two dimensional linear subspaces of the
configuration space, C. These subspaces have been chosen
mainly because of their simplicity, but our method could be
adapted to more complex subsets. These subspaces must
contain the initial qi and final qf configurations of the robot,
so that the robot can go from qi to qf inside CR . R-subspaces
are defined by two vectors: u1, u2�C such that:

CR ={q�C | q=x1u1 +x2u2} (1)

where x1 and x2 are the independent variables of the
subspace. Vector u1 points in the direction of the M-line,
which is the line that goes from the initial to the final
configuration, and only depends on the task assigned to the
robot:

u1 =
qf �qi

|| qf �qi ||
(2)

u1 is used to implement the motion of the robot towards its
goal. On the other hand, vector u2 describes a direction
perpendicular to u1 that is used by the robot to avoid
obstacles.

The vector u2 is the one that determines the strategy of the
robot. For example, for our five-link robots we have used a
simple parametrization of u2, that shows the strategy easily.
We use an auxiliar vector v2 =(�, �, �, �, �) whose coor-
dinates are chosen by the user. Parameter �, which
determines the motion of the first link of the robot inside
CR , is normally left unchanged. Parameter � is chosen by
the user and indicates how much change in the motion of
link 2 must be allowed in the R-subspace as compared to the
change in link 1. In the same manner, parameters �, � and
� control the motion of links 3, 4 and 5. Since it is easier to
work with an orthonormal basis, we find u2 such that:

u2 · u1 =0 (3)

|| u2 ||=1 (4)

Vector u2, that fulfills Equations 3 and 4, can be expressed
as:

u2 =�u1 +�v2 (5)

Parameters � and 	 can be calculated using Equations 3
and 4:

�=��u1 · v1 (6)

�=
1

|| ((u1 · v2)u1 +v2) ||
(7)

Using the notation given for a five link robot, we define
motion strategies as the set of parameters 
=(�, �, �, �, �).
These parameters determine the movements of the robot
inside CR . Motion strategies are chosen in such a way that

the corresponding motion of the robot has a physical
meaning. In a PUMA type robot, a motion strategy with
�=0, �>0, �>0 y �>0, for example, is what we have called
go up strategy. It corresponds to a proportional elevation of
the second, third and fourth joints of the robot. In our
scorbot robots, this strategy is very effective for pick and
place tasks, since the robots avoid obstacles by lifting their
arms. When a robotic system is composed of several robots,
one has to think about a global strategy for the system. This
strategy would be determined by the parameters (�1 . . . �m;
�1 . . . �m, �1 . . . �m, �1 . . . �m, �1 . . . �m) of the m moving
robots. A strategy is similar to, but not exactly the same, as
an R-subspace. One strategy might lead to two different R-
subspaces if the initial and final configurations of the robots
are different.

2.2. Analysis based on the estimation of the probability of
faults
This section describes the off-line stage of our path planning
algorithm. This stage can be seen as the training of the
robots for specific tasks. The first part of this off-line stage
is the choice of the tasks that we want the robots to be
trained to do. These kinds of tasks are what we call motion
problems. The definition of the motion problems depends
on the purpose of the robotic system and must be defined by
the user.

The second part of our off-line stage is the search of the
strategy that minimizes the probability of fault. We define
fault in this context as an unsuccessful motion of the robotic
system. A motion of the robotic system is considered
unsuccesful if any of the robots cannot accomplish its task
using our strategy-based path planner, either because of a
deadlock, a livelock or because a collision-free path inside
CR does not exist.

In this section we first define the motion problems in
Section 2.2.1. The EPF tecnique has been applied by the
authors in a simplified motion problem. This application
will be described below in Section 2.2.2. Based on this, a
description of the aplication of EPF to general motion
problems is in Section 2.2.3.

2.2.1. Motion problems. To illustrate the idea of motion
problems we shall use the example that has proved this
method: the multi-manipulator system of our laboratory.5–7

It is composed of three Scorbot-er IX robots with five
degrees of freedom each and several working platforms.
One of the platforms is located in the center and is used by
the three robots as the assembly platform. The other three
tables are located at both sides of each robot and are used
for pieces and product release and storage. Each robot can
access two side working areas and the central area.

Each robot has its own controller, that is communicated
via RS-232 to a PC computer. The three computers of each
robot are connected to each other via ethernet. A commu-
nications and control software that runs under Linux in the
three computers6 enables joint operation of the system. The
tasks assigned to the system are mainly pick-and-place
operations between the working platforms. Only gross
motion is considered, and it is assumed that no joint
manipulation of pieces is needed.

Dynamic environments 377

https://doi.org/10.1017/S0263574702004071 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004071


In our multi robot system we have defined, for example,
four kinds of motion problems:

• Problem 1. Two of the robots of the working cell are
stopped in the middle of the common space. The third
robot must work around two obstacles. This problem
resembles a breakdown of the system: The two robots that
are stopped might have suffered a failure and are still at
some point on a fixed trajectory, the third robot continues
the degraded operation of the system working alone
around two still obstacles.

• Problem 2. Two robots are doing pick and place
operations moving between their two side tables. They
might cross in the middle of the working cell.

• Problem 3. Three robots are doing pick and place
operations between their side tables. They might cross in
common areas.

Figure 2 shows a diagram of these problems. Problem 1 is
the simplest one. It does not involve moving obstacles, but
notice that the obstacles are not fixed, since the robots can
be stopped in many different positions.

2.2.2. EPF for three degrees of freedom. Our first
approach to EPF has been based on motion Problem 1, that
deals with still obstacles. We have also reduced the degrees
of freedom of the robots to three. Since there is only one
moving robot with a configuration space of three degrees of
freedom and CR subspaces are two-dimensional, there is one
extra degree of freedom. Thus we can choose one
parameter, �, that will describe all the CR subspaces that can
be chosen. The vector u2 of the subspace is chosen in terms
of this parameter as:

u2 =cos(�)n1 +sin(�)n2 (8)

where n1 and n2 are two vectors of the null space of u1

(n1 · u1 =n2 · u1 =0) that fulfill: n1 · (0, 0, 1)=n2 · n1 =0. Table I
shows several u2 vectors and the strategies that results from
them (basically go-up and fold, since there are only three
links). The estimation of the probability of faults has been
done by taking several values of the parameter or at regular
intervals, and, for each one of them, estimating the
probabilty of fault, P(�). The optimum CR subspace can be
estimated graphically taking the one that minimizes P(�).

The estimation of P(�) has been done by thinking of it as
a statistical experiment. Our aim is to estimate the
probability of an R-subspace, defined by a value of �,
leading to a successful trajectory in a task of motion

Problem 0. This estimation is calculated by taking N
random tasks that belong to Problem 1 and testing if a
collision free path can be found for the moving robot inside
this R-subspace. These tasks are defined by the position of
the robot-obstacles. These robots are stopped along a fixed
trajectory, what we call the direct trajectory. We have used
two parameters, s1 and s2, that vary from 0 at the beginning
of the direct trajectory of the robot and 1 at the end. The
tasks of Problem 1 are chosen by taking random values of
parameters s1 and s2, thus randomly varying the positions
of the obstacles.

The result of these N tests (for each �) are r faults and
N�r successful motions. This is a binomial experiment
B(N, p) where N is the number of proofs, and p(�) is the
(real) probability of faults (unknown). p(�) is estimated
using the sampling probability P(�)=y=r/N.

Binomial distributions B(N, p) can be approximated by
normal distributions N(p, �p(1�p)/N) with

Z=
y�p

�p(1�p)/N
(9)

as long as N · p>4 and N · (1�p)>4. An interval approxima-
tion of p can be calculated as:

P(�)≈p=y±Z 1�
�
2
�y(1�y)/N (10)

where � is the desired confidence interval.
If we want to distinguish between two estimated

probabilities p0 and pa having type I and type II errors
limited by � and �, the minimum number of experiments
needed is:22

Nmin =
(Z1���p0(1�p0)+Z1���pa(1�pa))

2

( pa �p0)
2 (11)

We have used in this Equation (11) the notation that is most
frequent in statistics literature. Type I error is the one made
when the hypothesis H0: p=p0 is true and is rejected. Type
II error is made when the hypothesis is false and is accepted.
Parameter or should not be confused with the one used in
Section 2.1 to describe strategies.

We need to know the probabilities pa and p0 to calculate
Nmin. Since pa and p0 are not known a priori, the minimum
number of experiments is calculated making pa =0.5 since
this value maximices the number of tests.

Fig. 2. Motion problems of our multi-manipulator system. Problem 1 involves two still robots acting as obstacles. In Problem 2 two
robots cross while they go from one side table to the other. In problem 3 three robots cross.
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Using a number of N≥Nmin situations and testing the
strategy 
j on each of them, an estimation of the probability
of fault of that strategy can be calculated as P(�)=y. This
estimation is possible if the experiment we carry out is
binomial. This implies that the N observations must be
independent. Since, in motion Problem 1, the position of the
obtacle-robots is chosen randomly these experiments are
independent.

2.2.3. EPF for more degrees of freedom. When the EPF
analysis is applied to robots with more degrees of freedom,
one must take into account the fact that the strategies of the
system are described not only be a parameter but by a set of
parameters. In this case the simple inspection of the
function P(�) is not enough, and optimization techniques
shall be used in order to find the minimum of P.

Since the function that we want to minimize is a highly
nonlinear and not analytical function the optimization
method that we have decided to use is the flexible
polyhedron search (simplex method by Nelder and Mead)23

which does not use the derivatives of the function.
If the EPF technique is applied to motion problems such

as Problems 2 and 3, which are more interesting than
Problem 1, the experiments will be defined in a different
way. In these cases we have used a continuous simulation of
the robotic system as our statistical experiment. In this
simulation the robots are told to perform N tasks (that
belong to the specific motion problem) using the strategy
whose probability of fault we want to estimate. A task is
considered faulty if the time spent on it by the robot is
greater than a certain amount. Thus we can discard those
strategies that lead to deadlocks or inefficient situations
(livelocks). Such situations may happen, for example, if two
robots try to avoid each other by lifting their arms. In this
way, both robots occupy the upper part of the workspace
and become an obstacle to each other. When the robots
reach their joint limit both would change local direction (see
the algorithm in Section 2.3) and then both would go down,
thus they follow each other and are always an obstacle to
each other. The robots can be trying to avoid each other
forever.

Once the number of bad motions, r, is calculated the
probabilty of faults, which will be called P(
), can be
estimated, taking into account the considerations mentioned
above. One of the important aspects of this estimation is the
fact that the experiments must be independent from each

other for our estimation to be valid. Since we are doing a
continuous simulation, the tasks might be correlated to each
other and therefore, the results of our test might also be
correlated. There are ways of breaking this dependency
between tasks. We have used two: we choose the initial and
final points of the motion of each robot randomly. Thus a
source of randomness is introduced. Since the robots have
tasks with random length the time they spend doing them
changes, therefore, the movements of the three robots will
soon be uncorrelated. Another source of randomness can be
introduced by making the robots wait a random time before
starting a new task. Thus the robots start their motions at
random times and meet each other in random locations.
These delay times cannot be very long, since otherwise, the
robots would not meet each other very often, and our
experiment would not be very instructive.

2.3. On-line stage
The on-line stage of our method is based on moving the
robot inside an R-subspace using a reactive path planning
algorithm.24,25 The planning algorithm described in this
section is very simple, but more complete algorithms used
in mobile robots, such as the ones described in reference
[26] could also be adapted to our method.

Our path planning method is based on a discrete
algorithm that calculates discrete points in the configuration
space This algorithm has been implemented in the multi
manipulator system described in Section 2.2. Discrete
points are generated on-line every 0.2 seconds by the
control computers of the multi manipulator system. Some
interpolation routines generate an interpolated trajectory
between those points. We can assume that the robots follow
this trajectory and errors are confined to safety areas. The
algorithm is based on three behaviours:

• Go to goal. This behaviour is used whenever the robot
finds obstacles at a distance greater than a certain amount
h. This behaviour means that the robot moves following
the line that goes from its actual position to the final
configuration. That direction is pointed out at each
moment by a vector called uF. If the position of the robot
at one instant k is qk, the next time instant qk+1 =qk +�uk

F,
with

uF
k =

qf �qk

|| qf �qk ||
.

• Go around obstacle. This behaviour is used when the first
one cannot be followed. This behaviour consists of going
around the obstacle following one of the two possible
local directions (left or right). One of the local directions,
the one used as default, is defined by vector uT

k, that is
perpendicular to uF

k at each moment k. uT
k is perpendicular

to uF
k and belongs to CR . It can be easily calculated if uF

k

is defined in terms of the base (u1, u2). For example, if
uk

F =au1 +bu2, the vector uk
T =�bu1 +au2 is perpendicular

to uk
F and indicates one of the two local directions. When

the robot follows this behaviour using, for example,

Table I. Off-line analysis. Some of the strategies used in the off-
line analysis can be seen in this table. These strategies are
basically fold and go up.

� (rad) u2 strategy

0.10 (–0.03 0.21 0.97) q2 ↑q3 ↑↑ go up
0 52 (–0.01 0.49 0.86) q2 ↑q3 ↑↑ go up
1.04 (–0.02 0.86 0.50) q2 ↑↑q3 ↑ go up
1.57 (–0.02 0.99 0.00) q2 ↑↑q3 ↑ go up
2.09 (–0.02 0.86 –0.50) q2 ↑↑q3 ↓ fold
2.61 (–0.01 0.49 –0.86) q2 ↑q3 ↓↓ fold
3.03 (–0.00 0.10 –0.90) q2 ↑q3 ↓↓ fold
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the right local direction, it checks the following
configurations:

�uF
k

�uF
k ��uT

k

qk + ��uT
k

��uF
k ��uT

k

��uF
k

(12)

and chooses the first of them whose distance to the
obstacles is greater than a threshold h. Thus the robot
explores the neighbours of qk following one local
direction and chooses the neighbour that is closest to the
goal configuration but whose distance to the obstacle is
greater than h.

• Change local direction. When the two previous behav-
iours cannot be followed, the algorithm changes its
default local direction, by making uT =�uT. The change
of local direction usually tells us that the strategy has not
been correctly chosen, since one strategy implies one
default local direction. When the robot needs to use this
behaviour we say that the path planning algoritm has
failed.

3. EXPERIMENTS AND RESULTS
This section shows some of the experimental results
obtained with the strategy-based path planning. These
results are only some preliminary tests, but they show that
the method proposed in this paper can solve on-line path
planning of multi-manipulator systems.

Section 3.1 shows the results of the application of the off-
line stage to motion Problem 1, as was described in Section
2.2.2. Section 3.2 presents some preliminary tests of on-line
path planning for robots with five degrees of freedom.

3.1. Results of the off-line analysis
The off-line analysis described in Section 2 has been
applied to our multi manipulator systems described in
Section 2.2.2. Since this is the first approach to strategy
based path planning we have applied the method to a simple
problem. We have thus avoided the problems related to the
high number of degrees of freedom of the robots in the first
approach to the method. We have only used the first three
degrees of freedom of the robots, and the motion problem
that we have analysed is Problem 1, the simplest one. All
these simplifications make these results less interesting than
those presented in Section 3.2 but they show how the EPF
analysis works.

The motion experiment we have done has the following
characteristics:

• The degrees of freedom of the robots have been reduced
to three. Only the first (waist), second (shoulder) and third
(elbow) joint of the robot move, the hand is aligned with
the forearm.

• We assume that two of the robots (robots B and C) have
stopped at any point along their trajectory because of a
fault and the third robot (robot A) has to move avoiding
those two fixed obstacles. Robot A will be called the
planner robot while B and C are the obstacle robots. The

obstacle robots are stopped at any point of what we call
the direct trajectory, which is the one they would follow
if there were no obstacles in its path.

• The robots are closer to each other than in the real multi
manipulator system. The distance between robots is 0.8
meters, thus the robots can touch each other’s base, and
the motion problem is a little more difficult.

The direct trajectory of robots B and C is described with
parameters s1 and s2 that vary continuously from 0 at the
starting point in one of the tables, to 1 at the target point in
the other table. The positions of the obstacles can be
described by a pair of numbers S=(s1, s2). Knowing s1 and
s2 one can calculate the joint coordinates of each of the
obstacle robots and its location in the workspace.

This motion problem does not deal with real moving
obstacles, but it is useful to teach the robots how to avoid a
wide range of fixed obstacles. The trajectory of the obstacle
robots can be seen in Figure 3, robot B travels in a normal
pick and place trajectory between the two tables, but robot
C travels by occupying the upper part of the space. Thus the
workspace that robot A has to deal with is a very cluttered
one. We have used the parameter or ��(0, 2
) to describe
the strategy of the robot, as was explained in Section 2.2.2.
Some of the resulting strategies can be seen in Table I.

The EPF analysis has been applied to this motion
problem by choosing 30 different R-subspaces and choosing
157 random situations Si =(si

1, si
2), i=1 . . . 157 for each one

of them. Those 157 tests give a confidence of 70%
(�=�=0, 3) to distinguish fault probabilities that differ by
5%, according to Equation 11 ( p0 =0.5 and pa =0.45). This
confidence is not very high, but the results have been refined
in those strategies that had the lowest fault probability (see
Figure 4. We choose a different set of 157 situations for each
strategy, thus making the experiment more random.

The estimation of the probability of fault in those R-
subspaces can be seen in Figure 4. In the right graph of
Figure 4 the results of the R-subspaces with the lowest
probability of fault are shown in more detail using intervals
(90% confidence). The minimum probability of fault is
found in R-subspaces of � between 0.5 and 1.5 rad. In the
right hand graph of Figure 4 there is a horizontal line
between values 0.04 and 0.02, that indicates the estimated
probability of finding a situation with no solution at all (in
C). This shows that about 4% of the situations cannot be
solved by any method. We can also see that the estimated
probability of fault for some of the R-subspaces cannot be
distinguished fronn the probability of no solution cases.
This means that, in terms of failure rate, the strategy based
planner and the complete planner cannot be distinguished.
In other words, EPF analysis shows that R-subspaces are
capable of solving basically all the situations that have a
solution for this type of problem.

These results show that in our system, the fixed obstacles
created by obstacle-robots can be solved very successfully
using a go up strategy. Notice that these include two
obstacles with very different trajectories. The go up strategy
is very successful in terms of avoiding fixed and big
obstacles, since the robots tend to use the upper part of the
workspace that is not occupied by any obstacle.
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3.2. Results of on-line path planning
In this section we present the results obtained using on-line
path planning based on motion strategies in a system with
two and three five-link robots. The strategies have been
chosen without using the off-line stage, because off-line
results are not ready for five link robots. The strategies were
chosen by trial and error and thinking of which kind of
motion would be most appropriate for the robots. In any

case, these strategies are very successful and 100% success
has been reported.

These strategies have been tested on a simulation of the
systems operation. The robotic system is the one described
in Section 2. The distance between two robot bases is 1.1
meters, while the maximum reach of the robot gripper is
0.846 meters. The first link of the robot (waist) has 300
degrees of joint reach, therefore, 30% of the area that can be

Fig. 3. Off-line analysis for motion problem 1. Situations of the obstacle robots.

Fig. 4. Off-line analysis. Estimation of the probability of faults for some strategies. The horizontal band represents the probability of not
finding a collision free path in C.
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reached by robot 1 can also be reached by robot 2, and 30%
of that area can also be reached by robot 3. Although the
robots have five degrees of freedom, only the first four are
important, since the robots do not carry big objects, and the
rotation of the gripper, which is the fifth joint, does not
change the shape of the robots. Still, the number of degrees
of freedom of the overall system is large, since there are
three robots involved. The collision avoidance problem is
solved modeling the robots with semi-spherical cylinders.21

The motion problems were the ones described in Section
2.2 as Problem 2 and Problem 3. In these problems the
robots cross while they are doing pick and place operations
between the working areas located at both sides of each
robot.

Problem 2: two robots cross. The first experiments
described are examples of what we have called Problem 2
(Section 2.2).

In these experiments robot 1 goes back and forth between
table L1 and table L2 (the final point of one task is the initial
configuration of the next), and robot 2 goes back and forth
between tables L2 and L3. The initial and final configurations
are chosen randomly inside a sphere in the configuration
space centered around the central configuration of each
table, and with 0.1 radiand of radius, so that the robot
gripper covers a circular area of 40 cm in diameter of the
working table. Thus the initial and final points of each
trajectory vary in each motion and the robots always meet in
different situations. The motion is considered unsuccessful
if the robot takes more that twice the time spent by the non-
obstacle trajectory or if the local direction must change.
This experiment has been carried out with different
strategies, and the results can be seen in Table II.

Problem 3: three robots cross. In this section we compare
our method in what we called Problem 3 with potential field
methods. The potential fields described in reference [14]
have been used in a system of three PUMA robots whose
dimensions are the same as the ones in our multi
manipulator system. The tasks have been simulated using
the software developed by its authors: the ACT program by
Aleph technologies. The multi robot system has been
simulated by treating it as a single manipulator with 15
degrees of freedom. The tasks used in this experiment are
similar to the ones used in the experiments with two robots:
the robots go back and forth between working tables and

initial and final configurations are randomly chosen inside
the working tables. The results can be seen in Table III.

Although the number of experiments performed with
potential fields is smaller than the one used with strategies,
these data show that potential fields are clearly unable to
solve this problem, while motion based on strategies does
solve it easily. Potential fields are purely local methods. The
only information they use is the one related to the closest
obstacles. That is why they very often get blocked into local
minima. These local minima make this method incapable of
solving even the simplest motion problems. Path planning
based on strategies also uses a local planning, but our
method has one important advantage: it has the concept of
strategy that gives the robot some sort of global information.
This information makes the difference with potential fields:
the problems that are easily solved with strategies cannot be
solved at all with local methods as potential fields. Figure 5
shows one example of motion in our multi manipulator
system using path planning based on strategies. The three
robots are using the fold strategy.

3.3. Discussion concerning the results
The results obtained from the first test using the method
show it is possible, using the strategy based method, to solve
problems involving on-line path planning of several robots.
These results are much better than the ones obtained using
potential field methods, as can be seen in the comparison.
This means that the method is promising and we hope to
explore its full capabilities.

The off-line analysis was only carried our for a simple
case and the results are coherent with those obtained on-
line. A high percentage of successes are obtained by using
strategies to solve pick and place tasks in a multi robot
system.

Table II. Results of several strategies on problem 2 (two robots cross).

ROBOT I ROBOT 2 no. tests no. success

go-up go-up 300 300
v2 =((0, 0.64, 1, 1, 0) v2 =(0, 0.64, 1, 1, 0)
fold fold 300 300
v2 =((0, 1, –1, –1, 0) v2 =(0, 0.51, –1, –1, 0)
fold go-up with hand down 300 300
v2 =(0, 0.51, –1, –1, 0) v2 =((0, 1.53, 1.53, –2.51, 0)
go-up go-up with hand down 300 300
v2 =(0, 0.67, 1, 1, 0) v2 =((0, 1.53, 1.53, –2.51, 0)

Table III. Comparison of potential fields and strategy-based path
planning, problem 3 (three robots cross).

PATH PLANNING METHOD no. tests no. success

strategy-based (fold vs. fold vs. fold) 300 300
robot 1 v2 =(0, 1, –1, –1, 0)
robot 2 v2 =(0, 0.51, –1, –1, 0)
robot 3 v2 =(0, 0.51, –1, –1, 0)
potential fields 50 0
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4. CONCLUSION
A new approach to on-line path planning of robot
manipulators is developed and demostrated in this paper.
This approach achieves on-line and reactive path planning

for a system of three five-link robot manipulators. The
approach is based on decomposing motion planning into
two stages: an on-line path planning stage and an off-line
pre-processing stage. The on-line stage achieves very short

Fig. 5. Results of on-line path planning. Snapshots of a real execution of the multi manipulator system. The three robots use fold
strategy.
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computing times by restricting the search to a subset of the
configuration space of the robot. The off-line stage chooses
the subspace that minimizes the probability of not finding a
collision free path. This method is a combination of global
and local path plannning methods, and has the best qualities
of both types of path planning approaches. This on-line path
planning method is based on local information and therefore
has the advantages of local methods: it is simple, reactive
and computationally fast. On the other hand, our approach
avoids the drawbacks of local approaches using an off-line
stage that minimizes the probability of finding blockages
and local minima. The approach is computationally fast
since all the expensive calculations are moved into the off-
line preprocessing stage. The approach has been tested on a
multi-manipulator system of three five-link robots, and the
results are successful: on-line path planning of two and
three robots in pick and place operations is achieved.
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