
J. Fluid Mech. (2017), vol. 818, pp. 366–381. c© Cambridge University Press 2017
doi:10.1017/jfm.2017.137

366

Local flow characterization using
bioinspired sensory information

Brendan Colvert1, Kevin Chen1 and Eva Kanso1,†
1Department of Aerospace and Mechanical Engineering, University of Southern California,

Los Angeles, CA 90089, USA

(Received 18 July 2016; revised 21 February 2017; accepted 2 March 2017;
first published online 31 March 2017)

Most marine creatures exhibit remarkable flow sensing abilities. Their task of
discerning hydrodynamic cues from local sensory information is particularly
challenging because it relies on local and partial measurements to accurately
characterize the ambient flow. This is in contrast to classical flow characterization
methods, which invariably depend on the ability of an external observer to reconstruct
the flow field globally and identify its topological structures. In this paper, we develop
a mathematical framework in which a local sensory array is used to identify select
flow features. Our approach consists of linearizing the flow field around the sensory
array and providing a frame-independent parameterization of the velocity gradient
tensor which reveals both the local flow ‘type’ and ‘intensity’. We show that a simple
bioinspired sensory system that measures differences in flow velocities is capable of
locally characterizing the flow type and intensity. We discuss the conditions under
which such flow characterization is possible. Then, to demonstrate the effectiveness
of this sensory system, we apply it in the canonical problem of a circular cylinder
in uniform flow. We find excellent agreement between the sensed and actual flow
properties. These findings will serve to direct future research on optimal sensory
layouts and dynamic deployment of sensory arrays.

Key words: biological fluid dynamics, mathematical foundations, swimming/flying

1. Introduction

Swimming organisms leverage a wide variety of sensory modalities that enable
them to respond to changes in their environment. One such sensory modality is
flow sensing. Flow sensing and response to hydrodynamic signals is exhibited at
a wide variety of length and time scales. For example, harbour seals are capable
of hydrodynamically tracking a moving object by following its wake (Dehnhardt
et al. 2001). Fish use the lateral line sensory system to respond to a wide variety of
flow stimuli (e.g. Montgomery, Baker & Carton 1997; Engelmann et al. 2000). At
a smaller scale, copepods have incredibly diverse sensory structures (Yen & Nicoll
1990; Boxshall, Yen & Strickler 1997) and exhibit responses to hydrodynamic signals
in foraging, mating and escaping (Yen, Weissburg & Doall 1998).

† Email address for correspondence: kanso@usc.edu
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Local flow characterization using bioinspired sensory information 367

These sophisticated responses to hydrodynamic signals are the result of complex
and intertwined mechanisms, including sensory and neural networks and actuation
modalities, all coupled to the hydrodynamic environment. The physiological
mechanisms underlying flow sensing are most likely tuned to the hydrodynamic
signals that the environment presents to the organism (Dehnhardt et al. 2001; Ristroph,
Liao & Zhang 2015; Colvert & Kanso 2016). Concretely, by hydrodynamic signal,
we mean the information contained in the fluid velocity, pressure or density fields.
Flow sensors could independently probe one or more of these fields. One example of
organisms with sensory systems that measure fluid velocity is the copepod; see, e.g.,
Yen & Strickler (1996), where it is argued that copepods can access the full velocity
vector. Another example is the fish lateral line system, which consists of two types of
sensors that measure velocity (see, e.g., Kroese & Schellart 1992) and pressure (see,
e.g., Coombs & Van Netten 2005) along the fish body. Most fluid mechanics studies
inspired by the fish lateral line focus on emulating its pressure sensing abilities.
For instance, Venturelli et al. (2012) used an array of pressure sensors and found
that by measuring the frequency content of the pressure time series, they could
discern between vortex streets and uniform flows, as well as determine the position
and orientation of the sensory array with respect to the axis of the vortex street.
Fernandez (2011) combined a physics-based model with state-estimator theory to
predict the position, size and speed of an upstream object. Colvert & Kanso (2016)
postulated a behaviour-based model in conjunction with a physics-based potential flow
model to study fish rheotactic behaviour – their alignment to an oncoming flow field.
Less is known about local velocity sensing and its implications for deciphering the
character of the local flow. In this study, we restrict our attention to the information
contained in the velocity field itself. More specifically, we focus on local flow
characterization using bioinspired sensory systems that measure only the ambient
velocity field.

The classical approach to flow characterization relies on global reconstruction of the
flow field by an external observer, using either experimental or computational methods,
and identification of its global topological structure (e.g. Williamson & Roshko
1988; Schnipper, Andersen & Bohr 2009). Another means of flow characterization
is to identify the flow ‘type’. Locally, all incompressible flows lie on a spectrum
from extensional to rotational (Marrucci & Astarita 1967; Lagnado 1985). These
types of characterizations are used to delineate coherent flow structures (Jeong &
Hussain 1995; Haller 2005). Global flow characterization yields valuable insight for
engineering design, but it does not provide a suitable framework for an organism
or an engineered vehicle with local sensory capabilities. In such applications, one
has access to pointwise and discrete sensory measurements in a small subdomain
of the velocity field. The objective is to use these local sensory measurements to
compute desired flow properties. This inverse problem is difficult to solve because it
typically involves incomplete information and could have zero or multiple solutions.
Two general questions are important to answer with regard to the inverse problem:
what are the desired flow properties that need to be computed and how can they
be computed? The how part consists of deciding the physical quantities the sensors
should measure, such as which components of velocity provide enough information,
as well as the processing algorithms that decode the desired flow properties from the
sensory measurements.

In this work, we consider an array of velocity sensors in a general incompressible
velocity field u(x, t); see figure 1. We assume that the flow field evolves at a larger
spatial scale than the dimensions of the sensory array. We further consider one-way
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(a) (b) (c) (d )

Flow properties

Global flow features Linearized flow Sensory layout Sensory system

Sensory
measurements

Decoding
algorithms

FIGURE 1. (Colour online) Problem set-up and summary of approach. (a) The goal is
to develop a framework to detect select flow features by a local sensory array. (b) The
fluid velocity field is linearized around the sensory array. (c) A simple bioinspired sensory
system consists of two sensors and one sensory measurement, the difference between
the two sensors. (d) The sensory measurements are decoded to detect the desired flow
properties.

coupling, where the sensory array detects the ambient flow but does not affect it. We
begin by linearizing the velocity field around the sensory array and calculating the
local strain rates and vorticity field. Then, inspired by Lagnado (1985), we introduce
the notion of flow type and flow intensity and show how these flow properties are
related to the local strain rates and vorticity. We consider a simple bioinspired sensory
system consisting of two velocity sensors and one piece of sensory information, the
difference in measurement between the two sensors. We find that, under certain
conditions on the sensory measurements, we can derive decoding algorithms that
allow for reconstruction of the local strain rates and vorticity field. We then go
beyond reconstructing the strain rates and vorticity to identifying the flow type on the
spectrum from extensional to rotational flow, thus providing a local characterization
of the flow field. To illustrate these ideas, we virtually place this sensory system in
three canonical flow fields – Lamb–Oseen vortex, Gaussian shear and flow past a
circular cylinder – and test its performance. Numerical results show that the sensory
system and processing scheme we develop accurately characterize the local flow.
More generally, this local flow characterization is linked to the problem of inferring
flow structure from sparse sensory information, which could involve a large number
of sensors and sensory geometries and different sensor deployment strategies. The
local flow information constructed from the present algorithm would then serve to
guide the behavioural response and deployment strategy of the sensory system, as in
Vergassola, Villermaux & Shraiman (2007).

2. Flow characterization

We consider a fluid environment with velocity field u(x, t), where x is the Euclidean
position vector measured relative to a fixed inertial frame and t is the time. At a given
instant in time, we expand the velocity field u about a particular location xo, which
we will later take to be the location of the sensory system, using the Taylor series

u= uo + (x− xo) · ∇u+O(‖x− xo‖2). (2.1)

Here, uo is the velocity evaluated at xo, and the velocity gradient tensor ∇u is
evaluated at x0. In figure 2, we show an example of the spatial decomposition of
a nonlinear velocity field into a uniform component, a spatially linear component
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FIGURE 2. (Colour online) The Taylor decomposition of (a) a full flow field into (b) a
constant component, (c) a linearly varying component and (d) higher order terms, where
the velocity magnitude is shown in colour, with blue to red representing low to high speed.
(e) Constant and linear components are combined into linearized flow for comparison with
full nonlinear flow.

and a residual field representing the higher-order terms. In this work, we discard the
higher-order terms and employ the linear approximation

u≈ uo + (x− xo) · ∇u. (2.2)

The velocity gradient tensor ∇u is canonically decomposed into a symmetric strain-
rate tensor S and a skew-symmetric vorticity tensor Ω (e.g. Jeong & Hussain 1995;
Haller 2005),

∇u= S +Ω, (2.3)

where
S = 1

2(∇u+∇uT) and Ω = 1
2(∇u−∇uT). (2.4a,b)

The superscript (·)T denotes the transpose operation. Given an incompressible two-
dimensional flow field ∇ · u= 0, we can write

S = 1
2

[
σ τ
τ −σ

]
and Ω = 1

2

[
0 ω
−ω 0

]
, (2.5a,b)

where σ and τ are the strain rates and ω is the vorticity. Let ‖S‖ =
√

tr(SST) and
‖Ω‖ =√tr(ΩΩT) denote the Frobenius norms of S and Ω respectively; then,

‖S‖ = 1√
2

√
σ 2 + τ 2 and ‖Ω‖ = 1√

2
|ω|. (2.6a,b)

It should be noted that the Frobenius norm of a tensor is frame-invariant; that is to
say, ‖RA‖=‖A‖ for any matrix A and rotation matrix R. It follows that any quantities
derived from the norm of the tensor are also frame-invariant.

Since S is symmetric, it can be diagonalized by a rotation matrix R = [r1 r2]
composed of its normalized eigenvectors

r1 =


σ +√σ 2 + τ 2√

2(σ 2 + τ 2)+ 2σ
√
σ 2 + τ 2

τ√
2(σ 2 + τ 2)+ 2σ

√
σ 2 + τ 2

 , r2 =


σ −√σ 2 + τ 2√

2(σ 2 + τ 2)− 2σ
√
σ 2 + τ 2

τ√
2(σ 2 + τ 2)− 2σ

√
σ 2 + τ 2

 .
(2.7a,b)
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(a) (b) (c) (d ) (e)Rotational Shear Extensional Shear Rotational

FIGURE 3. (Colour online) Variation of flow type with parameter κ for (a) counter-
clockwise rotation, (b) counter-clockwise shear, (c) extensional flow, (d) clockwise shear
and (e) clockwise rotation.

The diagonalized strain-rate tensor takes the form

S̃ = 1√
2

[‖S‖ 0
0 −‖S‖

]
, (2.8)

where ˜(·) denotes a quantity written in the eigenbasis of S. Meanwhile, in the case
of two-dimensional flows, Ω is invariant under rotation and can be generally written
in the form

Ω̃ = sgn(ω)
1√
2

[
0 ‖Ω‖
−‖Ω‖ 0

]
. (2.9)

To this end, when expressed in the eigenbasis of S, the velocity gradient tensor takes
the form

∇ũ= 1√
2

[ ‖S‖ sgn(ω)‖Ω‖
−sgn(ω)‖Ω‖ −‖S‖

]
. (2.10)

The (σ , τ ,ω) parameterization of the velocity gradient tensor describes the magnitudes
of various velocity gradients in the flow, namely stretch, shear and vorticity. However,
each one fails independently to provide an easy means by which one can identify
key characteristics of the flow such as its type. We then pose the question: is there a
different parameterization where the parameters represent more meaningful quantities
with regard to the local flow characterization?

We introduce two parameters, the flow type κ and flow intensity α,

κ = sgn(ω)
‖Ω‖
‖S‖ and α =√2

√
‖Ω‖2 + ‖S‖2, (2.11a,b)

where κ ∈ (−∞,∞) describes the ratio of vorticity to strain and α ∈ [0,∞) describes
the intensity of velocity gradients. Figure 3 illustrates the parameterization of flow
type by κ on a spectrum from extensional to rotational. The velocity gradient tensor
can be rewritten in terms of κ and α as

∇ũ= α
2


1√
κ2 + 1

κ√
κ2 + 1

− κ√
κ2 + 1

1√
κ2 + 1

 . (2.12)
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FIGURE 4. (Colour online) (a,d,g,j) Lamb–Oseen vortex, (b,e,h,k) Gaussian shear and
(c,f,i,l) cylinder in uniform flow at Re = 60. (a–c) Velocity vector field u and vorticity
field ω. (d–f ) Flow type κ , with the black contours depicting κ =±1. (g–i) Flow intensity
α. ( j–l) Flow orientation r1 vector field, with the colourmap showing the orientation angle
ψ/π. The cylinder data are taken from Chen, Tu & Rowley (2012).

The (σ , τ , ω) parameterization of the velocity gradient tensor for a two-dimensional
incompressible flow is a three-parameter description of the gradients in the flow. We
translate these parameters into type κ and intensity α by

κ = ω√
σ 2 + τ 2

and α =
√
σ 2 + τ 2 +ω2. (2.13a,b)

In addition, we also consider the rotation angle ψ that diagonalized the strain-rate
tensor S, where

tanψ = τ

σ +√σ 2 + τ 2
. (2.14)

The (κ, α, ψ) parameterization has a distinct advantage over that of (σ , τ , ω) in that
each parameter has an intuitive significance that can be ascertained independently of
the others. Perhaps more importantly, the values of κ and α are frame-independent,
since they are derived from ‖S‖ and ‖Ω‖, whereas (σ , τ , ω) are fundamentally linked
to a given frame of reference.

In figure 4, we demonstrate the advantage of this parameterization by examining
the spatial variation of (κ, α, ψ) for three canonical fluid flows: a Lamb–Oseen
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vortex, a Gaussian shear profile and a circular cylinder in uniform free stream at
a Reynolds number of Re = 60. The Lamb–Oseen vortex is given by the velocity
field uθ = (1 − exp(−r2/r2

c))A/r, where uθ is the azimuthal velocity, r = √x2 + y2

is the radial dimension, rc = 2 is the vortex core size and A = −3 is the vortex
strength, with all quantities defined in polar coordinates. The Gaussian shear flow
is defined by the velocity field u = B exp(−y2/y2

c), where u is the velocity in
the x direction, yc = 5 is the wake width and B = 5 is the wake intensity. The
cylinder data are from a Navier–Stokes simulation of uniform flow past a circular
cylinder at Re= 60, originally published in Chen et al. (2012). Figure 4(a–c) depicts
the velocity vectors and vorticity fields. Figures 4(d–f ) and 4(g–i) show that κ
provides an intensity-independent measure of flow type, and, accordingly, α provides
a type-independent measure of flow intensity. Figure 4( j–l) depicts the values of ψ
and the associated eigenvector r1, which provides the local orientation in the direction
of maximum stretch.

As an aside, for a two-dimensional flow, the type and intensity can be related to
the canonical ‘Q-criterion’ (Hunt, Wray & Moin 1988). The Q-criterion is often cited
as a simple means of identification of vortical structures in a flow and is computed
by

Q= 1
2(‖Ω‖2 − ‖S‖2). (2.15)

In the type–intensity parameterization, Q is given by

Q= α
2

4
κ2 − 1
κ2 + 1

. (2.16)

There are two important items to note regarding the (κ, α, ψ) parameterization and
the Q-criterion. First, the numerical value of Q is inherently tied to both the type and
the intensity of the flow, whereas κ and α independently reveal the type and intensity.
Second, since Q depends on κ2 rather than κ directly, the Q-criterion reveals the type
of flow up to a sign. It cannot distinguish the sense of the vorticity, however.

We have shown that (κ, α,ψ) provides a convenient parameterization of the velocity
gradient tensor ∇u and that (σ , τ , ω) can be used to compute this parameterization.
Next, we devise a scheme by which a sensory system that measures local velocity
differences can characterize the flow type and intensity.

3. Sensory system

We consider a sensory system consisting of two velocity sensors, located at xr and
xl, a distance l apart, as depicted in figure 5. Let (b1, b2) be an orthonormal frame
attached to the system such that xl − xr = lb2 and let θ denote the orientation of the
b1-axis measured from the inertial x-direction. Each sensor samples the velocity field
u in the (b1, b2) frame such that the data from both sensors are combined to produce
one sensory measurement s= u(xl)− u(xr). By virtue of (2.2), s is given by

s= u(xl)− u(xr)= lb2 · ∇u. (3.1)

In component form, one has[
s1
s2

]
= l

2

[
σ τ +ω

τ −ω −σ
] [

0
1

]
= l

2

[
τ +ω
−σ

]
. (3.2)
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l

Right

Left

FIGURE 5. (Colour online) Two-sensor system with sensory array extent l. Velocity is
measured in the body frame (b1, b2). Orientation with respect to the inertial frame is
parameterized by the angle θ . The relative rotation between angles θn and θm is given
by 1θm,n = θn − θm.

The goal of the sensory system is to invert this computation to determine the
components of ∇u from the sensory output s. The inverse problem, however, is not
algebraically closed with one set of measurements. The vector s= s1b1+ s2b2 contains
at most two independent quantities s1 and s2, whereas ∇u is a tensor containing three
independent quantities (σ , τ and ω). For this reason, it is necessary to take more
than one set of independent measurements by changing the orientation of the sensory
system.

Let θn and θm denote the orientation of the sensory system when the nth and mth
samples are taken respectively. We define the angle 1θm,n= θn− θm that parameterizes
the relative rotation of the sensory array between the two angles (see figure 5). It is
worth noting here that the sensory system has access to its relative rotation 1θm,n but
is not aware of its orientation θn and θm in inertial space. Let (b1, b2)n and (b1, b2)m
denote the body frames associated with θn and θm respectively. Let (∇u)n, (s)n and
(∇u)m, (s)m denote the velocity gradient tensor and sensory measurements in the n
and m frames respectively. The sensory output in the n frame is given by (3.1), which,
when expressed in component form, yields the following system of linear equations:

[
(s1)n
(s2)n

]
= l

2

[
0 1 1
−1 0 0

] σn
τn
ωn

 . (3.3)

Clearly, given the strain rates and vorticity, one can directly evaluate the sensory
measurement. However, we emphasize that the inverse problem – computing
(σn, τn, ωn) from ((s1)n, (s2)n) – is not algebraically closed. Thus, we need additional
sensory measurements ((s1)m, (s2)m) at θm and we need to relate (σn, τn, ωn) to
((s1)m, (s2)m). The velocity gradients (∇u)m and (∇u)n are related by a change of
coordinates,

(∇u)m =Θm,n(∇u)nΘT
m,n, (3.4)

where Θm,n is the rotation matrix between the n and m frames,

Θm,n =
[

cos1θm,n sin1θm,n
−sin1θm,n cos1θm,n

]
. (3.5)
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(a) (b) (c)

FIGURE 6. (Colour online) (a) Sensors that measure s1 = u(xl) − u(xr) are called
orthogonal sensors and (b) sensors that measure s2 = v(xl) − v(xr) are called parallel
sensors. (c) Full velocity sensors have access to both u and v. By definition, u= u · b1
and v = u · b2.

The sensory measurement ((s1)m, (s2)m) in the m frame is obtained by substituting
(3.4) into (3.1), yielding

sm = lb2 · (Θm,n(∇u)nΘT
m,n), (3.6)

which, upon further simplification, yields the sensory measurement in component form,[
(s1)m
(s2)m

]
= l

2

[−sin 21θm,n cos 21θm,n 1
−cos 21θm,n −sin 21θm,n 0

] σn
τn
ωn

 . (3.7)

We next discuss how to combine (3.3) and (3.7) to compute the desired flow
characteristics from sensory measurements. This problem will depend on the
capabilities of the sensory system, namely whether the velocity sensors can access s1,
s2, or both.

Orthogonal sensors. We consider sensors that measure s1 only. We refer to these
sensors as orthogonal sensors because they measure the component of velocity
orthogonal to the sensory array (see figure 6a). Barring rank deficiency, the algebraic
closure of the system necessitates, at a minimum, that three sensory samples are
taken at n, n − 1 and n − 2. That is to say, our sensory information consists of the
vector [(s1)n (s1)n−1 (s1)n−2]T. Using the first row of (3.3) and (3.7), we have that (s1)n

(s1)n−1
(s1)n−2

=Mortho

σn
τn
ωn

 , (3.8)

where the measurement matrix Mortho is

Mortho = l
2

 0 1 1
−sin 21θ n−1,n cos 21θ n−1,n 1
−sin 21θ n−2,n cos 21θ n−2,n 1

 . (3.9)

If 1θ n−1,n,1θ n−2,n 6= 0 mod π and 1θ n−1,n 6=1θ n−2,n, Mortho has full column rank and
we can compute the inverse (omitted here). The local strain rates σn and τn and the
local vorticity ωn can thus be determined by the system. This reconstruction of the
values of σn, τn and ωn relies on measurements at three distinct orientations, which
may be disadvantageous in a time-dependent velocity field.
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Parallel sensors. We now consider sensors that measure s2 only. We denote
these sensors as parallel sensors because they measure the component of velocity
parallel to the sensory array (see figure 6b). Once again, barring rank deficiency,
the algebraic closure requires that our sensory information consists of the vector
[(s2)n (s2)n−1 (s2)n−2]T. Using the second row of (3.3) and (3.7), we have that (s2)n

(s2)n−1
(s2)n−2

=Mparallel

σn
τn
ωn

 , (3.10)

where the measurement matrix Mparallel is

Mparallel = l
2

 −1 0 0
−cos 21θ n−1,n −sin 21θ n−1,n 0
−cos 21θ n−2,n −sin 21θ n−2,n 0

 . (3.11)

The measurement matrix Mparallel has maximum column rank 2, and therefore the
velocity gradient cannot be uniquely determined. Here, we are unable to determine
ωn in the case of parallel sensors because it lies in the null space of Mparallel. More
importantly, this result holds true regardless of the number of sensory measurements
(i.e. the length of the sensory information vector).

Full velocity sensors. If the sensory system has access to full velocity data, we
will see that we only need to use two sample measurements at n and n − 1. We
concatenate the orthogonal and parallel sensory data at n and n − 1 into the vector[
(s1)n (s2)n (s1)n−1 (s2)n−1

]T. For simplicity, we define 1θ n−1,n=−1θ . Using both
rows of (3.3) and (3.7), we have that (s1)n

(s2)n
(s1)n−1
(s2)n−1

=M full

σn
τn
ωn

 , (3.12)

where the measurement matrix M full is

M full = l
2

 0 1 1
−1 0 0

sin 21θ cos 21θ 1
−cos 21θ sin 21θ 0

 . (3.13)

For 1θ 6= 0, M full has full column rank. If the flow field u were truly linear, then
σn, τn and ωn could be uniquely determined from these sensory data. In the general
case, however, the sensory data will also include O(‖x− xo‖2) terms from the velocity
field (2.1), and the linear system (3.12) is therefore overdetermined. Using the Moore–
Penrose pseudoinverse (Golub & Van Loan 1996, 257), we find that the least-squares
solution is given by σn

τn
ωn

=M+full

 (s1)n
(s2)n
(s1)n−1
(s2)n−1

 , (3.14)
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where M+full = (MT
fullM full)

−1MT
full, yielding

M+full =
1
2l

×
 −sin 21θ −cos 21θ − 3 sin 21θ −cos 21θ + 1
−cos 21θ + 1 −(cos 21θ + 1) cot1θ cos 21θ − 1 −(cos 21θ − 3) cot1θ

2 2 cot1θ 2 −2 cot1θ

 .
(3.15)

Thus, for 1θ 6= 0, the local strain rates σn and τn and the local vorticity ωn can be
obtained from the sensory system.

We now demonstrate how the sensory information can be used to characterize the
flow locally. To this end, we will test the ability of the algorithm described in (3.15)
to compute flow properties, while varying sensor parameters, in several canonical flow
regimes.

Lamb–Oseen vortex. The non-dimensional flow profile for a Lamb–Oseen vortex
is described by the velocity field u(x) = (1− exp(−r2)/r2)(−ye1 + xe2), where r =√

x2 + y2. Accordingly, the flow type and intensity are given by

κ = r2

r2 − exp(r2)+ 1
, (3.16)

α = 2 exp(r2)

r2

√
2r4 − 2r2 exp(r2)+ 2r2 + exp(2r2)+ 1. (3.17)

In figure 7, we plot κ and α as a function of the vertical coordinate y. We then apply
the algorithm described in (3.15) to compute these flow properties first for fixed l and
varying 1θ (figure 7a,b) and then vice versa (figure 7c,d). We see that the algorithm
performs very well in capturing both flow type and intensity, and changing 1θ has
very little impact on performance. We also see that, for small l, the algorithm performs
very well, and for larger l, the performance deteriorates. This result is understandable,
given the fact that our primary assumption in the development of (3.15) was that the
flow is locally linear, and this assumption of locality is violated for larger l. However,
since we did not place any restrictions on the size of 1θ , we should expect that even
for finite values of 1θ , we can accurately recover the flow properties.

Gaussian shear. The non-dimensional flow profile for a Gaussian shear is described
by the velocity field u(x)= exp(−y2)e1. Accordingly, the flow type and intensity are
given by

κ =−sgn(y) and α = 2
√

2|y| exp(−y2). (3.18a,b)

Figure 8(a,b) compares the analytical solution for κ and α with the results obtained
from (3.15) for fixed l and varying 1θ , while in figure 8(c,d), we vary l and fix
1θ . As was the case with the Lamb–Oseen vortex, the impact of changing 1θ is
minimal in this canonical flow as well. We also see that the algorithm performs well
for small l.

Cylinder in uniform flow. To test the performance in a time-varying flow, we use the
computational model system of a cylinder in uniform flow shown in figure 4(c,f,i,l).
We place the sensory system consisting of full velocity sensors in its wake. More
specifically, we place two full velocity sensors at a separation distance l at a distance
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FIGURE 7. (Colour online) Lamb–Oseen vortex: flow type κ and intensity α
measurements for varying sensor parameters in a non-dimensional Lamb–Oseen vortex
similar to that shown in figure 4(a,d,g,j). Analytical solutions are shown with dashed
black lines. (a) Flow type and (b) intensity for fixed sensor length l = 1 and varying
1θ ={0.1π, 0.3π, 0.5π}. (c) Flow type and (d) intensity for fixed 1θ = 0.1π and varying
l= {0.5, 1, 5}.

9 units downstream from the cylinder centre, along the wake axis. We allow the
flow to evolve in time, measure the velocity at each sensor and calculate the velocity
difference. At each time step, we obtain the sensory measurements at orientation θ
and θ −1θ . We then feed these sensory measurements to the pseudoinverse M+full and
plot its output values for strain rates and vorticity. Results are shown in figure 9(a–c)
for 1θ = 0.05π. Making use of (2.13) and (2.14), we see that from σn, τn and ωn,
we can compute κn to characterize the local flow type and αn to determine its local
intensity (figure 9d,e). We also plot the true values of τ , σ , ω, κ and α evaluated
directly at the location of the sensory array. By comparing these results, we see that
the pseudoinverse provides reasonable estimates for all quantities. For quantitative
comparison, we compute the root mean square error (e.g. κ̄ = 1/T

∫ T
0 (κ − κsensor)

2 dt)
for each time series for each value of l; results are given in table 1. We emphasize
that the flow type κ and intensity α are frame-independent quantities characteristic
of the flow itself and not the frame of reference of the sensory array.

4. Conclusions
We provided a framework for locally characterizing flows by examining the velocity

gradient tensor. We canonically decomposed ∇u into the symmetric strain-rate tensor
S and the skew-symmetric vorticity tensor Ω . By re-parameterizing these tensors
in terms of flow type κ and intensity α, we showed that all flows can be locally
characterized on a spectrum from extensional to rotational. We illustrated the use of
these parameters in three canonical flows: a Lamb–Oseen vortex, a Gaussian shear
profile and a circular cylinder in uniform free stream at Re= 60.
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FIGURE 8. (Colour online) Gaussian shear profile: flow type κ and intensity α
measurements for varying sensor parameters in a non-dimensional Gaussian shear profile
similar to that shown in figure 4(b,e,h,k). Analytical solutions are shown with dashed
black lines. (a) Flow type and (b) intensity for fixed sensor length l = 1 and varying
1θ ={0.1π, 0.3π, 0.5π}. (c) Flow type and (d) intensity for fixed 1θ = 0.1π and varying
l= {0.5, 1, 5}.

l σ τ ω κ α

0.1 0.0492 0.0669 0.0667 0.379 0.0549
0.5 0.0471 0.0689 0.0638 0.389 0.0522
1 0.0407 0.0755 0.0559 0.429 0.0467

TABLE 1. Root mean square errors for strain rates (σ , τ ), vorticity (ω), flow type (κ)
and intensity (α) for the time series in figure 9. The sensor separation distance l is varied
between 0.1 and 1.

We developed a biologically inspired sensory system that measures the difference
in flow velocity. We considered three different types of velocity sensors: orthogonal,
parallel and full. This notation refers to the velocity component(s) that the sensors
measure in a frame attached to the sensory array. We found that parallel sensors are
not capable of uniquely determining all flow properties, irrespective of how many
times they sample the ambient flow. More specifically, we found that using parallel
velocity sensors, the sensory system is unable to calculate the local vorticity. We
then showed that, when the sensors have access to the orthogonal component or
full velocity vector, the sensory system is able to unambiguously compute all three
flow properties. However, in the case of the full velocity vector, this takes only two
independent measurements. We derived a ‘filter’ that solves the inverse problem to
obtain the local strain rates and vorticity from the sensory measurements. Finally,
we demonstrated how this filter can be used in conjunction with the (κ, α, ψ)
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FIGURE 9. (Colour online) Flow behind a fixed cylinder: velocity gradients and flow
parameters as a function of time for a sensory array placed at xo = 9e1 + 0e2 in the
cylinder flow shown in figure 4(c,f,i,l). True values for velocity gradients and parameters
are computed via finite difference and shown as dashed black lines. Computed values
using M+full are shown for (a) σ , (b) τ , (c) ω, (d) κ and (e) α. The sensor system
parameters are 1θ = 0.05π and l = {0.1, 0.5, 1}. The data are adapted from Chen et al.
(2012).

parameterization of the velocity gradient tensor. To illustrate the capabilities of this
sensory system, we used it to probe several canonical flow fields. We showed that
the sensory scheme we developed provided good agreement with direct measurements
of the velocity gradients, types and intensities of the flow.

This framework provides an effective method of measuring strain rates and vorticity
from local sensory information and for computing the local flow type. However, we
must take careful note of several limitations. We assumed that the sensor does not
disturb the ambient flow. This assumption is only valid in certain flow regimes when
the dimensions l of the submerged sensory system are small relative to those of the
flow structures. It is worth noting that, to generate the numerical results in figure 9,
we relaxed this requirement by taking the sensor dimension to be equal to 1 (the same
as the cylinder radius) and obtained good agreement between the actual and sensed
flow properties. Further, there is an inherent assumption regarding the time scale of
the sensory system and the time scale at which the flow field is evolving. Because
we sample the flow twice at θn and θn − 1θ to reconstruct the flow properties, the
frequency at which we sample must be much greater than that at which the velocity
field fluctuates. Finally, the relative angle 1θ must be properly tuned to the flow
field that is being sensed. When choosing 1θ , one must be aware that if 1θ is too
small, the computation of strain rates and vorticity becomes ill-conditioned. In sum,
careful selection of the sensory length scale l and relative sampling angle 1θ will
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be important to ensure that the sensed flow properties are close to the actual ones.
We posit that, for a given flow field, these parameters can be finely tuned to provide
optimal flow information, and that the parameter studies we performed with the
canonical flows of the Lamb–Oseen vortex and Gaussian shear can provide guidance
on these choices.

The analyses performed here were illustrated with two-dimensional flows, but the
use of κ and α to uniquely characterize flows holds in the three-dimensional case as
well. For any velocity field, there are three tensor invariants that can be computed
for ∇u. One of these is always 0 due to incompressibility, since S is traceless, and
the other invariants can be uniquely mapped to κ and α. The remaining independent
parameters of ∇u are due to the orientations of the principal axes of strain and
rotation. For the 2D case, we denote this by ψ , the angle of the principal axes of
strain – the principal axis of rotation is always orthogonal to the plane. For the 3D
case, there are six independent parameters describing the orientations of the principal
axes of strain and rotation. In both of these cases, we see that flow type and intensity
uniquely characterize all flows, up to their principal axes of strain and rotation.

In future studies, we will develop quantifiable metrics for assessing the performance
of a given sensory array in relation to the specific flow field it senses. Definition
of quantitative metrics of sensory performance will be an indispensable step for
assessing and comparing the performance of distinct sensory arrays and sensing
strategies (static versus dynamic), as well as for optimizing the layout of the sensory
platform. In dynamically deployed sensors, as is the case in biological swimmers, we
will investigate how the sensory information can be incorporated in a feedback loop
to determine the motion of the sensory array. In particular, it will become increasingly
important to develop strategies to more intelligently guide the dynamic deployment
of the sensory array, using techniques from estimation theory (e.g. Vergassola et al.
2007), machine learning (e.g. Gazzola et al. 2016) and compressive sensing (e.g.
Candes 2008).
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