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Abstract

We introduce a notion of finite sampling consistency for phylogenetic trees and show that
the set of finitely sampling-consistent and exchangeable distributions on n-leaf phyloge-
netic trees is a polytope. We use this polytope to show that the set of all exchangeable
and sampling-consistent distributions on four-leaf phylogenetic trees is exactly Aldous’
beta-splitting model, and give a description of some of the vertices for the polytope of
distributions on five leaves. We also introduce a new semialgebraic set of exchangeable
and sampling consistent models we call the multinomial model and use it to characterize
the set of exchangeable and sampling-consistent distributions. Using this new model, we
obtain a finite de Finetti-type theorem for rooted binary trees in the style of Diaconis’
theorem on finite exchangeable sequences.
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1. Introduction

Leaf-labelled binary trees, which are commonly called phylogenetic trees, are frequently
used to represent the evolutionary relationships between species. In this paper we will restrict
our attention to rooted binary trees and our label set for a tree with n leaves will always be
[n] = {1, 2, . . . , n}. We call these trees [n]-trees and denote the set of [n]-trees with RBL(n).

Processes for generating random [n]-trees play an important role in phylogenetics. Two
common examples are the uniform distribution (where a tree is chosen uniformly at random
from among all trees in RBL(n)) and the Yule–Harding distribution (a simple Markov branch-
ing process). Some other examples of random tree models include Aldous’ β-splitting model
[1], the α-splitting model [8], and the coalescent process (which generates trees with edge
lengths) [15]. Two features common to all these random tree processes, and desirable for any
such tree process, is that they are exchangeable and sampling consistent.

Let pn denote a probability distribution on RBL(n). Exchangeability refers to the fact that
relabelling the leaves of the tree does not change its probability. That is, for all T ∈ RBL(n)
and σ ∈ Sn, pn(T) = pn(σT). Exchangeability is a natural condition since it does not allow
the names of the species to play any special role in the probability distribution. A family of
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Exchangeable and sampling-consistent distributions on rooted binary trees 61

distributions, {pn}∞n=2, on trees has sampling consistency if, for each n, the distribution pn,
which is on [n]-trees, can be realized as the marginalization of distributions pm, which is on
[m]-trees, for m > n. That is, the probability of an [n]-tree, T , under pn can be written as

πn(pm)(T) = pm
n (T) =

∑
{S∈RBL(m)|T=S|[n]}

pm(S).

Sampling consistency is a natural condition for a random tree model because it means that
randomly missing species do not affect the underlying distribution on the species that were
observed.

The goal of this paper is to study the structure of finitely sampling-consistent distributions
on rooted binary trees. In particular, we aim to obtain a finite de Finetti-type theorem for these
trees in the style of Diaconis’ Theorem 3 in [6]. Our motivation is two-fold. First of all, there
has been significant work on understanding the set of exchangeable, sampling-consistent dis-
tributions on other discrete objects, including rooted trees. A classic result in this theory is
de Finetti’s theorem for infinitely exchangeable sequences of binary random variables, which
shows that every subsequence of the infinite sequence can be expressed as a mixture of inde-
pendent and identically distributed sequences. This does not hold for finitely exchangeable
sequences, but Diaconis later developed a finite form of de Finetti’s theorem. He showed that
if a finite exchangeable sequence of binary random variables, {Xi}n

i=1, can be extended to an
exchangeable sequence, {Xi}m

i=1 where m > n, then the original sequence can be approximated
with a mixture of independent and identically distributed sequences with error O

( 1
m

)
[6]. A

substantial amount of work has been done on exchangeable arrays (see [7] for example) as
well, which has been used to prove de Finetti theorems for other discrete objects. For instance,
Lauritzen, Rinaldo, and Sadeghi recently developed a de Finetti theorem for exchangeable
random networks [12].

As previously mentioned, there has already been considerable work characterizing
exchangeable and sampling-consistent distributions on trees using weighted real trees as limit
objects [9, 10, 11]. In [11], a characterization of the exchangeable and sampling-consistent
Markov branching models we discuss in Section 3.1 is obtained. A true de Finetti theorem
for trees is conjectured in [10] and proven in [9, Theorem 3]. The approach taken in these
papers is to characterize all infinitely sampling-consistent distributions on trees using a limiting
object called a weighted real tree. In this paper, we instead take a geometric and combinatorial
approach to the study of exchangeable and finitely sampling-consistent distributions on binary
trees and examine what happens as we take the limit.

A second motivation comes from the combinatorial phylogenetics problem of studying
properties of the distribution of the maximum agreement subtree of pairs of random trees.
Let T ∈ RBL(n) and S ⊆ [n]. The restriction tree T|S is the rooted binary tree with leaf label
set S obtained by removing all leaves of T not in S and suppressing all vertices of degree 2
except the root. Two trees, T1, T2 ∈ RBL(n), agree on a set S ⊆ [n] if T1|S = T2|S. A maximum
agreement set is an agreement set of the largest size for T1 and T2. The size of a maximum
agreement subtree of these two trees is the cardinality of the largest subset S that T1 and T2
agree on and is denoted MAST(T1, T2). If S is an agreement set with |S| = MAST(T1, T2) then
the resulting tree T1|S = T2|S is a maximum agreement subtree of T1 and T2.

Understanding the distribution of MAST(T1, T2) for random tree distributions would help
in conducting hypothesis tests that the similarity between the trees is no greater than the
similarity between random trees. For example, it was suggested in [5] that MAST(T1, T2)
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62 B. HOLLERING AND S. SULLIVANT

could be used to test the hypothesis that no cospeciation occurred between a family of host
species and a family of parasite species that prey on them. The study of the distribution of
MAST(T1, T2) for random trees T1, T2 is primarily conducted with the assumption that T1 and
T2 are drawn from an exchangeable, sampling-consistent distribution on rooted binary trees.
Bryant, McKenzie, and Steel began the study of the distribution of MAST(T1, T2) and obtained
some first bounds on E(MAST(T1, T2)) for random trees T1 and T2 drawn from the uniform or
Yule–Harding distributions [3]. Later work on the distribution obtained an O(

√
n) upper bound

for E(MAST(T1, T2)) when T1 and T2 are drawn from any exchangeable, sampling-consistent
distribution [2]. A lower bound on the order of �(

√
n) has been conjectured for all exchange-

able, sampling-consistent distributions as well, but this remains an open problem. Our hope in
pursuing this project is that developing a better understanding of the set of all exchangeable
sampling-consistent distributions might shed light on this conjecture.

In this paper we study the structure of exchangeable, sampling-consistent distributions
on leaf-labelled, rooted binary trees. We introduce the notion of a polytope of exchange-
able and finitely sampling-consistent distributions. We use it to study the set of exchangeable
and sampling-consistent distributions on trees, and get some characterizations for trees with
a small number of leaves. We show that the set of all exchangeable and sampling-consistent
distributions on four-leaf trees comes from the β-splitting model that was first introduced by
Aldous in [1]. We have not been able to find a similar characterization for exchangeable and
sampling-consistent distributions on five-leaf trees, but we describe some of the vertices of the
polytope of exchangeable and finitely sampling-consistent distributions. We also introduce a
new exchangeable and sampling-consistent model on trees, called the multinomial model, and
show that every sampling-consistent and exchangeable distribution can be realized as a convex
combination of limits of sequences of multinomial distributions.

2. Exchangeability and finite sampling consistency

In this section we describe how the set of exchangeable distributions relates to the set of all
distributions on leaf-labelled, rooted binary trees. We then introduce a notion of finite sampling
consistency and discuss how it relates to traditional sampling consistency.

Recall that RBL(n) denotes the set of all leaf-labelled, rooted binary trees with label set [n],
which we call [n]-trees, and that |RBL(n)| = (2n − 3)!!. The set of all distributions on RBL(n)
is the probability simplex �(2n−3)!!−1 ⊆R

(2n−3)!!, where the coordinates are indexed by [n]-
trees. The symmetric group Sn denotes the group of permutations of [n]. For each σ ∈ Sn and
T ∈ RBL(n) let σT denote the tree obtained by applying σ to the leaf labels.

Definition 2.1. A distribution p on RBL(n) is exchangeable if, for all permutations σ ∈ Sn and
[n]-trees T ∈ RBL(n), p(T) = p(σT). The set of all exchangeable distributions on RBL(n) is
denoted En.

As previously mentioned, exchangeability requires that the probability of an [n]-tree under
a particular distribution depend only on the shape of the tree. Thus we only need to consider
distributions on the set of tree shapes. Let RBU(n) denote the set of unlabelled rooted binary
trees, which we may also call trees or tree shapes. This idea is summarized in the next lemma,
which is the [n]-tree analogue of [12, Lemma 2].

Lemma 2.1. The set of exchangeable distributions on RBL(n), En, is a simplex of dimension
|RBU(n)| − 1 with coordinates indexed by tree shapes.
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Proof. First, we define a distribution pT ∈ En for each tree shape T ∈ RBU(n). To do so, we
let O(T) be the set of trees T ′ ∈ RBL(n) such that shape(T ′) = T . For any tree S ∈ RBL(n) we
set

pT (S) =
⎧⎨
⎩

1
|O(T)| shape(S) = T,

0 shape(S) �= T .

Then pT ∈ En since it is a probability distribution on trees, and all trees of the same shape have
the same probability. We claim that En = conv ({pT : T ∈ RBU(n)}), where conv(A) denotes the
convex hull of the set A. Since pT ∈ En for all T ∈ RBU(n), it is enough to show that any distri-
bution p ∈ En can be written as a convex combination of the pT . If p ∈ En, then the probability
of any tree T ′ ∈ RBL(n) depends only on the shape of T ′ not the leaf labelling, so we can write
p = ∑

T∈RBU(n) p(T)pT , where p(T) is |O(T)| times the probability of any [n]-tree in RBL(n)
with shape T . Since the original p is a probability distribution on all leaf-labelled trees, the
weights in the linear combination are nonnegative and sum to 1. Lastly, we note that the vec-
tors pT are affinely independent since there is no overlap of coordinate indices where the entries
in pT are nonzero. So En = conv ({pT : T ∈ RBU(n)}) is a simplex and has coordinates indexed
by RBU(n). �

Lemma 2.1 allows us to move from studying exchangeable distributions on leaf-labelled
[n]-trees to all distributions on unlabelled trees. We will primarily focus on understanding
the set of sampling-consistent distributions within En now. First, recall that for pm ∈ Em the
marginalization or projection map πn gives a new distribution pm

n on RBL(n) for n < m, defined
for all T ∈ RBL(n) by

πn(pm)(T) =
∑

{S∈RBL(m)|T=S|[n]}
pm(S).

We will use this marginalization map to define a notion of finite sampling consistency.

Definition 2.2. A family of distributions {pk}m
k=n is finitely sampling consistent or m-sampling

consistent if, for each n ≤ k < m, pk = πk(pm). We denote the set of all distributions in En that
are m-sampling consistent by Em

n = πn(Em).

It is immediate that if a distribution in En is m-sampling consistent, then for any k such that
n < k < m, the distribution is also k-sampling consistent. This leads to the following result.

Lemma 2.2. For all m > k > n, Em
n ⊆ Ek

n .

A distribution in En is sampling consistent if it is part of an m-sampling-consistent family of
distributions for all m > n. In other words, a distribution is sampling consistent if it is in Em

n for
all m > n. Thus, we can define the following notation for the set of exchangeable distributions
on RBL(n) that are sampling consistent: E∞

n : = ∩∞
m=nEm

n .

Lemma 2.3. Let pT ∈ Em be defined as in Lemma 2.1. Then

Em
n = conv ({πn(pT ) : T ∈ RBU(m)}) .

Proof. Clearly, conv({πn(pT ) : T ∈ RBU(m)}) ⊆ Em
n since πn(pT ) ∈ Em

n for all T ∈ RBU(m).
It is enough to show that if we have a distribution pm

n ∈ Em
n , then it can be written as a con-

vex combination of the πn(pT ). If pm
n ∈ Em

n , then there exists pm ∈ Em such that πn(pm) = pm
n .
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64 B. HOLLERING AND S. SULLIVANT

FIGURE 1. The projection of E7
5 onto the first two coordinates of the simplex E5. The gray points

correspond to the points πn(pT ) for T ∈ RBU(7). The vertices of the simplex are labelled with the cor-
responding unrooted tree. Note that the balanced tree is at the origin since we’ve projected onto the

coordinates corresponding to the other two trees.

Since pm ∈ Em, we know from Lemma 2.2 that we can write pm = ∑
T∈RBU(n) pm(T) · pT . Then,

evaluating πn(pm) at an [n]-tree S ∈ RBL(n) gives

πn(pm)(S) =
∑

{Q∈RBL(m)|S=Q|[n]}

∑
T∈RBU(m)

pm(T)pT (Q).

Changing the order of summation, we have

πn(pm)(S) =
∑

T∈RBU(m)

pm(T)
∑

{Q∈RBL(m)|S=Q|[n]}
pT (Q),

but
∑

{Q∈RBL(m)|S=Q|[n]} pT (Q) = πn(pT )(S), so we get that

πn(pm)(S) =
∑

T∈RBU(m)

pm(T)(πn(pT )(S)),

which shows that pm
n = πn(pm) can be written as a convex combination of the πn(pT ). �

Example 2.1. While it is the case that Em
n = conv({πn(pT ) : T ∈ RBU(m)}), not every πn(pT )

will be a vertex of Em
n . Figure 1 illustrates this.

Lemma 2.3 implies that understanding how the marginalization map acts on the vertices
of Em will allow us to compute all of Em

n . The following lemma and corollary will give us a
method for calculating the vertices of Em

n by computing subtree densities.

Lemma 2.4. Let S ∈ RBL(n) and T ∈ RBU(m). Also let cT (S) = |{Q ∈ RBL(m) | S =
Q|[n], shape(Q) = T}|. Then πn(pT )(S) = cT (S)

|O(T)| .
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(a) (b)

FIGURE 2. (a) A five-leaf tree. (b) The two tree shapes for four-leaf trees.

Proof. By the definition of the map πn, πn(pT )(S) = ∑
{Q∈RBL(m)|S=Q|[n]} pT (Q), but pT (Q)

is nonzero if and only if shape(Q) = T , in which case it is 1
|O(T)| . So the above sum becomes

πn(pT )(S) =
∑

{Q∈RBL(m)|S=Q|[n],shape(Q)=T}

1

|O(T)| = cT (S)

|O(T)| .
�

Corollary 2.1. Let S′ ∈ RBU(n) and T ∈ RBU(m). Then πn(pT )(S′), which is used to denote the
sum of πn(pT )(S) over all S ∈ O(S′), is the induced subtree density of S′ in T. That is, for any
fixed Q ∈ O(T),

πn(pT )(S′) = |{I ⊆ [m] : |I| = n and shape(Q|I) = S′}|(m
n

) .

Proof. From the previous lemma, we know that for any S ∈ O(S′), πn(pT )(S) = cT (S)
|O(T)| where

cT (S) = |{Q ∈ RBL(m) | S = Q|[n], shape(Q) = T}|. Then we have

πn(pT )(S′) =
∑

S∈O(S′)

cT (S)

|O(T)| .

So, for each labelling S of S′, we are counting which fraction of labellings of T yield S when
restricted to [n]. As we sum over all labellings of S, this gives us the total fraction of times
that the shape S′ appears as a restriction tree of the shape T when (n − m) of its leaves are
marginalized out, which is exactly

|{I ⊆ [m] : |I| = n and shape(Q|I) = S′}|(m
n

) . �

The following example elucidates what is meant by induced subtree density, and shows how
we can explicitly calculate this quantity.

Example 2.2. We show how to find the projection of one vertex of E5 down to E4. E5
4 is the

convex hull of the projection of all of the vertices of E5. Begin with the tree shape T pictured
in Figure 2(a). We label the leaves of T for the sake of the calculation, but it should be thought
of as an unlabelled tree. We then find that the restriction to {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}
gives the shape Bal4, and the restriction to the sets {1, 3, 4, 5}, {2, 3, 4, 5} gives the shape
Comb4, pictured in Figure 2(b). We let the first coordinate of E4 be the probability of obtaining
Comb4 and the second be the probability of obtaining Bal4. As mentioned above, these proba-
bilities will simply be the number of times each shape appears as a restriction tree over the total
number of restriction trees. Thus, this vertex of E5 will give us the distribution (2/5, 3/5) in E4.
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66 B. HOLLERING AND S. SULLIVANT

We have now seen how to compute the vertices of Em
n explicitly, but not every distribution

πn(pT ) is a vertex of Em
n . However, the comb tree always yields a vertex of Em

n .

Lemma 2.5. For all m ≥ n, let Combm ∈ RBU(m) be the m-leaf comb tree. Then πn(pCombm) is
a vertex in Em

n .

Proof. The comb tree has only smaller comb trees as restriction trees, so the image of the
comb distribution on m leaves under the marginalization map will be the comb distribution
on n leaves. Since pCombn is a vertex of En and Em

n is a subset of En, pCombn is also a vertex
of Em

n . �

3. Examples of exchangeable and sampling-consistent distributions

In this section we discuss some of the well-known exchangeable and sampling-consistent
families of distributions, particularly the Markov branching models. We also introduce a new
family of exchangeable sampling-consistent tree distributions, namely the multinomial family.

3.1. Markov branching models

An important example of sampling-consistent and exchangeable distributions is the families
of Markov branching models which can be constructed in the following way, as first introduced
in [1].

Suppose that, for every integer n ≥ 2, we have a probability distribution on {1, 2, . . ., n − 1},
qn = (qn(i) : i = 1, 2, . . . , n − 1), which satisfies qn(i) = qn(n − i). Using this family of distri-
butions we can define a probability distribution on RBU(n) by taking the probability that i
leaves fall on the left of the root-split and n − i leaves fall on the right of the root-split to
be qn(i), with each choice of i labels to fall on the left having the same probability. Repeating
recursively in each branch will yield the probability of a rooted binary tree. Aldous called these
models Markov branching models.

Haas et al. classified the sampling-consistent Markov branching models on rooted binary
trees in [11]. They showed that every sampling-consistent Markov branching model defined by
the splitting rules qn, n ≥ 2, has an integral representation of the form

qn(i) = a−1
n

((
n

i

) ∫ 1

0
xi(1 − x)n−iν(dx) + nc1i=1

)
, (3.1)

where c ≥ 0, ν is a symmetric measure on (0,1) such that
∫ 1

0 x(1 − x)ν(dx) < ∞, and an is a
normalization constant; c1i=1 accounts for the comb distribution. A subclass of these models
are those where the measure ν in (3.1) has the form ν(dx) = f (x)dx for a probability density
function f on (0,1) that is symmetric on the interval (i.e. f (x) = f (1 − x)) and where c = 0.
These Markov branching models can be thought of as uniformly choosing n points in the inter-
val (0,1) at random and then splitting the interval with respect to the density f . Repeating the
splitting process recursively in each subinterval until each of the original n points is contained
in its own subinterval gives a tree shape. This process is pictured in [1, Figure 6].

One particularly important family of Markov branching distributions is the beta-splitting
model. It is a Markov branching model that belongs to the subclass mentioned above where
the function f in the above description has the form

f (x) = 	(2β + 2)

	2(β + 1)
xβ (1 − x)β
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for −1 < β < ∞. For the beta-splitting model we can calculate the values qn(i) explicitly in
terms of β. By plugging the beta-splitting density function f into (3.1) for qn(i) we get the
following formulas:

qn(i) = a−1
n

(
n

i

)
	(β + i + 1)	(β + n − i + 1)	(2β + 2)

	(2β + n + 2)	2(β + 1)
(3.2)

for −1 < β < ∞. Note that (3.2) can be analytically continued on −2 < β ≤ −1, and so it is
natural to extend the beta-splitting model to those values of β. As β approaches −2 the beta-
splitting model approaches the distribution which puts all probability on the comb tree, so we
also include β = −2 in the beta-splitting model as the comb distribution.

An important note here is that for the beta-splitting model each qn(i) is actually a rational
function in β. Using properties of the gamma function one can see that the above formula
simplifies to

qn(i) =
(n

i

)
(i + β)i(n − i + β)n−i

(n + 2β + 1)n − 2(n + β)n
.

Since each qn(i) is a rational function in β, we can see that the probability of obtaining a certain
tree shape is also a rational function in β, because the probability of obtaining that tree shape
under the beta-splitting model is simply the product of the probability of all of the splits in the
tree.

Example 3.1. Let Comb4 and Bal4 be the trees pictured in Figure 2(b). Then the probabilities
of obtaining them under the beta-splitting model are

p(Comb4) = 2q4(1) = 12 + 4β

18 + 7β
,

p(Bal4) = q4(2) = 6 + 3β

18 + 7β
.

This model also has a nice characterization among all of the sampling-consistent Markov
branching models. In [14], McCullagh, Pitman, and Winkel showed that the beta-splitting mod-
els are the only sampling-consistent Markov branching models whose splitting rules admit a
particular factorization.

We are interested in examining how the sampling-consistent Markov branching models, and
in particular the beta-splitting model, fit inside En as a whole. These distributions are infinitely
sampling consistent and so lie in E∞

n as well. A priori, it might seem that to determine the
probability of a tree shape with n leaves under a Markov branching model one would need to
have not only the distribution qn but also distributions qk where 2 ≤ k ≤ n − 1. This is actually
not the case for any sampling-consistent Markov branching model, though. Proposition 41 of
[8] showed that if (qk | 2 ≤ k ≤ n) are the splitting rules for a distribution in E∞

n , then in fact it
must be that

qn−1(i) = (n − i)qn(i) + (i + 1)qn(i + 1)

n − 2qn(1)
.

This implies that all that is needed to define a distribution in E∞
n is the first splitting rule qn,

which gives the following corollary.

Corollary 3.1. The dimension of the set of all sampling-consistent Markov branching models
in En is at most

⌈ n−1
2

⌉ − 1.
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Proof. As explained above, a Markov branching model is completely determined by the
distribution qn = (qn(i) : i = 1, 2, . . . , n − 1), which determines all of the distributions qk =
(qk(i) : i = 1, 2, . . . , k − 1) where 2 ≤ k ≤ n − 2. Since qn must be symmetric, we immediately
get that the values qn(1), qn(2), . . . , qn(

⌈ n−1
2

⌉
) determine all of qn. Also, since qn must be a

distribution, we lose one of these as a free parameter, and thus the dimension of the set of
sampling-consistent Markov branching models is bounded above by

(⌈ n−1
2

⌉ − 1
)
. �

Note that when n = 4, the space of sampling-consistent Markov branching models has
dimension 1. We will see in Section 4 that the set of beta-splitting models is equal to the
set of sampling-consistent Markov branching models in this case.

3.2. The multinomial model

The multinomial model associates to each tree shape T ∈ RBU(m) for any m ≥ 2 a family
of probability distributions on RBL(n) for each n. We first add an extra leaf to the root of T to
obtain a new tree, which we denote by T̃ . We then associate to every edge, e, in T̃ a parameter
te ≥ 0. This gives us a vector of parameters t = (te | e ∈ E(T̃)) of length 2m − 1, and we assume
that

∑
e te = 1, so that these parameters give a probability distribution on the edges of T̃ . We

will now use this probability distribution to define a set of distributions on RBU(n) for any
n ≥ 2. Note that n and m do not have to be related to each other.

Using the distribution t, we draw a multiset A of edges from the tree T̃ , where edge e occurs
with probability te. There is a natural way to take the tree T̃ and a multiset A of size n on the set
of parameters, and to construct a new tree which we will call T̃A ∈ RBU(n). Each time that an
edge e appears in A, we add a new leaf to the edge e, which will give us a new tree with m + n
leaves. We then simply take T̃A to be the induced subtree on only the leaves that come from
A. Hence, the multinomial model on the tree T gives a way to produce random trees with an
underlying skeleton that is the tree T . For large n, the resulting random trees look like T with
many extra leaves added.

The multinomial probability of observing a particular multiset of edges A is the monomial

pA =
(

n

mA

) ∏
e∈T̃

tmA(e)
e ,

where mA(e) denotes the number of times that e appears in the multiset A, and mA is the
resulting vector.

Letting MT̃
n be the set of all n-element multisets of edges of T̃ , we can calculate the

probability of observing any particular tree shape S by

pT̃,t(S) =
∑

A∈MT̃
n

T̃A=S

pA.

Example 3.2. Consider the tree T̃ from Figure 3(b) with edge parameters (t1, t2, t3). To
calculate the probability of the tree, Bal5, in Figure 3(c) we use the formula

pT̃,t(Bal5) =
∑

A∈MT̃
5

T̃A=Bal5

pA.

The only multisets that satisfy this condition are the sets A1 = {2, 2, 2, 3, 3} and A2 =
{2, 2, 3, 3, 3}. This is because if 1 appears in a multiset A any positive number of times, the tree
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(a) (b) (c)

FIGURE 3. (a) T; (b) T̃; (c) Bal5.

FIGURE 4. This is a projection onto the first two coordinates of the simplex E5. The beta-splitting model
on RBU(5) is pictured in black, and the multinomial model on the two-leaf tree is pictured in gray.

T̃A will have a single leaf on one side of the root and four leaves on the other side, regardless
of what other parameters appear in the set. Thus, A1 and A2 are the only elements of MT̃

5 that
we sum over, so

pT̃,t(Bal5) =
(

5

3, 2

)
t32t23 +

(
5

2, 3

)
t22t33.

The multinomial model gives a family of distributions as we let the parameter vector t
range over the entire simplex. Equivalently, the model can be described as the image of the
simplex under the polynomial map pT̃ :�|E(T̃)|−1 → E∞

n , where the coordinate corresponding
to S ∈ RBU(n) has value pT̃,t(S) for t ∈ �2m−2. Since �2m−2 is a semialgebraic set and pT̃ is a
polynomial map, the multinomial model is also a semialgebraic set.

Also, if we take any tree T ∈ RBU(m), and any subtree T ′ ∈ RBU(m′) of T , then we have
Im(pT̃′ ) ⊆ Im(pT̃ ). This is because if the parameters corresponding to edges that appear in T
but not in T ′ are set to 0 in pT , the map will simply become pT′ . Setting these parameters
to 0 just corresponds to restricting pT to a subset of the simplex, and thus we get the image
containment.

A last interesting note is that this model is perhaps similar in spirit to the W-random graphs
when W is a graphon obtained from a finite graph G, as described in [13]. The construction
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begins with a finite graph G and uses it to define a distribution on graphs with k vertices
similarly to how we begin with a tree T and define a distribution on trees with k leaves.

We end this section with Figure 4, which shows both the beta-splitting model and the
multinomial model inside E5. In the next section we will discuss the exchangeable and
sampling-consistent distributions on four-leaf trees and how they relate to the models discussed
in this section.

4. Distributions in E∞
4

In this section we classify all of the distributions in E∞
4 . In particular, we show that E∞

4 is
equal to the beta-splitting model.

First, we note that since there are only two distinct tree shapes with four leaves (see
Figure 2(b)), the set of exchangeable distributions is just a one-dimensional simplex �1 in
R

2. We take coordinates (p1, p2) on R
2 and let the first coordinate correspond to Comb4 and

the second coordinate to Bal4. The subset of distributions that are also sampling consistent
must be some line segment within the simplex. We know from Lemma 2.5 that the comb dis-
tribution, which is (1,0) in these coordinates, is a vertex in E∞

4 . If we can bound the probability
of obtaining Bal4 then we will have a complete characterization of all distributions in E∞

4 .
Theorem 2 in [4] will be the main tool to achieve this.

Theorem 4.1. (Theorem 2 of [4]) The most balanced tree in RBU(n) has the complete sym-
metric tree on four leaves appear more frequently as a subtree than any other tree in
RBU(n).

By the most balanced tree in RBU(n), we mean the unique tree shape in RBU(n) that has
the property that for any internal vertex of the tree, the number of leaves on the left and right
subtrees below that differ by at most one.

Theorem 4.2. The four-leaf beta-splitting model equals the set of all exchangeable and
sampling-consistent distributions on RBU(4).

Proof. Note that En
4 only has two vertices since it is a line segment. The comb distribution

(1,0) is always a vertex in En
4 , by Lemma 2.5. The other vertex will be the projection of the

vertex of En that places the most mass on Bal4. The projection of a vertex pT ∈ En is

(p1, p2) = 1(n
4

) (m1, m2),

where m1 is the number of four-element subsets S ⊂ [n] such that T|S = Comb4, and m2 is the
number of four-element subsets S ⊂ [n] such that T|S = Bal4. By Theorem 4.1 we can restrict
to the most balanced tree in RBU(n). We will use m2,n to denote this highest value of m2 that
we get from the most balanced tree in RBU(n).

The beta-splitting model on RBU(4), on the other hand, is the line segment from (1,0) to( 4
7 , 3

7

)
. Indeed, under the beta splitting model, the probability of Bal4 is just

q4(2) =
(4

2

)
(β + 2)2

2

(2β + 5)4 − 2(β + 4)4
= 6β4 + O(β3)

14β4 + O(β3)
.

As β → ∞, this converges to 3
7 . So, we will be done if we can show that

lim
n→

m2,n(n
4

) = 3

7
.
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FIGURE 5. Tree shapes on five leaves.

To prove this, we can restrict to the subsequence of values n = 2k, since Lemma 2.2 implies
that m2,n

(n
4)

is a monotone decreasing sequence. This subsequence is easier to deal with since

m2,2n counts the number of four-subsets, S ⊂ [2n], of the leaves of the complete symmetric
tree T2n in RBU(2n) such that T2n |S = Bal4. Using the recursive structure of T2n , we see that

m2,2n = 2m2,2n−1 + (2n−1

2

)2
. The only ways we can choose a subset S such that T2n |S = Bal4

are that the leaves in S fall either entirely within the left or right subtrees or that S has two
leaves from both the left and right subtrees. The number of ways to choose a subset S that falls
entirely on the left or right side is m2,2n−1 , by definition. The number of ways to choose two

leaves from each side is
(2n−1

2

)2
. This recurrence can be solved to find an explicit formula for

m2,2n :

m2,2n =
n−1∑
i=1

2n−i−1
(

2i

2

)2

.

Now we can simplify
m2,2n

(2n
4 )

to get

m2,2n(2n

4

) = 3(2n) − 5

7(2n) − 21
,

which converges to 3
7 as n tends to infinity. �

Note that Theorem 4.2 does not generalize to higher dimensions as the set of beta-splitting
distributions is of strictly smaller dimension than the set of exchangeable sampling-consistent
distributions. We explore the discrepancy between these sets in more detail in the next sections.

5. Distributions on E∞
5

There are three distinct tree shapes with five leaves, so E5 is a two-dimensional simplex in
R

3. For the rest of this section we will use Comb5, Gir5, and Bal5 to represent the trees pic-
tured in Figure 5. Specifically, let Comb5 denote the comb tree on five leaves, Bal5 denote the
balanced tree on five leaves, and Gir5 denote the giraffe tree on five leaves. We take coordinates
(p1, p2, p3) on R

3, where p1, p2, p3 represent the probability of obtaining Comb5, Gir5, and
Bal5, respectively.

While we have not been able to give a complete description of the vertices of En
5 for all

n, we are able to define some tree structures in RBU(n) that do yield vertices of En
5 . We have

already seen that the comb tree Combm always yields a vertex of Em
n for all m and n. Here we

provide some other examples.

https://doi.org/10.1017/jpr.2021.28 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2021.28


72 B. HOLLERING AND S. SULLIVANT

FIGURE 6. The two trees from the proof of Lemma 5.2. Note that T0 denotes all of the part of the tree
that lies above the vertex z.

Definition 5.1. For a tree T ∈ RBU(m) let comb(T, n) be the tree that is obtained by creating
a comb tree with n leaves and replacing one of the two leaves at the deepest level with the
tree T.

Generally, if T ∈ RBU(m) then comb(T, n) has m + n − 1 vertices. For example, Gir5 =
comb(Bal4, 2). Note that it does not matter which of the leaves is replaced with T since our
trees are unlabelled.

Proposition 5.1. Let Tn = comb(Gir5, n − 4). Then π5(pTn ) is a vertex in En
5 .

Proof. First note that Tn and Combn are the only trees with n leaves that do not have Bal5 as
a subtree. This means that Tn and Combn are the only tree shapes T ∈ RBU(n) such that π5(pT )
falls on the line p3 = 0, so the segment [π5(pTn ), π5(pCombn )] is a face of En

5 . �
We now introduce another tree structure that will yield a vertex in En

5 .

Definition 5.2. For two positive integers m and n let bicomb(m, n) denote the tree made by
joining a comb tree of size m and a comb tree of size n together at a new root. We call such
trees bicomb trees.

For example, Bal5 = bicomb(2, 3).

Lemma 5.1. Let Tn = bicomb
(⌊ n

2

⌋
,
⌈ n

2

⌉)
. Then π5(pTn ) is a vertex of En

5 .

Proof. First note that for n ≥ 5, the only trees in RBU(n) that never contain Gir5 as a restric-
tion tree are the comb tree and the bicomb trees. This means that in En

5 , they are the only trees
that fall on the edge p2 = 0. To show that π5(pTn ) is a vertex of En

5 , it remains to to show that
π5(pTn ) is extremal on this edge. We know that the comb tree is one of the extremal points on
this edge, and so the other extremal point will correspond to the bicomb tree with the high-
est density of Bal5 as a restriction tree. Let T ′ = bicomb(i, n − i) be a bicomb tree for some
1 ≤ i ≤ n − 1. We let b5(T ′) denote the number of times that Bal5 occurs as a restriction tree of
T ′. From the structure of a bicomb tree we have

b5(T ′) =
(

i

2

)(
n − i

3

)
+

(
i

3

)(
n − i

2

)
.

This function is maximized when i = ⌊ n
2

⌋
. �

Now we will show that the projection of the most balanced tree in RBU(n) is a vertex of
En

5 . To do this, we prove a few lemmas about the number of Comb5 trees that can appear as
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subtrees of a tree. These results follow the basic outline of [4, Lemma 9], and are in some sense
an extension of those results to five-leaf trees.

For a tree T ∈ RBU(n) let c5(T) count the number of five-subsets, S, of the leaves of T
such that T|S = Comb5. Let c4(T) and b4(T) be defined similarly, but for Comb4 and Bal4
respectively.

Lemma 5.2. Let T be as pictured in Figure 6, and let T′ be obtained from T by swapping
the positions of T2 and T4. For i = 0, 1, 2, 3, 4, let ni be the number of leaves of Ti, so n =∑4

i=0 ni. Without loss of generality choose n1 ≥ n2 and n3 ≥ n4. If n1 > n3 and n2 > n4 then
c5(T) ≥ c5(T ′). Furthermore, if n ≥ 7, then c5(T) > c5(T ′).

Proof. Without loss of generality, assume that n1 ≥ n2 and n3 ≥ n4, and let 
z denote the
set of leaves of T below the vertex z. Note that by construction, this is the same as the set of
leaves below the vertex z in T ′. If we take a five-subset, S, of the leaves of T and T ′ then it is
only possible for T|S �= T ′|S if |S ∩ 
z| ≥ 4. It is straightforward to see that if S ∩ 
z has zero,
one, two, or three elements, T|S = T ′|S.

This means that c5(T) − c5(T ′) = (c5(Tz) − c5(T ′
z)) + n0(c4(Tz) − c4(T ′

z)), where Tz and T ′
z

denote the subtrees of T and T ′ below z. Note that for any tree S ∈ RBU(n),
(n

4

) = c4(S) + b4(S),
which gives n0(c4(Tz) − c4(T ′

z)) = n0(b4(T ′
z) − b4(Tz)), and (b4(T ′

z) − b4(Tz)) is guaranteed to
be positive by [4, Lemma 9], so the term n0(b4(T ′

z) − b4(Tz)) is nonnegative. It remains to
show that (c5(Tz) − c5(T ′

z)) is nonnegative. We can explicitly enumerate these quantities in the
following way:

c5(Tz) =
4∑

i=1

c5(Ti) +
4∑

i=1

c4(Ti)
4∑

j=1,j �=i

nj +
(

n1

3

)
n2(n3 + n4) +

(
n2

3

)
n1(n3 + n4)

+
(

n3

3

)
n4(n1 + n2) +

(
n4

3

)
n3(n1 + n2),

c5(T ′
z) =

4∑
i=1

c5(Ti) +
4∑

i=1

c4(Ti)
4∑

j=1,j �=i

ni +
(

n1

3

)
n4(n2 + n3) +

(
n4

3

)
n1(n2 + n3)

+
(

n2

3

)
n3(n1 + n4) +

(
n3

3

)
n2(n1 + n4).

We can simplify this to get that

c5(Tz) − c5(T ′
z) = 1

6
(n1 − n3)(n2 − n4)(n1n3(− 3 + n1 + n3) + n2n4( − 3 + n2 + n4)).

Note that this quantity is nonnegative since n1 > n3 and n2 > n4 by assumption and ni ≥ 1 for
i = 1, 2, 3, 4. Note that if n ≥ 7, then either n0 ≥ 1 or

∑4
i=1 ni ≥ 7, which both guarantee that

c5(T) − c5(T ′) > 0. �
This lemma essentially tells us that if the tree has an internal node that is unbalanced, we

can find a tree that has Comb5 appear less frequently as a restriction tree. We now have another
lemma following in the style of [4].

Lemma 5.3. Let T be as pictured in Figure 7, and for i = 0, 1, 2 let ni be the number of leaves
of Ti, assuming n1 ≥ n2. We also assume that n1 + n2 ≥ 3. Then c5(T) ≥ c5(T ′). Furthermore,
if n ≥ 7 then c5(T) > c5(T ′).
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z

a

T0

T1 T2 l

T

T0

z

b

T1 T2 l

T ′

FIGURE 7. (a) T; (b) T′.

Proof. By the same reasoning as for the last lemma, we know that c5(T) − c5(T ′) = c5(TZ) −
c5(T ′

z) + n0(c4(Tz) − c4(T ′
z)), and the nonnegativity of the second term follows by [4, Lemma

10]. Now we can easily see that

c5(Tz) = c5(T1) + c5(T2) + (n2 + 1)c4(T1) + (n1 + 1)c4(T2) +
(

n1

3

)
n2 +

(
n2

3

)
n1,

c5(T ′
z) = c5(T1) + c5(T2) + (n2 + 1)c4(T1) + (n1 + 1)c4(T2) +

(
n2

3

)
n1,

and so c5(TZ) − c5(T ′
z) = (n1

3

)
n2. It is clear that the right-hand side is always nonnega-

tive. Note that if n ≥ 7, then either n0 ≥ 1 or n1 ≥ 3. In both cases this guarantees that
c5(T) − c5(T ′) > 0. �

Combining these two lemmas, we get the following theorem that will immediately allow us
to show that the projection of the most balanced tree in RBU(n) will always be a vertex in En

5 .

Theorem 5.1. For n ≥ 7, the maximally balanced tree is the unique minimizer of c5(T) among
all trees T ∈ RBU(n).

Proof. This proof also follows the strategy of [4]. We assume that c5 obtains it minimum
value in RBU(n) at T , but that T is not maximally balanced. We will try to find a contradiction.
We let z be a nonbalanced internal node with balanced children a and b. We let na and nb be
the number of leaves of the trees rooted at a and b respectively. Then since z is not balanced
we have, without loss of generality, that na ≥ nb + 2. If b is a leaf then, by Lemma 5.3, we
immediately have that c5(T) is not a minimum since n ≥ 7. So we have that nb ≥ 2, and thus
both a and b are balanced and must be internal nodes.

We now let v1, v2 be the children of a and v3, v4 be the children of b, and take ni = #L(Tvi )
for i = 1, 2, 3, 4; once again, without loss of generality we assume that n1 ≥ n2 and n3 ≥ n4.
Since both a and b are balanced, it must be that n1 = n2 or n1 = n2 + 1 and n3 = n4 or n3 =
n4 + 1. Then the assumption that na ≥ nb + 2 immediately gives n1 + n2 = na ≥ nb + 2 = n3 +
n4 + 2. Then, by the previous assumptions we get that n1 > n3. Now, since c5 is a minimum
at T and n ≥ 7, we can apply Lemma 5.2 to get that n4 ≥ n2. Stringing together these inequal-
ities we get n1 > n3 ≥ n4 ≥ n2. But since n1 = n2 or n1 = n2 + 1, the only possibility we have
is that n1 − 1 = n2 = n3 = n4. But then we get that n1 + n2 = 2n1 − 1 and n3 + n4 = 2n1 − 2,
which contradicts the inequality n1 + n2 ≥ n3 + n4 + 2. This tells us that any tree with at least
seven leaves must be maximally balanced around every internal node if it obtains the minimum
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value of c5 on RBU(n). Since there is only one tree that is maximally balanced at every inter-
nal node, there is a unique minimizer of c5(T) in RBU(n) for n ≥ 7, which is the maximally
balanced tree. �
Corollary 5.1. Let Tn be the maximally balanced tree in RBU(n). Then π5(pTn) is a vertex of
En

5 .

Proof. The corollary can be verified computationally for n = 6. For n ≥ 7, Theorem 5.1
shows that Tn is the unique tree that attains the minimum value of c5 among all trees in RBU(n).
So, {(c5(Tn)/

(n
5

)
, p2, p3) ∈ E5} ∩ En

5 = {π5(pTn )}, and thus π5(pTn ) is a vertex of En
5 . �

We have another corollary that relates the exchangeable and sampling-consistent distribu-
tions to the β-splitting model.

Corollary 5.2. The projection of the most balanced tree in En
5 approaches the β = ∞ point on

the beta-splitting model as n → ∞.

Proof. It is enough to show that the complete symmetric tree T2n ∈ RBU(2n) satisfies this
property. We can just count the number of times that Gir5 and Bal5 occur as restriction trees
when we restrict to a five-subset of the leaves. We use the structure of T2n to write down a
simple recurrence for g5(T2n ) and b5(T2n), and then solve the recurrence. Since we can choose
our subset to be on the right side of the root of T2n , the left side of the root of T2n , or to have
three leaves from one side and two leaves from the other, we have

b5(T2n) = 2b5(T2n−1 ) + 2

(
2n−1

3

)(
2n−1

2

)
.

As for g5, we can once again choose our subset to be on either the right or left side of the root
of T2n , or we can choose to have one leaf on one side of the tree and a four-leaf symmetric tree
on the other. This can be done in just 2n−1m2,2n−1 ways, which implies g5(T2n) = 2g5(T2n−1 ) +
2(2n−1m2,2n−1 ) = 2g5(T2n−1 ) + 2nm2,2n−1 . Both of these recurrences can be solved explicitly
using a computer algebra system. We get

b5(T2n) = 1

315
2n−2(2n − 4)(2n − 2)(2n − 1)(7 · 2n − 11),

g5(T2n) = 1

105
2n−3(2n − 4)(2n − 3)(2n − 2)(2n − 1).

We can then find the probabilities p2 and p3 of Gir5 and Bal5 by simply dividing out by
(2n

5

)
.

This yields

p3 = b5(T2n)(2n

5

) = 2

3
+ 20

21(2n − 3)
, p2 = g5(T2n)(2n

5

) = 1

7
.

Clearly, as n → ∞ we have p3 → 2
3 and p2 → 1

7 .
On the other hand, we recall that the probability of obtaining a tree under the beta-splitting

model is just a rational function in β that can be explicitly calculated. We can then find
the limit of these rational functions to get that the beta-splitting curve approaches the point
(p1, p2, p3) = ( 4

21 , 1
7 , 2

3

)
as β → ∞ as well, and so the projection of T2n in E2n

5 is approaching
the β = ∞ point on the curve. �

These are all of the tree structures in RBU(n) we have been able to find that always appear
as vertices in En

5 . We end this section with Figure 8, which pictures all of the families of
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FIGURE 8. The multinomial model on the two-leaf tree is in gray and the β-splitting model is the thick
black curve. The thinner black lines are the boundary of En

5 for n = 5, 6, 9, 12.

exchangeable and sampling-consistent distributions that we have discussed, and the vertices of
Em

n for some small values of m.

6. Distributions on E∞
n

While we are not able to get a description of the vertices of Em
n for general m and n, it is

possible to to describe E∞
n using the multinomial model introduced in Section 3.2. In particular,

this shows that multinomial models converge as an inner limit to E∞
n .

Theorem 6.1. Let {Tm}∞m=n be a sequence of tree shapes and p(m) = πn(Tm) be the correspond-
ing sequence of distributions. If p(m) converges to some p ∈ E∞

n as m goes to infinity, then there
exists a sequence of multinomial distributions {d(m)}∞m=n that also converges to p as m goes to
infinity.

Proof. Define d(m) to be the multinomial distribution on the tree Tm with the edge parameter
vector (te | e ∈ E(Tm)) such that te = 1

m if one of the vertices in e is one of the original m leaves
of Tm, and te = 0 otherwise. Note that these nonzero edge parameters are bijectively associated
to the leaves of Tm and we may call the set of nonzero edge parameters L(Tm), meaning the
leaf set of Tm. To show that d(m) also converges to p, it is enough to show that for every tree
T ∈ RBU(n), limm→∞ d(m)(T) = limm→∞ p(m)(T).

Fix a labelling of Tm and let cTm(T) be the number of sets S ⊆ [m] such that shape(Tm|S) = T .

By Corollary 2.1, p(m)(T) is the induced subtree density of T in Tm, so p(m)(T) = cTm (T)
(m

n)
. Hence,

lim
m→∞ p(m)(T) = lim

m→∞
cTm(T)(m

n

) = lim
m→∞

n!
mn

cTm(T).

On the other hand, let M(m) = {A ∈ MTm
n | (Tm)A = T, pA �= 0}. Then d(m)(T) = ∑

A∈M(m) pA

by definition, and we note that by requiring that multisets A ∈ M(m) have pA �= 0, M(m) only
includes multisets whose support is contained in L(Tm). Also note that either pA = 0 or

pA =
(

n

mA(te1 ), mA(te2 ), . . . , mA(te2m−1 )

)
1

mn
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since all the edge parameters are 0 or 1
m . So, to understand the quantity d(m)(T) it is enough to

know the coefficient of 1
mn . Note that any multiset A has a naturally associated integer partition

of n, formed by taking the multiplicities of each unique element that appears in it. Call this
integer partition the weight of A, denoted wt(A), and let M(m)

λ be the set of multisets in M(m)

with weight λ. Now observe that for A, B ∈ M(m)
λ , pA = pB since the value of the multinomial

coefficient is totally determined by the weight, and the product of the edge parameters is always
1

mn . If we let
(n
λ

)
be the value of the multinomial coefficient, then the formula for d(m)(T) can be

rewritten as d(m)(T) = 1
mn

∑
λ�n

(n
λ

)|M(m)
λ |, but we can bound the quantity |M(m)

λ |, which is at
most l(λ)!( m

l(λ)

)
, where l(λ) is the length of the partition λ. This is because there are

( m
l(λ)

)
choices

for which elements to use in the multiset, and at most l(λ)! unique multisets for each choice
of elements. Recall that there are only

( m
l(λ)

)
choices to use in a multiset since any A ∈ M(m)

λ

must have pA �= 0, which means A must be a multiset on the leaves of Tm. Since l(λ)!( m
l(λ)

)
is a

polynomial in m of degree l(λ), though, we have

lim
m→∞

1

mn

∑
λ�n

(
n

λ

)
|M(m)

λ | = lim
m→∞

n!
mn

|M(m)
(1,1,...,1)|,

since the partition λ = (1, 1, . . . , 1) is the only partition where |M(m)
(1,1,...,1)| is of order mn, and

so is the only term that contributes to the limit. Now we note that the multisets A ∈ M(m)
(1,1,...,1)

correspond exactly to choosing subsets of the leaves of Tm that yield T upon restriction, since
the only edges that can be in A are those corresponding to leaves, every leaf can be cho-
sen at most once, and shape((Tm)A) = T . So |M(m)

(1,1,...,1)| = cTm(T), and so limm→∞ d(m) =
limm→∞ n!

mn cTm(T) = limm→∞ p(m); since p(m) converges to p, it must be that d(m)

also does. �
Theorem 6.2. For all n ≥ 1, there exists a constant C > 0 such that, for all m > n and p ∈ Em

n ,
there exists d ∈ E∞

n such that maxS∈RBU(n) |p(S) − d(S)| ≤ C
m .

Proof. Note that if p ∈ Em
n , then we have, for every S ∈ RBU(n),

p(S) =
∑

T∈RBU(m)

λTπn(pT )(S),

where this combination is convex by Lemma 2.3. Then let dT be defined as the multinomial
distribution dT on T just as d(m) is defined for Tm in the previous theorem. Then, recall from
the proof of the previous theorem that dT (S) = 1

mn

∑
λ�n

(n
λ

)|MT
λ |, where MT

λ = {A ∈ MT
n | TA =

S, pA �= 0, wt(A) = λ}. Also recall from the proof of the previous theorem that |MT
(1,1,...,1)| =

cT (S). Combining these facts with the definition of πn(pT ) and the triangle inequality gives

|πn(pT )(S) − dT (S)| ≤
∣∣∣∣cT (S)(m

n

) − n!cT (S)

mn

∣∣∣∣ +
∣∣∣∣∣

1

mn

∑
λ�n

λ�=(1,1,...,1)

(
n

λ

)
|MT

λ |
∣∣∣∣∣; (6.1)

we now bound each term on the right-hand side of this inequality.
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To bound the first term in (6.1), note that cT (S) is a nonnegative quantity and is bounded
above by

(m
n

)
. This gives the inequality

∣∣∣∣cT (S)(m
n

) − n!cT (S)

mn

∣∣∣∣ ≤
∣∣∣∣1 −

m!
(m−n)!

mn

∣∣∣∣ ≤
∣∣∣∣mn − (m − n)n

mn

∣∣∣∣ ≤ n2

m
.

Note that this bound does not depend on the trees T and S.
To bound the second term we again recall from the proof of the previous theorem that

|MT
λ | ≤ l(λ)!( m

l(λ)

)
for each partition λ of n. Then, we have∣∣∣∣∣

1

mn

∑
λ�n

λ�=(1,1,...,1)

(
n

λ

)
|MT

λ |
∣∣∣∣∣ ≤

∑
λ�n

λ�=(1,1,...,1)

(
n

λ

) l(λ)!( m
l(λ)

)
mn

, (6.2)

but since λ �= (1, 1, . . . , 1), it must be that l(λ) ≤ n − 1 so l(λ)!( m
l(λ)

) ≤ mn−1 for all the
remaining partitions λ. Applying this fact to the right-hand side of (6.2) gives the bound∣∣∣∣∣

1

mn

∑
λ�n

λ�=(1,1,...,1)

(
n

λ

)
|MT

λ |
∣∣∣∣∣ ≤ 1

m

∑
λ�n

λ�=(1,1,...,1)

(
n

λ

)
≤ C̃

m
,

where C̃ ∈R is a constant that also does not depend on the trees T and S but only on n. Applying
the bounds for each term to (6.1) and setting C = C̃ + n2 gives

|πn(pT )(S) − dT (S)| ≤ C

m
, (6.3)

and again we note that this bound is independent of the trees T and S. We are now ready
to construct a distribution d ∈ E∞

n that gives the desired result. From the discussion of the
multinomial model, we have that each distribution dT ∈ E∞

n and so, from the convexity of E∞
n ,

we get d = ∑
T∈RBU(m) λTdT ∈ E∞

n . We can now use the expression for p we began with and
the bound obtained in (6.3) to get

|p(S) − d(S)| ≤
∑

T∈RBU(m)

λT |πn(pT )(S) − dT (S)| ≤ C

m
. �

Theorem 6.1 gives that the limit of any convergent sequence (vm)m≥1 where vm ∈ V(Em
n ) can

also be realized as the limit of points coming from multinomial models. Theorem 6.2 shows
that if we have a distribution in En that can be extended to part of a finitely sampling-consistent
family, then it can be approximated with an infinitely sampling-consistent distribution. With
Theorem 6.1 and the following proposition, we will show that E∞

n is actually the convex hull
of all limits of convergent sequences of vertices, and thus the convex hull of limits of distribu-
tions drawn from the multinomial model. To do this we need a basic proposition from convex
analysis the proof of which is included for completeness.

Proposition 6.1. Let (Pm)m≥1 be a sequence of polytopes in R
n such that, for all m ≥ 1,

Pm+1 ⊆ Pm. Let

P = conv
({

lim
m→∞ v(m)

im
| v(m)

im
∈ V(Pm) and

(
v(m)

im

)
m≥1 converges

})
,

where the bar denotes the closure in the Euclidean topology. Then P = ∩∞
m=1Pm.
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Proof. It is straightforward to see that P ⊆ ∩∞
m=1Pm. To show that the sets are equal, suppose

that there is p ∈ ( ∩∞
m=1 Pm) \ P. Then the basic separation theorem of convex analysis implies

there must exist an affine functional � with �(p) ≤ 0 and �(w) > 0 for all w ∈ P. We also have
that since p ∈ ∩∞

m=1Pm, for each m ≥ 1 p can be written as p = ∑km
j=1 λjv

(m)
j , where the v(m)

j are
the vertices of Pm. Then, because �(p) ≤ 0, it must be that for each m there exists at least one
vertex v(m)

im
of Pm such that �(v(m)

im
) ≤ 0. Since all the points v(m)

j lie in P1, which is a compact

set, there exists a convergent subsequence (v(mk)
imk

)k≥1 with limit v ∈ P, and thus �(v) > 0. But

we also have �(v) = limk→∞ �
(
v(mk)

imk

) ≤ 0, which is a contradiction. �

Corollary 6.1. Let d(m)
Tm

denote the specific multinomial model construction on the tree Tm ∈
RBU(m) described in Theorem 6.1. Then

E∞
n = conv

({
lim

m→∞ d(m)
Tm

| πn(Tm) ∈ V(Em
n ) and (d(m)

Tm
)m≥n converges

})
.

Proof. Recall that E∞
n = ∩∞

m=nEm
n ; thus, by Proposition 6.1,

E∞
n = conv

({
lim

m→∞ πn(pTm) | Tm ∈ RBU(m) and (πn(pTm))m≥1 converges
})

since the vertices of Em
n correspond to a subset of the points πn(Tm). Applying Theorem 6.1 to

the sequence (πn(Tm))m≥1 gives the result. �
Corollary 6.1 shows that every exchangeable and infinitely sampling-consistent distribution

is either a convex combination of limits of multinomial distributions or a limit point of points
in that set. Understanding the structure of the multinomial models may shed greater light on
the structure of E∞

n as a whole. We view Theorem 6.2 and Corollary 6.1 as the rooted binary
tree analogue to Theorems 3 and 4 in [6]; in essence they are finite forms of a de Finetti-
type theorem for rooted binary trees. As previously mentioned, the work done in [10] and [9]
establishes a more typical de Finetti theorem in the sense that it shows that every infinitely
sampling-consistent sequence of distributions can be obtained by sampling from a limit object
using techniques from probability theory.

We also note that the requirement that the induced subtree densities converge is quite similar
to the idea of graph convergence that appears in [13], and that many of the ideas in the theory
of graph limits may also be applied to trees. The very well developed theory of graph limits
contains many equivalent versions of the limiting object (see [13, Theorem 11.52]). The work
done in [10] and [9] makes the connection between the limiting object, a random real tree, and
an infinitely sampling-consistent model. It is still unknown if this can be connected to ideas
such as tree parameters (the induced subtree density, for instance) or to metrics on finite trees,
as has been done in the theory of graph limits. It seems that many of these equivalences hold,
but differences in techniques will be required.
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