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Abstract
We build a logical system named a conjunctive sequent calculus which is a conjunctive fragment of the
classical propositional sequent calculus in the sense of proof theory. We prove that a special class of for-
mulae of a consistent conjunctive sequent calculus forms a bounded complete continuous domain without
greatest element (for short, a proper BC domain), and each proper BC domain can be obtained in this
way. More generally, we present conjunctive consequence relations as morphisms between consistent
conjunctive sequent calculi and build a category which is equivalent to that of proper BC domains with
Scott-continuous functions. A logical characterization of purely syntactic form for proper BC domains is
obtained.

Keywords: Conjunctive sequent calculus; proper BC domain; categorical equivalence

1. Introduction
Domain theory used to specify denotational semantics of programming languages has many close
connections with logic. Such connections are often established by constructing appropriate logical
systems to represent certain domains. At present, there are mainly two types of frameworks on
applying logic to represent various domains.

One type is the information system which has some features of a logic calculus viewed from
proof theoretical point. An information system is a triple 〈X, Con,�〉, in which X is a set of atomic
formulae, Con is a consistency predicate, and entailment relation � satisfies some axioms. Most
of these axioms are closely related to the consistency predicate, so the consistency predicate is
essential. The historical roots of information systems must go back to Scott (1982) in which Scott
gave a kind of information systems as a logical representation of algebraic bounded complete
domains. And soon after, Larsen and Winskel (1984) proved that there is an equivalence between
categories of such information systems with approximable mappings as morphisms and algebraic
bounded complete domains with Scott-continuous functions as morphisms. As to representations
of various domains, many scholars have devised several kinds of information systems and similar
structures (Hoofman (1993); Huang et al. (2015); Spreen et al. (2008); Vickers (1993); Wu et al.
(2016)).
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The other type is based on Abramsky’s work. In Abramsky (1991), he constructed a logical sys-
tem for sequences of finite posets (SFP) domains and yielded new insights for domain theory. In
Abramsky’s opinion, the Lindenbaum algebra of a domain logic must be categorically equivalent
to certain domains, and the categorical equivalence is a strengthened form of logician’s complete-
ness. Then Abramsky’s presentation of domains is deliberately suggestive of semantics theory.
Following Abramsky’s idea, Chen and Jung (2006) built a disjunctive propositional logic to cap-
ture algebraic L-domains. A logic approach to algebraic L-domains was also introduced by Zhang
(1992). Jung et al. (1999) presented coherent sequent calculi which is a logic corresponding to
strong proximity lattices and extended much of Abramsky’s work. For a variety of results, see Jung
(2013). In a coherent sequent calculus, the formulae are built by binary conjunction and disjunc-
tion. Chen and Jung (2006) substitute the binary disjunctive by an arbitrary disjunctive, while
in Zhang (1992), there is even no connective and constant.

Our work focuses on a syntactic representation of domains. As a collection of special domains,
bounded complete continuous domains are of great importance in domain theory. Specifically,
the category of bounded complete domains with Scott-continuous functions is Cartesian closed.
The commonness between Scott and Abramsky’s approaches is to extract an appropriate syntax
from a category of domains. Motivated by this observation, we use connectives ∧ and T to build
formulae, and exactly continue to use derivation rules of the SFP domains logic (Abramsky 1991)
and the disjunctive propositional logic (Chen and Jung 2006) corresponding to connectives ∧
and T. Then we define a logical system for every proper BC domain, which is called a conjunctive
sequent calculus. Similar to the conjunctive proposition logic proposed in Hitzler et al. (2006), our
sequent calculus is a conjunctive fragment of the classical Gentzen propositional sequent calculus
in the sense of proof theory.

The concept of filters of a consistent conjunctive sequent calculus can serve as a bridge between
consistent conjunctive sequent calculi and proper BC domains. A filter of a consistent conjunctive
sequent calculus corresponds to a special theory in logic. The collection of all filters of a consistent
conjunctive sequent calculus forms a proper BC domain ordered by set inclusion, and each proper
BC domain can be obtained in this way, up to isomorphism. We present a notion of conjunc-
tive consequent relation between consistent conjunctive sequent calculi. This is a generalization
of sequents of a consistent conjunctive sequent calculus in the sense of multilingual sequent
calculus (Jung et al. 1999). With conjunctive consequent relations as morphisms, we prove that
the category of consistent conjunctive sequent calculi is equivalent to that of proper BC domains
with Scott-continuous functions. This result enables us to express proper BC domains in a purely
syntactic form.

The difference of our approach fromAbramsky’s is that we use the proof system itself to capture
domains rather than its Lindenbaum algebra. Since the Lindenbaum algebra of a logic is only cor-
responding to its tautologies, the logic can not be recovered from a given domain. Although our
approach is motivated by Scott’s information systems, it is not a Scott-type information system.
Our system is a formal propositional logic which deviates from Gentzen propositional sequent
calculus in some way. A conjunctive sequent calculus neither relies on consistency predicate to
make inferences, nor revolves around only the atomic formulae.

An outline of this paper is as follows. Section 2 contains necessary definitions and results for
domain theory and categories. Section 3 introduces the notion of conjunctive sequent calculus and
shows that a conjunctive sequent calculus is the conjunctive fragment of classical propositional
sequent calculus in the sense of proof theory. In Section 4, we define the notions of a consistent
conjunctive sequent calculus and a filter of the consistent conjunctive sequent. We obtain the
result that consistent conjunctive sequent calculi and proper BC domains can be represented with
each other. The equivalence between the categories of consistent conjunctive sequent calculi with
conjunctive sequence relations and proper BC domains with Scott-continuous functions will be
given in Section 5.
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2. Preliminaries
Briefly, we first review some basic definitions and notions. Most of them come from Davey and
Priestly (2002), Gierz et al. (2003), and Goubault-Larrecq (2013). For any set X, the symbol A� X
indicates that A is a nonempty finite subset of X. Let P be a poset, for any nonempty subset D of
P, D is directed if every pair of elements of D has an upper bound in D. We write x � y as the least
upper bound of {x, y} and write⊔

X as the least upper bound of X, respectively. The least element
of a poset P is denoted by 0P. If P has a least element 0P, P is called pointed. A directed complete
poset (dcpo, for short) P is a poset in which every directed subset D has a least upper bound

⊔
D.

Let P be a dcpo and x, y ∈ P. Then x is said to be way-below y, in symbols x
 y, if and only
if for any directed subset D of P the relation y≤ ⊔

D always implies the existence of some d ∈D
with x≤ d. A subset B⊆ P is called a basis of P if and only if for any x ∈ P, there exists a directed
subset D of the set {y ∈ B | y
 x} such that x= ⊔

D. An element is finite or compact if x
 x.
We write K(P) for the set of compact elements of P. A pointed dcpo P is called a continuous
domain if it has a basis, and it is said algebraic if K(P) forms a basis. The way-below relation on
a continuous domain P satisfies the interpolation property, that is, x
 y implies x
 z 
 y for
some z. Moreover, for a continuous domain P and X � P with

⊔
X ∈ P, we have

⊔
X 
 y if and

only if x
 y for all x ∈ X.

Proposition 2.1. (Wu et al. 2016) Let (D,≤ ) be a continuous domain and B(D) the set of all
elements x ∈D such that x
 p for some maximal element p of D. Then B(D) is a basis of D.

A continuous domain is called a bounded complete continuous domain if every subset that is
bounded above has a least upper bound. If a bounded complete continuous domain is algebraic, it
is called Scott domain. In this paper, we choose to emphasize the logical representation of bounded
complete domains without greatest element, and we call a bounded complete continuous domain
which has no greatest element a proper BC domain.

A function f : P →Q between two continuous domains is Scott-continuous if and only if for
all directed subset D of P, f (

⊔
D)= ⊔{ f (x) | x ∈D}. Let PBCD be the category of proper BC

domains with Scott-continuous functions, and PSD the category of algebraic proper BC domains.

Proposition 2.2. (Awodey 2006) Let C and D be two categories. Then C and D are categorically
equivalent if and only if there exists a functor F :C→D such that F is full, faithful and for every
object D ofD, there exists some object C of C such that F(C)∼=D.

We refer to Gallier (2015) and Wang and Zhou (2009) for the standard definitions and
notations of logical theory.

3. Conjunctive Sequent Calculi
Similar to (Hitzler et al., 2006, Definition 6.1), we use a nonempty set P to denote atomic formulae
and use connectives ∧ and TP to build compound formulae for developing a calculus theory.

Definition 3.1. Given a nonempty set P with TP ∈ P. Each element of P is called an atomic formula.
The set L(P) of formulae is defined inductively in an obvious way:

(1) Every atomic formula p is in L(P).
(2) Whenever ϕ,ψ are in L(P), ϕ ∧ψ is also in L(P).
(3) All formulae are generated by (1) and (2).

Given a nonempty finite subset � = {ϕ1, ϕ2, · · · , ϕn} of L(P), we abbreviate the formula ϕ1 ∧
ϕ2 ∧ · · · ∧ ϕn as ∧

�. For any ϕ ∈L(P), we write ϕ = {p1, p2, · · · , pn} , where p1, p2, · · · , pn are
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all the atomic formulae which occur in ϕ. Similarly, we writeX = {p ∈ ϕ | ϕ ∈ X} for any nonempty
subset X of L(P). In the sequel, if there is no ambiguity, we abbreviate a singleton {ϕ} as ϕ.

Definition 3.2. A conjunctive sequent calculus is a pair (L(P),�P ), where �P is a relation on
nonempty finite subsets of L(P) and closed under the following derivation rules1:

� �P TP
(TP)

� �P �

�′, � �P �

(
Weakening

)

ϕ,ψ , � �P �

ϕ ∧ψ , � �P �

(∧ : left) � �P �, ϕ � �P �,ψ
� �P �, ϕ ∧ψ

(∧ : right)

� �P ϕ ϕ �P �

� �P �
(Cut) .

When the following additional identity rule is put on �P:
ϕ �P ϕ (Id),

we call a conjunctive sequent calculus (L(P),�P ) algebraic.

A sequent is an object of the form � �P �, where � and � are nonempty finite subsets of
formulae.

Example 3.1. Let P = [0, 1) and TP = 0. For any �,��L(P), define
� �P � if and only if�= {0} or p<

⊔
� for every p ∈�.

Then (L(P),�P ) is a conjunctive sequent calculus.

Example 3.2. Let (D,≤ ) be a proper BC domain, and let B(D) be the basis of D defined in
Proposition 2.1. Using the way of presenting in Definition 3.1, we obtain the set L(B(D)) of
formulae, which has B(D) as the set of atomic formulae and 0D as the constant TB(D). For
�,��L(B(D)), define � �B(D) � if and only if one of the following conditions holds:

(1) � has no upper bound in D.
(2) � has an upper bound in D, and d 
 ⊔

� for any d ∈�.

Then �B(D) is closed under the rules of a conjunctive sequent calculus, and (L(B(D)),�B(D) ) is a
conjunctive sequent calculus. We only illustrate this for the rule (Weakening).

Let � �B(D) � and �′ �L(B(D)). If � ∪ �′ has no upper bound in D, then by the above condi-
tion (1),�′, � �B(D) � follows. If

⊔
�′ ∪ � exists inD, then

⊔
� exists inD and

⊔
� ≤ ⊔

�′ ∪ �.
This implies that d 
 ⊔

� ≤ ⊔
�′ ∪ � for any d ∈�. So that �′, � �B(D) �.

Particularly, if (D,≤ ) is algebraic, then (L(K(D)),�K(D) ) is algebraic.

Example 3.3. Let P = {TP, p1, p2, p3, · · · }. For �,��L(P), define

� �P � if and only if�= {TP} or�⊆ �, or {p1, p2} ⊆ �.

Then (L(P),�P ) is an algebraic conjunctive sequent calculus.

Remark 3.1. Consider a conjunctive sequent calculus (L(P),�P ). It is easy to see that if ψ ⊆ ϕ

and ψ �P ρ, then ϕ �P ρ. But the converse is not true, see Example 3.3.
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The next proposition tells us that for any algebraic conjunctive sequent calculus, the double
lines in the rules (∧ : left), (∧ : right), and (Cut) can be replaced by horizontal lines. That is to say,
if (L(P),�P ) is an algebraic conjunctive sequent calculus, then the rules (∧ : left), (∧ : right), and
(Cut) can be replaced by the following forms, respectively:

ϕ,ψ , � �P �

ϕ ∧ψ , � �P �

(∧∗ : left)

� �P �, ϕ � �P �,ψ
� �P �, ϕ ∧ψ

(∧∗ : right)

� �P ϕ ϕ �P �

� �P �

(
Cut∗

)
.

Proposition 3.1. Let L(P) be the set of formulae and �P a relation on the collection of nonempty
finite subsets of L(P). If �P is closed under the derivation rules: (Id), (Weakening), (∧∗ : left), (∧∗ :
left), and (Cut∗). Then the following statements hold.

(1) If ϕ ∧ψ �P �, then ϕ,ψ �P �.
(2) If � �P ϕ ∧ψ , then � �P ϕ and � �P ψ .
(3) If � �P �, then � �P ϕ and ϕ �P � for some ϕ ∈L(P).

Proof. (1) Suppose that ϕ ∧ψ �P �, then

ϕ ∧ψ �P �

ϕ �P ϕ (Id)
ϕ,ψ �P ϕ

(Weakening)
ψ �P ψ (Id)
ϕ,ψ �P ψ

(Weakening)

ϕ,ψ �P ϕ ∧ψ (∧∗ : right)
ϕ,ψ �P �

(Cut∗)

(2) Suppose that � �P ϕ ∧ψ , then

� �P ϕ ∧ψ ϕ,ψ �P ϕ,ψ (Id)
ϕ ∧ψ �P ϕ,ψ

(∧∗ : left)
� �P ϕ,ψ

(Cut∗)
ϕ �P ϕ (Id)
ϕ,ψ �P ϕ

(Weakening)

� �P ϕ
(Cut∗).

Similarly, we have � �P ψ .
(3) Let ϕ = ∧

�. It is clear that � �P ϕ and ϕ �P � by induction.

The above studies show that a conjunctive sequent calculus is a conjunctive fragment of the
classical Gentzen propositional sequent calculus in the sense of proof theory. Naturally, one can
include disjunctive or other connectives into a conjunctive sequent calculus. It is worth noting
that there have been around two remarkable conservation extensions of our conjunctive sequent
calculus: one is of the SFP domains logic (Abramsky 1991) and the other is of the disjunctive
proposition logic for algebraic L-domains (Chen and Jung 2006).

4. Representation Theorem
Let (L(P),�P ) be a conjunctive sequent calculus, we call ϕ ∈L(P) satisfiable if there exists some
ψ ∈L(P) with ϕ �P ψ . The set of all satisfiable formulae is denoted by SP.
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Definition 4.1. A conjunctive sequent calculus (L(P),�P ) is consistent if P ⊆ SP �=L(P), and for
every ψ ∈ SP there exists some ϕ ∈ SP such that ϕ �P ψ .

Roughly speaking, a formula is satisfiable if and only if it is not a contradiction. In usual logic,
the assumptions of Definition 4.1 naturally hold. Set

S(P)= {� �L(P) |
∧

� ∈ SP} (1)

The relation �P is restricted to the set S(P) which gives rise to a new relation �P:

� �P � if and only if � �P � with � ∈ S(P). (2)

We claim that whenever ϕ �P ψ then ϕ ∈ SP, and thus ψ ∈ SP. Indeed, if not, then ϕ is also
unsatisfiable by the rules (Cut), (∧ : left), and (∧ : right). Hence, �P⊆ S(P)× S(P) is closed under
all the derivation rules of a conjunctive sequent calculus. In such a case, the predecessor � of
� �P � must belong to S(P). Moreover, by equation (2), it is straightforward to see that �P is
uniquely determined by its restriction �P, and vice versa.

Given a consistent conjunctive sequent calculus (L(P),�P ), for any X ⊆L(P), we write
X[�P ]= {ψ ∈L(P) | ρ �P ψ with ρ ⊆ � for some � � X}. (3)

Proposition 4.1. Let (L(P),�P ) be a consistent conjunctive sequent calculus. Then the following
statements hold.

(1) If X ⊆ Y ⊆L(P), then X[�P ]⊆ Y[�P ]⊆ SP.
(2) If ϕ ∈ X[�P ] and ϕ �P ψ , then ψ ∈ X[�P ].
(3) For any � �L(P), �[�P ]= (

∧
�)[�P ].

(4) For any ϕ ∈ SP, ψ ∈ ϕ[�P ] if and only if ϕ �P ψ .

Proof. (1)X[�P ]⊆ Y[�P ] is given from equation (3) andY[�P ]⊆ SP follows from the fact that
ϕ �P ψ implies ψ ∈ SP. (2) This is true by the rule (Cut). (3) It is immediate from equation (3).
(4) If ψ ∈ ϕ[�P ], then there exists ρ �P ψ with ρ ⊆ ϕ . Because ρ ⊆ ϕ and ϕ ∈ SP, by the rule
(∧ : right), it follows that ϕ �P ρ. Therefore, ϕ �P ψ using the rule (Cut). The reverse implication
is trivial by equation (3).

Definition 4.2. Let (L(P),�P ) be a consistent conjunctive sequent calculus. A filter of L(P) is a
nonempty subset F of SP such that F =F[�P ] and

∧
� ∈F for any � �F .

Next, we give two equivalent characterizations for the above concept. The first can be seen as a
usual logic theoretical version and the second is an order theoretical one.

Proposition 4.2. A subset F of SP is a filter of L(P) if and only if

(1) TP ∈F ;
(2) If ϕ,ψ ∈F , then ϕ ∧ψ ∈F ;
(3) ψ ∈F if and only if ϕ �P ψ for some ϕ ∈F .

Proof. If F is a filter, then it is straightforward to check that the three conditions hold.
For the converse implication, suppose that � �F . With condition (2), it is easy to see that∧
� ∈F . For any ϕ ∈F , by condition (3), there exists ψ ∈F such that ψ �P ϕ. This implies that

ϕ ∈F[�P ], and henceF ⊆F[�P ]. Conversely, for any ϕ ∈F[�P ], by equation (3), there exists
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some � �F such that ρ ⊆ � with ρ �P ϕ. Since
∧
� ∈F , we have

∧
� � ρ. Using the rule (Cut)

twice, we have
∧
� �P ϕ. From condition (3), it follows that ϕ ∈F , and then F[�P ]⊆F . As a

result, F =F[�P ].

Proposition 4.3. A subset F of SP is a filter of L(P) if and only if the set {ϕ[�P ] | ϕ ∈F} is
directed, and F is its union.

Proof. Let F be a filter of L(P). The set {ϕ[�P ] | ϕ ∈F} is not empty since TP ∈F .
For any ϕ1, ϕ2 ∈F , we have ϕ1 ∧ ϕ2 ∈F , and then ϕ1[�P ], ϕ2[�P ], (ϕ1 ∧ ϕ2)[�P ]⊆F .
By Proposition 4.1(1,3), it follows that ϕ1[�P ], ϕ2[�P ]⊆ (ϕ1 ∧ ϕ2)[�P ], and hence the
set {ϕ[�P ] | ϕ ∈F} is directed. For any ψ ∈F , by condition (3) of Proposition 4.2,
there exists some ϕ ∈F such that ψ ∈ ϕ[�P ]. Therefore, F ⊆ ⋃{ϕ[�P ] | ϕ ∈F}. Since
ϕ[�P ]⊆F[�P ]=F for any ϕ ∈F , it follows that

⋃{ϕ[�P ] | ϕ ∈F} ⊆F . Therefore, F =⋃{ϕ[�P ] | ϕ ∈ F}.
For the reverse implication, suppose that F = ⋃{ϕ[�P ] | ϕ ∈F} and {ϕ[�P ] | ϕ ∈F} is a

directed set. We show that F is a filter by checking the conditions of Definition 4.2. Firstly,
since the set {ϕ[�P ] | ϕ ∈F} is directed, we know that F is not empty. Secondly, for any � �F ,
there exists a satisfiable formula ψ ∈F such that � �ψ[�P ]. Then using Proposition 4.1(4) and
the rule (∧P : right), we see that ∧

� ∈ψ[�P ]⊆F . Finally, since F = ⋃{ϕ[�P ] | ϕ ∈F} and
ϕ[�P ]⊆F[�P ] for every ϕ ∈F , it follows that F ⊆F[�P ]. Conversely, let ψ ∈F[�P ]. Then
there exists ��F = ⋃{ϕ[�P ] | ϕ ∈F} such that ρ ⊆� and ρ �P ψ . Note that

∧
� ∈F and∧

��P ρ, by the rule (Cut), we get
∧
��ψ . Thusψ ∈ (

∧
�)[�P ]⊆ ⋃{ϕ[�P ] | ϕ ∈F} =F .

In fact, Proposition 4.3 has a more general form: a subset F of SP is a filter of L(P) if
and only if there exists a directed subset {ϕi[�P] | i∈I} of the set {ϕ[�P] | ϕ∈F} such that
F= ⋃

i∈ I ϕi[�P]. The proof of this assertion is analogous to that in Proposition 4.3.
By Definition 4.1 and using the rule (∧, right), we have the following proposition, which shows

that there are enough filters.

Proposition 4.4. If ϕ ∈ SP, then ϕ[�P ] is a filter of L(P).

Given a consistent conjunctive sequent calculus (L(P),�P ), for convenience, we use Filt(P) to
denote the set of all filters of L(P).

Lemma 4.1. (Filt(P),⊆ ) is a pointed dcpo.

Proof. Since �P[� ] ∈ Filt(P) and �P[� ]⊆F for any F ∈ (Filt(P),⊆ ), we have (Filt(P),⊆ ) is
pointed. Let {Fi|i ∈ I} be a directed subset of Filt(P) andF = ⋃

i∈I Fi. For any � �F , there exists
some i0 ∈ I such that � �Fi0 . This yields that

∧
� ∈Fi0 ⊆F . Assume that ϕ ∈F[�P ], by equa-

tion (3), we have that ρ �P ϕ with ρ ⊆� for some ��F . From ��F , it follows that ��Fi1
for some i1 ∈ I. Then ϕ ∈Fi1 [�P ]=Fi1 ⊆F . This means that F[�P ]⊆F . For the other direc-
tion, let ϕ ∈F = ⋃

i∈I Fi. Then there exists some i2 ∈ I such that ϕ ∈Fi2 =Fi2 [�P ]⊆F[�P ],
and hence F ⊆F[�P ]. As a result, (Filt(P),⊆ ) is a dcpo.

Lemma 4.2. For any F1,F2 ∈ Filt(P),

F1 
F2 if and only if F1 ⊆ ϕ[�P ] for some ϕ ∈F2.

Proof. Assume thatF1 
F2. SinceF2 is the directed union of the set {ϕ[�P ] | ϕ ∈F2}, it follows
that F1 ⊆ ϕ[�P ] for some ϕ ∈F2 by the definition of the way-below relation.
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Conversely, assume that F1 ⊆ ϕ[�P ] for some ϕ ∈F2. If {Fi ∈ Filt(P) | i ∈ I} is directed and
F2 ⊆ ⋃

i∈I Fi, then there exists some j ∈ I such that ϕ ∈Fj. Since Fj is a filter, we have ϕ[�P ]⊆
Fj, and hence F1 ⊆Fj. As a result, F1 
F2.

This result nicely reflects the intuition that F1 
F2 if F1 is covered by a finite part of F2.

Theorem 4.1. If (L(P),�P ) be a consistent conjunctive sequent calculus, then (Filt(P),⊆ ) is a
proper BC domain with a basis {ϕ[�P ] | ϕ ∈ SP}.

Proof. According to Proposition 4.3, Lemmas 4.1 and 4.2, we know that (Filt(P),⊆ ) is a domain
which has a basis {ϕ[�P ] | ϕ ∈ SP}.

We now prove that (Filt(P),⊆ ) has no greatest element. Suppose for a contradiction that F0 is
the greatest element of (Filt(P),⊆ ). Then for any ϕ ∈ SP, we have that ϕ[�P ]⊆F0. As (L(P),
�P ) is consistent, it follows that p ∈ SP for any p ∈ P. Thus there exists ϕp ∈ SP such that
p ∈ ϕp[�P ], which implies that P ⊆F0. With Definitions 3.1 and 4.2, we have L(P)⊆F0 ⊆ SP ⊆
L(P). This is a contradiction to that SP �=L(P).

Next, we check that any two filters which are bounded above have a least upper bound. Suppose
that F1,F2 ∈ Filt(P) and they have an upper bound F3 ∈ Filt(P). Then ϕ1 ∧ ϕ2 ∈F3 for any
ϕ1 ∈F1 and ϕ2 ∈F2. Set

F = {ϕ ∈L(P) | ϕ1 ∧ ϕ2 �P ϕ for some ϕ1 ∈F1, ϕ2 ∈F2}.
For ϕ1 ∈Fi, there exists ψi ∈Fi such that ψi �P ϕi for i= 1, 2. By the rules (Weakening), (∧ : left)
and (∧ : right), we haveψ1 ∧ψ2 �P ϕi(i= 1, 2). This yields thatF1,F2 ⊆F ⊆F3. So that to finish
the proof, it suffices to show that F is a filter.

For any ϕ,ψ ∈F , there exist ϕ1,ψ1 ∈F1 ⊆F ⊆F3 and ϕ2,ψ2 ∈F2 ⊆F ⊆F3 such that ϕ1 ∧
ϕ2 �P ϕ and ψ1 ∧ψ2 �P ψ . Then ϕ1 ∧ ϕ2 ∧ψ1 ∧ψ2 �P ϕ ∧ψ , which implies that ϕ ∧ψ ∈F .
With Proposition 4.1(1,3), we therefore have ϕ[�P ],ψ[�P ]⊆ (ϕ ∧ψ)[�P ], and hence the set
{ϕ[�P ] | ϕ ∈F} is directed. By Proposition 4.3, we have to show that F = ⋃{ϕ[�P ] | ϕ ∈F}.
First let ψ ∈F . Then ψ ∈ (ψ1 ∧ψ2)[�P ] for some ψ1 ∈F1 and ψ2 ∈F2. Note that ψ1 ∧ψ2 ∈F
whenever ψ1 ∈F1 and ψ2 ∈F2, we obtain that F ⊆ ⋃{ϕ[�P ] | ϕ ∈F}.

Conversely, if ψ ∈ {ϕ[�P ] | ϕ ∈F}, then there exists some ϕ ∈F such that ψ ∈ ϕ[�P ]. Since
ϕ ∈F if and only if ϕ1 ∧ ϕ2 �P ϕ for some ϕ1 ∈F1, ϕ2 ∈F2, by the rule (Cut), it follows that
ϕ1 ∧ ϕ2 �P ψ . Thus, ψ ∈F and

⋃{ϕ[�P ] | ϕ ∈F} ⊆F .

Corollary 4.1. If (L(P),�P ) is an algebraic consistent conjunctive sequent calculus, then
(Filt(P),⊆ ) is an algebraic proper domain.

Proof. By Theorem 4.1, it suffices to prove that the compact elements are of the form ϕ[�P ] with
ϕ ∈ SP. To this end, letF be a compact element. Note thatF is the union of the directed set {ϕ[�P
] | ϕ ∈F}, it follows that F = ϕ[�P ] for some ϕ ∈F ⊆ SP. Conversely, suppose that ϕ[�P ]⊆⋃

i∈I Fi for some directed subset {Fi | i ∈ I} of Filt(P), then there exists i0 ∈ I such that ϕ ∈Fi0 ,
Since Fi0 is a filter, we have ϕ[�P ]⊆Fi0 [�P ]. Therefore, ϕ[�P ] is a compact element.

Theorem 4.1 tells us that each consistent conjunctive sequent calculus can induce a proper
BC domain. Conversely, we will show that every proper BC domain can also be generated by a
consistent conjunctive sequent calculus, up to isomorphism.

Recall that Example 3.2, we have known that each proper BC domain (D,≤ ) associates with
a conjunctive sequent calculus (L(B(D)),�B(D) ). We claim that it is consistent. In fact, note that
(D,≤ ) has no greatest element, it is obvious that

ϕ is satisfiable if and only if ϕ has an upper bound in D, (4)
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and then B(D)⊆ SB(D) �=L(B(D)). We therefore obtain that

� �B(D) � if and only if
⊔

�

⊔

�. (5)

For every satisfiable formula ψ of (L(B(D)),�B(D) ), there exists a satisfiable formula ϕ such that
ϕ �B(D) ψ because of the interpolation property of 
 in (D,≤ ).

Lemma 4.3. Let (D,≤ ) be a proper BC domain.

(1) If d ∈D, then Fd = {ϕ ∈L(B(D)) | p ∈ ϕ, p
 d } ∈ Filt(B(D)).
(2) If F ∈ Filt(B(D)), then

⊔F ∈D and F =F⊔F .

Proof. (1) For each d ∈D, we proveFd is a filter by checking the conditions of Proposition 4.2. The
first two conditions follow from TD = 0D 
 d and ϕ ∧ψ = ϕ ∪ψ , respectively. By the definitions
of Fd and the interpolation property of 
 in (D,≤ ), we see thatψ ∈Fd if and only if

⊔
ψ 
 d if

and only if
⊔
ψ 
 p
 d for some p ∈ B(D). Let ϕ = p, then ψ ∈Fd if and only if ϕ �P ψ . Thus,

the third condition of Proposition 4.2 hold.
(2) We first claim that

⊔
ϕ[�B(D) ]= ⊔

ϕ. Indeed, for every ϕ ∈ SB(D), by equation (4), we
have

⊔
ϕ ∈D. Since

ϕ[�B(D) ]= {ψ ∈ SB(D) | ϕ �B(D) ψ} = {ψ ∈ SB(D) | (∀p ∈ψ)p

⊔

ϕ},
it follows that ϕ[�B(D) ]= {p ∈ B(D) | p
 ⊔

ϕ}. Note that (D,≤ ) is a domain, we obtain
that

⊔
ϕ[�B(D) ]= ⊔

ϕ. For any F ∈ Filt(B(D)), let AF = {ϕ[�B(D) ] | ϕ ∈F} and AF =
{⊔ ϕ[�B(D) ] | ϕ ∈F}. As AF is directed with respect to set inclusion, it follows that AF is
directed in (D,≤ ), which implies that

⊔
AF ∈D. Because

⋃
AF =F and

⊔
ϕ[�B(D) ]= ⊔

ϕ,
we see that

⊔
AF = ⊔F . Then combining equation (5) with the definition of Fd, it is easy to

detect that F = {ϕ ∈L(B(D)) | ⊔ ϕ
 ⊔F}.
After these preparations, we can prove the main result of this section.

Theorem 4.2. (Representation theorem). Let (D,≤ ) be a proper BC domain. Then it is order
isomorphic to (Filt(B(D)),⊆ ).

Proof. Define
f :D→ Filt(B(D)) given by f : d �→Fd,
g : Filt(B(D))→D given by g :F �→ ⊔F .

The above definitions are well defined thanks to Lemma 4.3. It is obvious that f and g are
order-preserving mappings and mutually inverse. Consequently, (D,≤ ) is order isomorphic to
(Filt(B(D)),⊆ ).

5. Categorical Equivalence
We are interested in constructing a category of consistent conjunctive sequent calculi and explor-
ing the equivalence relation between this category and that of proper BC domains. We first
state proper morphisms between consistent conjunctive sequent calculi which correspond to
Scott-continuous functions.

Definition 5.1. Let (L(P),�P ) and (L(Q),�Q ) be two consistent conjunctive sequent calculi.
A conjunctive consequence relation from L(P) to L(Q) is a binary relation �⊆ S(P)× S(Q) closed
under the following derivation rules:
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� � TQ
(T)

� ��
�′, � �� (W)

� ��, ϕ � ��,ψ
� ��, ϕ ∧ψ (∧ : R) ϕ,ψ , � ��

ϕ ∧ψ , � �� (∧ : L)

� �P ϕ ϕ ��
� �� (Cut : L) � � ϕ ϕ �Q �

� �� (Cut : R) .

Remark 5.1. By letting � �� for any ��L(Q) whenever � /∈ S(P), a conjunctive consequence
relation� from L(P) to L(Q) can extend to a binary relation � between nonempty finite sets from
L(P) and L(Q). As the relationship of �P and �P, a conjunctive consequence relation � and its
extension � are also uniquely determined by each other.

Considering � �� as a sequent between two consistent conjunctive sequent calculi,
Definition 5.1 actually presents a new so-called multilingual sequent calculus (Jung et al. 1999).
And each consistent conjunctive sequent calculus defined in Definition 4.1 is such a special one.

In the following proposition, we will see that there is a canonical way to pass from a Scott-
continuous function between two proper BC domains to a conjunctive consequence relations
between the corresponding consistent conjunctive sequent calculi.

Proposition 5.1. Let (D,≤ ) and (D′,≤′ ) be two proper BC domains, and f a Scott-continuous
function from D to D′. For any � ∈ S(B(D)) and� ∈ S(B(D′)), define

� �� if and only if
⊔
�
′ f (

⊔
�).

Then the relation � is a conjunctive consequence relation from L(B(D)) to L(B(D′)).

Proof. Note that a Scott-continuous function is order-preserving. The rule (T) holds since
TB(D′) = 0D′ . The rules (∧ : L) and (∧ : R) follow from the equalities ϕ,ψ , � = ϕ ∧ψ , � and
�, ϕ ∧ψ =�, ϕ

⋃
�,ψ , respectively.While the rule (W) is due to the inequality

⊔
� ≤ ⊔

�′, �.
It remains to show the rules (Cut : L) and (Cut : R). We only need to check the rule (Cut : L)

because the rule (Cut : R) follows in a similar manner. Assume that there exists some ϕ ∈ SB(D)
such that � �B(D) ϕ and ϕ ��. Since ϕ ∈ SB(D), we have that

⊔
ϕ ∈D. From � �B(D) ϕ, it fol-

lows that
⊔
ϕ
 ⊔

�, and hence f (
⊔
ϕ)≤ f (

⊔
�). From ϕ ��, we refer that

⊔
�
 f (

⊔
ϕ).

Therefore,
⊔
�
 f (

⊔
�). That is, � ��. Conversely, suppose that � ��, then

⊔
�
 ⊔

� =⊔
(↓↓(⊔ �)∩ B(D)). By the definition of way-below and the interpolation property, there exists

some d ∈ B(D) such that
⊔
�
 d 
 ⊔

�. Thus � �B(D) d and d��.

Given a conjunctive sequence relation � from L(P) to L(Q), for any X ⊆L(P), set
X[� ]= {ϕ ∈L(Q) | ρ � ϕ with ρ ⊆ � for some � � X}. (6)

By an argument similar to that given in Proposition 4.1, the next proposition follows.

Proposition 5.2. Let � be a conjunctive consequence relation from L(P) to L(Q).
(1) If X ⊆ Y ⊆L(P), then X[� ]⊆ Y[� ]⊆ SQ.
(2) �[� ]= (

∧
�)[� ] for any � � S(P).

(3) For any ϕ ∈ SP, ψ ∈ ϕ[� ] if and only if ϕ �ψ .
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Proposition 5.3. Let � be a conjunctive consequence relation from L(P) to L(Q). Then (ϕ[�P ])
[� ]= ϕ[� ] whenever ϕ ∈ SP.

Proof. ψ ∈ (ϕ[�P ])[� ]⇔ ρ �ψ for some � � ϕ[�P ] with ρ ⊆ � (by equation (6))
⇔ there exist some ρ �ψ and ϕ �P ρ (by Proposition 4.1(4))
⇔ ϕ �ψ (by the rule (Cut : L) )
⇔ψ ∈ ϕ[� ] (by Proposition 5.2(3)).

Proposition 5.4. Let � be a conjunctive consequence relation from L(P) to L(Q), and F a filter of
L(P). Then the following statements hold.

(1) ��F[� ] if and only if ϕ �� for some ϕ ∈F .
(2) F[� ] is a filter of L(Q).

Proof. (1) Since the if part is obvious, we need only to prove the converse implication. Assume
that ��F[� ]. Then for any ϕ ∈�, by equation (6), there exist some ρ � ϕ and �ϕ �F with
ρ ⊆ �ϕ . Note that F is a filter of L(P), it follows that �ϕ � ϕ, and hence

∧
ϕ∈� �ϕ ��.

(2) It is clear that F[� ] is a nonempty subset of SP since TQ ∈F[� ]. By the rule (∧ : R),
we know that F[� ] is closed under ∧. Next, we have to prove that F[� ]= (F[� ])[�Q ]. For
any ψ ∈F[� ], there exists some ϕ ∈F such that ϕ �ψ . By the rule (Cut : R), it follows that
ϕ � ρ and ρ �Q ψ for some ρ ∈ SQ. Thus ψ ∈ (ϕ[� ])[�Q ]⊆ (F[� ])[�Q ], that is F[� ]⊆
(F[� ])[�Q ]. Let conversely ψ ∈ (F[� ])[�Q ]. Then there exist some ρ �Q ψ and � �F[� ]
with ρ ⊆ �. Since � �F[� ] and F is a filter of L(P), there exists ϕ ∈F such that ϕ �P

∧
�.

From ρ ⊆ �, it follows that
∧
� �P ρ. Using the rules (Cut : L) and (Cut : R) successively, we

have ϕ �Q ψ . Consequently, ψ ∈ ϕ[� ]⊆F[� ], and hence (F[� ])[�Q ]⊆F[� ].

Proposition 5.5. Let� be a conjunctive consequence relation from L(P) to L(Q) and ϕ ∈ SP. Then
the following are equivalent.

(1) ϕ �ψ .
(2) ρ �ψ for some ρ ∈ ϕ[�P ].
(3) ρ �Q ψ for some ρ ∈ ϕ[� ].

Proof. (1)⇔(2): According to Proposition 5.2(3), ϕ ∈ SP and ρ ∈ ϕ[�P ] if and only if ϕ �P ρ. By
the rule (Cut : L), ϕ �P ρ and ρ �ψ if and only if ϕ �ψ . So ϕ �ψ if and only if ρ �ψ for some
ρ ∈ ϕ[�P ]. (1)⇔(3): Similarly.

Proposition 5.5 explores the relationship among �P, �Q, and �. Now we put forward this in
a more general form. Let � be a conjunctive consequence relation from L(P) to L(Q) and � ′ a
conjunctive consequence relation from L(Q) to L(R). A logical composition of � and � ′ is given
by the following rule:

� � ϕ ϕ � ′�
�(� ◦� ′)�

(Comp).

It is easy to check that the relation� ◦� ′ that arises from the rule (Comp) is also a conjunctive
consequence relation from L(P) to L(R), and the composition of conjunctive consequence rela-
tions is associative. Proposition 5.5 shows that the rules (Cut : L) and (Cut : R) can be equivalently
described by �P ◦�=�, and �=� ◦�Q, respectively.

In conclusion, consistent conjunctive sequent calculi with conjunctive consequence relations
form a category CCSC. The identity morphism on a consistent conjunctive sequent calculus
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(L(P),�P ) is the relation �P, and the composition just is the rule (Comp). Analogously, algebraic
consistent conjunctive sequent calculi with conjunctive consequence relations form a category
ASC.

Lemma 5.1. Let � be a conjunctive consequence relation from L(P) to L(Q). Then F(� ) :
Filt(P)→ Filt(Q), given by F(� )(F)=F[� ] is a Scott-continuous function.

Proof. By Proposition 5.4(2), the assignment F(� ) is well defined. Let {Fi | i ∈ I} be a directed
subset of Filt(P). Since (Filt(P),⊆ ) is a dcpo, we have

⋃
i∈I Fi ∈ Filt(P). So that to show F(� ) is

Scott-continuous, it suffices to prove that
⋃

i∈I (F(� )(Fi))= F(� )(
⋃

i∈I Fi).
For every ψ ∈ F(� )(

⋃
i∈I Fi)= (

⋃
i∈I Fi)[� ], there exists some ϕ �ψ with ϕ ⊆ � and

� � ⋃
i∈I Fi. Because the set {Fi | i ∈ I} is directed and � is finite, it follows that � �Fi0 for some

i0 ∈ I. Therefore, ψ ∈Fi0 [� ]= F(� )(Fi0 )⊆
⋃

i∈I (F(� )(Fi)), and hence F(� )(
⋃

i∈I Fi)⊆⋃
i∈I (F(� )(Fi)). The other direction is immediate by Proposition 5.2(1).

Lemma 5.2. F :CCSC→ PBCD is a functor which maps every consistent conjunctive sequent
calculus (L(P),�P ) to (Filt(P),⊆ ) and conjunctive consequence relation � to F(� ).

Proof. Let (L(P),�P ) and (L(Q),�Q ) be two consistent conjunctive sequent calculi. Recall that
Theorem 4.1 and Lemma 5.1, we have that (Filt(P),⊆ ) is a proper BC domain andF(� ) : F(P)→
Filt(Q) is Scott-continuous.

For each F ∈ Filt(P), since F(�P )(F)=F[�P ]=F , we see that the identity is preserved.
Next, we show that the composition is also preserved. Suppose that �:L(P)→L(Q) and �′:
L(Q)→L(R) are two conjunctive consequence relations. We claim that F(� ◦�′ )= F(� ) ◦
F(�′ ). Indeed, we have

ψ ∈ F(� ◦�′ )(F)=F[� ◦�′ ] (by Lemma 5.1)
⇔ there exists ρ ∈F such that ρ � ◦�′ ψ (by Proposition 5.4(1))
⇔ there exist ρ ∈F and ϕ ∈ SP such that ρ � ϕ and ϕ �′ ψ (by the rule (Comp))
⇔ ϕ ∈F[� ] and ϕ �′ ψ ((by Proposition 5.4(1))
⇔ ψ ∈ (F(� ))[�′ ]= (F(� ) ◦ F(�′ ))(F) (by Lemma 5.1).

As a result, F :CCSC→ PBCD is a functor.

Theorem 5.1. The category CCSC is equivalent to PBCD.

Proof. According to Proposition 2.2 and Theorem 4.2, it suffices to show that the functor F
defined in Lemma 5.2 is full and faithful.

(1) F is full.
Let (L(P),�P ) and (L(Q),�Q ) be two consistent conjunctive sequent calculi, and f : Filt(P)→

Filt(Q) a Scott-continuous function. For any � ∈ S(P) and� ∈ S(Q), define

� �� if and only if�⊆ f ((
∧

�)[�P ]). (7)

An argument similar to the one used in the proof of Proposition 5.1 shows that � is a
conjunctive consequence relation. Next, we show that F(� )= f . For any F ∈ Filt(P),

F[� ](F)=F[� ] (by Lemma 5.1)
= {ψ ∈L(Q) | ϕ �ψ for some ϕ ∈F} (by Proposition 5.4(1))
= {ψ ∈L(Q) |ψ ∈ f (ϕ[�P ]) for some ϕ ∈F} (by equation (7))
= ⋃{f (ϕ[�P ]) | ϕ ∈F} (with a standard set calculus)
= f (

⋃{ϕ[�P ] | ϕ ∈F}) (since f is Scott-continuous)
= f (F) (by Proposition 4.3).
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(2) F is faithful.
Let �1,�2 be two conjunctive sequence relations from L(P) to L(Q) with F(�1 )= F(�2 ).

Then for any � ∈ S(P), we see that ((
∧
�)[�P ])[�1 ]= ((

∧
�)[�P ])[�2 ] since (

∧
�)[�P ]

is a filter of L(P). An application of Proposition 5.3 gives that (
∧
�)[�1 ]= (

∧
�)[�2 ].

Combining equation (6) and Proposition 5.2(2), we therefore have �1=�2.

By Corollary 4.1 and Theorem 5.1, the following observation is immediate.

Corollary 5.1. The category ASC is equivalent to PSD.
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