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In a singularly perturbed limit, we analyse the existence and linear stability of steady-state hotspot
solutions for an extension of the 1-D three-component reaction-diffusion (RD) system formulated
and studied numerically in Jones et. al. [Math. Models. Meth. Appl. Sci., 20, Suppl., (2010)], which
models urban crime with police intervention. In our extended RD model, the field variables are the
attractiveness field for burglary, the criminal population density and the police population density.
Our model includes a scalar parameter that determines the strength of the police drift towards maxima
of the attractiveness field. For a special choice of this parameter, we recover the ‘cops-on-the-dots’
policing strategy of Jones et. al., where the police mimic the drift of the criminals towards maxima
of the attractiveness field. For our extended model, the method of matched asymptotic expansions
is used to construct 1-D steady-state hotspot patterns as well as to derive nonlocal eigenvalue prob-
lems (NLEPs) that characterise the linear stability of these hotspot steady states to O(1) timescale
instabilities. For a cops-on-the-dots policing strategy, we prove that a multi-hotspot steady state
is linearly stable to synchronous perturbations of the hotspot amplitudes. Alternatively, for asyn-
chronous perturbations of the hotspot amplitudes, a hybrid analytical–numerical method is used to
construct linear stability phase diagrams in the police vs. criminal diffusivity parameter space. In one
particular region of these phase diagrams, the hotspot steady states are shown to be unstable to asyn-
chronous oscillatory instabilities in the hotspot amplitudes that arise from a Hopf bifurcation. Within
the context of our model, this provides a parameter range where the effect of a cops-on-the-dots polic-
ing strategy is to only displace crime temporally between neighbouring spatial regions. Our hybrid
approach to study the NLEPs combines rigorous spectral results with a numerical parameterisation
of any Hopf bifurcation threshold. For the cops-on-the-dots policing strategy, our linear stability pre-
dictions for steady-state hotspot patterns are confirmed from full numerical PDE simulations of the
three-component RD system.

Key words: Urban crime, hotspot patterns, nonlocal eigenvalue problem (NLEP), Hopf bifurcation,
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1 Introduction

Motivated by the increased availability of residential burglary data, the development of mathe-
matical modelling approaches to quantify and predict spatial patterns of urban crime was initiated
in [18–20]. One primary feature incorporated into these models, which is based on observations
from the available data (cf. [4]), is that spatial patterns of residential burglary are typically con-
centrated in small regions known as hotspots; a feature believed to be attributable to a repeat or
near-repeat victimisation effect (cf. [9, 30]). There have been two primary frameworks that have
been used to model the effect of police intervention on crime hotspot patterns. One approach,
ideal for incorporating detailed real-world policing strategies, is large-scale simulations of agent-
based models (cf. [5, 10]). However, with this approach, it is difficult to isolate the effect of
changes in the model parameters. An alternative approach, more amenable to analysis, is to for-
mulate PDE-based reaction-diffusion (RD) systems that model the police population density as
an extra field variable (cf. [10, 15, 16]). More elaborate PDE models, such as in [31], formulate
an optimal control strategy to minimise the overall crime rate by allowing the police to adapt to
dynamically evolving crime patterns.

In our PDE-based approach, motivated by [10] and [16], the police intervention is modelled
by a drift-diffusion PDE, in which we include a parameter that models the strength of the drift
towards the maxima of the attractiveness field for burglary. For this three-component RD system
consisting of an attractiveness field coupled to the criminal and police densities, we will study the
existence and linear stability properties of steady-state hotspot patterns on a 1-D spatial domain
0< x< S in a singularly perturbed limit. The specific non-dimensional three-component RD
model of urban crime that we will analyse is formulated as

At = ε2Axx − A + ρA + α , (1.1a)

ρt = D (ρx − 2ρAx/A)x − ρA + γ − α − ρU , (1.1b)

τUt = D (Ux − qUAx/A)x , (1.1c)

where Ax = ρx = Ux = 0 at x = 0, S. Here A is the attractiveness field for burglary, while ρ and
U are the densities of criminals and police, respectively, all of which are assumed to be non-
negative. In this model, α > 0 is the constant baseline attractiveness, γ − α > 0 is the constant
rate at which new criminals are introduced, D is the criminal diffusivity, Dp ≡ D/τ is the police
diffusivity and ε� 1 characterises the near-repeat victimisation effect (cf. [9, 18, 30]). For q = 2,
this model is equivalent to that in [9]. For (1.1c), the total policing level U0 > 0 is a prescribed
constant given by

U0 ≡
∫ S

0
U(x, t) dx . (1.2)

The integral
∫ S

0 U(x, t) dx is a conserved quantity, independent of t, as is seen by integrating
(1.1c) over the domain and using the no-flux boundary conditions. In (1.1), the other model
parameters D, τ and q are all assumed to be positive constants.

In (1.1), the parameter q> 0 measures the degree of focus in the police patrol towards maxima
of the attractiveness field. The choice q = 2, which recovers the PDE system derived and studied
numerically in [10], is the ‘cops-on-the-dots’ strategy (cf. [10, 16]) where the police mimic the
drift of the criminals towards maxima of A. In (1.1b), the police population density at a given
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spatial location decreases the local criminal population at a rate proportional to the local criminal
population density (the −ρU term in (1.1b)). The resulting predator-prey type police interaction
model (1.1) is to be contrasted with the ‘simple police interaction’ model formulated in [16], and
analysed in [22], where the −ρU term in (1.1b) is replaced by −U .

In the absence of police, i.e. U0 = 0, (1.1) reduces to the two-component PDE system for A and
ρ first derived and studied in [18] and [20]. Pattern formation aspects for this ‘basic’ crime model
have been well studied from various viewpoints, including, weakly nonlinear theory (cf. [19]),
bifurcation theory near Turing bifurcation points (cf. [6, 8]) and the computation of global
snaking-type bifurcation diagrams (cf. [13]), rigorous existence theory (cf. [17]), and asymp-
totic methods for constructing steady-state hotspot patterns whose linear stability properties can
be analysed via NLEP theory (cf. [1, 11, 21]).

Our goal here is to extend the analysis given in [22] for the existence and linear stability of
hotspot steady states for the simple police interaction model to the predator-prey type interaction
model (1.1). We will show that the seemingly minor and innocuous replacement of −U from
the model in [22] with −ρU in (1.1b) leads to a significantly more challenging linear stability
problem for hotspot equilibria. This is discussed in detail below.

As in [22] and [11], we will analyse (1.1) in the limit ε→ 0 for the range D =O(ε−2). Since
A(x) =O(ε−1) in the core of the hotspot near x = 0, it is convenient as in [22] to introduce the
new variables v, u and D by

ρ = ε2vA2 , U = uAq , D = ε−2D , so that Dp = ε−2D/τ . (1.3)

In terms of A, v and u, on the domain 0< x< S, and with no-flux boundary conditions at x = 0, S,
(1.1) transforms to

At = ε2Axx − A + ε2vA3 + α , (1.4a)

ε2
(
A2v

)
t
=D (

A2vx

)
x
− ε2vA3 + γ − α− ε2uvA2+q , (1.4b)

τε2 (Aqu)t =D (Aqux)x , (1.4c)

In our analysis, we will assume that D =O(1). Therefore, the asymptotic range of the police
diffusivity Dp in (1.3) is determined by τ .

In Section 2, we use a formal singular perturbation analysis in the limit ε→ 0 to construct
hotspot steady-state solutions to (1.4) that have a common amplitude. Our steady-state analy-
sis is restricted to the range q> 1, for which the police population density is asymptotically
small in the background region away from the hotspots. In Proposition 2.1 and Corollary 2.2
below, we establish that steady-state hotspot solutions exist only when U0 <U0,max ≡ S(γ − α)
(q + 1)/(2q).

In Section 3, we use a singular perturbation analysis combined with Floquet theory to
derive two distinct NLEPs characterising the linear stability of hotspot steady states of (1.4)
on the parameter range O(1) � Dp �O(ε−1−q) with q> 1. This analysis is similar to, but
more intricate than, that given in [11] and [22]. One such NLEP, given below in Proposition
3.2, characterises the linear stability properties of a multi-hotspot steady-state solution, with
K ≥ 2 hotspots, to synchronous perturbations in the hotspot amplitudes. Alternatively, the second
NLEP, given below in Proposition 3.4, characterises the linear stability properties of a multi-
hotspot steady state, with K ≥ 2 hotspots, to K − 1> 0 different spatial modes of asynchronous
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perturbations of the hotspot amplitudes. A complicating feature in the analysis of these spec-
tral problems, as compared to the analysis in [22], is that each of the two NLEPs has three
distinct nonlocal terms consisting of a linear combination of

∫
w2�,

∫
wq−1� and

∫
wq+1�.

Here w(y) = √
2 sech y is the homoclinic profile of a hotspot and �(y) is the NLEP eigenfunc-

tion. As a result of this complexity, the determination of unstable spectra for these NLEPs is
seemingly beyond the general NLEP stability theory with a single nonlocal term, as surveyed in
[29]. For the simple police interaction model, studied in [22], the corresponding NLEPs had only
two nonlocal terms.

In Section 4, we use a hybrid analytical–numerical strategy to determine the spectrum of the
NLEP characterising the linear stability to synchronous perturbations. For arbitrary q> 1, the
two different approaches developed in Sections 4.1 and 4.2 provide clear numerical evidence
that this NLEP has no unstable eigenvalues. This strongly indicates that, for any q> 1 and Dp

satisfying O(1) � Dp �O(ε−1−q), a one-hotspot steady state is always linearly stable and that
a multi-hotspot steady state is always linearly stable to synchronous perturbations in the hotspot
amplitudes. For the special case q = 2 of ‘cops-on-the-dots’, this linear stability conjecture is
proved rigorously in Section 4.2.1. This proof of linear stability for q = 2 relies on some key
identities that allow the NLEP with three nonlocal terms to be converted into an equivalent
NLEP with a single nonlocal term.

For general q> 1, in Section 5, we determine the threshold value of D corresponding to a
zero-eigenvalue crossing of the NLEP, as defined in Proposition 3.4, that characterises the linear
stability of a multi-hotspot steady state to the asynchronous modes on the range O(1) � Dp �
O(ε−1−q). For a K-hotspot steady state with K ≥ 2, this critical value of D, called the competition
stability threshold, is

Dc ≡ S

8K4π2α2 [1 + cos (π/K)]

[
(1 − q)ω3 + qS(γ − α)ω2

]
,

where ω≡ S(γ − α) − 2qU0/(q + 1) ,
(1.5)

on U0 <U0,max ≡ S(γ − α)(q + 1)/(2q). In the subregime O(ε1−q) � Dp �O(ε−1−q), a winding
number analysis is used in Section 5.1 to prove, for an arbitrary q> 1, that a multi-hotspot steady
state is linearly stable to asynchronous perturbations in the hotspot amplitudes if and only if
D<Dc (see Proposition 5.2 below).

For the special case q = 2 of ‘cops-on-the-dots’, in Section 6, we show how to transform the
NLEP for the asynchronous modes into an equivalent NLEP with only one nonlocal term, which
is then more readily analysed. With this reduction of the NLEP into a more standard form, which
only applies when q = 2, in Proposition 6.4 we prove that a K-hotspot steady state, with K ≥ 2, is
always unstable to the asynchronous modes when D>Dc. Moreover, from a numerical param-
eterisation of branches of purely imaginary eigenvalues for this equivalent NLEP, we show that
each of the K − 1 asynchronous modes can undergo, on some intervals of D, a Hopf bifurca-
tion at critical values of the police diffusivity Dp on the range Dp =O(ε−1). Overall, this hybrid
approach provides phase diagrams in the εDp vs. D parameter plane characterising the linear
stability of the hotspot steady states to asynchronous perturbations in the hotspot amplitudes.
Numerical evidence from PDE simulations suggests that hotspot amplitude oscillations arising
from the Hopf bifurcation can be either subcritical or supercritical, depending on the parameter
set. Linear stability phase diagrams for various U0 are shown below in Figures 9 and 10 for
K = 2 and K = 3, respectively. One key qualitative feature derived from these phase diagrams
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is that there is a region in the εDp vs. D parameter space where the effect of police intervention
is to only displace crime temporally between neighbouring spatial regions; a phenomenon qual-
itatively consistent with the field observations reported in [3] for a ‘cops-on-the-dots’ policing
strategy.

As in [22], we emphasise that the interval in D where asynchronous hotspot amplitude oscilla-
tions occur disappears when U0 = 0. Therefore, it is the third component of the RD system (1.4)
that is needed to support these temporal oscillations. In contrast, for most two-component RD
systems with localised spike-type solutions, such as the the Gray–Scott and Gierer–Meinhardt
models (cf. [7, 12, 14, 24]), the dominant Hopf stability threshold for spike amplitude oscil-
lations, based on an NLEP linear stability analysis, is determined by the spatial mode that
synchronises the oscillations.

For q = 2, in Section 7, we validate the predictions of our linear stability analysis with full
numerical PDE simulations of (1.4). Finally, in Section 8, we compare our linear stability results
for (1.4) for a ‘cops-on-the-dots’ strategy with those in [22] for the simple police interaction
model. We also briefly discuss some specific open problems and new directions warranting study.

2 Asymptotic construction of a multiple hotspot steady state

In the limit ε→ 0, we use the method of matched asymptotic expansions to construct a steady-
state solution to (1.4) on 0 ≤ x ≤ S with K ≥ 1 interior hotspots of a common amplitude. We
follow the approach in [22] in which we first construct a one-hotspot solution to (1.4) centred
at x = 0 on the reference domain |x| ≤ l. From translation invariance, this construction yields a
K interior hotspot steady-state solution on the original domain of length S = (2
)K. On |x| ≤ 
,
(1.2) yields that

∫ 

−
 U dx = U0/K, where U0 is the constant total police deployment.

On the reference domain |x| ≤ l, we centre a steady-state hotspot at x = 0, and we impose
Ax = vx = ux = 0 at x = ±
. For this canonical hotspot problem, the steady-state problem for
(1.4) is to find A(x), v(x) and the constant u, satisfying

ε2Axx − A + ε2vA3 + α= 0 , |x| ≤ 
 ; Ax = 0 , x = ±
 , (2.1a)

D (
A2vx

)
x
− ε2vA3 + γ − α− ε2uvA2+q = 0 , |x| ≤ 
 ; vx = 0 , x = ±
 , (2.1b)

where the steady-state police population density U(x) is related to u by

U = uAq , where u = U0

K
∫ 

−
 Aq dx

. (2.2)

For ε→ 0, we have A ∼ α +O(ε2) in the outer region, while in the inner region near x = 0,
we set y = ε−1x and expand A ∼ ε−1A0 and v ∼ v0 in (2.1). To leading order, in the inner region,
we obtain from (2.1) that

A0 ∼ w (y)√
v0

, v∼ v0 . (2.3)

Here v0 is a constant to be determined and w(y) = √
2 sech y is the homoclinic solution of

w′′ − w + w3 = 0 , −∞< y<∞ ; w(0)> 0 , w′(0) = 0 , w → 0 as y → ±∞ .
(2.4)
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Integrals of various powers of w(y), as needed below, can be calculated in terms of the gamma
function �(z) by (see [22] and the appendix in [23])

Iq ≡
∫ ∞

−∞
w q dy = 23q/2−1 [�(q/2)]2

�(q)
. (2.5)

We will consider the range q> 1 where the dominant contribution to the integral
∫ 

−
 Aq dx

arises from the inner region:∫ 


−

Aq dx ∼ ε1−qv

−q/2
0

∫ ∞

−∞
wq dy =O(ε1−q) � 1 .

Since q> 1, (2.2) shows that u depends, to leading order, only on the inner region contribution
from Aq. For ε� 1, we get

u ∼ εq−1ũe , where ũe ≡ U0v
q/2
0

KIq
. (2.6)

To determine v0, we integrate (2.1b) over −
 < x< 
, while imposing vx(±
) = 0. This yields
that

ε2
∫ 


−

vA3 dx = 2
 (γ − α)− ε2u

∫ 


−

vA2+q dx . (2.7)

Since A ∼ α =O(1) and A =O(ε−1) in the outer and inner regions, respectively, it follows that,
when q> 1, the dominant contribution to the integral arises from the inner region where v∼ v0.
In this way, and using (2.2) in (2.7), we get∫∞

−∞ w3 dy√
v0

∼ 2
 (γ − α)− ε2U0v0

K

∫ 

−
 A2+q dx∫ 

−
 Aq dx

. (2.8)

Using A ∼ ε−1w(y)/
√
v0, together with (2.5), we calculate the integral ratio in (2.8) for ε→ 0 as∫ 


−
 A2+q dx∫ 

−
 Aq dx

∼ ε−2

v0

∫∞
−∞ wq+2 dy∫∞
−∞ wq dy

= ε−2

v0

23(q+2)/2−1

23q/2−1

(
�(1 + q/2)

�(q/2)

)2
�(q)

�(q + 2)
= ε−2

v0

2q

q + 1
,

(2.9)

using �(x + 1) = x�(x). Then, by substituting (2.9) into (2.8), and using
∫∞
−∞ w3 dy = √

2π ,
we observe that

√
v0 > 0 holds only when the total level U0 of police deployment is below a

threshold U0,max, i.e. when

U0 <U0,max ≡ 2
K (γ − α)
(q + 1)

2q
= S(γ − α)

(q + 1)

2q
. (2.10)

Here S = 2
K is the original domain length. For this range of U0, we can solve for v0 to get

v0 = 2π2

[
2
(γ − α) − U0

K

2q

q + 1

]−2

. (2.11)
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We conclude that a K-hotspot steady state exists when U0 <U0,max. On this range of U0, the
amplitude of the hotspot, defined by Amax ≡ A(0) � 1, is given by

Amax ≡ A(0) ∼ ε−1A0(0) = ε−1 w(0)√
v0

= ε−1ω

πK
, where ω≡ S(γ − α) − U0

2q

q + 1
.

(2.12)
We observe from (2.12) that the hotspot amplitude decreases with increasing K, U0 or q.

To complete the asymptotic construction of the hotspot, in the outer region, we expand v ∼
ve(x) + . . . and use A ∼ α+O(ε2). From (2.1b), we obtain to leading order that ve(x) satisfies

Dvexx = − (γ − α)

α2
, −
 < x< 
 ; ve(0) = v0 , vex(±
) = 0 , (2.13)

which is readily solved analytically. We summarise our leading-order results for a steady-state
K-hotspot pattern as follows:

Proposition 2.1 Let ε→ 0, q> 1 and 0<U0 <U0,max, where U0,max is given in (2.10). Then,
(1.4) admits a steady-state solution on (0, S) with K interior hotspots of a common amplitude.
On each subdomain of length 2
= S/K, and translated to (−
, 
) to contain exactly one hotspot
at x = 0, the steady-state solution, to leading order, is given by

A ∼ w(x/ε)

ε
√
v0

, if x =O(ε) ; A ∼ α , if x =O(1) , (2.14a)

v∼ ve = ζ

2

[
(
− |x|)2 − 
2

]+ v0 , where v0 = 2π2K2

[
S(γ − α) − U0

2q

q + 1

]−2

,

(2.14b)

u ∼ εq−1ũe , where ũe ≡ U0v
q/2
0

KIq
and Iq ≡

∫ ∞

−∞
wq dy = 23q/2−1 [�(q/2)]2

�(q)
.

(2.14c)

Here, w(y) = √
2 sech y is the homoclinic of (2.4) and ζ ≡ −(γ − α)/(Dα2).

In terms of the criminal and police densities, given by ρ = ε2vA2 and U = uAq from (1.3), we
have the following:

Corollary 2.2 Under the same conditions as in Proposition 2.1, (2.14) yields to leading order
that

A ∼ w(x/ε)

ε
√
v0

, if x =O(ε) ; A ∼ α , if O(ε) � |x|< 
 , (2.15a)

ρ ∼ [w(x/ε)]2 , if x =O(ε) ; ρ ∼ ε2veα
2 , if O(ε) � |x|< 
 , (2.15b)

U ∼ U0

εKIq
[w(x/ε)]q , if x =O(ε) ; U ∼ εq−1αq U0v

q/2
0

KIq
, if O(ε) � |x|< 
 ,

(2.15c)

where ve and v0 are given in (2.14) and w(y) = √
2 sech y.

In Figure 1, we use (2.15) to plot the two-hotspot steady-state solution for a particular param-
eter set. This plot clearly shows the concentration behaviour of A, ρ and U near the hotspot
locations.
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FIGURE 1. The steady-state two-hotspot solution for S = 6, γ = 2, α= 1, U0 = 2, ε = 0.03, D = 0.3, Dp ≈
16.667, for the ‘cops-on-the-dots’ q = 2 patrol, obtained from the asymptotic solution (2.15). These are the
same parameter values used in the PDE simulations shown in the left panel of Figure 11 below.

From (2.15), we observe that the criminal population density near a hotspot is independent
of the total police deployment U0 and patrol focus q. Since q> 1, the police population density
U(x) is small in the outer region, but is asymptotically large near a hotspot.

We observe that our leading-order asymptotic result in (2.15) for the hotspot steady state is
equivalent to simply replacing U0 in Proposition 2.1 and Corollary 2.2 of [22] with 2qU0/(q + 1).
Since 2q/(q + 1)> 1 for q> 1, we conclude that, for the same parameter values and level U0 of
total police deployment, the steady-state hotspot amplitude is smaller for the RD model (1.4)
with predator-prey type police interaction than for the RD model of [22] with simple police
interaction.

3 The NLEP for a K-hotspot steady-state pattern

To analyse the linear stability of a K-hotspot steady-state solution, we must extend the singular
perturbation approach used in [22] to derive the corresponding nonlocal eigenvalue problem
(NLEP). This is done by first deriving the NLEP for a one-hotspot solution on the reference
domain |x| ≤ 
, subject to Floquet-type boundary conditions imposed at x = ±
. In terms of this
canonical problem, the NLEP for the finite domain problem 0< x< S with Neumann conditions
at x = 0, S is then readily recovered as in [22] (see also [11]). Since the analysis to derive the
NLEP is similar to that in [22], we only outline it below. Further details on the derivation of the
NLEP are given in Appendix A.

3.1 Linearisation with Floquet boundary conditions

Let (Ae, ve, ue) denote the steady state with a single hotspot centred at x = 0 in |x| ≤ 
. We
introduce the perturbation

A = Ae + eλtφ , v= ve + eλtεψ , u = ue + eλtεqη , (3.1)

where the asymptotic orders of the perturbations (O(1), O(ε) and O(εq)) are chosen so that φ,
ψ and η are all O(1) in the inner region. By substituting (3.1) into (1.4) and linearising, we
obtain that
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ε2φxx − φ + 3ε2veA2
eφ + ε3A3

eψ = λφ , (3.2a)

D(2Aevexφ + εA2
eψx

)
x
− 3ε2A2

eveφ − ε3A3
eψ − ε2(2 + q)ueveAq+1

e φ

−ε2+qveA2+q
e η− ε3ueA2+q

e ψ = λε2
(
2Aeveφ + εA2

eψ
)

,
(3.2b)

D (
qAq−1

e uexφ + εqAq
eηx

)
x
= ε2τλ

(
qAq−1

e ueφ + εqAq
eη
)

. (3.2c)

As in [22], for K ≥ 2, we impose Floquet-type boundary conditions at x = ±
 for ψ , η, and φ:⎛⎜⎜⎝
η(
)

ψ(
)

φ(
)

⎞⎟⎟⎠= z

⎛⎜⎜⎝
η(−
)
ψ(−
)
φ(−
)

⎞⎟⎟⎠,

⎛⎜⎜⎝
ηx(
)

ψx(
)

φx(
)

⎞⎟⎟⎠= z

⎛⎜⎜⎝
ηx(−
)
ψx(−
)
φx(−
)

⎞⎟⎟⎠. (3.3)

Here z is a complex-valued parameter. Since φ is localised near the core of the hotspot, it is only
the Floquet-type boundary condition for the long-range components η and ψ that is essential to
the analysis below. We will consider the case of a single hotspot, where K = 1, separately in
Section 3.2 below.

For K ≥ 2, the NLEP associated with a K-hotspot pattern on [−l, (2K − 1)l] with periodic
boundary conditions, on a domain of length 2Kl, is obtained by setting zK = 1, which yields
zj = e2π ij/K for j = 0, . . . , K − 1. For these values of zj in (3.3), we obtain the spectral problem
for the linear stability of a K-hotspot solution on a domain of length 2Kl with periodic boundary
conditions. To relate the spectra of the periodic problem to the Neumann problem, in such a way
that the Neumann problem is still posed on a domain of length S, we proceed as in Section 3 of
[22] (see also Section 3 of [11] and the appendix of [23]). There it was shown that we need only
to replace 2K with K in the definition of zj. In this way, the Floquet parameters in (3.3) for a
hotspot steady state on a domain of length S = 2lK having K ≥ 2 interior hotspots and Neumann
boundary conditions at x = 0 and x = S is z = zj ≡ eπ ij/K for j = 0, . . . , K − 1. For these values
of z, the following identity is needed below:

(z − 1)2

2z
= Re(z) − 1 = cos

(
π j

K

)
− 1 , j = 0, . . . , K − 1 . (3.4)

We now begin our derivation of the NLEP. For (3.2a), in the inner region where Ae ∼
ε−1w/

√
v0, ve ∼ v0, we have that ψ ∼ψ(0) ≡ψ0. It follows that the leading-order term �(y) =

φ(εy) in the inner expansion of φ satisfies

�′′ −�+ 3w2�+ ψ(0)

v
3/2
0

w3 = λ� . (3.5)

In the outer region ε� |x| ≤ 
, to leading order, we obtain from (3.2) that

φ ∼ ε3α3ψ/[λ+ 1 − 3ε2α2ve] =O(ε3), ψxx ≈ 0 , ηxx ≈ 0 . (3.6)

The goal of the calculation below is to determine ψ(0), which from (3.5) yields the NLEP.
To do so, we must derive appropriate jump conditions for ψx and ηx across the hotspot region
centred at x = 0. This calculation, summarised in Appendix A, then leads to linear boundary
value problems (BVPs) for ψ and η, from which we can calculate ψ(0).
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As shown in Appendix A, we obtain that the outer approximation for ψ(x) satisfies

ψxx = 0 , |x| ≤ 
 ; e0 [ψx]0 = e1ψ(0) + e2η(0) + e3 , ψ(
) = zψ(−
) , ψx(
) = zψx(−
) ,
(3.7a)

where we have defined [a]0 ≡ a(0+) − a(0−). Defining
∫
(. . . )≡ ∫∞

−∞ (. . . ) dy, the coefficients
ej, for j = 0, . . . , 3, are

e0 ≡Dα2 , e1 ≡ 1

v
3/2
0

∫
w3 + ũe

v
1+q/2
0

∫
wq+2 ,

e2 ≡ 1

v
q/2
0

∫
w2+q , e3 ≡ 3

∫
w2�+ ũe

v
(q−1)/2
0

(q + 2)
∫

wq+1� .

(3.7b)

The BVP (3.7) is defined in terms of η(0), which must be found from a separate BVP (see
Appendix A). In Appendix A, we show that on the range

O(εq−1) � τ �O(ε−2) so that O(1) � Dp �O(ε−q−1) , (3.8)

we have that η(0) is determined from the following leading-order BVP:

ηxx = 0 , |x| ≤ 
 ; d0 [ηx]0 = d1η(0) + d2 , η(
) = zη(−
) , ηx(
) = zηx(−
) . (3.9a)

In terms of v0 and ũe, as defined in (2.14), the constants d0, d1 and d2, are defined by

d0 ≡Dαq, d1 ≡ τ̂ λ

v
q/2
0

∫
wq, d2 ≡ τ̂ λqũe

v
(q−1)/2
0

∫
wq−1� . (3.9b)

Here we have defined τ̂ by

τ̂ ≡ ε3−qτ . (3.10)

In view of (3.8), the BVP (3.9a) for q> 1 holds on the following range of τ̂ :

O(ε2) � τ̂ �O(ε1−q) , where Dp = ε1−qD/τ̂ . (3.11)

To calculateψ(0) and η(0), we need the following simple result, as proved in Lemma 3.1 of [22]:

Lemma 3.1 (Lemma 3.1 of [22]) For |x|< 
, suppose that y(x) satisfies

yxx = 0 , −
 < x< 
 ; f0 [yx]0 = f1y(0) + f2 ; y(
) = zy(−
) , yx(
) = zyx(−
) ,
(3.12)

where f0, f1 and f2, are non-zero constants, and let z satisfy (3.4). Then, y(0) is given by

y(0) = f2

[
f0



(z − 1)2

2z
− f1

]−1

= − f2
f0[1 − cos (π j/K)] /
+ f1

. (3.13)

Lemma 3.1 with f0 = e0, f1 = e1 and f2 = e2η(0) + e3 yields ψ(0) from (3.7). Similarly, η(0) is
found from (3.9) using Lemma 3.1 with f0 = d0, f1 = d1 and f2 = d2. In this way, we get

ψ(0) = − e2η(0) + e3

e0[1 − cos(π j/K)] /
+ e1
, and η(0) = − d2

d0[1 − cos(π j/K)] /
+ d1
.

(3.14)
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Upon combining these two results, and using (3.7b) and (3.9b) for e0 and d0, respectively, we
determine ψ(0) as

ψ(0) = − 1

Djα2 + e1

[
e3 − e2d2

Djαq + d1

]
, (3.15)

where we have defined Dj, which satisfies Dj <Dj+1 for any j = 0, . . . , K − 2, by

Dj ≡ D



[
1 − cos

(
π j

K

)]
, j = 0, . . . , K − 1 , where l = S

2K
. (3.16)

To determine the coefficient ψ(0)/v3/2
0 in (3.5) in terms of the original parameters, which will

yield the NLEP, we next need to simplify the expressions for e1, e2, e3, d1 and d2 in (3.7b) and
(3.9b), using (2.6) for ũe and an explicit formula for the integral ratio

∫
wq+2/

∫
wq, as given in

(2.9). A short calculation yields that

e1 =
∫

w 3

v
3/2
0

+ 2qU0

( q + 1)Kv0
, e2 =

∫
w q+2

v
q/2

0

, e3 = 3
∫

w2�+ U0
√
v0

K
(q + 2)

∫
w q+1�∫

w q
,

(3.17a)

d1 = τ̂ λ

∫
w q

v
q/2

0

, d2 = τ̂ λq

(
U0

√
v0

K

) ∫
w q−1�∫

w q
. (3.17b)

Upon substituting (3.17) into (3.15), we obtain, after some algebra, that

−ψ(0)

v
3/2
0

= χ0j

(
3

∫
w2�∫
w3

)
+ χ1j

(
(q + 2)

∫
wq+1�∫
wq+2

)
+ χ2j

(
q

∫
wq−1�∫

wq

)
, (3.18a)

where we have defined

χ0j ≡ 1

1 + κq + v
3/2
0 Djα2/

∫
w3

, χ1j ≡ χ0jκq , χ2j ≡ −χ0j

(
τ̂ λκq

τ̂ λ+Djαqv
q/2
0 /

∫
w q

)
.

(3.18b)

Here κq is defined by

κq ≡ U0
√
v0

K
∫

w3

∫
w q+2∫
w q

= 2qU0

ω(q + 1)
, where ω≡ S(γ − α) − 2qU0

q + 1
. (3.19)

In calculating κq above, we evaluated the integral ratio in (3.19) using (2.9) and then recalled
(2.14) for v0. We observe from (3.19) that as U0 tends to the maximum policing level U0,max for
which a steady state exists, then ω→ 0+ and correspondingly κq → ∞.

From (3.18b), we first derive the NLEP for the mode j = 0, which corresponds to syn-
chronous perturbations of the hotspot amplitudes. For this mode, we have D0 = 0 from (3.16).
Therefore, from (3.18b), the coefficients reduce to χ00 = 1/(1 + κq), χ10 = κq/(1 + κq) and
χ20 = −κq/(1 + κq). With these values, we substitute (3.18a) into (3.5) to obtain the following
NLEP for the synchronous mode:

Proposition 3.2 Let ε→ 0, K ≥ 2, q> 1 and 0<U0 <U0,max = (q + 1)S(γ − α)/(2q), and
assume that D = ε2D =O(1) and O(1) � Dp �O(ε−q−1). Then, the linear stability on an O(1)
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timescale of a K-hotspot steady-state solution for (1.4) to synchronous perturbations of the
hotspot amplitudes is determined by the spectrum of the following NLEP for �(y) ∈ L2(R):

L0�− w 3

1 + κq

[
3

∫
w 2�∫
w 3

+ κq(q + 2)

∫
w q+1�∫
w q+2

− κqq

∫
w q−1�∫

w q

]
= λ� , (3.20)

where L0�≡�′′ −�+ 3w2� and κq is defined by κq = 2qU0/[ω(q + 1)], where ω≡ S(γ −
α) − 2qU0/(q + 1).

We remark that the NLEP (3.20) for the synchronous mode depends only on κq and is
independent of the criminal and police diffusivities characterised by D and τ̂ , respectively.

Remark 3.3 In Section 3.2, we show that the NLEP in (3.20) also governs the linear stability of
a one-hotspot steady-state solution.

Next, we consider the asynchronous modes where j = 1, . . . , K − 1. For these modes, in order
to obtain an NLEP with as few bifurcation parameters as possible, we introduce in (3.18b) two
additional rescaled parameters Du and τu defined by

Dj =
∫

w 3

v
3/2
0 α2

Du , τ̂ =Djα
q v

q/2
0∫
w q
τu . (3.21)

Using (3.21) in (3.18), an NLEP is obtained by substituting (3.18a) into (3.5). The result is
summarised as follows:

Proposition 3.4 Let ε→ 0, K ≥ 2, q> 1, 0<U0 <U0,max = (q + 1)S(γ − α)/(2q), D = ε2D =
O(1) and O(1) � Dp �O(ε−q−1). Then, the linear stability on an O(1) timescale of a K-hotspot
steady-state solution for (1.4) for the asynchronous modes j = 1, . . . , K − 1 is characterised by
the spectrum of the following NLEP for �(y) ∈ L2(R):

L0�− χ0w3

(
3

∫
w2�∫
w3

)
− χ1w3

(
(q + 2)

∫
wq+1�∫
wq+2

)
− χ2w3

(
q

∫
wq−1�∫

wq

)
= λ� , (3.22a)

where L0�≡�′′ −�+ 3w2� and w = √
2 sech y is the homoclinic of (2.4). Here the coeffi-

cients of the multipliers are

χ0 = 1

1 + κq +Du
, χ1 = χ0κq , χ2 = −χ0κq

τuλ

1 + τuλ
;

κq = 2q

q + 1

U0

ω
, ω≡ S(γ − α) − 2q

q + 1
U0 .

(3.22b)

For a given q> 1, the spectrum of the NLEP (3.22) depends on the three key parameters Du,
τu and κq. To relate these parameters to the original criminal diffusivity D, we use (3.21) and
(3.16), and then (2.14) for v0 to get

D =
( ∫

w 3

α2v
3/2
0

)
S

2K
[
1 − cos

(
π j
K

)]Du = ω3S

4K4π2α2
[
1 − cos

(
π j
K

)]Du , j = 1, . . . , K − 1 ,

(3.23)
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where ω is defined in (3.22b). In addition, to map τu to the original police diffusivity Dp, we
simply substitute (3.21) for τ̂ into (3.11) for Dp and use (3.16) for Dj and (2.14) for v0. In this
way, for K ≥ 2, we obtain

Dp = S
∫

wq

2Kαq
[
1 − cos

(
π j
K

)] ( ω

K
∫

w3

)q (
ε1−q

τu

)
, j = 1, . . . , K − 1 . (3.24)

Remark 3.5 In view of (3.11) and (3.21) relating τ̂ and τu, the NLEP (3.22) holds not only
when τu =O(1) but for the entire range O(ε2) � τu �O(ε1−q). Since q> 1, this implies that
we can consider the limiting cases τu → 0+ and τu → ∞ in (3.22), with the interpretation that
τu �O(ε2) and τu �O(ε1−q), respectively.

We refer to the NLEP (3.22) as a universal NLEP, since we need only to determine, with
respect to the bifurcation parameters Du, τu and κq, when all discrete eigenvalues of (3.22) satisfy
Re(λ) ≤ 0. The regions of linear stability with respect to these key parameters can then be mapped
to corresponding regions of stability with respect to the original parameters D and Dp (for a given
U0, S, γ , α and q) using (3.23) and (3.24). Correspondingly, we will also identify parameter
ranges for which the NLEP predicts instabilities owing to it having a discrete eigenvalue in
Re(λ)> 0.

3.2 Derivation of the NLEP for a single hotspot: K = 1 case

To derive an NLEP for the case of a single hotspot, we simply impose Neumann boundary
conditions directly at x = ±
 in (3.7) and (3.9). This yields that ψ(x) =ψ(0) and η(x) = η(0) on
|x| ≤ 
. From (3.9) and (3.7), we conclude that

η(0) = −d2

d1
ψ(0) = − 1

e1
(e2η(0) + e3)= − 1

e1

(
e3 − e2d2

d1

)
.

Using the explicit expressions for the coefficients given in (3.17), we calculate ψ(0)/v3/2
0 , which

leads to the NLEP from (3.5). In this way, we obtain that the NLEP for a single hotspot is also
given by (3.20) of Proposition 3.2.

4 No unstable eigenvalues for the NLEP (3.20) for the synchronous mode

In this section, we study the NLEP (3.20) of Proposition 3.2, which applies to either amplitude
perturbations of a one-hotspot steady state or synchronous perturbations of the amplitudes of a
multi-hotspot steady state.

4.1 Numerical computations

We first show numerically that (3.20) has no unstable eigenvalues for any κq ≥ 0 and q> 1. To
do so, we write (3.20) as

L0�− w3

(
a

∫
wq+1�+ b

∫
w2�+ c

∫
wq−1�

)
= λ� , (4.1)
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–1

–0.5

0

FIGURE 2. Numerical approximation of the principal eigenvalue of (4.1) for q = 2, q = 3 and q = 4, with
κ ∈ (0, 10). We observe that λ< 0 in all cases, and that the principal eigenvalue is rather insensitive to
changes in q as the curves are almost overlapping.

where the constants a, b and c are defined by

a = κq (q + 2)(
1 + κq

) ∫
wq+2

, b = 3(
1 + κq

) ∫
w3

, c = − qκq(
1 + κq

) ∫
wq

. (4.2)

To numerically compute the discrete eigenvalues of (4.1), we convert this NLEP into a linear
algebra problem using finite differences. As we are interested only in even solutions, we con-
sider (4.1) on [0, ∞]. Since w(y) decays exponentially as y → +∞, we truncate the positive
half-line to the large interval x ∈ [0, L], where we chose L = 20 (decreasing L to 10 changes the
results below by less than 0.01%). We discretise �(xj) ∼�j where xj = j�x, for j = 0 . . .N − 1
and �x = L/(N − 1), with N = 100. Increasing N to 200 changed the results below by less than
1%. We use standard centred differences to approximate �′′ and the trapezoid rule to approxi-
mate integrals in (4.1). In this way, we obtain the matrix eigenvalue problem M� = λ�, where
� ≡ (�1, . . . ,�N )T . The eigenvalue of M with the largest real part then provides an excellent
approximation to the principal eigenvalue of (4.1).

In terms of κq, this numerical approximation of the principal eigenvalue of (4.1) is plotted
for q = 2, q = 3 and q = 4 in Figure 2. The results shown in Figure 2 suggest that (3.20) has no
unstable eigenvalues for any κq ≥ 0 and q ≥ 1. Although the NLEP (3.20) is only relevant to the
stability of a hotspot steady state only when q> 1, as a partial confirmation of the numerical
results in Figure 2, we now show how to determine λ analytically from (4.1) when q = 1.

Let � and λ be any eigenpair of (4.1) for which
∫

w2� �= 0 and
∫
� �= 0. We multiply (4.1)

by w2 and integrate. Using the identity L0w2 = 3w2, we obtain

(λ− 3)

∫
w2�= −(a + b)

∫
w5
∫

w2�− c

∫
w5
∫
� . (4.3)

Next, we integrate (4.1) upon recalling L0�=�′′ −�+ 3w2�. This yields

(λ+ 1)

∫
�= 3

∫
w2�−

∫
w3

[
(a + b)

∫
w2�+ c

∫
�

]
. (4.4)

By eliminating
∫
�w2 and

∫
� from (4.3) and (4.4), we then obtain the following quadratic

equation for λ:

c

∫
w5

(
3 − (a + b)

∫
w3

)
+
(
λ− 3 + (a + b)

∫
w5

)(
c

∫
w3 + λ+ 1

)
= 0 . (4.5)
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For q = 1, we obtain from (4.2) that a + b = 3/
∫

w3 and c = −κ1/
[
(1 + κ1)

∫
w
]
. Upon

substituting these expressions into (4.5), and using
∫

w3/
∫

w = 1 and
∫

w5/
∫

w3 = 3/2, we get(
λ+ 1

1 + κ1

)(
λ+ 3

2

)
= 0 . (4.6)

Since κ1 ≥ 0, we conclude that the principal eigenvalue of (4.1) when q = 1 is

λ= − 1

1 + κ1
. (4.7)

Setting κ1 = 1 gives λ= −1/2, which agrees with the numerical result arising from a discretisa-
tion of (4.1) (not shown).

4.2 A hybrid analytical–numerical approach

We now give an alternative approach that provides a sufficient condition to ensure that the NLEP
(3.20) has no unstable eigenvalues. This sufficient condition is then investigated numerically. For
this hybrid analytical–numerical approach, we write the NLEP (3.20) in the alternative form

L0�− 2w3

∫
f (w)�∫

w3
= λ� , (4.8a)

where L0�≡�′′ −�+ 3w2�, and f (w) is defined by

f (w) ≡ 3

2(1 + κq)
w2 + (q + 2)κq

2(1 + κq)
wq+1

∫
w3∫

wq+2
− qκq

2(1 + κq)
wq−1

∫
w3∫
wq

. (4.8b)

When κq = 0, where f (w) = 3w2/2, the NLEP (4.8a) has no unstable eigenvalues by Theorem 1
of [26] (see also Lemma 3.2 of [11]).

We multiply (4.8a) by the conjugate �̄ and integrate over the real line. Upon integrating by
parts and taking the real part, we get

Iq[�R] + Iq[�I ] = −λR

∫
|�|2 , (4.9)

where �=�R + i�I and λ= λR + iλI . Here the quadratic form is defined by

Iq[�] ≡
∫ ((

�′)2 +�2 − 3w2�2
)

+ 2

∫
w3�

∫
f (w)�∫

w3
. (4.10)

To show that λR < 0, so that there are no unstable eigenvalues of the NLEP (4.8), it is sufficient to
show that the quadratic form Iq[�] is positive definite. In Appendix C, we establish the following
lemma for I0[�].

Lemma 4.1 We have I0[�]> 0 ∀� �≡ 0.

Since I0[�]> 0, our strategy is to continue in κq > 0 until we reach a point for which Iq[�]
ceases to be positive definite. To analyse this transition, we observe that Iq[�] = ∫ −�L�,
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where L� is the linear operator

L�≡ L0�−
∫

f (w)�∫
w3

w3 −
∫

w3�∫
w3

f (w) . (4.11)

Since L is self-adjoint, it follows that Iq[�] is positive definite if and only if L has only negative
eigenvalues. This motivates the consideration of the following zero-eigenvalue problem for L:

L�= 0 , � ∈ L2(R) , � �≡ 0 . (4.12)

To analyse (4.12), we use (4.11) to get

�=
∫

f (w)�∫
w3

L−1
0 w3 +

∫
w3�∫
w3

L−1
0 f (w) . (4.13)

Define c1 = ∫
f (w)� and c2 = ∫

w3�. By multiplying (4.13) by f (w) and then by w3, we get the
linear system

c1 = c1

∫
f (w)L−1

0 w3∫
w3

+ c2

∫
f (w)L−1

0 f (w)∫
w3

, c2 = c1

∫
w3L−1

0 w3∫
w3

+ c2

∫
w3L−1

0 f (w)∫
w3

. (4.14)

Upon using L−1
0 w3 = w/2, and integrating by parts, we obtain that (4.14) has a nontrivial solution

iff g(κq) = 0, where

g(κq) ≡ det

⎛⎜⎝
∫

wf (w)

2
∫

w3 − 1
∫

f (w)L−1
0 f (w)∫

w3∫
w4

2
∫

w3

∫
wf (w)

2
∫

w3 − 1

⎞⎟⎠=
(∫

wf (w)

2
∫

w3
− 1

)2

−
∫

w4

2
(∫

w3
)2

∫
f (w)L−1

0 f (w) .

(4.15)
When κq = 0, we have f (w) = 3w2/2. Upon using L−1

0 w2 = w2/3,
∫

w4 = 16/3 and∫
w3 = √

2π , we calculate

g(0) = 1

16
− 16

3π2
< 0 . (4.16)

Thus, when κq = 0, the only solution to (4.14) is c1 = c2 = 0, and so (4.11) becomes L0�= 0,
which has no nontrivial even solution. By increasing κq, we conclude that a sufficient condition
for guaranteeing no unstable eigenvalues of the NLEP (4.8) is that on the range 0< κq < κq0 we
have g(κq)< 0. Here κq0 is defined by

κq0 = sup{κq | g(t)< 0 , t ∈ (0, κq)} . (4.17)

In Figure 3, we plot g(κq) vs. κq for q = 2, 3, 4. These results were obtained by numerically
evaluating the integrals in (4.15), after computing L−1

0 f (w) from a BVP solver. On the range
for which g(κq)< 0, we conclude that Iq[�] is positive definite so that the NLEP (4.8) has no
unstable eigenvalues.

As a partial confirmation of the results in Figure 3, we now show how to calculate g(κq)
analytically when q = 2. When q = 2, we have that ψ ≡ L−1

0 f satisfies

L0ψ = f , f = e0w2 + e1w3 + e2w , (4.18a)
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FIGURE 3. Plot of numerically computed g(κq) vs. κq, as defined in (4.15), for q = 2, 3, 4. For q = 2, g(κ2)
is given analytically in (4.22). On the range of κq for which g(κq)< 0, the NLEP (4.8) has no unstable
eigenvalues.

where e0, e1 and e2, are defined by

e0 = 3

2(1 + κ2)
, e1 = 2κ2

1 + κ2

∫
w3∫
w4

, e2 = − κ2

1 + κ2

∫
w3∫
w2

. (4.18b)

Using (4.18a) for f (w), we calculate∫
wf (w)

2
∫

w3
− 1 = 3

4(1 + κ2)
+ κ2

2(1 + κ2)
− 1 = − (1 + 2κ2)

4(1 + κ2)
. (4.19)

Next, upon using L0w2 = 3w2, L0w = 2w3 and L0(w + yw′) = 2w, we calculate from (4.18a) that

ψ ≡ L−1
0 f = e0

3
w2 + e1

2
w + e2

2

(
w + yw′) . (4.20)

Upon using (4.20) and (4.18b), we obtain after some rather lengthy, but straightforward, algebra
that ∫

w4

2
(∫

w3
)2

∫
fL−1

0 f = κ2
2

2(1 + κ2)2
− 1

4(1 + κ2)2

(
κ2

2 + 2κ2
) ∫ w4∫

w2
+ 3

8(1 + κ2)2

(∫
w4∫
w3

)2

+ κ2

(1 + κ2)2

[
3

4
+

∫
w5

2
∫

w3

]
. (4.21)

We then simplify the expression in (4.21) using
∫

w4 = 16/3,
∫

w2 = 4,
∫

w3 = √
2π and

∫
w5 =

3
√

2π/2. In this way, and by combining the resulting expression with (4.19), we obtain from
(4.15) that

g(κ2) = 1

16(1 + κ2)2

[
(2κ2 + 1)2 − 8

3

(
κ2

2 + 5κ2 + 32

π2

)]
. (4.22)

Recalling the definition of the threshold κ20 in (4.17), a simple calculation using (4.22) yields

κ20 = 1
2

[
7 +√

46 + 256/π2
]
≈ 7.74. The formula for g(κ2) in (4.22), and the threshold κ20,

agrees with the numerical results shown in Figure 3.
In summary, we have shown that whenever g(κq)< 0 in (4.15), the NLEP (4.8) has no unsta-

ble eigenvalues. This sufficient condition for stability was implemented numerically for q �= 2,
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and analytically for q = 2, which showed that the NLEP has no unstable eigenvalues for κq

below some threshold. On the other hand, the numerical results in Figure 2 obtained from a
finite difference approximation suggested that the NLEP (4.8) has no unstable eigenvalues for
all κq > 0.

4.2.1 No unstable eigenvalues for q = 2 and any κ2

In this subsection, we provide a different approach to prove that for q = 2 that there are no
instabilities associated with synchronous perturbations of the hotspot amplitudes for any κ2 > 0.
For q = 2, this NLEP has the general form

L0�− w3

[
a

∫
w3�+ b

∫
w2�+ c

∫
w�

]
= λ� , � ∈ L2(R) ; L0�≡�′′ −�+ 3w2� .

(4.23)
We will convert this NLEP into one with a single nonlocal term proportional to

∫
w� using the

two identities (cf. [22]):

L0w = 2w3 , L0(w2) = 3(w2) . (4.24)

Let � and λ be any eigenpair of (4.23). We first multiply (4.23) by w, and then use the first of
(4.24), together with Green’s identity, to obtain∫

wL0�=
∫
�L0w = 2

∫
w3�= a

∫
w4
∫

w3�+ b

∫
w4
∫

w2�+ c

∫
w4
∫

w�+ λ

∫
w� .

(4.25a)

Next, we multiply (4.23) by w2, and then use the second of (4.24), together with Green’s identity,
to obtain∫

w2L0�=
∫
�L0w2 = 3

∫
w2�= a

∫
w5
∫

w3�+ b

∫
w5
∫

w2�+ c

∫
w5
∫

w�+ λ

∫
w2� .

(4.25b)

Equations (4.25a) and (4.25b) provide a matrix system for
∫

w2� and
∫

w3� of the form⎛⎝3 − λ− b
∫

w5 −a
∫

w5

b
∫

w4 a
∫

w4 − 2

⎞⎠⎛⎝∫ w2�∫
w3�

⎞⎠=
⎛⎝ c

∫
w5

− (
λ+ c

∫
w4
)
⎞⎠ ∫ w� . (4.26)

By inverting the matrix in (4.26), we obtain that∫
w2�= −(2c + aλ)

∫
w5

(3 − λ)
(
a
∫

w4 − 2
)+ 2b

∫
w5

∫
w� ,

∫
w3�= − (

λ+ c
∫

w4
)
(3 − λ)+ bλ

∫
w5

(3 − λ)
(
a
∫

w4 − 2
)+ 2b

∫
w5

∫
w� ,

(4.27)

provided that

(3 − λ)

(
a

∫
w4 − 2

)
+ 2b

∫
w5 �= 0 . (4.28)
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By substituting (4.27) into (4.23), and using
∫

w2 = 4, we obtain after some algebra the following
NLEP with a single nonlocal term:

L0�− 2w3γ

∫
w�∫
w2

= λ� , where γ = 2(3 − λ)(aλ+ 2c)

(λ− 3)
(
a
∫

w4 − 2
)− 2b

∫
w5

. (4.29)

Conversely, suppose that � and λ be any eigenpair of (4.29). Upon multiplying (4.29) by w, and
then by w2, and using (4.24), we obtain from (4.29) that

(3 − λ)
∫

w2�= 2γ

∫
w5∫
w2

∫
w� , 2

∫
w3�=

(
2γ

∫
w4∫
w2

+ λ

) ∫
w� . (4.30)

Next, by adding and subtracting terms in (4.29), we get

L0�− w3

[
a

∫
w3�+ b

∫
w2�+ c

∫
w�+ ξ

]
= λ� ,

ξ ≡
(

2γ∫
w2

− c

) ∫
w�− b

∫
w2�− a

∫
w3� ,

(4.31)

which reduces to (4.23) only when ξ = 0. We solve (4.30) for
∫

w3�, and for
∫

w2� which
requires λ �= 3. Then, upon using (4.29) for γ , we can readily verify from (4.31) that ξ = 0.
Therefore, any eigenpair of (4.29) with λ �= 3 is also an eigenpair of (4.23).

For q = 2, the coefficients a, b and c in (4.2) associated with synchronous perturbations of the
hotspot amplitudes are

a = 4κ

(1 + κ)
∫

w4
, b = 3

(1 + κ)
∫

w3
, c = − 2κ

(1 + κ)
∫

w2
, (4.32)

where we label κ ≡ κ2. By combining (4.32) and (4.29), and using
∫

w4/
∫

w2 = 4/3 and∫
w5/

∫
w3 = 3/2, we get

γ = κ(3 − λ)(3λ− 4)

2 [2(λ− 3)(κ − 1) − 9]
, (4.33)

while the condition (4.28) becomes (λ− 3)(κ − 1) �= 9/2.
To prove that (4.29), with γ as in (4.33), has no unstable eigenvalues we will use a key inequal-

ity that can readily be derived by proceeding as in (2.22) of [27] (see also equation (2.27) in
Section 2 of [25]). Suppose that (4.29) has an eigenvalue with Re(λ) ≥ 0. Then, the following
inequality must hold

T ≡ 2

(∫
w4∫
w2

)
|γ − 1|2 + Re

[
λ̄(γ − 1)

]≤ 0 , (4.34)

where the bars denote modulus. From (4.33), we calculate that

γ − 1 = −3λ2κ + λ(9κ + 4) + 6

4(κ − 1)λ− 12κ − 6
. (4.35)

We will now use (4.34), with (4.35), to show that the NLEP (4.29) cannot have any purely
imaginary eigenvalues of the form λ= iω. For λ= iω, we write γ − 1 in (4.35) as

γ − 1 = z1

z2
, z1 = 6 + 3ω2κ + iω(9κ + 4) , z2 = −6(1 + 2κ) + 4iω(κ − 1) . (4.36)
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Using
∫

w4/
∫

w2 = 4/3, we calculate from (4.34) that

T = 8

3

|z1|2
|z2|2 + Re

(
−iω

z1

z2

)
= 8

3

|z1|2
|z2|2 − Re

(
iωz1z̄2

|z2|2
)

= 1

3|z2|2
[
8|z1|2 + 3ωIm (z1z̄2)

]
.

(4.37)
Upon substituting (4.36) into (4.37), we obtain after some rather lengthy, but straightforward,
algebra that

T = 12

36(1 + 2κ)2 + 16ω2(κ − 1)2

[
κ(κ + 1)ω4 + ω2

18

(
162κ2 + 243κ + 64

)+ 8

]
. (4.38)

This shows that T > 0 holds ∀κ > 0 and ω. From our key inequality (4.34), it follows that the
NLEP (4.29) does not undergo a Hopf bifurcation for any κ ≥ 0.

To conclude the analysis of linear stability, we use a continuation argument in κ . With a, b and
c as given in (4.32), the NLEP (4.23) has no unstable eigenvalues when κ = 0 by Theorem 1 of
[26] (see also Lemma 3.2 of [11]). By our established correspondence between the two NLEPs
(4.23) and (4.29), this linear stability result can also be seen from (4.29), as (4.29) has no unstable
eigenvalues with λ �= 3 when κ = 0. This latter result is immediate since when κ = 0, we have
γ = 0 in (4.29). Therefore, (4.29) reduces to L0�= λ�, which has no unstable eigenvalues with
λ �= 3 (cf. [7]).

Next, if we continue in κ , we claim that all eigenvalues of (4.23) must remain in the stable
left half-plane Re(λ) ≤ 0. We establish this by contradiction. Suppose that at some point κ =
κ0 > 0, a branch λ= λ(κ) of eigenvalues crosses the imaginary axis, i.e. it satisfies Re(λ) = 0
and d

dκRe(λ)> 0 for some κ = κ0. Since λ(κ0) is pure imaginary, it follows that (λ− 3)(κ − 1) �=
9/2, and so the restriction (4.28) holds. Therefore, this eigenvalue must satisfy the NLEP (4.29)
with only one nonlocal term. Our proof above that the NLEP (4.29) has no purely imaginary
eigenvalue provides the required contradiction.

The key qualitative conclusion from this q = 2 ‘cops-on-the-dots’ analysis is that for O(1) �
Dp �O(ε−3) (see (3.8)), there can be no synchronous linear instabilities of the amplitudes of a
multi-hotspot steady state for any policing level U0 below the threshold U0,max for which steady-
state hotspot solutions exist.

5 Analysis of the NLEP: Competition instability

In this section, we will analyse zero-eigenvalue crossings for the NLEP (3.22), corresponding
to asynchronous perturbations of the hotspot amplitudes. This zero-eigenvalue crossing will
yield K − 1 critical values of the criminal diffusivity D. We will determine the behaviour of
this stability threshold in terms of the police focus parameter q and policing level U0.

To determine the zero-eigenvalue crossing, we observe from (3.22) that when λ= 0, we have
that L0� is proportional to w3. As a result, by recalling the identity L0w = 2w3, and noting that
χ2 = 0 when λ= 0, it follows that (3.22) has a zero eigenvalue, with corresponding eigenfunction
�= w, when

2 = 3χ0 + (q + 2)χ1. (5.1)
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Using (3.22b) for χ0 and χ1, we solve (5.1) for Du to conclude that the NLEP (3.22) has a zero
eigenvalue at the critical value of Du given by

Du = 1

2

(
1 + qκq

)
, where κq = 2q

q + 1

U0

ω
. (5.2)

Then, using (3.23), it follows that a zero-eigenvalue crossing occurs at D =Dj, for j =
1, . . . , K − 1, given by

Dj = S

8K4π2α2
[
1 − cos

(
π j
K

)] [ω3 + 2q2U0

q + 1
ω2

]
, j = 1, . . . , K − 1 . (5.3)

The smallest such threshold Dc = minj Dj on j = 1, . . . , K − 1, referred to as the competition
stability threshold, occurs when j = K − 1. We write Dc as

Dc ≡DK−1 = S

8K4π2α2 [1 + cos (π/K)]
g(U0; q) , (5.4a)

where g(U0; q) is defined on the range 0 ≤ U0 <U0,max = S(γ − α)(q + 1)/(2q) by

g(U0; q) ≡ω3 +
(

2q2

q + 1
U0

)
ω2 = (1 − q)ω3 + qS(γ − α)ω2 ,

where ω= S(γ − α) − 2qU0/(q + 1) .

(5.4b)

For a general value of q> 1, owing to the presence of the three distinct nonlocal terms in
(3.22), it is analytically intractable to perform a full linear stability analysis of hotspot steady
states on either side of the zero-eigenvalue crossing value D =Dc. For the specific q = 2 ‘cops-
on-the-dots’ case, where some key identities can be used to reduce (3.22) to an NLEP with only
one nonlocal term, this linear stability problem is studied in Section 6 using a hybrid analytical–
numerical approach. However, for a general q> 1, in Section 5.1 we show analytically that
the NLEP (3.22) always has a unique unstable eigenvalue in Re(λ)> 0 whenever D>Dc and
τu → 0+, and has no unstable eigenvalue when D<Dc. In view of (3.24) relating Dp to τu and
the range (3.8) of Dp, this partial result proves that when O(ε1−q) � Dp �O(ε−1−q), the hotspot
steady state constructed for q> 1 is always unstable when D exceeds Dc.

In the remainder of this subsection, we examine how the competition stability threshold Dc

depends on the degree q of patrol focus and the level U0 of police deployment. From (2.12), the
maximum Amax of the steady-state attractiveness field is Amax ∼ ε−1ω/(Kπ ), which decreases as
either ω decreases or as K increases. From Corollary 2.2, we observe that the criminal density ρ
at the hotspot locations is ρmax = [w(0)]2 = 2, which is independent of q and U0, with ρ =O(ε2)
away from the hotspot regions. As a result, the total crime is reduced primarily by decreasing
the number of stable steady-state hotspots on the given domain. As such, we seek to tune the
police parameters q and U0 so that the range of diffusivity D for which a K-hotspot steady
state is unstable when τu → 0+ (see Section 5.1 below) is as large as possible. This corresponds
to minimising the competition stability threshold Dc in (5.4), which is determined in terms of
g(U0; q) in (5.4b).
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FIGURE 4. Competition stability threshold nonlinearity g(U0; q), as defined in (5.4b), vs. U0 on the
range 0<U0 <U0,max ≡ S(γ − α)(q + 1)/(2q) for q = 1.5, 2.0, 2.5, 3.0, 3.5, when S = 6, γ = 2 and α = 1.
Smaller values of q correspond to larger values of U0,max, as represented by the intercept on the horizontal
U0 axis.. Notice that g is not monotone in U0 when q> 3. From (5.4), the competition threshold Dc is a
positive scaling of g(U0; q).

We first fix q> 1 and study how g(U0; q) depends on U0. On 0<U0 <U0,max ≡ S(γ −
α)(q + 1)/(2q), we find that

dg

dU0
= −ω 2q

q + 1

[
6q(q − 1)

q + 1
U0 + (3 − q)S(γ − α)

]
. (5.5)

This shows that dg/dU0 < 0 on 0<U0 <U0,max whenever 1< q< 3. Thus, when the patrol is
not too focused, i.e. when 1< q< 3, increasing the overall policing level leads to a larger range
of D where the hotspot steady state is unstable when τu → 0+. For q> 3, (5.5) also yields that

dg

dU0
> 0 on 0<U0 < S(γ − α)

(
q − 3

3(q − 1)

)
<U0,max;

dg

dU0
< 0 on S(γ − α)

(
q − 3

3(q − 1)

)
<U0 <U0,max.

(5.6)

Therefore, with an overly focused police patrol (i.e. q> 3), the hotspot steady state is destabilised
only by having a sufficiently large policing level. This is illustrated in Figure 4 where we plot
g(U0; q) vs. U0 for several values of q.

Next, we fix U0 in 0<U0 <U0,max and determine how g(U0; q) depends on q for q> 1. We
readily calculate that

dg

dq
= 2ωU0

(q + 1)3

[
ω(q + 3)(q2 − 1) − 4q2U0

]
, where ω≡ S(γ − α) − 2qU0/(q + 1) .

(5.7)

This shows that dg/dq< 0 if 0<ω< 4q2U0/[(q + 3)(q2 − 1)]. Using (5.7) for ω in terms of U0,
this inequality yields

dg

dq
< 0 when U0,max

[
1 + 2q

(q + 3)(q − 1)

]−1

<U0 <U0,max. (5.8)

The qualitative interpretation of this result is that if the policing level is sufficiently close to its
maximum value U0,max, an increase in the patrol focus parameter q yields a larger range in D
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where the hotspot steady state is unstable when τu → 0+, or equivalently when O(ε1−q) � Dp �
O(ε−1−q).

5.1 Large police diffusivity O(ε1−q) � Dp �O(ε−1−q): An instability result for D >Dc

Letting τu → 0+, corresponding to the parameter range O(ε1−q) � Dp �O(ε−1−q), we now
prove that the NLEP (3.22), which applies to asynchronous perturbations of the amplitudes of the
steady-state hotspot pattern, has an unstable positive real eigenvalue whenever Du >

1
2

(
1 + qκq

)
.

This will establish that a multi-hotspot steady state is unstable for this range of Dp whenever D
exceeds the competition stability threshold Dc defined in (5.4). When τu → 0+, we have χ2 = 0
and so (3.22) reduces to an NLEP with two nonlocal terms

L0�− χ0w3

(
3

∫
w2�∫
w3

)
− χ1w3

(
(q + 2)

∫
wq+1�∫
wq+2

)
= λ� ,

where χ0 = 1(
1 + κq +Du

) , χ1 = χ0κq .
(5.9)

To analyse (5.9), we first reformulate it into an NLEP with only one nonlocal term using the
key identity L0(w2) = 3(w2) (cf. [22]). Upon multiplying (5.9) by w2, and then using Green’s
identity, we readily calculate that∫

w2�

(
3 − 3χ0

∫
w5∫
w3

− λ

)
= χ1(q + 2)

( ∫
w5∫

wq+2

) ∫
wq+1� . (5.10)

Since
∫

w5/
∫

w3 = 3/2 from (2.5), (5.10) yields that∫
w2�=

(
χ1(q + 2)

∫
w5

3 − 9χ0
2 − λ

) ∫
wq+1�∫
wq+2

, (5.11)

provided that λ �= 3 − 9χ0/2. Then, by substituting (5.11) back into (5.9), and using χ1 = χ0κq,
we obtain the following equivalent NLEP with only one nonlocal term (provided that λ �= 3 −
9χ0/2):

L0�− χc(λ)w3

∫
wq+1�∫
wq+2

= λ� , where χc(λ) ≡ χ0κq(q + 2)

(
3 − λ

3 − 9χ0
2 − λ

)
. (5.12)

To interpret the apparent restriction that λ �= 3 − 9χ0/2, we observe that since χ1 = χ0κq is
proportional to U0 (see (3.22b) for the definition of κq), it follows from (5.10) that for any eigen-
pair for which

∫
wq+1� �= 0 for any q> 1, we must have λ= 3 − 9χ0,j/2 if and only if U0 = 0.

For the case of no police, this recovers the result in equation (3.17) of [11] for the unique dis-
crete eigenvalue of the linearisation of a K-hotspot steady state of the basic two-component crime
model.

We now show that the reformulated NLEP (5.12) has an unstable real eigenvalue when-
ever Du >

1
2

(
1 + qκq

)
. To do so, we convert (5.12) into a root-finding problem. We write

�= χc (L0 − λ)−1 w3
∫

wq+1�/
∫

wq+2, multiply both sides by wq+1, and then integrate over
the real line. In this way, and using (5.9) for χ0, we readily find that any discrete eigenvalue of
(5.12) in Re(λ)> 0 must be a root of ζ (λ) = 0 defined by

ζ (λ) ≡ Cc(λ) −F(λ) , (5.13a)
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where

Cc(λ) ≡ 1

χc(λ)
=
(
1 + κq +Du

)
κq(q + 2)

+ 9

2κq(q + 2)(λ− 3)
, and F(λ) ≡

∫
wq+1 (L0 − λ)−1 w3∫

wq+2
.

(5.13b)
When Du >

1
2

(
1 + qκq

)
, we claim that ζ (λ) = 0 has a real root in 0<λ< 3, which yields an

unstable eigenvalue for the NLEP (5.12). To show this, we use L0w = 2w3 to calculate F(0) =∫
wq+1L−1

0 (w3)/
∫

wq+2 = 1/2, and observe that F(λ) → +∞ as λ→ ν−
0 , where ν0 = 3 is the

unique positive eigenvalue of L0 (cf. [7, 22]). Moreover, we observe that

Cc(λ) → −∞ as λ→ 3− , and Cc(0) =
(
κq +Du − 1/2

)
κq(q + 2)

,

which yields that Cc(0)> 1/2 when Du >
1
2

(
1 + qκq

)
. With these properties of Cc(λ) and F(λ), it

follows from the intermediate value theorem that ζ (λ) has a root at some value of λ on 0<λ< 3.
This simple result proves that a multi-hotspot steady state is unstable for τu → 0+, or equiv-

alently for Dp on the range O(ε1−q) � Dp �O(ε−1−q) whenever D exceeds the competition
stability threshold Dc in (5.4).

Next, using a winding number criterion, we now obtain a more precise result for the spec-
trum of the NLEP (5.12), which pertains to the special case τu → 0+. We do so by determining
the number N of zeroes of ζ (λ) in Re(λ)> 0, which corresponds to the number (counting
multiplicity) of unstable eigenvalues of the NLEP (5.12).

To determine N , we calculate the winding of ζ (λ) over the Nyquist contour � traversed in
the counterclockwise direction that consists of the positive and negative imaginary axis, defined
by �+

I (0< Im(λ)< iR, Re(λ) = 0) and �−
I (−iR< Im(λ)< 0, Re(λ) = 0), respectively, together

with the semi-circle CR defined by |λ| = R> 0 for | arg(λ)|<π/2. From (5.13b), Cc(λ) is a mero-
morphic function with a simple pole at λ= 3, whereas F(λ) is analytic in Re(λ) ≥ 0 except at
the simple pole at λ= 3. The simple poles of C(λ) and F(λ) do not cancel as λ→ 3−, since
when restricted to the real line we have F(λ) → +∞ while C(λ) → −∞ as λ→ 3−. Therefore,
ζ (λ) = C(λ) −F(λ) has a simple pole at λ= 3. Then, since ζ (λ) is bounded on CR as R → ∞,
and ζ (λ) = ζ (λ), we let R → ∞ and obtain from the argument principle that

N = 1 + 1

π
[arg ζ ]�+

I
. (5.14)

Here [arg ζ ]�+
I

denotes the change in the argument of ζ as λ= iλI is traversed down the positive
imaginary axis 0<λI <∞.

To calculate this argument change, we let λ= iλI and decompose ζ (iλI ) = ζR(λI ) + iζI (λI )
and F(iλI ) =FR(λI ) + iFI (λI ), to obtain from (5.13) that

Im [ζ (iλI )] ≡ ζI (λI ) = − bλI

9 + λ2
I

−FI (λI ) , (5.15a)

where b ≡ 9
[
2κq(q + 2)

]−1
and FI (λI ) ≡ Im [F(iλI )] is given by

FI (λI ) = λI

∫
w q+1

[
L2

0 + λ2
I

]−1
w 3∫

w q+2
. (5.15b)
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FIGURE 5. Plot of FI (λI ) vs. λI , defined in (5.15b), for q = 1.5, 2.0, 2.5, 3.0 on the range 0<λI < 12. This
function is rather insensitive to changes in q.

Proposition 4.3 of [22] established that FI (λI )> 0 on λI > 0 when q = 2. Based on the numerical
evidence shown in Figure 5, for both integer and non-integer values of q, we make the following
conjecture:

Conjecture 5.1 Consider FI (λI ) ≡ Im [F(iλI )] as defined by (5.15b). Then, FI (λI )> 0 on λI > 0
holds for all q> 1.

Assuming that this conjecture holds, we obtain the key inequality from (5.15a) that
Im [ζ (iλI )]< 0 for all λI > 0. Next, we observe that as λI → ∞ we have ζ (iλI ) →(
1 + κq +Du

)
/[κq(q + 2)]> 0, and that ζ (0) = Cc(0) − 1/2 satisfies

ζ (0)> 0 if Du >
1

2

(
1 + qκq

)
; ζ (0)< 0 if Du <

1

2

(
1 + qκq

)
. (5.16)

We readily conclude from these results that [arg ζ ]�+
I

= 0 when Du >
1
2

(
1 + qκq

)
and

[arg ζ ]�+
I

= −π when Du <
1
2

(
1 + qκq

)
. From (5.14), it follows that N = 1 when Du >

1
2

(
1 + qκq

)
and that N = 0 otherwise. We summarise our result as follows:

Proposition 5.2 Let τu → 0+, which corresponds to the range O(ε1−q) � Dp �O(ε−1−q) of
police diffusivity. Assume that Conjecture 5.1 holds for q> 1. Then, under the conditions of
Proposition 3.4, a multi-hotspot steady-state solution is unstable to asynchronous perturbations
of the hotspot amplitudes for an arbitrary q> 1 when D>Dc, and is linearly stable to such per-
turbations whenever D<Dc. The instability when D>Dc is due to a unique unstable eigenvalue
in the spectrum of the NLEP (5.12). Here Dc is the competition threshold defined in (5.4).

This result provides a necessary and sufficient condition for the linear stability of the multi-
hotspot steady state for an arbitrary q> 1. In the next section, we determine more refined stability
results for the special case q = 2 corresponding to ‘cops-on-the-dots’.

6 Asynchronous perturbations: Linear stability analysis for q = 2

In this section, we analyse the spectrum of the NLEP (3.22), relevant to asynchronous perturba-
tions of the hotspot amplitudes, for the specific case of cops-on-the-dots where q = 2. For q = 2,
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in Section 6.1, we reformulate the NLEP (3.22) with three nonlocal terms into an NLEP with
a single nonlocal term proportional to

∫
w3�, which is then more readily analysed. We will

show that a police diffusivity on the range Dp =O(ε−1) leads to the possibility of oscillatory
instabilities of the hotspot amplitudes when D is below the competition stability threshold.

6.1 Reformulation as an NLEP with one nonlocal term

For q = 2, the NLEP (3.22) for� ∈ L2(R) has the form given in (4.23), where a, b and c are now
defined by

a ≡ 4χ1∫
w4

, b ≡ 3χ0∫
w3

, c ≡ 2χ2∫
w2

, (6.1)

in terms of χ0, χ1 and χ2 as given in (3.22b).
We will convert the NLEP (4.23) with three nonlocal terms into an NLEP with a single nonlo-

cal term proportional to
∫

w3�, instead of proportional to
∫

w� as in (4.29) of Section 4.2.1. This
alternative reduction is needed for the study of asynchronous perturbations since from (3.22b)
we have that χ2, and thus c, vanishes linearly in λ as λ→ 0. With such a vanishing c, we would
have that γ−1 in (4.29) is not analytic at λ= 0, which makes (4.29) problematic for analysis. As
such, we require a different reformulation.

Let � and λ be any eigenpair of (4.23) with a, b and c as defined in (6.1), in which
limλ→0 λ

−1c = c0 where c0 is finite and non-zero. Then, proceeding as in the derivation of (4.25a)
and (4.25b), we obtain the matrix system(

b
∫

w4 c
∫

w4 + λ

3 − λ− b
∫

w5 −c
∫

w5

)(∫
w2�∫
w�

)
=
(

2 − a
∫

w4

a
∫

w5

) ∫
w3� . (6.2)

By inverting the matrix in (6.2), we calculate that∫
w2�= −(2c + aλ)

∫
w5

bλ
∫

w5 − (
c
∫

w4 + λ
)

(3 − λ)

∫
w3� ,

∫
w�= (λ− 3)(2 − a

∫
w4) + 2b

∫
w5

bλ
∫

w5 − (
c
∫

w4 + λ
)

(3 − λ)

∫
w3� ,

(6.3)

provided that

bλ

∫
w5 −

(
c

∫
w4 + λ

)
(3 − λ) �= 0 . (6.4)

By substituting (6.3) into (4.23), we obtain after some algebra, the following NLEP with a single
nonlocal term:

L0�− χw3

∫
w 3�∫
w 4

= λ� , where χ = (λ− 3)(2c + aλ)
∫

w4

bλ
∫

w5 − (
c
∫

w 4 + λ
)

(3 − λ)
. (6.5)

Remark 6.1 The multiplier χ in the NLEP (6.5) is well defined at λ= 0 when limλ→0 c/λ=
c0 with c0 finite and non-zero. This case is relevant to the study of the linear stability of
asynchronous perturbations of the hotspot amplitudes.
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We have so far established that, provided the condition (6.4) holds, an eigenpair of (4.23)
is also an eigenpair of (6.5). To complete the equivalence between (4.23) and (6.5), we now
suppose that �, λ is an eigenpair of (6.5). Upon multiplying (6.5) by w, and then by w2, we use
the identities (4.24) to readily derive that

(2 − χ)

∫
w3�= λ

∫
w� , (3 − λ)

∫
w2�= χ

∫
w5∫
w4

∫
w3� . (6.6)

We then add and subtract in (6.5) to get

L0�− w3

[
a

∫
w3�+ b

∫
w2�+ c

∫
w�+ ξ

]
= λ� ,

ξ ≡
(

χ∫
w4

− a

) ∫
w3�− b

∫
w2�− c

∫
w� ,

(6.7)

which reduces to (4.23) only when ξ = 0. We calculate using (6.6) that for λ �= 3, and limλ→0 c/λ
finite and non-zero, that

ξ =
(
χ∫
w4

− a − bχ

3 − λ

∫
w5∫
w4

− c(2 − χ )

λ

) ∫
w3� . (6.8)

Finally, using (6.5) for χ in (6.8), we get ξ = 0, so that (6.7) reduces to (4.23).
The relationship between the spectra of (4.23) and of (6.5) is summarised as follows:

Lemma 6.2 Let �, λ, be an eigenpair of (4.23) where we assume that limλ→0 c/λ is finite and
non-zero. Moreover, suppose that (6.4) holds. Then, �, λ is an eigenpair of (6.5). Alternatively,
if�, λ is an eigenpair of (6.5) with λ �= 3, then if limλ→0 c/λ is finite and non-zero, this eigenpair
is also an eigenpair of (4.23).

Next, using (6.1) for c, and noting from the expression for χ2 in (3.22b) that χ2 = 0 when
λ= 0, we can eliminate the removable singularity at λ= 0 for χ , defined in (6.5), by rewriting

χ = (λ− 3)(2c0 + a)
∫

w4

b
∫

w5 − (
c0
∫

w4 + 1
)

(3 − λ)
, where c0 ≡ c

λ
= 2χ̂2∫

w2
, χ̂2 ≡ χ2

λ
= − χ0τuκ2

τuλ+ 1
.

(6.9)

From (6.1), and by setting q = 2 in (3.22b), we obtain that the terms a and b in (6.9) are given
explicitly by

a ≡ 4χ0κ2∫
w4

, b ≡ 3χ0∫
w3

, where χ0 ≡ 1

1 + κ2 +Du
, κ2 = 4U0

3ω
, ω≡ S(γ − α) − 4U0

3
.

(6.10)

In the usual way, it can be shown that the discrete spectra of the NLEP (6.5) are the roots of
ζ (λ) = 0 defined by

ζ (λ) ≡ C(λ) −F(λ) , (6.11a)

where

C(λ) ≡ 1

χ (λ)
= b

∫
w5 − (

c0
∫

w4 + 1
)

(3 − λ)

(λ− 3)(2c0 + a)
∫

w4
, and F(λ) ≡

∫
w3 (L0 − λ)−1 w3∫

w4
.

(6.11b)
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By substituting (6.10) into (6.11b), we obtain after some rather lengthy, but straightforward,
algebra that

C(λ) = 1

2
+ 1

4κ2

(
τuλ+ 1

τuλ+ 1 − 4τu
3

)(
1 +Du − κ2 + 9

2(λ− 3)

)
. (6.11c)

In addition, using L0w = 2w3, we can more conveniently rewrite F(λ) in (6.11b) as

F(λ) = 1

2
∫

w4

∫
w3(L0 − λ)−1 [(L0 − λ) + λ] w = 1

2
+ λ

2
∫

w4

∫
w3(L0 − λ)−1w . (6.11d)

As a remark, we can use (6.11) to recover the competition stability threshold given in (5.2)
when q = 2. To see this, we set λ= 0 in (6.11d) and (6.11c) to get F(0) = 1/2 and

C(0) = 1

2
+ 3

4κ2(3 − 4τu)

[
Du −

(
κ2 + 1

2

)]
. (6.12)

Therefore, C(0) = 1/2, so that ζ (0) = 0 in (6.11a), when Du = 1/2 + κ2. This zero-eigenvalue
condition agrees with (5.2).

6.2 Parametrisation of the Hopf bifurcation threshold

In this subsection, we use (6.11) to determine an explicit parameterisation of any Hopf bifurca-
tion for the NLEP (6.5). We set λ= iω, with ω> 0, and obtain by setting ζ (iω) = 0 in (6.11)
that (

1 + iωτu

1 − 4τu
3 + iωτu

)(
2

9
(1 +Du − κ2)+ 1

iω− 3

)
= 8κ2

9

[
F(iω) − 1

2

]
. (6.13)

We then decompose F(iω) into real and imaginary parts to obtain from (6.11b) that

F(iω) =FR(ω) + iFI (ω) , FR(ω) ≡
∫

w3L0
[
L2

0 +ω2
]−1

w3∫
w4

, FI (ω) ≡ω

∫
w3
[
L2

0 +ω2
]−1

w3∫
w4

.

(6.14)
To determine a parameterisation of the Hopf bifurcation curve, we first multiply both sides of

(6.13) by iωτu + 1 − 4τu/3, and then separate the resulting expression into real and imaginary
parts. This yields that

2

9
(1 +Du − κ2)− 3

9 +ω2
+ τuω

2

9 +ω2
= 8κ2

9

(
FR(ω) − 1

2

)(
1 − 4τu

3

)
− 8κ2τu

9
ωFI (ω) ,

(6.15a)

2τuω

9
(1 +Du − κ2)− 3τuω

9 +ω2
− ω

9 +ω2
= 8κ2

9

(
τuω

[
FR(ω) − 1

2

]
+
(

1 − 4τu

3

)
FI (ω)

)
.

(6.15b)

We then solve (6.15a) for Du and substitute the resulting expression into (6.15b). This yields a
quadratic equation for τu.
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FIGURE 6. Left panel: the Hopf bifurcation threshold for ‘cops-on-the-dots’ in the τu vs. Du plane,
as computed from the parameterisation (6.16), for U0 = 2 (solid curve), U0 = 3 (dashed curve) and
U0 = 4 (dot-dashed curve) when S = 6, γ = 2 and α= 1. Right panel: the corresponding Hopf bifurcation
frequency ω vs. Du.

In this way, we obtain the following parameterisation, with parameter ω, for any Hopf
bifurcation curve τu = τu(ω) and Du =Du(ω) for the NLEP (6.5):

Du = κ2 − 1 + 9

2

(
3

9 +ω2
+ 8κ2

9

[
FR(ω) − 1

2

]
− η0τu

)
, (6.16a)

where τu is a root of the quadratic equation

η0τ
2

u − η1τu + η2 = 0 . (6.16b)

Here η0, η1 and η2 are defined by

η0 ≡ ω2

9 +ω2
+ 32κ2

27

[
FR(ω) − 1

2

]
+ 8κ2ω

9
FI (ω) ,

η1 ≡ 32κ2

27ω
FI (ω) , η2 ≡ 1

9 +ω2
+ 8κ2

9ω
FI (ω) .

(6.16c)

Since FI (ω)> 0 for ω> 0 (see part (v) of Proposition 4.3 in [22]), it follows that η1 > 0 and
η2 > 0 for ω> 0. However, the sign of η0 is unclear, owing to the fact that FR(ω)< 1/2 for
ω> 0 (see the left panel of Figure 4 of [22]).

To calculate the Hopf bifurcation curve, we fix κ2 > 0 and let ω> 0 be a parameter, and
then numerically compute FR(ω) and FI (ω), as defined in (6.14), using a BVP solver. We then
use (6.16b) to compute a τu > 0, which determines Du from (6.16a). In this way, in the left panel
of Figure 6, we plot the Hopf bifurcation threshold τu vs. Du for U0 = 2, U0 = 3 and U0 = 4 for
the fixed parameter set S = 6, γ = 2 and α = 1. In addition, the Hopf frequencyω is plotted vs. Du

in the right panel of Figure 6. We emphasise that the Hopf curves in Figure 6 are universal in the
sense that, together with the relation (3.23) and (3.24), they provide Hopf bifurcation thresholds
for each of the asynchronous modes j = 1, . . . , K − 1 in the Dp vs. D parameter plane. In terms
of these original parameters, the Hopf curves are plotted in Section 7, where we will also provide
a detailed comparison of the linear stability results with full PDE numerical simulations of (1.4).

An interesting feature, as observed in Figure 6, is that the Hopf bifurcation frequency ω tends
to zero at each of the two endpoints of the Hopf bifurcation curves, and that τu diverges at the
lower endpoint in Du. To derive scaling laws for the Hopf thresholds at these two endpoints,
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we will take the limit ω→ 0 in (6.16). To do so, we need the following lemma, as proved in
Appendix B, which provides two-term expansions for FR(ω) and FI (ω) as ω→ 0:

Lemma 6.3 As ω→ 0, and with w(y) = √
2 sech y, the real and imaginary parts of F(iω), as

defined in (6.14), have the asymptotics

FR(ω) ∼ 1

2
− 3

64
ω2 +O(ω4) ; FI (ω) ∼ 3ω

16
+ dIω

3 , dI ≡ −
∫

y2(w′)2

16
∫

w4
≈ −0.0285 .

(6.17)

We substitute (6.17) into (6.16c) to obtain expressions for η0, η1 and η2 for ω→ 0. In this
way, for ω→ 0, (6.16b) becomes a singularly perturbed quadratic equation for τu

ω2τ 2
u

[
1+ κ2 +O(ω2)

]− 2κ2τu

(
1+16

3
dIω

2 +O(ω4)

)
+1+3κ2

2
+ω2

(
8κ2dI − 1

9

)
+O(ω4) = 0 .

(6.18)

For ω→ 0, (6.18) has a small root with τu =O(1) and a large root with τu =O(ω−2). By asymp-
totically calculating these two roots, and then using (6.16a) and (6.17) to determine Du, we
readily obtain two scaling laws valid near each of the endpoints of the Hopf threshold curve
shown in the left panel of Figure 6.

In this way, we find that the small root corresponds to the right-hand endpoint of the Hopf
curve, and for ω→ 0

τu ∼ τ0 +ω2τ1 + · · · , Du ∼ κ2 + 1

2
− ω2

4

(
19

6
+ 9κ2

4
+ 1

κ2

)
;

Du ∼ κ2 + 1

2
− (τ − τ0)

4τ1

(
19

6
+ 9κ2

4
+ 1

κ2

)
,

(6.19a)

where τ0 and τ1 are defined by

τ0 ≡ 3

4
+ 1

2κ2
, τ1 ≡ (1 + κ2) (1 + 3κ2/2)

2

8κ3
2

− 1

18κ2
− 8dI

3κ2
. (6.19b)

In contrast, the large root of (6.18) corresponds to the left-hand endpoint of the Hopf curve.
For ω→ 0, we obtain

τu ∼
(

2κ2

1 + κ2

)
ω−2 +O(1) , Du ∼ 1

2
+ω2b , where b ≡ 11

24
+ κ2

(
3

16
− 16

3
dI

)
+ 1

4κ2
.

(6.20)

This yields the key scaling law for the left endpoint of the Hopf curve that

τu ∼
(

2κ2

1 + κ2

)
b

Du − 1/2
, as Du → (1/2)+ . (6.21)

In Figure 7, we compare the two asymptotic approximations (6.19) and (6.21) with results
computed numerically from the parameterisation (6.16) for the same parameter values as in
Figure 6. Rather remarkably, we observe that the asymptotic results provide a decent quanti-
tative prediction of the entire Hopf bifurcation curve. This close agreement is due to the Hopf
frequency ω being relatively small on the entire range of the Hopf curve (see the right panel of
Figure 6).
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FIGURE 7. The Hopf bifurcation threshold for U0 = 2 (left panel), U0 = 3 (middle panel) and U0 = 4
(right panel), when S = 6, γ = 2, and α= 1, computed numerically from the parameterisation (6.16) (solid
curves). The dashed curves are the asymptotics for small ω near the right endpoint (6.19) (red curves)
and the left endpoint (6.21) (blue curves). The asymptotic approximations are seen to provide a good
approximation to almost the entire Hopf bifurcation curve.

In Proposition 6.4 given below in Section 6.3, we prove that a multi-hotspot steady state is
unstable whenever D>Dc ≡ κ2 + 1/2 for any τu > 0. This result is complementary to that in
Section 5.1 where we proved a similar instability result for any q> 1, but with τu → 0+. For the
range D<Dc, we conjecture that the Hopf bifurcation curve in Figure 7 sets the linear stability
boundary in the τu vs. Du parameter space. This assertion is based on a continuation argument in
τu. Recall from Proposition 5.2 that for τu → 0+, the NLEP (3.22) has no unstable eigenvalues
when D<Dc. By increasing τu for fixed Du <Dc, our parameterisation (6.16) has shown that
eigenvalues of (6.5) can occur on the imaginary axis λ= iω, with ω> 0, only on the range
1/2<Du <Dc. For 0<Du < 1/2, there are no purely imaginary eigenvalues for (6.5) for any
τu > 0, suggesting by continuity that Re(λ) ≤ 0 for (6.5). This suggests that below the Hopf
bifurcation curve, the multi-hotspot pattern is linearly stable, and that this hotspot steady state is
linearly stable for all τu > 0 when Du < 1/2. A computational tool to investigate this conjecture
is formulated in Section 6.3.

6.3 An instability result and the winding number criterion

For the analysis below, for τu > 0, it is convenient to express C(λ) in (6.11c) in terms of partial
fractions as

C(λ) = c0 + c1

λ− 3
+ c2

λ− λp
, λp ≡ 4

3
− 1

τu
, (6.22a)

where λp > 0 iff 0< τu < 3/4. In (6.22a), the coefficients c0, c1 > 0 and c2 are

c0 = 1

4

[
1 + 1

κ2
(1 +Du)

]
, c1 = 9

8κ2

(
9τu + 3

5τu + 3

)
,

c2 = 1

κ2

(
1

5τu + 3

) [
(1 +Du − κ2)

(
5τu

3
+ 1

)
− 9τu

2

]
.

(6.22b)

Our instability result is as follows:

Proposition 6.4 For any τu > 0, and for q = 2, a multi-hotspot steady-state solution is unstable
to asynchronous perturbations of the hotspot amplitudes when D>Dc ≡ κ2 + 1/2 and for any
police diffusivity Dp on the range O(1) � Dp �O(ε−3).
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Proof We need to prove that ζ (λ), defined in (6.11a), has a real positive root whenever τu > 0
and D>Dc. To do so, we consider three ranges of τu. When τu < 3/4, we have from (6.22a)
that C(λ) is continuous on 0<λ< 3, with C(λ) → −∞ as λ→ 3−. In addition, from (6.12),
we have C(0)> 1/2 when D>Dc. From (6.11b), we have F(0) = 1/2, F(λ) continuous on
0<λ< 3 and F(λ) → +∞ as λ→ 3− (cf. [22]). Therefore, by the intermediate value theorem,
there is a real root to ζ (λ) = 0 on 0<λ< 3. When τu > 3/4, (6.12) yields that C(0)< 1/2 when
Du >Dc, while (6.22a) shows that C(λ) has a simple pole at λ= λp ≡ 4/3 − 1/τu in 0<λp < 3.
Regardless of the sign of c2 in (6.22b), it readily follows that ζ (λ) = 0 has a real positive root in
0<λ< 3. Finally, suppose that τu = 3/4. Then, from (6.22), we have that C(λ) → c2/λ as λ→ 0,
with c2 = [Du − (κ2 + 1/2)] /(3κ2)> 0 when Du > κ2 + 1/2. Therefore, since C(λ) → −∞ as
λ→ 3−, while C(λ) → +∞ as λ→ 0+ when Du > κ2 + 1/2, it follows that ζ (λ) = 0 has a root
on 0<λ< 3. �

Next, we derive a winding number criterion that can be implemented numerically to count the
number N of unstable eigenvalues of the NLEP (6.5). This hybrid analytical–numerical approach
will be useful for considering the range D<Dc and τu �= 3/4. For τu �= 3/4, C(λ) in (6.22) is ana-
lytic in Re(λ) ≥ 0 except for a simple pole at λ= 3, and an additional simple pole at λ= λp > 0
iff τu > 3/4. From a winding number analysis, analogous to that developed in Section 5.1, the
number N of roots of ζ (λ) = 0 in Re(λ)> 0, which is equivalent to the number of unstable
eigenvalues of the NLEP (6.5), is

N = P + 1

π
[arg ζ ]�+

I
, P =

⎧⎨⎩1 , 0< τu < 3/4

2 , τu > 3/4
. (6.23a)

Here �I+ is the positive imaginary axis traversed in the downwards direction. To numerically
calculate [arg ζ ]�+

I
, we let λ= iω with ω> 0, and decompose ζ (iω) = ζR(ω) + iζI (ω). Since

ζ (iω) = C(iω) −F(iω), we use (6.14) for F(iω) together with (6.22) to calculate C(iω). This
yields that

ζR(ω) = c0 − 3c1

9 +ω2
− λpc2

λ2
p +ω2

−FR(ω) ,

ζI (ω) = − ω

(9 +ω2)(λ2
p +ω2)

[
(c1 + c2) ω

2 + c1λ
2
p + 9c2

]
−FI (ω) . (6.23b)

Here FR(ω) and FIω) can be calculated numerically from (6.14), while c0, c1 and c2 are evaluated
using (6.22b).

To illustrate the use of (6.23b), we consider the phase diagram in the τu vs. Du shown in
Figure 7 where U0 = 2, S = 6, γ = 2, and α = 1. There, we predicted that there are no unstable
eigenvalues of the NLEP when Du < 0.5. For 0.5<Du < κ2 + 1/2 = 1.3, we predicted that there
are no unstable eigenvalues of the NLEP when τu is below the Hopf bifurcation threshold. For
particular parameter values, in Figure 8, we show that a numerical implementation of the winding
number criterion (6.3) confirms these predictions. Further numerical results using (6.3) for other
parameter sets, and in particular for the middle and right panels of Figure 7, confirm the linear
stability predictions of Section 6.2.
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FIGURE 8. Plots of the path ζ (iω) = ζR(ω) + iζI (ω) for Du = 0.4 (left panel) and Du = 1.0 (right panel) on
0<ω<∞, when S = 6, γ = 2 and α= 1, corresponding to the left panel of Figure 7. Left panel: τu = 0.4
(dashed curve), τu = 5.0 (solid curve), for which [arg ζ ]�+

I
= −π and [arg ζ ]�+

I
= −2π , respectively. For

both values of τu, (6.23a) yields N = 0. Right panel: τu = 1.0 (dashed curve), τu = 4.0 (solid curve), for
which [arg ζ ]�+

I
= −2π and [arg ζ ]�+

I
= 0, respectively. Then, (6.23a) yields N = 0 for τu = 1.0 and N = 2

for τu = 4.0. These results are consistent with the linear stability phase diagram in the left panel of Figure 7.

7 Comparison of linear stability theory with PDE simulations: q = 2

We first map the phase diagrams for linear stability from the τu vs. Du plane of Section 6 for
q = 2 to that of the εDp vs. D parameter plane. By setting q = 2 in (3.23) and (3.24), we obtain
in terms of τu and Du that

D = ω3SDu

4K4α2π2
[
1 − cos

(
π j
K

)] , εDp = Sω2

K3α2π2
[
1 − cos

(
π j
K

)] ( 1

τu

)
,

for j = 1, . . . , K − 1 , (7.1)

where ω= S(γ − α) − 4U0/3. From (5.4), the competition instability threshold when q = 2 with
K ≥ 2 hotspots is

Dc = ω3S

4K4α2π2 [1 + cos (π/K)]

(
κ2 + 1

2

)
, where κ2 = 4U0

3ω
. (7.2)

The mapping (7.1), combined with the Hopf parameterisation in the τu vs. Du plane as given
by (6.16), is readily implemented numerically to determine a linear stability phase diagram in the
εDp vs. D parameter plane, representing the diffusivity of the police and criminals, respectively.
For three different values of U0, in Figure 9, we plot this linear stability phase diagram for a
two-hotspot steady state for the parameter set S = 6, γ = 2 and α = 1. A similar plot is shown in
Figure 10 for a three-hotspot steady state.

For various points in the εDp vs. D parameter plane, we now validate our linear stability
results using the PDE software VLUGR [2] to compute full numerical simulations of the RD
system (1.4) with 1000 meshpoints. For the initial condition for (1.4), we use a perturbation of
the K-hotspot steady-state solution (see Corollary 2.2), given by

A(x, 0) = 1

ε
√
v0

K∑
j=1

(
1 + 0.01aj

)
w
[
ε−1(x − xj)

]+ α

⎛⎝1 −
K∑

j=1

e−(x−xj)
2/ε2

⎞⎠ , (7.3a)
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FIGURE 9. The linear stability phase diagram for a two-hotspot steady state in the εDp vs. D parameter plane for cops-on-the-dots, as obtained from (7.1), when
S = 6, γ = 2 and α= 1. Left panel: U0 = 2. Middle Panel: U0 = 3. Right Panel: U0 = 4. The thin vertical line in each panel is the competition stability threshold
Dc of (7.2), which decreases rather substantially as U0 increases. The shaded region is where the steady-state two-hotspot pattern is linearly stable. For D>Dc,
the hotspot solution is unstable due to a competition instability, whereas in the unshaded region for D<Dc, the hotspot steady state is unstable to an asynchronous
oscillatory instability of the hotspot amplitudes. PDE simulations of (1.4) at the marked points in the left panel are shown in Figure 11.
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FIGURE 10. The linear stability phase diagram for a three-hotspot steady state in the εDp vs. D parameter plane for cops-on-the-dots, as obtained from (7.1), when
S = 6, γ = 2 and α = 1. Left panel: U0 = 2. Middle Panel: U0 = 3. Right Panel: U0 = 4. The three-hotspot steady state is linearly stable in the shaded region. The
solid and dot-dashed curves are the Hopf bifurcation boundaries for the (sign-alternating) j = 2 mode and the j = 1 mode, respectively. This steady state undergoes
an oscillatory instability below the solid or dot-dashed curves. In each panel, the thin vertical line at the right edge of the shaded region is the competition stability
threshold Dc of (7.2). The additional thin vertical line in the right panel for U0 = 4 is where the Hopf boundary switches from the j = 2 to the j = 1 mode. PDE
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https://doi.org/10.1017/S0956792519000305 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0956792519000305


906 A. Buttenschoen et al.

ρ(x, 0) =
K∑

j=1

(
w[ε−1(x − xj)]

)2
, U(x, 0) = U0

4εK

K∑
j=1

(
w[ε−1(x − xj)]

)2
, (7.3b)

where the hotspot locations are at their steady-state values xj = S(2j − 1)/(2K) for j = 1, . . . , K.
In (7.3b), the random coefficient aj of the 1% perturbation of the hotspot amplitudes is taken to be
uniformly distributed in [−1, 1]. For the PDE simulations reported below, we plot the amplitudes
of the maxima of A vs. t for the baseline parameter set S = 6, γ = 2 and α= 1.

For a two-hotspot solution, in Figure 11, we validate our linear stability predictions shown
in the left panel of Figure 9 for U0 = 2 and ε = 0.03. The numerical results shown in Figure 11
suggest that the asynchronous hotspot oscillations, due to a Hopf bifurcation, and the competition
instability, due to a positive real eigenvalue, are both subcritical instabilities.

For a three-hotspot solution, PDE simulations of (1.4) are shown in Figure 12 at each of the
three marked points in the linear stability phase diagram given in the left panel of Figure 10.
As discussed in the figure caption of Figure 12, these results again confirm the prediction of our
linear stability analysis. For the parameter set corresponding to the middle panel of Figure 12,
the hotspot steady state is unstable to both a competition instability, due to the sign-altering
j = 1 mode, and an oscillatory instability for the j = 2 mode, which would lead to anti-phase
oscillations between the first and third hotspots. However, since the linear growth rate for such
anti-phase oscillations is rather small (see the right panel of Figure 6), the competition instability,
which is due to a positive eigenvalue in the spectrum of the NLEP, is the dominant instability.

Finally, in Figure 13, we plot the numerically computed hotspot amplitudes, obtained from a
PDE simulation of (1.4), at the marked point in the middle panel of Figure 10. For this parameter
set, the three-hotspot steady state is unstable to both sign-altering ( j = 1) and anti-phase ( j = 2)
temporal oscillations. The numerical results in Figure 13 show that the sign-altering mode is
dominant and that small-amplitude oscillations persist over rather long time intervals. In contrast
to the likely subcritical behaviour observed in the left panel of Figure 12, for this parameter set,
the results in Figure 13 suggest a supercritical oscillatory instability.

8 Discussion

We focus here on summarising some of our main linear stability results for steady-state hotspot
solutions of (1.4) for the special case q = 2 of ‘cops-on-the-dots’; a PDE model originally
derived in [10] from the continuum limit of an agent-based model of urban crime with police
intervention. For q = 2, our hybrid asymptotic-numerical analysis of the NLEP linear stabil-
ity problem has provided phase diagrams in the εDp vs. D parameter space characterising the
linear stability properties of multi-hotspot steady states for (1.4). For D exceeding the thresh-
old Dc given by (7.2), called the competition stability threshold, we proved in Proposition 6.4
that multi-hotspot steady-state solutions are unstable for all police diffusivities Dp on the range
O(1) � Dp �O(ε−3). On the intermediate range of D given by D� <D<Dc, for some D� > 0,
our linear stability theory predicts that asynchronous hotspot amplitude oscillations will occur
only if the police diffusivity is below some Hopf bifurcation threshold. In Section 4, and more
specifically in Section 4.2.1, we have established through a detailed analysis of the additional
NLEP given in (3.20) that a one-hotpot steady state is linearly stable, and that a multi-hotspot
steady state is always linearly stable to synchronous perturbations of the hotspot amplitudes when
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FIGURE 11. The hotspot amplitudes for A computed numerically from the full PDE system (1.4) for a two-spot pattern with S = 6, γ = 2, α= 1, U0 = 2, ε = 0.03
and q = 2 (cops-on-the-dots), at each of the three marked points in the linear stability phase diagram shown in the left panel of Figure 9. Left panel: D = 0.3 and
εDp = 0.5, so that Dp ≈ 16.67 (∗ point). The spot amplitudes are stable to asynchronous oscillations and to the competition instability. Middle panel: D = 0.3 and
εDp = 0.1, so that Dp ≈ 3.33 (× point). Spot amplitudes are unstable to asynchronous oscillations, leading to the oscillatory collapse of a hotspot. Right panel:
D = 0.5 and εDp = 0.1, so that Dp ≈ 3.33 (+ point). Spot amplitudes are unstable to a competition instability, leading to the monotonic collapse of a hotspot. These
results are consistent with the linear stability predictions in the left panel of Figure 9.
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FIGURE 12. The hotspot amplitudes computed numerically from the full PDE system (1.4) for a three-spot pattern with S = 6, γ = 2, α = 1, U0 = 2, ε = 0.03
and q = 2 (cops-on-the-dots), at each of the three marked points in the linear stability phase diagram shown in the left panel of Figure 10. Left panel: D = 0.05
and εDp = 0.03, so that Dp = 1 (× point). The spot amplitudes are unstable to asynchronous oscillations for the sign-altering j = 1 mode, which leads to the
oscillatory collapse of the middle hotspot. The amplitudes of the first and third hotspots are essentially synchronised and trace out nearly identical curves. Middle
panel: D = 0.1 and εDp = 0.02, so that Dp ≈ 0.667 (+ point). Spot amplitudes are unstable to asynchronous oscillations to the j = 2 mode, and are unstable to
a competition instability for the sign-altering j = 1 mode. The latter instability has a larger growth rate. An overshoot behaviour, followed by a collapse of the
(essentially synchronous) first and third hotspots, is observed. Right panel: D = 0.1 and εDp = 0.24, so that Dp = 8 (∗ point). Spot amplitudes are unstable to a
competition instability for the sign-altering mode, but are now linearly stable to the j = 2 oscillatory mode. A monotonic collapse of the first and third hotspots is
observed. These results are consistent with the linear stability predictions in the left panel of Figure 10.
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FIGURE 13. The hotspot amplitudes computed numerically from the full PDE system (1.4) for a three-spot
pattern with S = 6, γ = 2, α = 1, U0 = 3, ε = 0.03 and q = 2 (cops-on-the-dots), at the marked point in
the middle panel of the phase diagram in Figure 10 where D = 0.02 and εDp = 0.01, so that Dp ≈ 0.333.
The spot amplitudes are unstable to both asynchronous oscillations for the sign-altering j = 1 mode and the
anti-phase mode j = 2. Long-lived small-amplitude temporal oscillations that synchronise the first and third
hotspots are observed (indicated by nearly overlapping amplitudes for the first and third spots).

O(1) � Dp �O(ε−3). Finally, in Section 7, our linear stability predictions were validated from
full PDE numerical simulations of (1.4).

For the case q = 2 of ‘cops-on-the-dots’, we now compare the linear stability results obtained
in [22] for the simple police interaction model, in which −ρU in (1.1b) is replaced by −U , with
the results obtained herein for (1.4) for a predator-prey type police interaction. Although the
overall qualitative shape of the various regions in the linear stability phase diagram of the εDp

vs. D parameter plane is similar for the two models, there are two key quantitative differences.
Firstly, the competition instability threshold value of D for (1.4) can be written as (see (7.2) with
q = 2)

Dc = S

8K4π2α2 [1 + cos (π/K)]
g(ω) , where g(ω) ≡ −ω3 + 2S(γ − α)ω2 ,

ω= S(γ − α) − 4U0/3 , (8.1)

on 0<U0 <U0,max ≡ 3S(γ − α)/4. For the simple police interaction model studied in [22], equa-
tion (8.1) still holds but with ω replaced by ωs ≡ S(γ − α) − U0 (see equation (4.10) of [22]).
For a given parameter set and fixed policing level U0, since ω<ωs it follows that Dc is smaller
for (1.4) than for the RD model in [22]. Consequently, the range of D where a K-hotspot pattern
with K ≥ 2 is unstable for all police diffusivities Dp is larger for (1.4) than it is for the RD model
in [22]. Secondly, with regard to asynchronous hotspot oscillations for a two-hotspot solution,
we observe by comparing the left panel of Figure 9 with the left panel of Figure 22 of [22] that
the range of εDp where these oscillations occur is smaller for (1.4) than it is for the RD model
studied in [22], although the corresponding interval of D is roughly similar. A similar conclusion
holds for a three-hotspot steady-state solution (compare left panels of Figures 10 and 24 of [22]).
This indicates that the parameter region where asynchronous hotspot oscillations occur is smaller
for (1.4) than for the model in [22].
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8.1 Open problems and further directions

We now discuss a few open technical issues for our specific RD system (1.4). Firstly, in our
NLEP linear stability analysis of (3.22) to characterise asynchronous hotspot amplitude oscilla-
tions, we focused primarily on the case q = 2 of ‘cops-on-the-dots’, where the identities (4.24)
were central for recasting the NLEP (3.22) with three nonlocal terms into the NLEP (6.5) with
only one nonlocal term proportional to

∫
w3�. Since this special reduction is not available for

q �= 2, a full numerical approach on the NLEP (3.22) would be needed to determine any Hopf
bifurcation threshold for asynchronous oscillations when q �= 2. Secondly, our construction of
the steady state for (1.4), and our derivation of the NLEP, required that q> 1. For q = 1, corre-
sponding to a peripheral interdiction policing strategy (cf. [10]), the complicating feature of the
analysis is that there is now a non-negligible police population density both within the core of a
hotspot and in the outer region away from the hotspots. This makes the asymptotic construction
of a hotspot steady state considerably more intricate and leads to an NLEP with a rather different
structure. Thirdly, for q = 2, it would be worthwhile to undertake a weakly nonlinear analysis
to characterise the local branching behaviour near a Hopf bifurcation point of the asynchronous
hotspot amplitude oscillations. In contrast to the RD model of simple police interaction studied in
[22], where only subcritical amplitude oscillations were found numerically, it appears that either
subcritical or supercritical hotspot amplitude oscillations can occur for (1.4) (compare Figures 11
and 12 with Figure 13). The significance of analytically establishing the supercriticality of the
Hopf bifurcation is that it would determine the parameter range where crime is only displaced
temporally between neighbouring hotspots over very long time intervals, without achieving a
reduction in the overall total crime.

An open problem with a wider scope would be to study hotspot patterns for the RD system
(1.4) when the criminal diffusivity satisfies D =O(1). For the basic two-component crime model
with no police intervention, on this range it was shown in [21] that new hotspots of criminal activ-
ity can nucleate from an otherwise quiescent, largely crime-free, background, near a saddle-node
bifurcation point of hotspot equilibria. It would be interesting to analyse whether this ‘peak-
insertion’ effect persists for (1.4) when the effect of police is included. Finally, it would be
worthwhile to extend our 1-D analysis to a 2-D spatial domain to determine whether hotspot
amplitudes in 2-D can undergo asynchronous temporal oscillations, leading to the temporal
displacement of crime between neighbouring spatial regions.

8.2 Qualitative remarks: Role of police intervention

From our steady-state hotspot analysis, as summarised in Corollary 2.2, the criminal density in
a hotspot region is independent of the policing level. However, the maxima of the attractiveness
field do decrease if additional police are added (U0 increases) or if their movement towards
maxima of the attractiveness becomes more pronounced (q increases). In fact, there is a critical
level U0,max of policing for which no steady-state hotspot patterns can occur.

However, in the event that that the police deployment U0 is fixed below the level required to
eliminate the occurrence of any crime hotspot, the key issue is how should the movement of the
police be directed so as to reduce the overall total crime in the region. It is readily shown that
the total crime in the region at a given time is proportional to the number of observable crime
hotspots that can exist on the region. As such, within the context of the model, the police effort
should be directed to try to minimise the maximum number of dynamically stable steady-state
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hotspots that can occur for the given region, and more specifically to shrink the parameter regime
where these hotspots are stable, and hence observable, in time.

The analysis in Section 5 showed that there is a critical value of the diffusivity of criminals,
referred to as the competition stability threshold, such that a particular steady-state hotspot pat-
tern is unstable if the criminal diffusivity exceeds this value. This critical value depends on the
number of hotspots, the overall policing level and the police focus towards maxima of the attrac-
tiveness field. Given that, in our model, the movement of criminals is not directly influenced by
the police (i.e. D is a constant), the goal to decrease the overall amount of crime (i.e. the maxi-
mum number of stable hotspots) was to reduce this critical threshold of the criminal diffusivity
by varying the policing level and police focus. Paradoxically, we showed that an overzealous
policing effort focused on the hotspot regions (q increasing) is not beneficial to reducing the
maximum number of observable crime hotspots when the overall level of police deployment is
too low.

When the criminal diffusivity is below, but sufficiently close to, the competition stability
threshold, in the context of our model the only strategy to decrease the number of observable
crime hotspots is for the police to focus their movement towards observable hotspots in a suffi-
ciently sluggish way (smaller Dp). With this strategy, we have shown that temporal oscillations
in the amplitudes of the hotspots can be initiated, which has the effect of initiating a periodic-in-
time displacement of crime between adjacent spatial regions. A problem left open in our study is
to determine whether this temporal periodic sloshing in the intensity of adjacent crime hotspots
eventually leads to the destruction of certain hotspots, and consequentially an overall reduction
in total crime, or in fact persists for all time. However, the existence of oscillatory dynamics
in the intensity of the hotspots is qualitatively consistent with field observations reported in [3]
for a ‘cops-on-the-dots’ policing strategy. Finally, we remark that if the criminal diffusivity is
sufficiently below the competition threshold, our phase diagrams have shown that no police
intervention will be useful for reducing the overall total crime.
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Appendix A Derivation of the jump conditions: The NLEP

In this appendix, we derive the BVPs (3.7) and (3.9), with jump conditions, that are needed to
obtain the NLEP (3.22).

To derive the BVP (3.7) with a jump condition for ψx across the hotspot region, we inte-
grate (3.2b) over an intermediate domain −δ < x< δ with ε� δ� 1. We use the facts that
Ae ∼ ε−1w/

√
v0, φ ∼�(y), Ae(±δ) ∼ α and ue = εq−1ũe as given in (2.14), to obtain, upon letting

δ/ε→ +∞, that

εDα2 [ψx]0 + 2Dα [vexφ]0 = 3ε
∫ ∞

−∞
w2� dy + εψ(0)

v
3/2
0

∫ ∞

−∞
w3 dy

+ε(q + 2)ũe

v
(q−1)/2
0

∫ ∞

−∞
wq+1� dy + εũeψ(0)

v
1+q/2
0

∫ ∞

−∞
wq+2

+εη(0)

v
q/2
0

∫ ∞

−∞
wq+2 dy +O(ε2λ) ,

where we have introduced the notation [a]0 ≡ a(0+) − a(0−) to indicate that the evaluation is to
be done with the outer solution. In addition, we have used the shorthand notation that

∫
(. . . )≡∫∞

−∞ (. . . ) dy. Since φ =O(ε3) in the outer region from (3.6), we can neglect the second term on
the left-hand side of the expression above. For eigenvalues for which λ�O(ε−1), the expression
above simplifies to

Dα2[ψx]0 = 3
∫

w2�+ ψ(0)

v
3/2
0

∫
w3 + (q + 2)ũe

v
(q−1)/2
0

∫
wq+1�+ ũeψ(0)

v
1+q/2
0

∫
wq+2 + η(0)

v
q/2
0

∫
wq .

(A.1)

Then, in (3.2b), we use φ =O(ε3) in the outer region from (3.6), together with the fact εqηAq
e �

O(ε) since q> 1. In this way, (3.2b) and (A.1) yield the leading-order BVP problem for ψ given
in (3.7) with a jump condition for ψx across x = 0:

To formulate a similar BVP for η(x), we integrate (3.2c) over −δ < x< δ, with ε� δ� 1,
and let δ/ε→ ∞ to obtain

Dαq [ηx]0 +Dqαq−1O(ε2) = ε3−qτλ

[
qũε

v
(q−1)/2
0

∫
wq−1�+ η(0)

v
q/2
0

∫
wq

]
. (A.2)

Moreover, in the outer region, we obtain from (3.2c) that

Dαqηxx +O(ε2) = ε2τλ
[
αqη+O(ε2)

]
. (A.3)
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For λ=O(1), we can neglect the O(ε2) term on the left-hand side of the jump condition (A.2)
when O(ε2) �O(ε3−qτ ), which implies that τ �O(εq−1). On this range of τ , we obtain the
jump condition

Dαq [ηx]0 ∼ ε3−qτλ

[
qũe

v
(q−1)/2
0

∫
wq−1�+ η(0)

v
q/2
0

∫
wq

]
. (A.4)

Likewise, when λ=O(1), we have from (A.3) that ηxx ≈ 0 to leading order in the outer region
when τ �O(ε−2). Therefore, upon combining these two bounds, in our analysis for q> 1 we
will consider the parameter range

O(εq−1) � τ �O(ε−2) . (A.5)

Upon using Dp = ε−2D/τ , (A.5) implies the following range of the police diffusivity:

O(1) � Dp �O(ε−1−q) . (A.6)

Finally, by introducing the new variable τ̂ by τ̂ ≡ ε3−qτ , we obtain from (A.4) that

Dαq [ηx]0 ∼ τ̂ λ

[
qũe

v
(q−1)/2
0

∫
wq−1�+ η(0)

v
q/2
0

∫
wq

]
. (A.7)

From (A.5), we obtain that both the jump conditions (A.7) hold and that ηxx ≈ 0 in the outer
region when τ̂ satisfies

O(ε2) � τ̂ �O(ε1−q) , (A.8)

where q> 1. For this range of τ̂ , which implies the range (A.6) for the police diffusivity, we
obtain the BVP (3.9) for η(x) with the specified jump condition for ηx across x = 0. We remark
that when τ̂ = ε3−qτ , the police diffusivity Dp is Dp =O(ε1−q), which is a specific scaling law
on the range given in (A.6).

Appendix B Proof of lemma 6.3

We first determine FR(ω) in (6.14) for ω→ 0. We use (L2
0 +ω2)−1 = L−2

0 −ω2L−4
0 +O(ω4) for

ω→ 0, to obtain that

FR(ω) =
∫

w3L−1
0 w3∫

w4
−ω2

∫
w3L−3

0 w3∫
w4

+O(ω4) . (B.1)

Since L−1
0 w = 1

2

(
w + yw′) and L−1

0 w3 = w/2 (see equation (3.7) of [24]), we get using integration
by parts that

FR(ω) = 1

2
− ω2

2
∫

w4

∫
w3L−2

0 w +O(ω4) = 1

2
− ω2

2
∫

w4

∫ (
L−1

0 w3
) (

L−1
0 w

)+O(ω4) ,

= 1

2
− ω2

8
∫

w4

∫
w
(
w + yw′)+O(ω4) = 1

2
− ω2

8
∫

w4

[∫
w2 + 1

2

∫
y
(
w2
)′]

.

(B.2)
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Upon integrating the last expression in (B.2) by parts, and then using
∫

w2/
∫

w4 = 3/4 from
(2.5), we conclude that

FR(ω) = 1

2
− ω2

∫
w2

16
∫

w4
+O(ω4) = 1

2
− 3ω2

64
+O(ω4) , as ω→ 0 . (B.3)

This yields the result for FR(ω) given in (6.17) of Lemma 6.3.
Next, we derive the asymptotics of FI (ω) as ω→ 0. By letting ω→ 0 in (6.14) for FI , we

obtain that

FI (ω) =ω

∫
w3L−2

0 w3∫
w4

−ω3

∫
w3L−4

0 w3∫
w4

+O(ω5) . (B.4)

Upon integrating by parts, and then using L−1
0 w3 = w/2, we obtain that

FI (ω) =ω

∫ (
L−1

0 w3
)2∫

w4
−ω3

∫ (
L−1

0 w3
) (

L−3
0 w3

)∫
w4

+O(ω5)

= ω

4

∫
w2∫
w4

− ω3

2
∫

w4

∫
wL−2

0

(
L−1

0 w3
)+O(ω5) .

(B.5)

Next, we use L−1
0 w3 = w/2,

∫
w2/

∫
w4 = 3/4 and

∫
wL−2

0 w = ∫ (
L−1

0 w
)2

from integration by
parts. Then, (B.5) becomes

FI (ω) = 3ω

16
− ω3

4
∫

w4

∫ (
L−1

0 w
)2 +O(ω5) . (B.6)

Finally, we use L−1
0 w = (w + yw′)/2, so that upon integration by parts (B.6) becomes

FI (ω) = 3ω

16
− ω3

16
∫

w4

[∫
w2 +

∫
y(w2)′ +

∫
y2(w′)2

]
+O(ω5) (B.7)

= 3ω

16
− ω3

16
∫

w4

∫
y2(w′)2 +O(ω5) .

This completes the derivation of the two-term expansion of FI (ω) as ω→ 0 given in (6.17) of
Lemma 6.3. Using

∫
w4 = 16/3 and w = √

2 sech(y), a numerical quadrature yields that FI (ω) =
3ω/16 + dIω

3 +O(ω5), with dI ≈ −0.0285.

Appendix C Proof of lemma 4.1

In this appendix, we prove Lemma 4.1, i.e. we establish the following inequality

I0[�] =
∫

[(�′)2 +�2 − 3w2�2] + 3

∫
w3�

∫
w2�∫

w3
> 0 , ∀� �≡ 0 . (C.1)

To this end, we consider the following quadratic form

Qa[�] ≡
∫

[(�′)2 +�2 − 3w2�2] + 2a

∫
w3�

∫
w2�∫

w3
+ 2b

(
∫

w3�)2∫
w4

, (C.2)
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where

b = 5

4
− a . (C.3)

By setting p = 3 in Lemma 5.3 (2) of [28], we infer that∫
[(�′)2 +�2 − 3w2�2] + 2

(∫
w3�

)2∫
w4

> 0 , (C.4)

and hence Q0[�]> 0 (since 2b = 5/2> 2 when a = 0). Next, we observe that Qa[�] =
− ∫

�L�, where L is the self-adjoint linear operator

L�≡ L0�−
(

a

∫
w2�∫
w3

+ 2b

∫
w3�∫
w4

)
w3 − a

∫
w3�∫
w3

w2 . (C.5)

We will continue in the parameter a until we reach a point for which L has principal eigenvalue
zero, i.e. there exists an eigenfunction satisfying L�= 0 for some � �≡ 0. At this point, Qa[�]
ceases to be positive definite.

To study this zero-eigenvalue problem, we set c1 = ∫
w3� and c2 = ∫

w2�. We will use
the identities L−1

0 w3 = 1
2 w, L−1

0 w2 = 1
3 w2,

∫
w3L−1

0 w2 = ∫
w2L−1

0 w3 = 1
2

∫
w3 and

∫
w2L−1

0 w2 =
1
3

∫
w4. Upon multiplying L�= 0 in (C.5) by w and integrating by parts, we get

c1 =
(

a
c2∫
w3

+ 2b
c1∫
w4

) ∫
w4

2
+ a

2

c1∫
w3

∫
w3 , (C.6)

which yields (
b + a

2
− 1

)
c1 + a

2

∫
w4∫
w3

c2 = 0 . (C.7)

Similarly, we multiply L�= 0 by w2 and integrate by parts to get

c2 =
(

a
c2∫
w3

+ 2b
c1∫
w4

) ∫
w5

3
+ a

3

c1∫
w3

∫
w4 . (C.8)

Upon using
∫

w5 = (3/2)
∫

w3, (C.8) becomes(
a

3

∫
w4∫
w3

+ b

∫
w3∫
w4

)
c1 +

(a

2
− 1

)
c2 = 0 . (C.9)

The homogeneous linear system (C.7) and (C.9) for c1 and c2 has a nontrivial solution if and
only if H(a) = 0, where

H(a) ≡
(

b + a

2
− 1

) (a

2
− 1

)
− a2

6

(∫
w4∫
w3

)2

− ab

2
. (C.10)

Recalling the choice of b in (C.3), and using
∫

w4 = 16/3 and
∫

w3 = √
2π , we readily calculate

from (C.10) that

H(a) = −1

4
+
(

1

4
− 64

27π2

)
a2 . (C.11)

We calculate that H(0)< 0 and H(2)< 0, so that H(a)< 0 for a ∈ [0, 2].
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In this way, we conclude that Q 3
2
[�]> 0 ∀� �≡ 0, which means that

Q 3
2
[�] :=

∫ [(
�′)2 +�2 − 3w2�2

]
+ 3

∫
w3�

∫
w2�∫

w3
− 1

2

(
∫

w3�)2∫
w4

> 0 , (C.12)

and hence I0[�]> 0 as claimed. If
∫

w3�= 0, then by Lemma 5.1 (1) of [28], I0[�]> 0. If∫
w3� �= 0, then I0[�]> 0.
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