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Abstract

Teosinte, the wild progenitor of maize, has immense potential for providing unique traits and
is more divergent compared to inbred lines and landraces. One hundred and sixty-nine teo-
sinte-introgressed maize backcross inbred lines were developed to widen the genetic base of
maize with predomestication alleles. The population was evaluated phenotypically and geno-
typic data of 76 SSR markers were used to map quantitative trait loci (QTLs) governing the
targeted traits. Sixty-six QTLs were detected for eight plant architect-related traits that are
spread over 10 different chromosomes with phenotypic variation ranging from 2.29 to
13.97%. Maximum three stable QTLs were recorded for days to anthesis (DA) followed by
two for days to silking (DS), plant height (PH) and node bearing first ear (NBE). For rest
of three traits namely flag leaf length (FLL), flag leaf width (FLW) and ears per plant (E/P)
only one stable QTL was detected. Among the 16 common QTLs, the marker phi328178-
linked QTL governed four characters (DA, DS, FLL, FLW) simultaneously, followed by
umc1622-linked (ASI, FLW, E/P), umc2341-linked (DA, DS, NBE) and phi075-linked QTLs
(ASI, PH, NBE) controlling three traits each. Remaining 12 QTLs controlled two characters.
Molecular association between co-localized QTLs for different traits was also validated at the
phenotypic level by significant correlation estimates. For eight studied traits, 53 superior lines
were identified which along with parents (teosinte and maize inbred DI-103) were grouped
into 12 clusters. Therefore, lines clustered independently can be combined to accumulate
desirable traits for the improvement of maize.

Introduction

Maize (Zea mays L.) is a versatile crop and has greatly contributed to the world’s economy. Being
a C4 plant with very high yield potential, it is also called the ‘queen of cereals’ (Saritha et al.,
2020). It is the third most important cereal crop after wheat and rice in the world’s agricultural
economy (FAO, 2020). Maize is required by various sectors from poultry, animal husbandry to
value-added products for human consumption and also is a major source of industrial raw mate-
rials for starches, acids and alcohol production (Galani et al., 2020). Thus, to meet the increasing
demand, improvement in yield and resiliency to climatic fluctuation is the priority area of maize
improvement programme (Keimeso et al., 2020). Grain yield is a complex trait, highly dependent
and determined by various independent component characters. Optimizing the expression of
yield contributing traits through genetic manipulation is probably the best way to enhance
maize yield. Therefore, there is a need for integrated approach for improvement of the traits
related to plant morphology (Wang et al., 2008a, 2008b; Ramstein et al., 2020).

Morphological traits related to flowering behaviour (i.e. days to anthesis, days to silking,
anthesis-silking interval) are considered important yield traits under stress conditions particu-
larly under drought (Westgate and Bassetti, 1990; Edmeades et al., 1997; Sah et al., 2020) and
are also important for the development of varieties with variable maturity duration suited for
growing under variable climatic conditions. Traits related to leaf morphology namely, flag leaf
length and flag leaf width are considered important from the yield point of view. Leaf size is
dependent on leaf width, leaf length and leaf area, can significantly influence canopy morph-
ology, lead to higher photosynthetic activity and may result in higher grain yield (Zhang et al.,
2020). Similarly, plant height, node bearing first ear and ears per plant are important traits
concerning lodging tolerance (Li et al., 2007), as well as yield (Motto and Moll, 1983).
Therefore, understanding the genetics of these traits is essential to breed varieties with good
yield potential as well as resilient to climatic changes.
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Yield and various yield-associated traits are polygenic in nature
and their effective utilization in breeding depends on their dissec-
tion into simply inherited traits using the approach of quantitative
trait locus (QTL) analysis. QTLs have been analysed in many inves-
tigations using population derived from biparental crosses between
the contrasting maize inbred lines for flowering behaviour (Guo
et al., 2008; Liu et al., 2016a), leaf morphology (Agrama et al.,
1999; Liu et al., 2010; Ku et al., 2012; Zheng and Liu, 2013; Yang
et al., 2015), plant height (Guo et al., 2008; Yang et al., 2008;
Nikolic et al., 2011), ear per plant (Veldboom and Lee, 1994)
and node bearing ear (Nikolic et al., 2011; Zhu et al., 2013; Li
et al., 2014a, 2014b). Large-scale QTL mapping performed by
Tian et al. (2011) for leaf length and leaf width concluded that
the genetic architecture of the leaf traits was governed by numerous
minor QTLs. Such QTL studies in teosinte (Z. mays subsp. parvi-
glumis Iltis and Doebley) derived maize population are limited. In
fact, cultivated modern maize is a finished product that may not
contain numerous alleles, which have been lost during the course
of domestication followed by selection and trait-specific breeding
(Vigouroux et al., 2005; Tenaillon et al., 2004; Warburton et al.,
2008; Singh et al., 2017; Tian et al., 2019). Hence, many desirable
alleles required for improvement in yield as well as climatic resili-
ency are limited in elite maize germplasm (Tarter et al., 2004; Le
Clerc et al., 2005). However, wild relatives are expected to still pos-
sess the desirable and diverse allelic variants that were lost during
the process of domestication (Liu et al., 2016a; Mammadov et al.,
2018; Tian et al., 2019; Joshi et al., 2021; Sahoo et al., 2021) and
such wild alleles can be re-domesticated through introgression or
pre-breeding approaches. Teosinte, the wild progenitor of maize,
is distinct from maize in several aspects; namely, flowering behav-
iour, plant morphology, ear traits and yield (Smith and Lester,
1980; Doebley, 2004; Singh et al., 2017; Adhikari et al., 2019,
2020; Fu et al., 2019; Yang et al., 2019). Despite dramatic morpho-
logical differences, the sexual compatibility between maize and teo-
sinte is well documented (Singh et al., 2017; Kumar et al., 2019).
Therefore, lines with desirable traits can be generated and multiple
traits can be mapped together by targeting a single mapping popu-
lation. Many investigators have used teosinte-introgressed popula-
tions for QTL analysis of different traits (Calderón et al., 2016;
Liu et al., 2016a, 2016b; Karn et al., 2017; Fu et al., 2019). Our
research is focused on diversification of maize germplasm resources
as the variability in maize inbreds and landraces is less in compari-
son to the wild subspecies teosinte. Therefore, in the present inves-
tigation, we intended to analyse a population comprising 169
backcross inbred lines (BILs) derived from maize and teosinte
hybridization to elucidate the genetic basis of plant architecture-
related traits, to assess genetic variability in the population, and
to identify superior teosinte-introgressed maize inbred lines with
desirable traits to be used in maize breeding programmes.

Materials and methods

Generation of materials

Materials for the investigation consisted of 169 BC1F5 lines
derived from crossing wild progenitor teosinte (Z. mays ssp. par-
viglumis Iltis and Doebley) and a maize inbred line DI-103.
Teosinte parviglumis was locally collected and maintained by con-
trolled pollination for five successive generations. The maize
inbred line used as seed parent was crossed with teosinte used
as pollen parent to produce F1s. The maize line was crossed
with F1 individuals to generate backcross, BC1F1 seeds. The

BC1F1 seeds were sown in the next season and selfed to generate
BC1F2 seeds. Subsequently, selfing was continued for three more
generations to produce BC1F5 seeds. Thus, the 169 BC1F5 BILs
constituted the population for the present investigation.

Experimental layout and trait evaluation

The 169 BILs of maize were sown in a randomized complete block
design with two replications in two different environments
(artificially inoculated with banded leaf and sheath blight causing
fungal pathogen Rhizoctonia solani (E1) and uninoculated (E2)) in
the Kharif season (June to October) 2018. Each line was planted
in a 2 m long row separated at 75 cm from other rows. The
169 BILs were evaluated for eight plant architecture traits, namely,
days to 50% anthesis (DA), days to 50% silking (DS), anthesis-
silking interval (ASI), flag leaf length (FLL), flag leaf width
(FLW), plant height (PH), ear per plant (E/P) and node bearing
first ear (NBE). For recording observations, three plants were ran-
domly selected under both the environments, scores to different
characters were assigned and finally average of three plants was
calculated and used for statistical analysis.

DNA extraction, SSR assay and scoring of genotyping data

For genomic DNA isolation, leaves were collected from 30 days
old seeding and DNA was extracted by CTAB (cetyl trimethyl
ammonium bromide) method (Doyle and Doyle, 1990) with
some modification. The quality and quantity of DNA were
assessed using electrophoresis (0.8% agarose gel) and spectropho-
tometer (Systronics PC Based Double Beam Spectrophotometer
2202), respectively. Then stock DNA was diluted to obtain work-
ing concentrations of 200 ng/μl. Polymorphism between maize
inbred line DI-103 and teosinte-parviglumis was investigated
using 168 microsatellite markers that were distributed throughout
the maize genome. PCRreactionswereperformed in13.8 μl reaction
mixture containing 1.5 μl reaction buffer with 15mMMgCl2 (10 ×),
3 μl (200 ng/μl) genomic DNA, 0.35 μl dNTPs mix (2.5mM each),
1.5 μl each forward and reverse primer (40 ng/μl), 0.25 μl Taq DNA
polymerase (3 U/μl) and 7.2 μl deionized water. The PCR cycle was
performed as: the flow for the first cycle was initial denaturation
(94°C for 5 min), denaturation (94°C for 40 s), annealing (55–68°C
for 40 s) and elongation (72°C for 1 min). The cycle from denatur-
ation to elongation was repeated 35 times, followed by a final elong-
ation (10min at 72°C). The amplified PCR profile of each BIL with
each marker was resolved on 3% agarose gel and visualized and cap-
tured using PC-based gel documentation system (Alpha Innotech
Corporation, San Leandro, CA USA). The amplification profile of
each marker was compared with a standard DNA ladder of 100 bp
and allelic sizewas determined. The SSR data of each linewere scored
separately by using the following coding symbols.

Scoring of SSR banding pattern in BC1F5 population

S. no. Code Type of band Description

1 A AA Homozygote for parent 1

2 H Aa Heterozygote

3 B Aa Homozygote for parent 2

4 E – Missing data
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Statistical analysis and QTL mapping

R statistical software was used to perform analysis of variance
(ANOVA). Ten superior lines that showed higher average esti-
mates among the environments for all the studied traits were
identified and they were classified based on the UPGMA
(unweighted pair group method with arithmetic averages) method
of PAST (PAleontological STatistics) software (Hammer et al.,
2001) and a dendrogram was generated by using Jaccard dissimi-
larity matrix. Polymorphism information content (PIC) value of
each marker was calculated by using the formula given by
Smith et al. (1997) PIC = 1 − ∑n

i fi
2 where fi is the frequency

of the ith allele. The PIC calculation was performed using
Microsoft Excel. The single-marker analysis method of Win
QTL Cart 2.5 software was used to perform QTL analysis
(Wang et al., 2012). It is the quickest method that scans linkage
between the trait of interest and a single marker at a time.
Based on genotyping data of each marker, individuals were
grouped in different genotypic classes, and the mean value of tar-
geted traits for each class was estimated by summing up the esti-
mates of each individual of that particular class. Further t-tests
were performed to compare the mean value of each genotypic
class if the difference is significant then the marker based on
which individuals were classified in different genotypic classes is
likely to be linked with the trait of interest.

Results

Phenotyping of plant architecture traits and identification of
superior lines

ANOVA revealed significant variation among 169 lines for all the
traits which reflect differential allelic introgression from teosinte
leading to variation in BC1F5 maize lines (Table 1). The range
of different plant architecture-related traits in both control (E2)
and banded leaf and sheath blight disease stress (E1) environ-
ments is presented in online Supplementary Table S1 and Figs
S1–S8. Days to anthesis and days to silking of the maize inbred
line DI-103 were 52.50 and 55.00 days in E1, and 54.50 and
56.50 days in E2, respectively. However, teosinte did not differ
for days to anthesis (81.50 days, E1) and days to silking (78.00–
78.50 days, E2) in both the environments. In BC1F5 maize lines,
the DA and DS ranged from 45.00 to 67.00 days and 43.00 to
66.00 days in E1, and 47.00 to 68.00 days and 44.00 to 67.00
days in E2, respectively. In the case of teosinte and maize inbred
line DI-103, ASI was nearly the same (under both the environ-
ments +3.00 to +3.50 and −2.00 to −2.50 days). However, in
BC1F5 lines ASI varied from −5.00 to +4.00 days and −4.00 to
+5.00 days under E1 and E2, respectively. Maize inbred line
DI-103 showed FLL and FLW of 29.51 and 4.53 cm in E1, and
30.78 and 4.66 cm in E2, respectively. The observations noted
on FLL and FLW were 26.00 and 3.88 cm, and 23.75 and 3.50
cm when teosinte was investigated in E1 and E2, respectively.
The data on FLL in BC1F5 lines varied from 9.90 to 59.45 cm
and for FLW from 1.01 to 6.56 cm under E1 whereas under E2
FLL and FLW varied from 9.40 to 60.88 cm and 2.80 to 7.60
cm, respectively. The average PH noted for maize inbred line
DI-103 and teosinte was 97.20 and 241.00 cm in E1, and 97.39
and 242.00 cm in E2, respectively. In BC1F5 lines variation for
PH ranged from 90.60 to 248.00 cm in E1 and 88.00 to 229.33
cm in E2. Among BILs, the average E/P and NBE varied from
1.00 to 4.00 and 3.00 to 7.60 in E1 and 1.00 to 5.50 and 2.60 to
7.60 in E2, respectively. In the case of maize inbred line DI-103, Ta
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E/P and NBE were 1.10 and 4.50 in E1, and 1.16 and 4.16 in E2,
respectively. However, in the case of teosinte, E/P was 242.33 and
263.50, and NBE was 6.16 and 5.83 in E1 and E2, respectively.

The data on the different parameters across both the environ-
ments were averaged and the top 10 superior lines were selected
(Table 2). Of the total of 53 selected lines, two lines namely
MT-32 and MT-142 were found superior for four different traits
followed by five lines namely MT-17, MT-40, MT-88, MT-95
and MT-169 which were superior for three traits. Ten lines
namely MT-10, MT-11, MT-26, MT-28, MT-29, MT-33,
MT-103, MT-141, MT-152 and MT-167 were found superior
for two traits whereas the remaining lines were superior for one
trait only. Further clustering of these selected lines was performed
by UPGMA to know the extent of diversity among lines and select
diverse parents for desirable trait accumulation. The cluster ana-
lysis with UPGMA using Jaccard’s similarity coefficients grouped
the 55 lines (53 BILs plus maize inbred parent (DI-103) and teo-
sinte) into 12 clusters based on molecular data with 76 SSR mar-
kers (Fig. 1, Table 3). The pair-wise genetic dissimilarity between
the lines varied from 0.326 to 0.768. Teosinte clustered independ-
ently in cluster I and showed maximum divergence from MT-26
with dissimilarity value 0.768 and from MT-49 with dissimilarity
value 0.766 of cluster V. With 0.675 dissimilarity value, teosinte
showed divergence with MT-159 that was clustered independently
in cluster III. But MT-18 and MT-32 were quite similar (67.33%)
with the minimum dissimilarity value of 0.326 and both belonged
to cluster 12, followed by MT-156 and MT-165 with dissimilarity
value 0.328, grouped in cluster 9. Distribution patterns of lines
among clusters were not uniform. Maximum 19 lines were
grouped in cluster IX followed by 16 in cluster XII. Clusters V
and XI consist of four lines each. In cluster VIII, three lines
were present and both clusters VII and X were composed of
two lines each, whereas a minimum of one line was present in
clusters II, III, IV and VI.

Genotyping of mapping population

A total of 76 SSR markers that were identified as polymorphic
between parents were utilized for genotyping of 169 BILs.
The details of primers including the number of alleles, product
length and PIC value were presented in online Supplementary
Table S2. Genotyping of mapping population with
76 polymorphic SSR primers led to the identification of 207
alleles with an average of 2.7 alleles per locus. Allele size ranged
from 80 bp (umc1622, bnlg197, bnlg389, umc1215, umc1546,

umc1428, umc2635 and umc1673) to 600 bp (umc2392). With
an average of 0.64 PIC, primer bnlg197 portrayed a minimum
PIC value of 0.29 whereas the maximum value of 0.86 was
recorded in the case of bnlg615 and umc1726.

Identification of genomic regions for plant architecture-related
traits

The single-marker ANOVA revealed a total of 66 QTLs for eight
plant architecture-related traits spread over 10 different chromo-
somes. The observed phenotypic variation explained by each QTL
varied from 2.29 to 13.97%. Of the total 66, 16 QTLs accounted
for more than 10% of phenotypic variation in the trait whereas
the remaining 50 QTLs had <10% contribution in the respective
trait. Out of 66 QTLs, 29 QTLs were identified in the artificially
inoculated environment (E1) whereas 37 QTLs were identified
in the un-inoculated environment (E2). Eleven common QTLs
were identified across the two environments. Trait, environment
and chromosome-wise number of QTLs identified in the BC1F5
population are presented in online Supplementary Table S3 and
Fig. 2 whereas stable QTLs along with linked markers and pheno-
typic value are presented in Table 4. For days to anthesis, two
major QTLs, qDA-1 and qDA-2 were identified on chromosome
9 that were linked with markers umc2341 and umc1279 accounted
for 12.84 and 12.81% phenotypic variation in E1 and 11.79 and
13.97% in E2, respectively. In addition, one minor QTL in E1
and two minor QTLs in E2 were also identified for days to anthe-
sis. qDA-1 and qDA-2 and a minor QTL qDA-3 were considered
common and stable QTL in the two environments. One major
QTL qDS-1 linked to umc1720 and located on chromosome 4
was responsible for 13.91% (E1) and 12.88% (E2) phenotypic vari-
ation for days to silk emergence. In addition, three QTLs (on
chromosomes 3, 7, 9) in E1 and two QTLs (on chromosomes
7 and 9) in E2 having less than 10% phenotypic effect on days
to silk emergence were also identified. For anthesis-silking inter-
val (ASI) two minor QTLs linked with markers phi075 and
umc1215 were identified on chromosome 6 in E1 which jointly
explained 5.63% phenotypic variation. Another two minor
QTLs linked with umc1622 (6.06%) and umc1538 (2.60%) were
identified on chromosomes 2 and 1, respectively, in E2. None of
the QTLs was found common across the environments for ASI.
A total of four QTLs linked with markers umc1662, bnlg389,
phi328175 and phi054 on chromosomes 4, 5, 7 and 10, respect-
ively, in E1 were identified for flag leaf length (FLL). Among
these, phi328175-linked qFLL-1 contributing 12.74% of the

Table 2. Trait-wise list of top 10 superior BILs of maize

S. No. Characters BILs of maize

1. DA MT-17, MT-32, MT-33, MT-40, MT-88, MT-95, MT143, MT152, MT-155, MT-169

2. DS MT-17, MT-20, MT-32, MT-33, MT-40, MT-88, MT-95, MT-152, MT-156, MT-164

3. ASI MT-1, MT-3, MT-10, MT-11, MT-26, MT-29, MT-46, MT-49, MT-132, MT-167

4. FLL (cm) MT-15, MT-18, MT-28, MT-32, MT-35, MT-40, MT-57, MT-113, MT-142, MT-159

5. FLW (cm) MT-17, MT-26, MT-41, MT-43, MT-56, MT-113, MT122, MT-141, MT-142, MT-169

6. PH (cm) MT-5, MT-11, MT-28, MT-29, MT-32, MT-87, MT-95, MT-101, MT-150, MT-169

7. E/P MT-10, MT-51, MT-76, MT-78, MT-88, MT-103, MT-142, MT-158, MT-165, MT-167

8. NBE MT-38, MT-98, MT-103, MT-104, MT-111, MT-117, MT-127, MT-140, MT-141, MT-142

DA, days to 50% anthesis; DS, days to 50% silking; ASI, anthesis-silking interval; FLL, flag leaf length; FLW, flag leaf width; PH, plant height; E/P, ears per plant; NBE, node bearing first ear.
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phenotypic variation for flag leaf length was considered to be a
major QTL. In E2, four QTLs linked with markers phi104127
(2.76%) on chromosome 3, umc2307 (2.74%) on chromosome 5,

umc1428 (2.34%) and phi328175 (12.29%) on chromosome 7
were detected. The qFLL-1 was the QTL identified for flag leaf
length across both environments.

Fig. 1. Clustering pattern of 55 promising BILs of maize
(including parents) based on 76 SSR markers data.
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A QTL, qFLW-1, linked with marker umc2143 contributing
13.10% variation in flag leaf width was identified on chromosome
5 along with a minor QTL on chromosome 6 (umc1215-linked,
3.88%) in E1. A total of four QTLs were detected, one each on
chromosomes 2 and 5 and two on chromosome 7 for FLW in
E2. Maximum phenotypic variation of 12.62% was explained by
umc2143-linked QTL, FLW-1 whereas the remaining QTLs
together explained 11.41% variation for the trait. For plant height
under E1, one major phi075-linked QTL qPH-1 on chromosome 6
accounting for 12.98% variation was identified. Apart from the
above, three minor phi420701, bnlg1065 and umc1279-linked
QTLs were also observed on chromosomes 8 and 9, respectively.
Nine QTLs distributed over chromosomes 2, 3, 4, 5, 6, 9 and 10
were detected for plant height in E2. The QTLs linked with
bnlg1520, dupssr5, umc1869, umc1939, bnlg389, umc1279,
phi054 and umc1053 accounted for phenotypic variation from
2.50 to 4.99% whereas 12.60% variation in plant height was
explained by qPH-1. Two QTLs linked with markers phi075 and
umc1279 were detected under both the environments. For ear
per plant, four QTLs linked with marker umc1622, bnlg1662 on
chromosome 2, umc2143 on chromosome 5 and umc1304 on
chromosomes 8, were detected in E1 explaining phenotypic vari-
ation ranging from 3.71 to 12.90%. Under E2, seven QTLs were
identified that were linked with markers bnlg615, umc1622,
dupssr5, umc2000, umc1393, umc1053 and bnlg1250. Out of
these seven QTLS, two QTLs were detected on chromosomes 3
and 10 and the rest three QTLs were mapped on chromosomes
1, 2 and 7. These QTLs accounted for phenotypic variation
from 2.32 to 13.66%. One of these QTLs, qEP-1 linked with
marker umc1622 was consistent under both the environments.
On chromosomes 1, 4, 6, 7, 8 and 10, a total of six QTLs were
identified for node bearing first ear in E1. The QTL linked with
umc1428, qNBE-1 had maximum contribution of 13.83% in
phenotypic variation of node bearing first ear followed by QTLs
linked with markers umc1726 (3.81%), umc2635 (3.49%),

umc1939 (3.21%), umc1152 (3.12%) and phi075 (2.49%). In E2,
one major QTL, qNBE-1 (11.69%) along with three minor
QTLs were identified for node bearing first ear on chromosomes
7 and 9. Two QTLs that were linked with markers umc1428 and
umc2635 on chromosome 7 were found common across both the
environments.

Overlapping QTLs among traits

Of the total 66 QTLs identified for different characters, 16 were
noted to influence two or more than two traits (online
Supplementary Table S4). Among 16 common QTLs, phi328178-
linked QTL was simultaneously affecting four traits namely DA,
DS, FLL and FLW. Three QTLs linked with markers umc1622
(ASI, FLW and E/P), umc2341 (DA, DS and NBE) and phi075
(ASI, PH and NBE) influenced three characters each.
Remaining 12 QTLs, bnlg1662-linked (FLL, EP), dupssr5 and
umc1939-linked (PH, NBE), umc1720-linked (DA, DS),
umc2143 and umc1393-linked (FLW, E/P), bnlg389 and phi054-
linked (FLL, PH), umc1215-linked (ASI, FLW), umc1428-linked
(FLL, NBE), umc1279-linked (DA, PH) and umc1053-linked
(PH, E/P) simultaneously affected two characters each. In add-
ition, these traits showed a significant correlation with each
other either in the positive or negative direction as mentioned
in online Supplementary Tables S5 and S6. DA was significantly
correlated with DS, ASI, FLW, FLW and E/P whereas DS showed
a significant correlation with ASI, PH and E/P. Likewise, ASI was
correlated with FLL, FLW, PH and E/P and FLL showed a signifi-
cant association with FLW, PH, E/P and NBE. Similarly, FLW and
PH showed significant association with PH, E/P and NBE respect-
ively. Hence, the molecular association among traits was also vali-
dated at the morphological level through correlation studies.

Discussion

In several studies, teosinte was investigated/identified as a source
of resistance to biotic and abiotic stresses (Mano and Omori,
2013; Kumar et al., 2019; Stanley et al., 2020; Joshi et al., 2021;
Shaibu et al., 2021; Adhikari et al., 2021a). However, integration
of teosinte in maize breeding programme is limited and only a
few reports are available on utilization of teosinte in maize germ-
plasm diversification and yield improvement (Cohen and Galinat,
1984; Wang et al., 2008a, 2008b; Liu et al., 2016a; Singh et al.,
2017; Akaogu et al., 2020; Adhikari et al., 2021b). In the present
study, the teosinte-introgressed BC1F5 population consisting of
169 BILs were phenotyped for eight plant architecture traits and
significant variation was observed for all the traits. The bewilder-
ing array of variation for several morphological traits in the
teosinte-introgressed maize population was also observed by
Singh et al. (2017), Kumar et al. (2019), Adhikari et al. (2020),
Wang et al. (2020), Adhikari et al. (2021c). The observations
noted by us in the investigation are in close agreement with the
work of Magoja (1991), who evaluated progeny of teosinte-
introgressed BC1F5 maize population and reported a range for
anthesis (47–67 days) and silking (46–63) duration as well as an
average of three days anthesis-silking interval. In a recent experi-
ment based on two RIL populations derived from a cross between
maize and two subspecies of teosinte (Z. mays subsp. nicaraguen-
sis Iltis and Benz and Z. mays subsp. parviglumis Iltis and
Doebley), a wide range of variation for 31 morphological traits
was recorded (Wang et al., 2020). Similarly, in Zea diploperennis
Iltis, Doebley and Guzman introgressed maize inbred lines,

Table 3. Clustering patterns of 55a superior BILs of maize

Cluster
No. of

genotypes Genotypes

1 1 Teosinte

2 1 MT-150

3 1 MT-159

4 1 MT-122

5 4 MT-26, MT-49, MT-51, DI-103

6 1 MT-111

7 2 MT-41, MT-101

8 3 MT-56, MT-57, MT-103

9 19 MT-33, MT-87, MT-88, MT-95, MT-98,
MT-104, MT-113, MT-117, MT-132, MT-140,
MT-142, MT-143, MT-152, MT-155, MT-156,
MT-158, MT-165, MT-167, MT-169

10 2 MT-10, MT-11

11 4 MT-20, MT-29, MT-127, MT-141

12 16 MT-1, MT-3, MT-5, MT-15, MT-17, MT-18,
MT-28, MT-32, MT-35, MT-38, MT-40,
MT-43, MT-46, MT-76, MT-78, MT-164

aIncludes parental lines DI-103 and teosinte.
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significant variation for yield traits was recorded (Akaogu et al.,
2020). For getting optimum grain yield under abiotic stresses,
flowering traits particularly anthesis, silking duration and ASI
are considered to be the most critical parameters. Teosinte-
introgressed maize BILs possessed unique blend of earlier silking
and shorter ASI and therefore may serve as potential genetic
resources in maize yield maximization under abiotic stress condi-
tions (Bänziger et al., 2000; Ngugi et al., 2013). Increasing plant
density is now a proven concept for increasing the productivity
of maize. Reduced leaf area is considered an important parameter
for high-density planting due to more light penetration particu-
larly in the ear region that facilitates translocation of photosyn-
thetic assimilates in the ear (Huang et al., 2017). Since the wide
range of variation for leaf parameters is observed in 169 BILs,
the possibility exists to utilize differential leaf morphology in
the development of lines that are expected to perform better in
different targeted environments. Prolificacy is the typical feature
of teosinte and teosinte-introgressed maize populations derived
by limited backcrossing (1–2 generations) with maize (Singh
et al., 2017; Kumar et al., 2019; Adhikari et al., 2020). Magoja
(1991) noted variation for E/P from 1.91 to 4.4 with an average
of 3.05 E/P in teosinte-introgressed BILs whereas in modern
maize lines E/P is normally one but may vary from 1 to 2 E/P.
Prolificacy significantly contributes towards yield enhancement
and therefore, is a desired trait in maize (Motto and Moll,

Fig. 2. Environment-wise chromosomal location of QTLs identified using 169 BILs of maize.

Table 4. Consistent QTLs identified across the environments in BILs of maize

S. no. Traits Stable QTL

Phenotypic
value

Linked markersE1 E2

1 DA qDA-1 12.84 12.81 umc2341

qDA-2 11.79 13.97 umc1279

qDA-3 2.81 2.35 umc1720

2 DS qDS-1 13.91 12.88 umc1720

qDS-2 3.20 2.90 umc2341

3 FLL (cm) qFLL-1 12.74 12.29 phi328175

4 FLW (cm) qFLW-1 13.10 12.62 umc2143

5 PH (cm) qPH-1 12.98 12.60 phi075

qPH-2 2.41 3.33 umc1279

6 E/P qEP-1 12.90 13.66 umc1622

7 NBE qNBE-1 13.83 11.69 umc1428

qNBE-2 3.50 2.80 umc2635

E1 = artificially inoculated environment; E2 = control environment; DA, days to 50% anthesis;
DS, days to 50% silking; FLL, flag leaf length; FLW, flag leaf width; PH, plant height; E/P, ears
per plant; NBE, node bearing first ear.
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1983). Prolificacy is considered important for baby corn breeding
as more ears help in earning more economic returns. These pro-
lific lines could be targeted for the development of baby corn or
prolific maize varieties. Clustering analysis based on molecular
profile resulted in 12 groups that depicted wider variation
among selected superior lines. Clustering of derived lines in
more groups in contrast to previous studies based on maize germ-
plasm (Enoki et al., 2002; Patto et al., 2004; Adu et al., 2019)
demonstrated diversification of maize germplasm through teo-
sinte allelic introgression. In the present study, 12 groups were
reported which were more than earlier reports as given by
Akaogu et al. (2020) who observed four groups by targeting
teosinte-diploperennis introgressed maize inbred lines. The pos-
sible reason may be the difference in teosinte species used. Also
they performed two generations of backcrossing with maize par-
ent which may have resulted in more allelic contribution from
maize parent. In addition, they made selection for striga resist-
ance, low soil nitrogen and drought condition during population
development and as selection increases the frequency of targeted
allele thereby fitness of individual but reduces overall genetic
diversity (Alachiotis and Pavlidis, 2016) which might be the prob-
able reasons for less number of clusters. Teosinte grouped inde-
pendently in cluster I and differed from maize as well as the
introgressed lines due to distinct morphological features. The
lines from different clusters can be selected for accumulation of
desirable traits. If superior lines for different traits are hybridized
to accumulate desirable traits by considering their molecular
diversity, chances of recovery of desirable recombinants are
more as opposed to random selection of parents based on mor-
phological estimates only.

The number of alleles per marker varied from 2 to 6 and a
similar range was also recorded by Nikhou and Ebrahimi
(2013). The average alleles detected in the present experiment
(2.7) are in close agreement with the work of Wietholer (2008)
but varied from the findings of Legesse et al. (2007), Wasala
and Prasanna (2013), Li et al. (2014a, 2014b) and Abdel-
Rahman et al. (2016) who have observed average alleles per
locus of 3.85, 3.85, 2.45 and 2.3, respectively. The total alleles
detected in the present study are much larger than the alleles
detected by Legesse et al. (2007), Xiao et al. (2017),
Maniruzzaman et al. (2018) and Shayanowako et al. (2018) who
reported 104, 145, 48 and 191 alleles, respectively. Differential
allelic numbers observed in the present investigation as compared
to the previous studies may probably be due to the genetic consti-
tution of experimental materials and the number of markers used.
The markers used in the present experiment had a wider range of
PIC (0.29–0.86), therefore, it can be interpreted that there is wider
distribution of alleles in the introgressed maize population and
ample allelic variation among marker loci. While working with
SSR primers in maize, similar range of PIC estimates were also
observed by Sserumaga et al. (2014), Gazal et al. (2016) and
Adu et al. (2019). PIC is also known as the power of discrimin-
ation and according to Botstein et al. (1980) markers with >0.5
PIC are considered more informative. All the markers except
three (umc1988, umc1245, bnlg197) used in the investigation
had PIC >0.5 and therefore, these markers were assumed to
have strong discriminatory power.

QTL analysis using 76 SSR markers enabled the identification
of 66 QTLs. Maximum QTLs were localized on chromosomes
7 and 9 followed by chromosomes 4, 10, 5, 6, 2, 3, 1 and 8. Guo
et al. (2008) also observed maximum QTLs for morphological traits
on chromosomes 9 and 1. They also identified eight QTLs for DA

on chromosomes 2, 4, 5, 6 and 8. While working with a
teosinte-introgressed maize population consisting of 928 NILs,
Liu et al. (2016a) detected three QTLs for DA on chromosomes
8 and 9. We have identified genomic regions governing silk emer-
gence duration on chromosomes 3, 4, 7 and 9 whereas Guo et al.
(2008) noted QTLs on chromosomes 2, 4, 5, 6 and 10 while work-
ing with RILs derived from the cross 5003 × p138. The QTLs linked
with the umc1538 marker for ASI in present investigations are in
close agreement with the results of Szalma et al. (2007) who have
detected one QTL for ASI linked with marker loci umc1538.
Similarly, many QTLs, accounting phenotypic variation from
1.69 to 9.07% in ASI, were also observed earlier by Guo et al.
(2008). Semagn et al. (2013) noted a large number of QTLs, distrib-
uted over all 10 chromosomes without any specific pattern. In our
experiment, the genomic regions influencing ASI are located on
chromosomes 1, 2 and 6, whereas Zhao et al. (2018) reported
QTLs for ASI on chromosomes 4 and 7 and Ribeiro et al. (2018)
on chromosomes 6 and 10. Observations of the present investiga-
tion indicate that genomic regions for leaf traits were dispersed
over seven chromosomes (2, 3, 4, 5, 6, 7 and 10). Earlier observa-
tions also indicated localization of QTLs for leaf morphology over
all the 10 chromosomes (Agrama et al., 1999; Liu et al., 2010;
Nikolic et al., 2011; Ku et al., 2012; Zheng and Liu, 2013; Guo
et al., 2015). Fu et al. (2019) carried out QTL analysis for FLL in
teosinte-introgressed maize population and detected 17 minor
QTLs distributed over nine chromosomes 1, 2, 3, 4, 5, 6, 7, 8
and 9 with phenotypic variation ranging from 1.2 to 6%. The
results of Fu et al. (2019) are in agreement with the outcome of
our investigations as four QTLs in E1 and four in E2 were identified
on five chromosomes (3, 4, 5, 7 and 10) for FLL. Liu et al. (2017)
detected 17 QTLs for leaf width across chromosomes 1, 2, 5, 7, 8
and 9.

By meta-analysis (statistical analysis of independent studies of
QTL mapping) Wang et al. (2016) identified several QTLs for PH
distributed over all the 10 chromosomes of maize. In our investi-
gation, we noted QTLs on chromosomes 2, 3, 4, 5, 6, 8, 9 and 10
influencing plant height. Many earlier reports also indicate similar
localization of QTLs for PH on chromosome 1, 2, 3 4, 5 and 6
(Lima et al., 2006; Yang et al., 2008; Nikolic et al., 2011;
Wassom, 2013; Zhu et al., 2013; Zhao et al., 2018). Our observa-
tions on QTLs for ear numbers are supported by Veldboom and
Lee (1994) who have detected two QTLs on chromosomes 3 and 6
each explaining 5.4% phenotypic variation. Lima et al. (2006)
identified eight QTLs for ear numbers distributed on chromo-
somes 1, 2, 5, 6 and 8. The presence of genomic region controlling
ear number on chromosome 1 was supported by Ribeiro et al.
(2018) and on chromosome 8 by Mendes-Moreira et al. (2015).
Previously Wills et al. (2013) carried out an experiment targeting
teosinte for mapping of QTLs for ear numbers by developing
maize-teosinte BC2S3 RILs and identified eight QTLs on the
first chromosome with phenotypic variation 0.86–6.05%.

In this investigation, QTLs for ear position were identified on
chromosomes 1, 4, 6, 7, 8, 9 and 10. QTLs for ear position have
also been noted earlier on chromosome 6 by Nikolic et al.
(2011), on chromosomes 1, 8 and 10 by Zhu et al. (2013), on
chromosome 1 by Li et al. (2014a, 2014b), and on chromosomes
4, 6 and 7 by Zhao et al. (2018). Lima et al. (2006) identified nine
minor QTLs with phenotypic variation ranging from 1.02 to
8.92% distributed over chromosomes 2, 3, 4, 7, 9 and 10 whereas
the similar distribution of 23 QTLs was recorded by Dong et al.
(2015). In the present mapping experiment, some genomic
regions are common with previously mapped regions but the

152 Sneha Adhikari et al.

https://doi.org/10.1017/S1479262122000223 Published online by Cambridge University Press

https://doi.org/10.1017/S1479262122000223


majority of the regions regulating targeted traits are novel. The
genome size significantly varied among cultivated maize and teo-
sinte. The average genome of maize (1.095) was significantly
smaller (P < 0.001, Kruskal–Wallis test) than the average genome
size of teosintes (1.129). Several scientific reports reveal that the
difference in genome size of maize and teosinte is associated
with both gene content (Swanson-Wagner et al., 2010) and trans-
posable element (TE) (Wang and Dooner, 2006). Illegitimate
recombination, transposon-derived unequal homologous recom-
bination and double-strand break repair are the most leading
causes of genome shrinkage in cultivated maize (Schubert and
Vu, 2016). The bigger genomes of teosinte tend to have more
genes, more and longer introns and more transposable elements
than modern maize with smaller genomes. The difference in gen-
ome size and allelic state may be the probable cause for mapping
of the more novel genomic regions. Among detected QTLs, 16
QTLs were co-associated with various traits. Previous researchers
also identified co-localized QTLs for PH and NBE (Lima et al.,
2006; Wang et al., 2018), PH and flowering time (Durand et al.,
2012), ASI and E/P (Ribaut et al., 2007; Wang et al., 2016), PH,
NBE and leaf parameters (Yi et al., 2019). The molecular associa-
tions among traits are also consistent at the morphological level as
significant correlation among the traits was also reported during
due course of investigation. Hence the probable reason for
co-localization of QTLs could be either tight linkage or pleiotropy
(Lima et al., 2006; Durand et al., 2012; Hu et al., 2012). These
genomic regions could be introgressed in different combinations
for modelling maize plants that produce optimum yield under a
targeted environment. Such as umc1720-linked (DA, DS) and
umc1622-linked (ASI, FLW, and E/P) regions could be utilized
for designing maize plants suited for drought-prone areas because
anthesis, silking, anthesis-silking interval and ear per plants are
important drought-adoptable traits (Ngugi et al., 2013; Ross
et al., 2020). Plant height and leaf parameters are important
under high-density planting (Lambert et al., 2014; Huang et al.,
2017). Hence phi054-linked (FLL, PH) region could be utilized
for the development of maize plants that would be suited well
under high-density planting. For lodging tolerance and mechan-
ical harvesting, PH and ear position are important parameters
(Josephson and Kince, 1977; Li et al., 2007) and umc1939-linked
(PH, NBE) and phi075-linked (ASI, PH, and NBE) regions could
be introgressed for simultaneous improvement of these traits.
Therefore, it could be possible to incorporate and improve several
traits together by harnessing co-localized QTLs either through
marker-assisted selection or map-based cloning strategy.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S1479262122000223.
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