
The Journal of Symbolic Logic

Volume 83, Number 3, September 2018

INFINITE COMBINATORICS PLAIN AND SIMPLE

DÁNIEL T. SOUKUP AND LAJOS SOUKUP

Abstract. We explore a general method based on trees of elementary submodels in order to present
highly simplified proofs to numerous results in infinite combinatorics. While countable elementary sub-
models have been employed in such settings already, we significantly broaden this framework by developing
the corresponding technique for countably closed models of size continuum. The applications range from
various theorems on paradoxical decompositions of the plane, to coloring sparse set systems, results on
graph chromatic number and constructions from point-set topology. Our main purpose is to demonstrate
the ease and wide applicability of this method in a form accessible to anyone with a basic background in
set theory and logic.

§1. Introduction. Solutions to combinatorial problems often follow the same
head-on approach: enumerate certain objectives and then inductively meet these
goals. Imagine that you are asked to color the points of a topological space with
red and blue so that both colors appear on any copy of the Cantor-space in X . So,
one lists the Cantor-subspaces and inductively declares one point red and one point
blue from each; this idea, due to Bernstein, works perfectly if X is small, i.e., size
at most the continuum. However, for larger spaces, we might run into the following
problem: after continuum many steps, we could have accidentally covered some
Cantor-subspace with red points only. So, how can we avoid such a roadblock?
The methods to meet the goals in the above simple solution scheme vary from
problem to problem; however, the techniques for finding the right enumeration of
infinitely or uncountably many objectives frequently involve the same idea. In par-
ticular, a recurring feature is to write our set of objectives X as a union of smaller
pieces 〈Xα : α < κ〉 so that each Xα resembles the original structureX . This is what
we refer to as a filtration. In various situations, we need the filtration to consist of
countable sets; in others, we require that Xα ⊆ X� for α < � < κ. In the modern
literature, the sequence 〈Xα : α < κ〉 is more than often defined by intersecting X
with an increasing chain of countable elementary submodels; in turn, elementarity
allows properties of X to reflect.
The introduction of elementary submodels to solving combinatorial problemswas
truly revolutionary. It provided deeper insight and simplified proofs to otherwise
technical results. Nonetheless, note that any setX which is covered by an increasing
family of countable sets must have size at most ℵ1, a rather serious limitation even
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when considering problems arising from the reals. Indeed, this is one of the reasons
that the assumption 2ℵ0 = ℵ1, i.e., the Continuum Hypothesis, is so ubiquitous
when dealing with uncountable structures.
On the other hand, several results which seemingly require the use of CH can
actually be proved without any extra assumptions. So now the question is, how
can we define reasonable filtrations by countable sets to cover structures of size
bigger than ℵ1? It turns out that one can relax the assumption of the filtration being
increasing in a way which still allows many of our usual arguments for chains to go
through. This is done by using a tree of elementary submodels rather than chains,
an idea which we believe originally appeared in an article of R. O. Davies [4] in the
1960s.
Our first goal will be to present Davies’ technique in detail using his original
result and some other simple and, in our opinion, entertaining new applications.
However, this will not help in answering the question from the first paragraph.
So, we develop the corresponding technique based on countably closed elementary
submodels of size continuum. This allows us to apply Davies’ idea in a much broader
context, in particular, to finish Bernstein’s argument for coloring topological spaces.
As a general theme, we present simple results answering natural questions from
combinatorial set theory; in many cases, our new proofs replace intimidating and
technically involved arguments from the literature. We hope to do all this while
keeping the article self contained and, more importantly, accessible to anyone with
a basic background in set theory and logic.
Despite its potential, Davies’ method is far from common knowledge even today,
though we hope to contribute to changing this. In any case, we are not the first to
realize the importance of this method: S. Jackson and D. Mauldin used the same
technique to solve the famous Steinhaus tiling problem [20]; also, such filtrations
were successfully applied and popularized by D. Milovich [34–37] under the name
of (long)�1-approximation sequences. In particular, the authors learned about this
beautiful technique from Milovich so we owe him a lot.
The structure of our article is the following: we start by looking at a theo-
rem of W. Sierpinski to provide a mild introduction to elementary submodels in
Section 2. Then, in Section 3, we define our main objects of study: the trees of
elementary submodels we call Davies-trees; in turn, we present Davies’ original
application. We continue with four further (independent) applications of varying
difficulty: in Sections 4 and 5, we look at almost disjoint families of countable sets
and conflict-free colorings. Next, we present a fascinating result of P. Komjáth and
J. Schmerl in Section 6: lets say that A ⊂ R2 is a cloud iff every line � through
a fixed point a intersects A in a finite set only. Now, how many clouds can cover
the plane? We certainly need at least two, but the big surprise is the following: the
cardinal arithmetic assumption 2ℵ0 ≤ ℵm is equivalent tom+2 clouds covering R2.
In our final application of regular Davies-trees, in Section 7, we will show that any
graph with uncountable chromatic number necessarily contains highly connected
subgraphs with uncountable chromatic number.
The second part of our article deals with a new version of Davies’ idea, which
we dubbed high Davies-trees. High Davies-trees will be built from countably closed
modelsM , i.e., A ∈M whenever A is a countable subset ofM . This extra assump-
tion implies thatM has size at least c but can be extremely useful when considering
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problems which involve going through all countable subsets of a structure X . So
our goal will be to find a nice filtration 〈Xα : α < κ〉 of a structureX simultaneously
with its countable subsets; while X can be arbitrary large, each Xα will have size
continuum only.
In Section 8, we introduce high Davies-trees precisely. In contrast to regular
Davies-trees which exist in ZFC, we do need extra set-theoretic assumptions to
construct high Davies-trees: a weak version of GCH and Jensen’s square principle.
This construction is carried out only in Section 14 as we would like to focus on
applications first. We mention that the results of Sections 9, 12, and 13 show that
high Davies-trees might not exist in some models of GCH and so extra set theoretic
assumptions are necessary to construct these objects.
Now, our main point is that high Davies-trees allow us to provide clear pre-
sentation to results which originally had longer and sometimes fairly intimidating
proofs. In particular, in Section 10, we prove a strong form of Bernstein’s theorem:
any Hausdorff topological space X can be colored by continuum many colors so
that each color appears on any copy of the Cantor-space in X . Next, in Section
11, we present a new proof that there are saturated almost disjoint families in [κ]�

for any cardinal κ. In our last application in Section 13, we show how to easily
construct nice locally countable, countably compact topological spaces of arbitrary
large size. All sections through 9 to 13 can be read independently after Section 8.
Compared to the original statement of the above results, we only require the
existence of appropriate high Davies-trees instead of various V = L-like assump-
tions. This supports our belief that the existence of high Davies-trees can serve as
a practical new axiom or blackbox which captures certain useful, but otherwise
technical, combinatorial consequences of V = L in an easily applicable form. The
obvious upside being that anyone can apply Davies-trees without familiarity with
the constructible universe or square principles.
Ultimately, Davies-trees will not solve open problems magically; indeed, we men-
tion still unanswered questions in almost each section. But hopefully wemanaged to
demonstrate that Davies-trees do provide an invaluable tool for understanding the
role of CH and V = L in certain results, and for a revealing, modern presentation
of otherwise technically demanding arguments.

Disclaimer. We need to point out that it is not our intention to give a proper
introduction to elementary submodels, with all the prerequisites in logic and set
theory, since this has been done in many places already. If this is the first time
the kind reader encounters elementary submodels, we recommend the following
sources: Chapter III.8 in K. Kunen’s book [32] for classical applications and W.
Just, M. Weese [25] for a more lengthy treatment; A. Dow [5] and S. Geschke
[15] survey applications of elementary submodels in topology; an article by the
second author [47] gives all the required background in logic with a focus on graph
theory. Reading (the first few pages of) any of the above articles will give the
additional background for the following sections to anyone with a set theory course
already under his or her belt. Nonetheless, an informal introduction is included in
Section 2.
We use standard notations following [32]. ZFC denotes the usual Zermelo–
Fraenkel axioms of set theory togetherwith theAxiomof Choice.We use c to denote
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2ℵ0 , the cardinality of R. CH denotes the Continuum Hypothesis, i.e., c = ℵ1. We
say that GCH holds (i.e., the generalized Continuum Hypothesis) if 2� = �+ for all
infinite �.

§2. A case study. We begin by examining a result of Sierpinski from the 1930s to
demonstrate the use of filtrations. W. Sierpinski produced a myriad of results [45]
relating CH to various properties of the reals. Some properties were proved to be
equivalent to CH; for others, like the theorem below, Sierpinski could not decide if
an actual equivalence holds.

Theorem 2.1 ([44]). CH implies thatR2 can be covered by countablymany rotated
graphs of functions, i.e., given distinct lines �i for i < � through the origin there are
sets Ai so that R2 =

⋃{Ai : i < �} and Ai meets each line perpendicular to �i in at
most one point.

Proof. Fix distinct lines �i for i < � through the origin. Our goal is to find sets
Ai so that R2 =

⋃{Ai : i < �} and if � ⊥ �i (that is, � and �i are perpendicular)
then |Ai ∩ � | ≤ 1.
If our only goal would be to cover a countable subset R0 = {r0, r1 . . . } of R2
first then we can simply let Ai = {ri}. What if we wish to extend this particular
assignment to a cover of a larger set R1 ⊇ R0? Given some r ∈ R1 \ R0, the only
obstacle of putting r into Ai is that the line � = �(r, i) through r perpendicular to
�i meets Ai already; we will say that i is bad for r (see Figure 1).
If all i < � are bad for r simultaneously then we are in trouble since there is no
way we can extend this cover to include r.
However, note that if i �= j are both bad for r then r can be constructed from
the lines �i , �j and the points ri , rj (see Figure 1). So constructible points pose the
only obstacle for defining further extensions. Hence, in the first step, we should
choose R0 so that it is closed under such constructions. It is easy to see that any
set R is contained in a set R∗ of size |R| + � which is closed in the following
sense: if x, y ∈ R and i �= j < � then the intersection of �(x, i) and �(y, j) is also
in R.

�

�

�

�

�i

�j

rrj

ri

Ai

Aj

Figure 1. i and j are both bad for r.
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Now the complete proof in detail: usingCH, listR2 as {rα : α < �1} and construct
an increasing sequence R0 ⊂ R1 ⊂ · · · ⊆ Rα for α < �1 so that R0 = ({r0})∗,
Rα+1 = (Rα ∪ {rα})∗, and R� =

⋃{Rα : α < �} for � limit. Note that each Rα is
countable and closed in the above sense. Furthermore,

⋃{Rα : α < �1} = R2.
Next, we define the sets {Ai : i < �} by first distributingR0 trivially as before and
then inductively distributing the points in the differences Rα+1 \ Rα . Rα+1 \ Rα is
countable so we can list it as {tn : n < �}. Given that the points of Rα are assigned
to the Ai ’s already, we will put tn into A2n or A2n+1. Why is this possible? Because
if both 2n and 2n + 1 are bad for tn then tn is constructible from points in Rα and
hence tn ∈ Rα which is a contradiction. This finishes the induction and hence the
proof of the theorem. �
One can think of the sequence {Rα : α < �1} as a scheduling of objectives, where
in our current situation an objective is a point in R2 that needs to be covered. We
showed that we can easily cover new points given that the setsRα were closed under
constructibility.
Is there any way of knowing, in advance, under what operations exactly our sets
need to be closed? It actually does not matter. Indeed, one can define the closure
operation using any countably many functions (and not just this single geometric
constructibility) and the closure R∗ of R still has the same size as R (given that
R is infinite). So we can start by saying that {Rα : α < �1} is a filtration of R2
closed under any conceivable operation and, when time comes in the proof, we will
use the fact that each Rα is closed under the particular operations that we are
interested in.
Let us make the above argument more precise, and introduce elementary
submodels, because the phrase conceivable operation is far from satisfactory.
Let V denote the set theoretic universe and let � be a cardinal. Let H (�) denote
the collection of sets of hereditary cardinality < �. H (�) is actually a set which
highly resembles V . Indeed, all of ZFC except the power set axiom is satisfied by
the model (H (�),∈); moreover, if � is large enough then we can take powers of
small sets while remaining in H (�). So, choosing � large enough ensures that any
argument, with limited iterations of the power set operation, can be carried out in
H (�) instead of the proper model of ZFC.

Definition 2.2. We say that a subsetM of H (�) is an elementary submodel iff
for any first order formula φ with parameters fromM is true in (M,∈) iff it is true
in (H (�),∈). We writeM ≺ H (�) in this case.
The reason to work with the models (H (�),∈) is that we cannot express “(M,∈)

≺ (V,∈)” in first-order set theory (see [21, Theorem 12.7]), but resorting toM ≺
H (�) avoids the use of second-order set theory. Furthermore, for any countable set
A ⊆ H (�), there is a countable elementary submodelM of H (�) with A ⊆ M by
the downward Löwenheim–Skolem theorem [32, Theorem I.15.10].
Now, a lot of objects are automatically included in any nonempty M ≺
H (�): all the natural numbers, �, �1, or R. Also, note that M ∩ R2 is closed
under any operation which is defined by a first order formula with parameters
fromM .
We need to mention that countable elementary submodels are far from transitive,
i.e., A ∈M does not imply A ⊆M in general. However, the following is true:
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Fact 2.3. Suppose that M is a countable elementary submodel of H (�) and
A ∈ M . If A is countable then A ⊆M or equivalently, if A \M is nonempty then A
is uncountable.

We present the proof to familiarize the reader with Definition 2.2.

Proof. Suppose thatA ∈M andA is countable. SoH (�) |= |A| ≤ �. Thismeans
thatH (�) |= φ(A) where φ(x) is the sentence “there is a surjective f : � → x”. In
turn,M |= φ(A) so we can find f ∈ M such that dom(f) = � and ran(f) = A.
We conclude that f(n) ∈ M since n ∈ M for all natural numbers n ∈ �. Hence
A = ran(f) ⊆M . �
Now, how do elementary submodels connect to the closed sets in the proof of
Theorem 2.1? Set � = c+ and take a countable M ≺ H (c+) which contains our
fixed set of lines {�i : i < �}. We let R = M ∩ R2 and claim that R is closed
under constructibility. Indeed, if i < � and x ∈ R \ �i then the fact that “� is
a line through x orthogonal to �i” is expressible by a first order formula with
parameters inM . HenceM contains as an element a (more precisely, the unique)
line � = �(x, i) throughx that is orthogonal to �i . So the intersection �(x, i)∩�(y, j)
is an element ofM if x, y ∈ R. Since �(x, i)∩ �(y, j) is a singleton, Fact 2.3 implies
that �(x, i) ∩ �(y, j) ⊆ R.
In order to build the filtration {Rα : α < �1}, we take a continuous, increasing
sequence of countable elementary submodelsMα ≺ H (c+) and set Rα =Mα ∩R2.
If we make sure that rα ∈Mα+1 then {Rα : α < �1} covers R2.

§3. Chains versus trees of elementary submodels. In the proof of Theorem 2.1,
CHwas imperative and Sierpinski already asked if CHwas in fact necessary to show
Theorem 2.1. The answer came from R. O. Davies [4] who proved that neither CH
nor any other extra assumption is necessary beyond ZFC.
We will present his proof now as a way of introducing the main notion of our
article: Davies-trees. Davies-trees will be special sequences of countable elementary
submodels 〈Mα : α < κ〉 covering a structure of size κ. Recall that if κ > �1 (e.g.,
we wish to coverR2 while CH fails) then we cannot expect theMα ’s to be increasing
so what special property can help us out?
The simple idea is that we can always cover a structure of size κ with a continuous
chain of elementary submodels of size <κ so lets see what happens if we repeat
this process and cover each elementary submodel again with chains of smaller
submodels, and those submodels with chains of even smaller submodels and so on
. . . The following result is a simple version of [34, Lemma 3.17]:

Theorem 3.1. Suppose that κ is cardinal, x is a set. Then there is a large enough
cardinal � and a sequence of 〈Mα : α < κ〉 of elementary submodels of H (�) so
that

(I) |Mα| = � and x ∈Mα for all α < κ,
(II) κ ⊂ ⋃

α<κ Mα , and
(III) for every � < κ there ism� ∈ N and modelsN�,j ≺ H (�) such that x ∈ N�,j

for j < m� and ⋃
{Mα : α < �} =

⋃
{N�,j : j < m�}.

https://doi.org/10.1017/jsl.2018.8 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.8


INFINITE COMBINATORICS PLAIN AND SIMPLE 1253

We will refer to such a sequence of models as a Davies-tree for κ over x in the
future (and we will see shortly why they are called trees). The cardinal κ will denote
the size of the structures that we deal with (e.g., the size of R2) while the set x
contains the objects relevant to the particular situation (e.g., a set of lines).
Note that if the sequence 〈Mα : α < κ〉 is increasing then

⋃{Mα : α < �} is also
an elementary submodel of H (�) for each � < κ; as we said already, there is no
way to cover a set of size bigger than �1 with an increasing chain of countable sets.
Theorem 3.1 says that we can cover by countable elementary submodels and almost
maintain the property that the initial segments

⋃{Mα : α < �} are submodels.
Indeed, each initial segment is the union of finitely many submodels by condition
(III) while these models still contain everything relevant (denoted by x above) as
well.

Proof of Theorem 3.1. Let � be large enough so that κ, x ∈ H (�). We recur-
sively construct a tree T of finite sequences of ordinals and elementary submodels
M (a) for a ∈ T . Let ∅ ∈ T and letM (∅) be an elementary submodel of size κ so
that

• x ∈M (∅),
• κ ⊂M (∅).
Suppose that we defined a tree T ′ and corresponding models M (a) for a ∈ T ′.
Fix a ∈ T ′ and suppose thatM (a) is uncountable. Find a continuous, increasing
sequence of elementary submodels 〈M (a
�)〉�<� so that
• x ∈M (a
�) for all � < �,
• M (a
�) has size strictly less thanM (a), and
• M (a) = ⋃{M (a
�) : � < �}.
We extend T ′ with {a
� : � < �} and iterate this procedure to get T .

M (∅)

M (0) M (1) . . . M (α) . . . M (�) . . .

M (α
0) M (α
1) . . . M (α

) . . .

It is easy to see that this process produces a downwards closed subtree T of
Ord<� and if a ∈ T is a terminal node thenM (a) is countable. Let us well order
{M (a) : a ∈ T is a terminal node} by the lexicographical ordering <lex.
First, note that the order type of <lex is κ since {M (a) : a ∈ T is a terminal
node} has size κ and eachM (a) has < κ many <lex-predecessors.
We wish to show that if b ∈ T is terminal then ⋃{M (a) : a<lexb, a ∈ T is a
terminal node} is the union of finitely many submodels containing x. Suppose that
|b| = m ∈ N and write

Nb,j =
⋃

{M ((b � j − 1)
�) : � < b(j − 1)}
for j = 1 . . . m. It is clear that Nb,j is an elementary submodel as a union of an
increasing chain. Also, if a<lexb thenM (a) ⊂ Nb,j must hold where j = min{i ≤
n : a(i) �= b(i)}. So
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1254 DÁNIEL T. SOUKUP AND LAJOS SOUKUP⋃
{M (a) : a <lex b is terminal} =

⋃
{Nb,j : j < m}

as desired. �
Remarks. Note that this proof shows that if κ = ℵn then every initial segment in
the lexicographical ordering is the union of n elementary submodels (the tree T has
height n).
In the future, when working with a sequence of elementary submodels 〈Mα : α <
κ〉, we use the notation

M<� =
⋃

{Mα : α < �}
for � < κ.

Let us outline now Davies’ result which removes CH from Theorem 2.1:

Theorem 3.2. R2 can be covered by countably many rotated graphs of functions.

Proof. Fix distinct lines �i for i < � through the origin. As before, our goal is
to find sets Ai so that R2 =

⋃{Ai : i < �} and if � ⊥ �i then |Ai ∩ � | ≤ 1.
Let κ = c and take a Davies-tree 〈Mα : α < κ〉 for κ over {κ,R2, r, �i : i < �}
where r : κ → R2 is onto. So, if � ∈ κ ∩ Mα then r(�) ∈ R2 ∩ Mα . In turn,
R2 ⊆ ⋃{Mα : α < κ}.
By induction on � < κ, we will distribute the points in R2 ∩M<� among the sets
Ai while making sure that if � ⊥ �i then |Ai ∩ � | ≤ 1. In a general step, we list the
countable set R2 ∩M� \M<� as {tn : n < �}. Suppose we were able to put tk into
Aik for k < n and we consider tn.
Recall thatM<� can be written as

⋃{N�,j : j < m�} for some finite m� where
each N�,j is an elementary submodel containing {κ,R2, r, �i : i < �}. In turn,
R2 ∩M<� is the union of m� many sets which are closed under constructibility
using the lines {�i : i < �}. This means that there could be at most m� many
i ∈ � \{ik : k < n}which is bad for tn , i.e., such i so that the line �(tn, i) through tn
which is perpendicular to �i alreadymeetsAi . Indeed, otherwise we can find a single
j < m� and i �= i ′ ∈ � \ {ik : k < n} so that the line �(tn, i) meetsAi ∩N�,j already
and �(tn, i ′) meets Ai′ ∩ N�,j already. However, this means that tn is constructible
from R2 ∩N�,j so tn ∈ N�,j as well. This contradicts tn ∈M� \M<� .
So select any in ∈ � \ {ik : k < n} which is not bad for tn and put tn into Ain .
This finishes the induction and hence the proof of the theorem. �
We will proceed now with various new applications of Davies-trees; our aim is
to start with simple proofs and proceed to more involved arguments. However, the
next four sections of our article can be read independently.
Finally, let us mention explicit applications of Davies-trees from the literature
that we are aware of (besides Davies’ proof above).
Arguably, the most important application is S. Jackson and R. D. Mauldin’s
solution to the Steinhaus tiling problem (see [19] or the survey [20]). In the late
1950s, H. Steinhaus asked if there is a subset S of R2 such that every rotation of
S tiles the plane or equivalently, S intersects every isometric copy of the lattice
Z × Z in exactly one point. Jackson and Mauldin provides an affirmative answer;
their ingenious proof elegantly combines deep combinatorial, geometrical and set-
theoretical methods (that is, a transfinite induction usingDavies-trees). Again, their
argument becomes somewhat simpler assuming CH. However, this assumption can
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be eliminated, as in the Sierpinski–Davies situation, if one uses Davies-trees as a
substitute for increasing chains of models. Unfortunately, setting up the application
of Davies-trees in this result is not in the scope of our article so we chose more
straightforward applications.
Last but not least, D. Milovich [34] polished Davies, Jackson, and Mauldin’s
technique further to prove a very general result in [34,Lemma3.17]with applications
in set-theoretic topology in mind. In particular, one can guarantee that the Davies-
tree 〈Mα : α < κ〉 has the additional property that 〈Nα,j : j < mα〉, 〈M� : � <
α〉 ∈ Mα for all α < κ. This extra hypothesis is rather useful in some situations
and will come up later in Section 8 as well. Milovich goes on to apply his technique
in further articles concerning various order properties [35,36] and constructions of
Boolean algebras [37].

§4. Degrees of disjointness. Let us warm up by proving a simple fact from the
theory of almost disjoint set systems. A family of setsA is said to be almost disjoint
if A ∩ B is finite for all A �= B ∈ A. There are two well known measures for
disjointness:

Definition 4.1. We say that a family of setsA is d -almost disjoint iff |A∩B| < d
for every A �= B ∈ A.
A is essentially disjoint iff we can select finite FA ⊂ A for each A ∈ A so that

{A \ FA : A ∈ A} is pairwise disjoint.
There are almost disjoint families which are not essentially disjoint; indeed,
any uncountable, almost disjoint family A of infinite subsets of � witnesses this.
However:

Theorem 4.2 ([27]). Every d -almost disjoint family A of countable sets is
essentially disjoint for every d ∈ N.
The original and still relatively simple argument uses an induction on |A|. This
induction is eliminated by the use of Davies-trees.

Proof. Let κ = |A| and take aDavies-tree 〈Mα : α < κ〉 for κ over {A, f}where
f : κ → A is onto. Note thatA ⊂ ⋃

α<κ Mα . Also, recall thatM<α =
⋃{Nα,j : j <

mα} for some mα < � for each α < κ.
Our goal is to define a map F on A such that F (A) ∈ [A]<� for each A ∈ A and

{A \ F (A) : A ∈ A} is pairwise disjoint.
Let Aα = (A ∩Mα) \M<α and A<α = A ∩ M<α . We define F on each Aα
independently so fix α < κ.

Observation 4.3. |A ∩ (⋃A<α)| < � for all A ∈ Aα .
Proof. Otherwise, there is some j < mα so that A ∩⋃

(A ∩ Nα,j) is infinite; in
particular, we can select a ∈ [A ∩⋃

(A ∩ Nα,j)]d . Note that
⋃
(A ∩ Nα,j) ⊂ Nα,j

since each set in A is countable. Hence a ⊂ Nα,j and so a ∈ Nα,j as well. However,
Nα,j |= “there is a unique element of A containing a” since A is d -almost disjoint.
So A ∈ Nα,j ⊂

⋃M<α by elementarity which contradicts A ∈ Aα . �
Now list Aα as {Aα,l : l ∈ �}. Let

F (Aα,l ) = Aα,l ∩
(⋃A<α ∪

⋃
{Aα,k : k < l}

)
for l < �. Clearly, F witnesses thatA is essentially disjoint. �
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1256 DÁNIEL T. SOUKUP AND LAJOS SOUKUP

In a recent article, Kojman [26] presents a general framework for finding useful
filtrations of �-uniform �-almost disjoint families where � ≥ ��(�). That method
is based on Shelah’s Revised GCH and an analysis of density functions.

§5. Conflict-free colorings. The study of colorings of set systemsA dates back to
the early days of set theory and combinatorics. Let us say that a map f :

⋃A → �
is a chromatic coloring of A iff f � A is not constant for any A ∈ A. The chromatic
number ofA is the least � so that there is a chromatic coloring ofA. The systematic
study of chromatic number problems in infinite setting was initiated by P. Erdős and
A. Hajnal [8]. this section we will only work with families of infinite sets; note that
any essentially disjoint family (and so every d -almost disjoint as well) has chromatic
number 2.
Now, a more restrictive notion of coloring is being conflict-free: we say that
f :

⋃A → � is conflict-free iff |f−1(�) ∩ A| = 1 for some � < � for any A ∈ A.
That is, any A ∈ A has a color which appears at a unique point of A. Clearly,
a conflict-free coloring is chromatic. We let �CF (A) denote the least � so that A
has a conflict-free coloring. After conflict-free colorings of finite and geometric set
systems were studied extensively (see [3,12,39,40]), recently A. Hajnal, I. Juhász, L.
Soukup and Z. Szentmiklóssy [18] studied systematically the conflict-free chromatic
number of infinite set systems.
We prove the following:
Theorem 5.1 ([18, Theorem 5.1]). If m, d are natural numbers andA ⊆ [�m]� is
d -almost disjoint then

�CF (A) ≤
⌊
(m + 1)(d − 1) + 1

2

⌋
+ 2.

Part of the reason to include this proof here is to demonstrate how Davies-trees
for �m can provide better understanding of such surprising looking results.
Proof. Let A ⊂ [�m]� be d -almost disjoint and let 〈Mα : α < �m〉 be a Davies-
tree for �m over A. So each initial segment M<α is the finite union

⋃
j<m Nj of

elementary submodels. Also, let K =
⌊
(m+1)(d−1)+1

2

⌋
+ 2.

We will define eα : �m ∩ (Mα \M<α)→ K so that e =
⋃
α<�m

eα is a conflict-free
coloring of A.
We start by a simple observation:
Observation 5.2. If A ∈ A ∩ (Mα \M<α) then |A ∩M<α | ≤ m(d − 1).
Proof. Indeed, since A is d -almost disjoint, any A ∈ A is uniquely definable
from A and any d -element subset of A. So A ∈ Nj ≺ H (�) and |A ∩ Nj | ≥ d
would imply A ∈ Nj . In turn, |A ∩Nj | ≤ d − 1 for all j < m. �
Now let {An : n ∈ �} = A ∩ (Mα \M<α) and pick

xn ∈ An \
(⋃
i<n

Ai ∪
⋃

{Ak : |Ak ∩ {xi : i < n}| ≥ d} ∪M<α
)
.

Note that this selection is possible and letX = {xn : n ∈ �}. Clearly, 1 ≤ |X∩An | ≤
d + 1 and xn ∈ X ∩An ⊂ {x0, . . . , xn}.
We say that a color i < K − 1 is bad for An iff there is y �= z ∈ An ∩ (M<α ∪

{x0, . . . , xn−1}) such that e(y) = e(z) = i . In other words, i will not witness that
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the coloring is conflict free on An. We say that a color i < K − 1 is good for An
iff there is a unique y ∈ An ∩ (M<α ∪ {x0, . . . , xn−1}) such that e(y) = i . If there
happens to be a good color for An then we simply let e(xn) = {K − 1}. This choice
ensures that i still witnesses that the coloring e is conflict-free on An .
Now, suppose that no color i < K−1 is good forAn . The observation and the fact
that |X ∩An | ≤ d +1 implies that there are at most

⌊
m(d−1)+d+1

2

⌋
=

⌊
(m+1)(d−1)+1

2

⌋
bad colors for An . Hence, there is at least one i < K − 1 so that no element
y ∈ An∩(M<α ∪{x0, . . . , xn−1}) has color i.We let e(xn) = i for such an i < K−1;
now, i became a good color for An. This finishes the induction and the proof of the
theorem. �
If GCH holds then the above bound is almost sharp for d = 2 or for odd values
of d :

�CF (A) ≥
⌊
(m + 1)(d − 1) + 1

2

⌋
+ 1

for some d -almost disjoint A ⊆ [�m]� , and we recommend the reader to look into
[18] for a great number of open problems. In particular, Theorem 5.1 gives the
bound 4 for m = d = 2; it is not known if equality could hold, even consistently.

§6. Clouds above the Continuum Hypothesis. The next application, similarly to
Davies’ result, produces a covering of the plane with small sets. However, this
argument makes crucial use of the fact that a set of size ℵm (for m ∈ N) can be
covered by a Davies-tree such that the initial segments are expressed as the union
of m elementary submodels.

Definition 6.1. We say that A ⊂ R2 is a cloud around a point a ∈ R2 iff every
line � through a intersects A in a finite set.

Note that one or two clouds cannot cover the plane; indeed, if Ai is a cloud
around ai for i < 2 then the line � through a0 and a1 intersects A0 ∪ A1 in a finite
set. How about three or more clouds? The answer comes from a truly surprising
result of P. Komjáth and J. H. Schmerl:
Theorem 6.2 ([30] and [41]). The following are equivalent for each m ∈ N:
1. 2� ≤ ℵm,
2. R2 is covered by at mostm + 2 clouds.
Moreover, R2 is always covered by countably many clouds.
We only prove (i) implies (ii) and follow Komjáth’s original argument for CH.
The fact that countably many clouds always cover R2 can be proved by a simple
modification of the proof below.
Proof. Fix m ∈ � and suppose that the continuum is at most ℵm. In turn, there
is a Davies-tree 〈Mα : α < ℵm〉 for c over R2 so thatM<α =

⋃{Nα,j : j < m} for
every α < ℵm.
Fix m + 2 points {ak : k < m + 2} in R2 in general position (i.e., no three are
collinear). Let Lk denote the set of lines through ak and let L =

⋃{Lk : k < m+2}.
We will define clouds Ak around ak by defining a map F : L → [R2]<� such that
F (�) ∈ [�]<� and letting

Ak = {ak} ∪
⋃

{F (�) : � ∈ Lk}
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for k < m + 2. We have to make sure that for every x ∈ R2 there is � ∈ L so that
x ∈ F (�).
Now, let Lα = (L∩Mα) \M<α for α < ℵm. We define F on Lα for each α < ℵm
independently so fix an α < ℵm. List Lα \ L′ as {�α,i : i < �} where L′ is the set of(
m+2
2

)
lines determined by {ak : k < m + 2}. We let

F (�α,i) =
⋃

{� ∩ �α,i : � ∈ L′ ∪ {�α,i′ : i ′ < i}}
for i < �.
We claim that this definition works: fix a point x ∈ R2 and we will show that
there is � ∈ L with x ∈ F (�). Find the unique α < ℵm such that x ∈Mα \M<α . It
is easy to see that ∪L′ is covered by our clouds hence we suppose x /∈ ⋃L′. Let �k
denote the line through x and ak .

Observation 6.3. |M<α ∩ {�k : k < m + 2}| ≤ m.
Proof. Suppose that this is not true. Then (by the pigeon hole principle) there is
j < m such that |Nα,j ∩ {�k : k < m + 2}| ≥ 2 and in particular the intersection of
any two of these lines, the pointx, is inNα,j ⊂M<α . This contradicts theminimality
of α. �
We achieved that

|{�k : k < m + 2} ∩ (Lα \ L′)| ≥ 2,
i.e., there is i ′ < i < � such that �α,i′ , �α,i ∈ {�k : k < m + 2}. Hence x ∈ F (lα,j) is
covered by one of the clouds. �

§7. The chromatic number and connectivity. A graphG is simply a set of vertices
V and edges E ⊆ [V ]2. Recall that the chromatic number �(G) of a graph G is
the least number � such that the vertices of G can be colored by � colors without
monochromatic edges. It is one of the fundamental problems of graph theory how
the chromatic number affects the subgraph structure of a graph, i.e., is it true
that large chromatic number implies that certain graphs (like triangles or 4-cycles)
must appear as subgraphs? The first result in this area is most likely J. Mycielski’s
construction of triangle free graphs of arbitrary large finite chromatic number [38].
It was discovered quite early that a lot can be said about uncountably chromatic
graphs; this line of research was initiated by P. Erdős and A. Hajnal in [8]. One of
many problems in that article askedwhether uncountable chromatic number implies
the existence of highly connected uncountably chromatic subgraphs.
A graph G is called n-connected iff the removal of less than n vertices leaves G
connected. Our aim is to prove P. Komjáth’s following result:

Theorem 7.1 ([28]). Every uncountably chromatic graph G contains n-connected
uncountably chromatic subgraphs for every n ∈ N.

Fix a graph G = (V,E), n ∈ � and consider the set A of all subsets of V
inducing maximal n-connected subgraphs ofG . We assume thatG has uncountable
chromatic number but each A ∈ A induces a countably chromatic subgraph and
reach a contradiction.
First, A essentially covers G :
Lemma 7.2. The graph G � V \⋃A is countably chromatic.
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Proof. It is proved in [8] that every graph with uncountable chromatic number
contains an n-connected subgraph; hence the lemma follows. �
Wewill followKomjáth’s original framework however the use of Davies-trees will
make our life significantly easier. We letNG (v) = {w ∈ V : {v,w} ∈ E} for v ∈ V .
Lemma 7.3. Suppose thatG = (V,E) is a graph, the sequence 〈A� : � < �〉 covers
V with countably chromatic subsets so that

|NG (x) ∩ A<� | < � for all � < � and x ∈ A� \ A<�,
where A<� =

⋃{A� : � < �}. Then �(G) ≤ �.
Proof. Suppose that g� : A� → � witnesses that the chromatic number of A�
is ≤ �. We define f : V → � × � by defining f � (A� \ A<�) by induction on
� < �. If x ∈ A� \ A<� then the first coordinate of f(x) is g�(x) while the second
coordinate of f(x) avoids all the finitely many second coordinates appearing in
{f(y) : y ∈ NG (x) ∩ A<�}. It is easy to see that f witnesses that G has countable
chromatic number. �
Now, our goal is to enumerate A as 〈A� : � < �〉 so that the assumptions of
Lemma 7.3 are satisfied. This will imply that the chromatic number of G �

⋃A is
countable as well which contradicts that G has uncountable chromatic number.
Not so surprisingly, this enumeration will be provided by a Davies-tree but we
need a few easy lemmas first.

Observation 7.4. 1. A �⊆ A′ for all A �= A′ ∈ A,
2. |A ∩ A′| < n for all A �= A′ ∈ A,
3. |{A ∈ A : a ⊂ A}| ≤ 1 for all a ∈ [V ]≥n,
4. |NG(x) ∩ A| < n for all x ∈ V \ A and A ∈ A.
The next claim is fairly simple and describes a situation when we can join n-
connected sets.
Claim 7.4.1. Suppose thatAi ⊂ V spans an n-connected subset for each i < n and
we can find Y = {yi,k : i, k < n} and X = {xk : k < n} distinct points so that

yi,k ∈ Ai ∩NG (xk)
for all i, k < n. Then A =

⋃{Ai : i < n} ∪ X is n-connected.
Proof. Let F ∈ [A]<n and note that there is a k < n so that {yi,k , xk : i <
n} ∩ F = ∅. Thus (⋃{Ai : i < n} ∪ {yi,k , xk : i < n}

) \ F is connected as Ai \ F is
connected for all i < n. Finally, if xj ∈ A \F thenNG (xj)∩

⋃{Ai : i < n} \F �= ∅
so we are done. �
Now, we deduce some useful facts about elementary submodels and maximal
n-connected sets.

Lemma 7.5. Suppose thatN ≺ H (�) with G ∈ N and
|NG(x) ∩N | ≥ n

for some x ∈ V \N . Then x ∈ A for some A ∈ A ∩N .
Proof. Let a ∈ [NG (x)∩N ]n . There is a copy ofKn,�1 (complete bipartite graph
with classes of size n and �1) which contains a ∪ {x}; to see this, apply Fact 2.3
to X =

⋂{NG (y) : y ∈ A}. As Kn,�1 is n-connected, there must be A ∈ A with
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a ∪ {x} ⊂ A as well. Also, there is A′ ∈ A ∩ N with a ⊂ A′ by elementarity; as
|A ∩ A′| ≥ n we have A = A′ which finishes the proof. �
Lemma 7.6. Suppose thatN ≺ H (�) with G ∈ N and

|NG (x) ∩
⋃
(A ∩N)| ≥ �

for some x ∈ V \N . Then x ∈ A for some A ∈ A ∩N .
Proof. Suppose that the conclusion fails; by the previous lemma, we have

|NG (x) ∩ N | < n. In particular, there is sequence of distinct Ai ∈ A ∩ N for
i < n so

(NG (x) ∩ Ai) \N �= ∅
for all i < n (as NG (x) ∩ A is finite if A ∈ N ∩A).
Thus

N |= ∀F ∈ [V ]<�∃x ∈ V \ F and yi ∈ (Ai ∩NG(x)) \ F.
Now, we can find distinct {yi,k : i < n, k < n} and X = {xk : k < n} so that

yi,k ∈ Ai ∩NG (xk).
Finally,

⋃{Ai : i < n} ∪ X is n-connected by Claim 7.4.1 which contradicts the
maximality of Ai . �
Finally, lets finish the proof of Theorem 7.1 by defining this ordering of A. Take
a Davies-tree 〈Mα : α < κ〉 for |A| over {G}. In turn, A ⊆ ⋃{Mα : α < κ}. Recall
that for all α < κ there is (Nα,j)j<mα so that

M<α =
⋃

{Nα,j : j < mα}
with G ∈Mα ∩Nα,j .
Let A<α = A ∩M<α and Aα = (A ∩Mα) \ A<α for α < κ. Well order A as

{A� : � < �} so that
1. A� ∈ A<α,A� ∈ A \A<α implies � < � and
2. Aα \ A<α has order type ≤ �
for all α < κ.
We claim that the above enumeration of A satisfies Lemma 7.3. By the second
property of our enumeration and Observation 7.4(iv), it suffices to show that

|NG(x) ∩
⋃

A<α | < �
if x ∈ A \⋃A<α for all A ∈ Aα \ A<α and α < κ.
However, as A<α =

⋃{A ∩ Nα,j : j < mα}, this should be clear from applying
Lemma 7.6 for each of the finitely many models Nα,j where j < mα . This finishes
the proof of Theorem 7.1.
We note that Komjáth also proves that every uncountably chromatic subgraph
contains an n-connected uncountably chromatic subgraph with minimal degree �;
we were not able to deduce this stronger result with our tools.
It is an open problem whether every uncountably chromatic graph G contains a
nonempty�-connected subgraph [31] (i.e., removing finitelymany vertices leaves the
graph connected). These infinitely connected subgraphs might only be countable,
as demonstrated by
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Theorem 7.7 ([46]). There is a graph of chromatic number ℵ1 and size c such that
every uncountable set is separated by a finite set. In particular, every �-connected
subgraph is countable.

§8. Davies-trees from countably closed models. In a wide range of problems, we
are required toworkwith countably closed elementary submodels, i.e.,modelswhich
satisfy [M ]� ⊆M . Recall that it is possible to find countably closed modelsM with
a given parameter x ∈ M while the size of M is c. A prime example of applying
such models is Arhangelskii’s theorem [1]: every first countable, compact space has
size at most c. In the modern proof of this result [15], a continuous �1-chain of
countably closed models, each of size c, is utilized.
Our main goal in this section is to show that, under certain assumptions, one
can construct a sequence of countably closed elementary submodels, each of size c,
which is reminiscent ofDavies-treeswhile the correspondingmodels cover structures
of size >c+; note that this covering would not be possible by an increasing chain of
models of size c.
So, what is it exactly that we aim to show? First, recall that we have been working
with the structure (H (�),∈) so far. However, we will now switch to (H (�),∈,�)
where � is some (fixed) well-order onH (�), and use its elementary submodels. We
shall see in Section 13 that this can be quite useful, e.g., the well order � can be
used to make uniform choices in a construction of say topological spaces and hence
the exact same construction can be reproduced by any elementary submodel with
the appropriate parameters.
Now, we say that a high Davies-tree for κ over x is a sequence 〈Mα : α < κ〉 of
elementary submodels of (H (�),∈,�) for some large enough regular � such that
(I)

[
Mα

]� ⊂Mα , |Mα| = c and x ∈Mα for all α < κ,
(II)

[
κ
]� ⊂ ⋃

α<κ Mα , and
(III) for each � < κ there areN�,j ≺ H (�) with [N�,j ]� ⊂ N�,j and x ∈ N�,j for

j < � such that ⋃
{Mα : α < �} =

⋃
{N�,j : j < �}.

Now, a high Davies-tree is really similar to the Davies-trees we used so far, only
that we work with countably closed models of size c (instead of countable ones)
and the initial segmentsM<� are countable unions of such models (instead of finite
unions). Furthermore, we require that the models cover

[
κ
]�
instead of κ itself.

This is because our applications typically require to deal with all countable subsets
of a large structure.
One can immediately see that (II) implies that κ� = κ and so high Davies-trees
might not exist for some κ. Nonetheless, a very similar tree-argument to the proof
of Theorem 3.1 shows that high Davies-trees do exist for the finite successors of
c, i.e., for κ < c+� . We will not repeat that proof here but present a significantly
stronger result.
As mentioned already, some extra set theoretic assumptions will be necessary to
prove the existence of high Davies-trees for cardinals above c+� so let us recall two
notions. We say that�� holds for a singular � iff there is a sequence 〈Cα : α < �+〉
so that Cα is a closed and unbounded subset of α of size < � and Cα = α ∩
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C� whenever α is an accumulation point of C� . �� is known as Jensen’s square
principle; R. Jensen proved that�� holds for all uncountable � in the constructible
universe L.
Furthermore, a cardinal � is said to be �-inaccessible iff �� < � for all � < �.
Now, our main theorem is the following:

Theorem 8.1. There is a high Davies-tree 〈Mα : α < κ〉 for κ over x whenever
1. κ = κ� and
2. � is �-inaccessible, �� = �+ and �� holds for all � with c < � < κ and
cf(�) = �.

Moreover, the high Davies-tree 〈Mα : α < κ〉 can be constructed so that
3. 〈Mα : α < �〉 ∈M� for all � < κ and
4.

⋃{Mα : α < κ} is also a countably closed elementary submodel ofH (�).
We will say that 〈Mα : α < κ〉 is a sage Davies-tree if it is a high Davies-tree
satisfying the extra properties 3. and 4. above. Finally, let us remark that if one only
aims to construct high Davies-trees (which are not necessary sage) then slightly
weaker assumptions than 1. and 2. suffice; see Theorem 14.3 for further details.
In order to state a rough corollary, recall that 1. and 2. are satisfied by all κ with
uncountable cofinality in the constructible universe. Hence:

Corollary 8.2. If V = L then there is a sage Davies-tree for κ over x for any
cardinal κ with uncountable cofinality.

Our plan is to postpone the proof of Theorem 8.1 to the appendix in Section 14
because it involves much more work than proving the existence of usual Davies-
trees. Indeed, we need a completely different approach than the tree-argument from
the proof of Theorem 3.1. Furthermore, we believe that the proof itself gives no
extra insight to the use of high Davies-trees in practice.
So instead, we start with applications first in the next couple of sections. We hope
to demonstrate that the existence of high/sage Davies-trees can serve as a simple
substitute for technically demanding applications of �� and cardinal arithmetic
assumptions.
Some of the presented applications will show that condition (2) in Theorem 8.1
cannot be weakened to say the Generalized Continuum Hypothesis, i.e., 2� = �+

for all infinite cardinal �. We will show that consistently, GCH holds and there are no
high Davies-trees for any κ above ℵ� ; we will use a supercompact cardinal for this
consistency result (see Corollary 9.2).
Finally, let us point the interested reader to a few related construction schemes
which were used to produce similar results: the technique of Jensen-matrices [13],
simplified morasses [49] and cofinal Kurepa-families [48, Definition 7.6.11]. In
particular, the latter method was used to produce Bernstein-decompositions of
topological spaces (see Section 10) and splendid spaces (see Section 13).

§9. More on large chromatic number and the subgraph structure. We start with an
easy result about large chromatic number and subgraphs, very much in the flavour
of Section 7. This result will also demonstrate that high Davies-trees might not exist
for any κ ≥ ℵ�+1 even if GCH holds.
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Let [ℵ0, c+] denote the graph on vertex set U ∪̇V where |U | = ℵ0 and |V | = c+,
and edges {uv : u ∈ U, v ∈ V }.
Theorem 9.1. Suppose that G is a graph of size � without copies of [ℵ0, c+]. If
there is a high Davies-tree for any κ ≥ � over G then �(G) ≤ c.

The above theorem is a rather weak version of [29, Theorem 3.1]; there GCH
and a version of the square principle was assumed to deduce a more general and
stronger result.

Proof. Let 〈Mα : α < κ〉 be a high Davies-tree for κ ≥ � over G . Without loss
of generality, we can suppose that the vertex set of G is � and utilize � ⊆ ⋃{Mα :
α < κ}.
Our plan is to define fα : �∩Mα \M<α → c inductively so thatf =

⋃{fα : α <
κ} witnesses �(G) ≤ c. That is, f is a chromatic coloring: f(u) �= f(v) whenever
uv is an edge of G .
Suppose we defined colorings fα for α < � such that f<� =

⋃{fα : α < �} is
chromatic. List �∩M� \M<� as {v� : � < �} for some � ≤ c and let’s define f�(v�)
by induction on � < �. Our goal is to choose f�(v�) from c \ {f�(v�) : � < �} to
make sure thatf� is chromatic, and also thatf�(v�) �= f<�(u) for any u ∈ �∩M<�
such that uv� is an edge. If we can do this then f<� ∪ f� is chromatic as well.
Our first requirement is easy tomeet since we only want to avoid {f�(v�) : � < �},
a set of size <c. The next claim implies that there are not too many edges from v�
into � ∩M<� :
Claim 9.1.1. If v ∈ �∩M� \M<� then {u ∈ �∩M<� : uv is an edge} is countable.
Proof. Recall thatM<� =

⋃{N�,j : j < �} so thatG ∈ N�,j and [N�,j ]� ⊂ N�,j .
LetN(v) = {u ∈ � : uv is an edge}. IfN(v)∩M<� is uncountable then we can find
A ∈ [N(v) ∩N�,j ]� for some j < �. Since A ∈ N�,j , the set B =

⋂{N(u) : u ∈ A}
is also an element of N�,j and v ∈ B. We claim that |B| > c; indeed, otherwise
B ⊆ N�,j and so v ∈ N�,j which contradicts the choice of v. However, any point in
A is connected to any point in B which gives a copy of the complete bipartite graph
[ℵ0, c+] in G . This again is a contradiction. �
So, we can choose f�(v�) and extend our chromatic coloring as desired. In turn,
this finishes the induction and the proof of the theorem. �
While we do not claim that the existence of a high Davies-tree for κ ≥ �
implies that there are high Davies-trees for � too, the above proof demonstrates
that practically we can work with a high Davies-tree for κ as a high Davies-tree
for �.

Corollary 9.2. Consistently, relative to a supercompact cardinal, GCH holds and
there are no high Davies-trees for any κ ≥ ℵ�+1.
Proof. This will follow from [17, Theorem 4.7]: Consistently, relative to a super-
compact cardinal,GCHholds and there is a graphG on vertex setℵ�+1 of chromatic
number c+ so that G contains no copies of [ℵ0, c+].
Now, working in the above model, fix κ ≥ ℵ�+1, a cardinal � and a well order �
of H (�). Let G∗ be the unique �-minimal graph on vertex set ℵ�+1 of chromatic
number c+ so that G∗ contains no copies of [ℵ0, c+]. If 〈Mα : α < κ〉 is a high
Davies-tree for κ ≥ ℵ�+1 from (H (�),∈,�) then 〈Mα : α < κ〉 must be a high

https://doi.org/10.1017/jsl.2018.8 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.8
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Davies-tree over G∗; indeed, G∗ is uniquely definable from ℵ�+1 and c+ using �,
and these parameters are in each relevant submodel of (H (�),∈,�).
Hence, there are no high Davies-tree for any κ ≥ ℵ�+1 in that model by our
Theorem 9.1. �

§10. Coloring topological spaces. Our first application concerns a truly classical
result due to F. Bernstein from 1908 [2]: there is a coloring of R with two colors
such that no uncountable Borel set is monochromatic. In other words, the family of
Borel sets in R has chromatic number 2. Indeed, list all the uncountable Borel sets
as {Bα : α < c} and inductively pick distinct x�, y� ∈ B� \ {xα, yα : α < �}. This
can be done since each B� contains a Cantor subspace and so has size continuum.
Now any map f : R → 2 that sends {xα : α < c} to 0 and {yα : α < c} to 1 is as
desired.
Now, let C(X ) denote the set of Cantor subspaces of an arbitrary topological
space (X, �). Can we extend Bernstein’s theorem to general topological spaces?
The above simple argument certainly fails if there are more than c many Cantor
subspaces.

Theorem 10.1. Suppose that (X, �) is a Hausdorff topological space of size κ. If
there is a high Davies-tree for κ over (X, �) then there is a coloring f : X → c so that
f[C ] = c for any C ∈ C(X ).
Let us call such a function f : X → c a Bernstein-decomposition of X . Now,
if |X | < c+� or, more generally, κ satisfies the assumptions of Theorem 8.1 then
Bernstein-decompositions for X exist.
Originally, the consistency of “any Hausdorff space X has a Bernstein-
decomposition” was proved by W. Weiss [50] (see [51] for a survey). For an
alternative proof using cofinal Kurepa-families, see [48, Theorem 7.6.31]. Let us
also mention that a more general (and more technical) coloring result was achieved
in [17, Theorem 3.5] using similar but stronger assumptions to the ones in our
Theorem 8.1; it is likely that one can do the same using high Davies-trees. Finally,
S. Shelah [42] showed (using a supercompact cardinal) that consistently there is a
0-dim, Hausdorff space X of size ℵ�+1 without a Bernstein-decomposition.
Proof. Let 〈Mα : α < κ〉 be a highDavies-tree for κ overX . In turn,X and [X ]�
are covered by

⋃{Mα : α < κ}.We let Cα = C(X )∩Mα \M<α ,Xα = X ∩Mα \M<α
and X<α = X ∩M<α .
Claim 10.1.1. Suppose that C ∈ C(X ) and C ∩ X<α is uncountable. Then there is
a D ∈M<α ∩ C(X ) such thatD ⊆ C .
Proof. Indeed, M<α =

⋃{Nα,j : j < �} and each Nα,j is �-closed. So there
must be an j < � such that C ∩ Nα,j is uncountable. Find A ⊆ C ∩ Nα,j which is
countable and dense in C ∩ Nα,j . Note that A must be an element of Nα,j as well
and hence, the uncountable closure Ā of A is an element of Nα,j (since � ∈ Nα,j).
Now, we can pick D ⊆ Ā ⊆ C such thatD ∈ Nα,j ∩ C(X ) ⊆M<α ∩ C(X ). �
We define fα : Xα → c so that fα[C ] = c for any C ∈ Cα so that C ∩ X<α is
countable. This can be done just like Bernstein’s original theorem; indeed let

C∗
α = {C ∩ Xα : C ∈ Cα, |C ∩ X<α| ≤ �}.
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⋃ C∗

α ⊆ X ∩Mα and if C∗
α �= ∅ then |⋃ C∗

α| = c. Moreover, |C∗
α| ≤ c and C∗

α is c-
uniform, i.e., each element has size c. So, we can use the same induction as Bernstein
to find fα.
We claim that f =

⋃{fα : α < κ} satisfies the requirements. Indeed, suppose
that C ∈ C(X ) and let α be minimal so thatD ⊆ C for someD ∈ Cα . Claim 10.1.1
implies that C ∩ X<α is countable and hence c = fα[D] ⊆ f[C ]. �
We remark that in the examples preceding this section, Davies-trees were mainly
used to find well behaving enumerations of almost disjoint set systems. This is
certainly not the case here for the family C(X ).

§11. Saturated families. The following still openproblem stands out in the theory
of almost disjoint sets: is there, in ZFC, an infinite almost disjoint familyA ⊆ [�]�
so that any B ∈ [�]� either contains an element fromA or is covered mod finite by
a finite subfamily of A. Such families were introduced by Erdős and S. Shelah [10]
and are called saturated or completely separable.
Now, in more generality:

Definition 11.1. Let κ be a cardinal and F ⊂ [
κ
]�
. We say that a family A is

F -saturated if A ⊂ F and for all F ∈ F either
• A ⊂ F for some A ∈ A or
• F ⊂∗ ⋃A′ for some A′ ∈ [A]<�

.

So the completely separable families mentioned at the beginning of the sec-
tion are exactly the almost disjoint

[
�
]�
-saturated families. Our goal is to

prove

Theorem 11.2. If CH holds and there is a high Davies-tree for κ then there is an
almost disjoint

[
κ
]�
-saturated family.

First, our theorem gives Baumgartner’s result that CH implies the existence of
almost disjoint

[ℵn]�-saturated families for all finite n (see the remark at Problem
37 in [9]). Second, in [16], similar assumptions (i.e.,�� and a weak formof�� = �+
for cf(�) < �) were used to deduce the consistency of “there is an almost disjoint[
κ
]�
-saturated family for all κ”.

Proof. Let 〈Mα : α < κ〉 be a high Davies-tree for κ. So,M<α =
⋃
i<� Nα,i for

some Nα,i ≺ H (�) with
[
Nα,i

]� ⊂ Nαi .
By transfinite recursion on α ≤ κ we will define families Aα such that
(1) Aα ⊆M<α ∩ [κ]� is almost disjoint,
(2) Aα ⊂ A� if α < � , and
(3) Aα is Fα-saturated where Fα =M<α ∩

[
κ
]�
.

If we succeed then Aκ is the desired almost disjoint
[
κ
]�
-saturated family since

Fκ = [κ]� .
In limit steps we can simply take unions so suppose that Aα is defined and we
will find Aα+1.
Using CH, we can enumerate (Mα \M<α)∩

[
κ
]�
as {H� : � < �1}. By induction

on � ≤ �1, we define families B� such that such that
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(i) B0 = Aα , |B� \ Aα| ≤ � and B� ⊂ B� if � < � < �1,
(ii) B� ⊆M<α+1 ∩ [κ]� is almost disjoint, and
(iii) B� is

(Fα ∪ {H� : � < �}
)
-saturated.

Note that if we succeed then Aα+1 = B�1 is the desired family. As before, in
limit steps we just take unions so assume that B� is defined and consider H� . We
distinguish two cases:

Case 1. There a finite subset C ⊂ {Nα,j ∩ κ : j < �} ∪ (B� \ Aα) such that
H� ⊂∗ ⋃ C.
We will show that B�+1 = B� satisfies the requirements, i.e., B� is

(Fα ∪ {H� :
� ≤ �})-saturated. Of course we only need to deal with H� .
Note that whenever Nα,j ∩ κ ∈ C then Dj = H� ∩ Nα,j ∈ Nα,j since

[
Nα,j

]� ⊂
Nα,j , and soDj ∈ Fα . SinceAα isFα-saturated either (a)A ⊂ Dj for someA ∈ Aα ,
or (b) Dj ⊂∗ ⋃A′

j for some A′
j ∈

[Aα]<� .
In case (a) holds for any j, then B�+1 = B� clearly satisfies the requirements. So
we can assume that

H� ∩Nα,j ∩ κ ⊂∗ ⋃
A′
j

for all Nα,j ∩ κ ∈ C.
Let B′ =

⋃{A′
j : Nα,j ∩ κ ∈ C} ∪ (C ∩ (Bα \ Aα)

)
. Then B′ ∈ [B�]<� and

H� ⊂∗ ⋃
C ⊂∗ ⋃

B′,

so B�+1 = B� satisfies the requirements.
Case 2. H� \

⋃ C is infinite for all finite subset C ⊂ {Nα,j∩κ : j < �}∪(B� \Aα).
Now, there is an infinite B� ⊂ H� such that B� ∩

⋃ C is finite for all finite subset
C ⊂ {Nα,j∩κ : j < �}∪(B� \Aα). Indeed, we can list {Nα,j∩κ : j < �}∪(B� \Aα)
as {Cn : n ∈ �}, pick bn ∈ H� \

⋃{Ck : k < n} ∪ {bk : k < n} and set
B� = {bn : n ∈ �}.
First, B� ∈ Mα since H� ∈ Mα and Mα is �-closed. So if we let B�+1 =

B� ∪ {B�} then B�+1 ⊆ M<α+1 ∩ [κ]� . Furthermore, B�+1 is clearly
(Fα ∪ {H� :

� ≤ �})-saturated.
Finally, we need that B�+1 is almost disjoint; B� ∩ B is clearly finite for all

B ∈ B� \ Aα . If B ∈ Aα then B ∈ M<α so B ∈ Nα,j for some j < �. So B� ∩ B is
finite again.
This ends the construction of 〈B� : � ≤ �1〉 and, as mentioned before, we let

Aα+1 = B�1 . This finishes the main induction and the proof of the theorem. �
It is still unknown, if one can prove that there is an almost disjoint

[
κ
]�
-saturated

family for all κ purely in ZFC; although, significant evidence hints that the answer
is yes [43].

§12. The weak Freese–Nation property. The next theorem we present concerns
the structure of the poset ([κ]�,⊆):
Theorem 12.1. Suppose that CH holds and there is a high Davies-tree for κ. Then
there is a function F with domain [κ]� so that
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1. |F (a)| ≤ � and
2. if a ⊆ b ∈ [κ]� then there is c ∈ F (a) ∩ F (b) with a ⊆ c ⊆ b.
The existence of a map F as above is usually stated by saying that the partial
order ([κ]�,⊆) has the weak Freese–Nation property. We refer the interested reader
to [13,14] and also [35–37] formore on the Freese–Nation property. In [14], matrices
of elementary submodels are used (very much in the flavour of Section 14), and in
the latter two articles, Milovich’s version of Davies-trees (i.e., long �-approximation
sequences) make an appearance.

Proof. Let 〈Mα : α < κ〉 be a high Davies-tree for κ. We inductively define F
on [κ]� ∩M<α so that a ∈ F (a), and (1) and (2) are satisfied when restricted to
a ⊆ b ∈ [κ]� ∩M<α .
At limit steps, we simply take unions so suppose that F is given on M<α and
we define F (a) for a ∈ [κ]� ∩Mα \M<α . To this end, list [κ]� ∩Mα \M<α as
{a� : � < �1}. Now, let

F (a�) = {a� : � ≤ �} ∪
⋃

{F (a� ∩Nα,j) : j < �}
for � < �1.
Now, let us check (2) since F (a�) is clearly countable. Let b ∈ [κ]� ∩M<α+1; if
b ∈Mα\M<α then b ∈ F (b)∩F (a�) andwe are done. So suppose that b ∈M<α and
in turn b ∈ Nα,j and b ⊆ Nα,j for some j < �. If b ⊆ a� then b ⊆ a� ∩Nα,j ∈M<α
so

b ∩Nα,j ⊆ c ⊆ a� ∩Nα,j
for some c ∈ F (b) ∩ F (a� ∩Nα,j). Hence b ⊆ c ⊆ a� and c ∈ F (b) ∩ F (a).
If a� ⊆ b then a� ∈ Nα,j as well since Nα,j is �-closed. However, this contradicts
a� ∈Mα \M<α . �
We remark that ([κ]�,⊆) may fail the weak Freese–Nation property, in particular
if GCH and (ℵ�+1,ℵ�) � (ℵ1,ℵ0), a particular instance of Chang’s Conjecture,
holds (see [14, Theorem 12]).

§13. Locally countable, countably compact spaces. In our final application, we
show how to use sage Davies-trees to construct nice topological spaces. Let us
recall some topological properties first. It is well known that the set of countable
ordinals�1 with the topology inherited from their usual order satisfies the following
properties:

(i) 0-dimensional and T2, i.e., there is a basis of closed and open sets, and any
two points can be separated by disjoint open sets;

(ii) locally countable and locally compact, i.e., any point has a countable and
compact neighbourhood;

(iii) countable sets have compact closure.

Topological spaces with the above three properties are often called splendid in the
literature [22–24]. The study of splendid spaces dates back to a long standing open
problem of E. van Douwen [7]: what are the possible sizes of T3, locally countable
and countably compact spaces? Each splendid space satisfies vanDouwen’s require-
ments since (iii) implies that any countable set has an accumulation point, i.e., the
space is countably compact.
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I. Juhász, Zs. Nagy and W. Weiss [22] built splendid spaces of cardinality κ for
any κ with uncountable cofinality using V = L; P. Nyikos later observed that the
proof only uses instances of �� and certain cardinal arithmetic assumptions [23].
An alternative construction is outlined in [6] using cofinal Kurepa-families. Finally,
Juhász, S. Shelah and L. Soukup [23] showed that it is consistent that there are no
splendid spaces of size bigger than ℵ� . Nonetheless, van Douwen’s problem is still
open in ZFC.
Wewill nowpresent a straightforwardand self contained construction of splendid
spaces using sage Davies-trees:
Theorem 13.1. Suppose CH holds and there is a sageDavies-tree for κ. Then there
is a splendid space of size κ.
The most straightforward approach would be to define the required topology on
larger and larger portions of κ by inductively making the closure of each countable
set compact. That is, at each step we consider a countable set a, and if the closure
of a is not compact yet then we add an extra point to compactify this closure.
The first step is to show how to make a small (size c) space splendid by adding a
small number of new points; this is essentially [22, Lemma 7] but we include a proof
here as well:
Lemma 13.2. Assume that CH holds. Suppose that Y0 = (Y0, �0) is a 0-
dimensional, T2, locally compact and locally countable space of size �1 which is
also �-fair, i.e., countable sets have countable closure. Then there is Y ⊇ Y0 of size
�1 and a topology � ⊇ �0 on Y so that Y = (Y, �) is splendid and �0 = � ∩ P(Y0).
Proof. Let Y = Y0 ∪ {y� : � < �1} and enumerate [Y ]� as {a� : � < �1} so
that y� ∈ a� implies � < �.
We will use y� to make the closure of a� compact. More precisely, we define
topological spaces Y� = 〈Y�, ��〉 for � ≤ �1, where Y� = Y0 ∪ {y� : � < �}, such
that
(i) Y� is a 0-dimensional, T2, locally compact and locally countable space,
(ii) if � < � then �� = �� ∩ P(Y�), and
(iii) cl��+1(a�) is compact.
In limit steps we simply take unions, so we need to construct Y�+1 assuming thatY�
is defined. Consider the countable, closed A = cl�� (a�) and suppose that A is not
compact; otherwise, we let ��+1 be the topology generated by �� ∪ {{y�}}.
Now, note that A consists of clY0 (a�) and some points of the form y� for � < �.
It is an easy exercise to prove that there is a countable, ��-clopen W ⊆ Y� which
containsA; indeed, first find a countable open V ⊆ Y� containingA. Then working
in the countable set cl��(V ), find a clopenA ⊆W as desired by inductively covering
more and more points of A while avoiding more and more points from cl��(V ) \A.
Now, we define ��+1 to be the topology generated by

�� ∪ {{y�} ∪W \ F : F is compact in ��}.
So {y�} ∪W with the subspace topology (from ��+1) is really just the one-point
compactification ofW (with ��). The fact thatW is countable and clopen implies
that ��+1 is locally countable and 0-dimensional. Furthermore, the set W ∪ {y�}
is clearly compact and clopen so ��+1 is locally compact and cl��+1(a�) must be
compact as well.
Now, Y = Y�1 is as desired. �
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Now, using the above lemma we can prove the theorem:

Proof of Theorem 13.1. Let 〈Mα : α < κ〉 be a sage Davies-tree for κ from
(H (�),∈,�) where � is a well order of H (�). As always, let M<α =

⋃
j<� Nα,j

for some Nα,j ≺ (H (�),∈,�) with
[
Nα,j

]� ⊂ Nα,j .
By transfinite recursion onα ≤ κwewill define topological spacesXα = 〈Xα, �α〉,
where Xα = κ ∩M<α , such that
(1) Xα is a 0-dimensional, T2, locally compact and locally countable space,
(2) Xα is �-fair,
(3) �α is reconstructible, i.e., �α can be uniquely defined from κ and 〈M� : � < α〉,
(4) if α < � then �α = �� ∩ P(Xα), and
(5) if a ∈ [

κ
]� ∩Mα then cl�α+1 (a) is compact.

We do what we promised in the remark above: we define the topology on larger
and larger sets while making the closure of more and more countable sets compact.
Condition (4) guarantees that we do not interfere in later steps with the topology
we defined earlier and, in particular, compact sets remain compact. Furthermore,
(5) ensures that we deal with all countable sets eventually. In turn, Xκ will be the
desired splendid space of size κ.
If α is a limit ordinal then we let �α be the topology generated by

⋃{�� : � <
α}. The only property which is not straightforward is that no countable set has
uncountable closure suddenly, i.e.,

Claim 13.2.1. Xα is �-fair.
Proof. Suppose that a ∈ [M<α ∩ κ]� . Fix a countable neighborhood Ux ∈ �α
of x for each x ∈ cl�α (a); in turn, x ∈ cl�α (a ∩ Ux). If Ux ∈ Nα,i , then Ux ⊂ Nα,i ,
and so x ∈ cl�α (a ∩Nα,i).
In turn,

cl�α (a) =
⋃

{cl�α (a ∩Nα,j) : j < �}.

However, bj = a∩Nα,j ∈ Nα,j ⊆M<α sinceNα,j is countably closed. So bj ∈M�
for some � < α. Now, property (5) implies thatBj = cl��+1 (bj) is compact and hence
countable (indeed, cover Bj by countable open sets and take a finite subcover). By
property (4), Bj is still a compact set containing bj in �α so cl�α (bj) = Bj as well.
Hence cl�α (a) is countable. �
Now, we deal with the case of α = 0, and with the construction of Xα+1 from

Xα . This can be done simultaneously. Our main objective is to make the closure of
each a ∈ [

κ
]� ∩Mα compact and we shall do that by applying Lemma 13.2. We

will show this now while preserving properties (1)–(5).
First, note that |Xα+1 \ Xα| = ℵ1 sinceMα |= |M<α | < κ. Second:
Claim 13.2.2. Xα ∩Mα is clopen in Xα .
Proof. Indeed, �α ∈Mα since 〈M� : � < α〉 ∈Mα . So if x ∈ Xα ∩Mα thenMα
contains a (countable) neighbourhood of x which is then a subset of Mα as well.
So Xα ∩Mα is open.
Second, if x is a �α-accumulation point of Xα ∩Mα then there is a countable
a ⊆ Xα ∩Mα so that x ∈ cl�α (a). As before, cl�α (a) ∈ Mα since a, �α ∈ Mα ; so
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cl�α (a) ⊂Mα since cl�α (a) is countable. Hence x ∈ Mα . This proves that Xα ∩Mα
is closed. �
Now, let Y0 be Xα ∩ Mα with the subspace topology from �α . Apply Lemma
13.2 to find a topology � on Y = κ ∩Mα ⊇ Y0 which is splendid and satisfies
�0 = � ∩ P(Y0). Actually, choose � to be the �-minimal topology which satisfies
these requirements. Now, we simply let �α+1 be the topology generated by �α ∪ �;
�α+1 is now clearly reconstructible by the minimal choice of �.
The only nontrivial condition to verify is that Xα+1 is �-fair, i.e., cl�α+1(a) is
countable if a ⊆ Xα+1 is countable. First, note that Xα+1 ∩Mα is open in Xα+1.
Now, cl�α+1 (a) = cl�α+1(a\Mα)∪cl�α+1 (a∩Mα). The set cl�α+1(a\Mα) = cl�α (a\Mα)
is countable by the inductive hypothesis and the second term is compact (indeed,
a ∩Mα ∈ [κ]≤� ∩Mα) and so countable as well.
This finishes the construction of Xα+1 and hence the main induction and the
proof of the theorem. �
The take-away from this proof (especially compared with the original from [22])
should be that sage Davies-trees allowed us to simply lift the base-case of our
construction of splendid spaces (i.e., Lemma 13.2) to construct arbitrary large
splendid spaces.
Our last remark is that a splendid space can be used to produce cofinal Kurepa-
families [24], and so CH and the existence of sage Davies-trees for κ implies the
existence of a cofinal Kurepa family in

[
κ
]�
.

§14. Appendix: How to construct sage Davies-trees? The goal of this section is to
prove Theorem 8.1, that is the existence of sage Davies-trees for κ. The main diffi-
culty of the proof comes from the fact that a large countably closed model can not
be written as a continuous chain of smaller, still countably closed models in general.
The fact that we need to show that 〈Mα : α < �〉 ∈ M� holds adds multiple layers
of difficulties compared to constructing only high Davies-trees. In particular, we
needed to abandon the original tree-construction and take a completely different
road; this will be somewhat reminiscent of the dominatingmatrices from [14].When-
ever we say or write submodel in this section, we will mean an elementary submodel
of (H (�),∈,�) where � is a well order ofH (�).
We start by a definition:

Definition 14.1. We say that L ≺ H (�) is a sage model for κ over x if there is a
sage Davies-tree 〈Mα : α < κ〉 for κ over x such that L =

⋃
α<κ Mα .

In particular, a sage model is countably closed. If L is a sage model for κ over x
then we fix an arbitrary sage Davies-tree 〈Mα : α < κ〉 with union L and write

M(L) = 〈Mα : α < κ〉 and M(L,α) =Mα,
and

N (L, �, j) = N�,j ,
where N�,j ≺ H (�) with [N�,j ]� ⊂ N�,j and x ∈ N�,j for j < � such that⋃

{Mα : α < �} =
⋃

{N�,j : j < �}.
So Theorem 8.1 is equivalent to the following:
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Theorem 14.2. There is a sage model L(κ, x) for κ over x whenever
1. κ = κ� and
2. � is �-inaccessible, �� = �+ and �� holds for all � with c < � < κ and
cf(�) = �.

Proof. We prove the theorem by induction on κ: the base case of κ = c is trivial,
so suppose that the statement is true for c ≤ � < κ. If � = �� < κ and x ∈ H (�) is
a parameter let L(�, x) denote a sage model of size �.
There will be two cases we need to consider: either κ is �-inaccessible or κ = �+

for some � > c with cf(�) = �. Indeed, if � < κ is minimal such that �� = κ
then cf(�) = �. Otherwise, κ = �� = supi<cf(�) �

�
i where (�i )i<cf(�) is any cofinal

sequence in�. So,� ≤ ��i for some i < cf(�) andhenceκ = �� ≤ (��i )� = ��i < κ,
a contradiction.
Let us say that X ⊂ H (�) is �-c.c if X is the union of countably many countably
closed elementary submodels of H (�). Now, we deal with the above described two
cases:
Case I. κ is �-inaccessible.
Enumerate [κ]� as {yα : α < κ}. By induction on α < cf(κ) we define an
increasing sequence of models 〈Kα : α ≤ κ〉 such that |Kα| = (max(c, |α|))� and
thatKα+1 is a sage model for each α < κ as follows.
For α = 0, we just find any countably closed model K0 of size c with x ∈ K0.
Now, if α is a limit ordinal then we let Kα =

⋃{K� : � < α}.
Finally, given Kα we define Kα+1: let

xα+1 = {x, yα, 〈M(K
+1, �) : 
 + 1 ≤ α, � < |K
+1|〉}
and

Kα+1 = L((max(c, |α + 1|))�, xα+1).
Claim. Kα is countably closed unless cf(α) = �.
If α = � + 1 or α = 0, then the statement is trivial because Kα is a sage model.
Assume cf(α) > �. If a ∈ [Kα]� then there is � < α so that a ∈ [K� ]� . So a ∈
[K�+1]� since K� ⊆ K�+1. The model K�+1 is countably closed so a ∈ K�+1 ⊆ Kα
as desired.
Claim. If cf(α) = � then Kα is �-c.c.
Indeed, take any cofinal �-sequence 〈αk〉k<� in α. Then Kα =

⋃
k<� Kαk+1, and

every Kαk+1 is countably closed.
Now, our goal is to show that L = Kκ is a sage model; informally, the concate-
nation of the sequences 〈M(Kα+1) : α < κ〉 will witness this. More precisely, let〈
〈α�, ��〉 : � < κ

〉
be the lexicographically increasing enumeration of the set

{〈α + 1, �〉 : α + 1 < κ, � < |Kα+1|},
and write

M ′
� =M(Kα� , ��)

for � < κ.

We will show that the sequence
〈
M ′
� : � < κ

〉
witnesses that L = Kκ is a sage

model.
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First, it is clear that

L =
⋃
α+1<κ

Kα+1 =
⋃
α+1<κ

( ⋃
�<|Kα+1|

M(Kα+1, �)
)
=

⋃
�<κ

M ′
�.

Furthermore, L is a countably closed model by the first claim above.
Second, we need to show that

〈
M ′
� : � < κ

〉
is a sage Davies-tree; first, we prove

that
〈
M ′
� : � < κ

〉
is a high Davies-tree.

If � < κ and α� = � + 1 then⋃
�<�

M ′
� =

⋃
{M ′

� : α� < α�} ∪
⋃

{M ′
� : α� = α� ∧ �� < ��} =

⋃
{M ′

� : α� ≤ �} ∪
⋃

{M ′
� : α� = � + 1 ∧ �� < ��} =⋃

{Kα+1 : α + 1 ≤ �} ∪
⋃

{M(K�+1, �) : � < ��} =
K� ∪

⋃
{N (K�+1, ��, j) : j < �}.

Since K� is �-c.c by the claims and every N (K�+1, ��, j) is countably closed, we
proved that

⋃
�<� M

′
� is also �-c.c. Also, the parameter x is contained in all the

models. Finally, using the sets yα we made sure thatL covers [κ]� . So
〈
M ′
� : � < κ

〉
really is a high Davies-tree.
To show that 〈M ′

� : � < �〉 ∈M ′
� observe that if α� = � + 1, then

〈M ′
� : � < �〉 = 〈M ′

� : α� < α�〉
 〈M ′
� : α� = α� ∧ �� < ��〉 =

〈M ′
� : α� ≤ �〉
 〈M ′

� : α� = � + 1 ∧ �� < ��〉 . (1)

Now 〈M ′
� : α� ≤ �〉 is the lexicographical enumeration of

M� = 〈M(K
+1, �) : 
 + 1 ≤ �, � < |K
+1|〉 .
SinceM� ∈ x�+1 ⊂M (K�+1, ��) =M ′

� we have

〈M� : α� ≤ �〉 ∈M ′
�. (2)

Finally, sinceM(K�+1) is a sage Davies-tree, we have〈M(K�+1, �) : � < ��〉 ∈ M(K�+1, ��) =M ′
�. (3)

Now (1), (2), and (3) give that 〈M ′
� : � < �〉 ∈M ′

�.
This finishes the proof of

〈
M ′
� : � < κ

〉
being a sage Davies-tree and hence the

proof of Case I.
Case II. κ = �+ for some � > c with cf(�) = �.
Let 〈Cα : α < �+〉witness that�� holds and fix an increasing sequence of regular
cardinals 〈�j : j < �〉 with �j� = �j and � = supj<� �j (e.g., take any cofinal
sequence 〈�j : j ∈ �〉 in � and let �j = (�j�)+). Also, let

[
κ
]�
= {yα : α < κ}.

The plan is to define a matrix of elementary submodels with κ rows and �
columns so that the rows union up to the desired sage model. Unfortunately, we
need some technical assumptions to carry out this construction. In more detail, we
will construct elementary submodels 〈Kα,j : α < κ, j < �〉 of H (�) by induction
on α < κ such that writing Kα =

⋃
j∈�
Kα,j , properties (A)–(H) below hold:
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(A) Kα,j ≺ H (�), |Kα,j | = �j and �j + 1 ⊂ Kα,j ,
(B) Kα,j ⊂ Kα,j+1 and Kα,j ⊂ Kα+1,j ,
(C) ∀� < α ∃k�,α < � such that K�,j ⊂ Kα,j for all j ≥ k�,α ,
(D) if |Cα| ≤ �j and 
 ∈ C ′

α , then K
+1,j ⊂ Kα,j ,
(E) Kα+1,j is a sage model defined as follows: let

xα+1,j = {x, yα, 〈M(K
+1,j) : 
 + 1 ≤ α, j < �, � < |K
+1,j |〉 ,
〈M(Kα+1,i , �) : i < j, � < |Kα+1,i |〉}

and define

Kα+1,j = L(�j, xα+1,j),

(F)
[
Kα,j

]� ⊂ Kα,j unless cf(α) = � and α = supC ′
α ,

(G) Kα is �-c.c., and
(H) if α < κ is a limit ordinal then Kα =

⋃
�<α K� .

Here, C ′
α denotes the set of accumulation points of Cα , i.e., 
 ∈ C ′

α iff 
 =
sup(Cα ∩ 
).
Claim 14.1.1. K =

⋃{Kα : α < κ} is a sage model for κ over x.
Proof. Since Kα,j ≺ H (�) and Kα,j ⊂ Kα,j+1 by (A) and (B) we have Kα ≺
H (�).
Since Kα ⊂ K� for α < � < κ by (C), we have Kα ≺ K� for α < � < κ, and so
K ≺ H (�).
Next observe that

[
κ
]� ⊂ K because yα ∈ Kα+1 by (E).

To show
[
K
]� ⊂ K assume that A ∈ [

K
]�
. Since κ� = κ implies cf(κ) > �,

there is α < κ such that A ⊂ Kα .
Then, by (E), xα+1,0 ∈ Kα+1, and so Kα ∈ Kα+1 ⊂ K. Since |Kα| = � and
�+ 1 ⊂ K , there is a bijection f : Kα → � in K . Let Y = f′′A. Then Y ∈ [

�
]� ⊂[

κ
]� ⊂ K . Thus A = f−1Y ∈ K as well.
So K is a countably closed elementary submodel ofH (�).

Let
〈
〈α�, j�, ��〉 : � < κ

〉
be the lexicographically increasing enumeration of the

set {
〈α + 1, j, �〉 : α + 1 < κ, j < �, � < |Kα+1,j |

}
,

and write

M ′
� =M(Kα�,j� , ��)

for � < κ.
Clearly

K =
⋃
α<κ

Kα+1 =
⋃
α<κ

⋃
j<�

Kα+1,j =

⋃
α<κ

⋃
j<�

⋃
�<|Kα+1,j |

M(Kα+1,j , �) =
⋃
�<κ

M ′
�.

We need to show that
〈
M ′
� : � < κ

〉
is a sage Davies-tree.
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If � < κ and α� = � + 1, then⋃
�<�

M ′
� =

⋃
{M ′

� : α� < α�} ∪
⋃

{M ′
� : α� = α� ∧ j� < j�}

∪
⋃

{M ′
� : α� = α� ∧ j� = j� ∧ �� < ��} =⋃

{Kα+1 : α + 1 ≤ �} ∪
⋃

{K�+1,j : j < j�} ∪
⋃

{M(K�+1,j� , �) : � < ��} =
K� ∪

⋃
{K�+1,j : j < j�} ∪

⋃
{N (K�+1,j� , ��, i) : i < �}.

SinceK� is �-c.c by (G), everyK�+1,j and everyN (Kα�,j� , ��, i) is countably closed,
we have that

⋃
�<� M

′
� is also �-c.c. Furthermore, the parameter x is in all the above

models and [κ]� ⊆ ⋃{M ′
� : � < κ} by (E); so

〈
M ′
� : � < κ

〉
is a high Davies-tree

for κ over x.
To show that 〈M ′

� : � < �〉 ∈M ′
� observe that if α� = � + 1, then

〈M ′
� : � < �〉 = v
0 v
1 v2, (4)

where

v0 = 〈M ′
� : α� ≤ �〉 , (5)

v1 = 〈M ′
� : α� = � + 1, j� < j�〉 =M(K�+1,0)
 . . . 
M(K�+1,j�−1), and (6)

v2 = 〈M ′
� : α� = � + 1, j� = j�, �� < ��〉 =

〈M(Kα�,j� , �) : � < ��〉 . (7)

First, v0 = 〈M ′
� : α� ≤ �〉 is the lexicographical enumeration of

M� = 〈M(K
+1,i , �) : 
 + 1 ≤ �, i < �, � < |K
+1|〉 .
Now,M� ∈ x�+1,0 ∈ M(K�+1,j� , ��) =M ′

� impliesM� ∈M ′
�, so we have

v0 = 〈M ′
� : α� ≤ �〉 ∈M ′

�. (8)

Second,
〈M(K�+1,i , �) : i < j�, � < |K�+1,i |

〉 ∈ x�+1,j� ∈ M(K�+1,j� , ��) = M ′
�

by (E), and so

v1 =M(K�+1,0)
 . . . 
M(K�+1,j�−1) ∈M ′
�. (9)

SinceM(K�+1,j� ) is a sage Davies-tree, we have
v2 =

〈M(K�+1,j� , �) : � < ��〉 ∈ M(K�+1,j� , ��) =M ′
�. (10)

Thus v0, v1, v2 ∈ M ′
� and so 〈M ′

� : � < �〉 = v
0 v
1 v2 ∈ M ′
� as required. This

proves that
〈
M ′
� : � < κ

〉
is a sage Davies-tree for κ over x.

�
So, our job is to build the matrix 〈Kα,j : α < κ, j < �〉 with the above properties
(one mainly needs to keep Figure 2 in mind). The induction is naturally divided
into four cases, the first two being easier and the second two a bit more involved.
However, the proofs are fairly straightforward diagram and definition chasings so
we might leave some details to the reader.
Case 1. α = 0. Let K0,j = L(�j, {�j + 1, x}) using the inductive assumption for
�j < κ. Then |K0,j | = �j and properties (A)–(H) are easily checked.
Case 2. Successor steps from α to α + 1.We aim to define 〈Kα+1,j : j < �〉.
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� �

�

�

�

�

� �

�

�

�

�

κ

α

α + 1

Kα,0

Kα+1,0 Kα+1,j ∈ Kα+1,j+1

Kα,j ∈ Kα,j+1

⊂ ⊂

Kα+1

Kα

K0

K0,0 K0,j ∈ K0,j+1

Figure 2. The matrix of models 〈Kα,j : α < κ, j < �〉.

We follow (E): writing

xα+1,j = {x, yα, 〈M(K
+1,j) : 
 + 1 ≤ α, j < �, � < |K
+1,j |〉 ,
〈M(Kα+1,i , �) : i < j, � < |Kα+1,i |〉},

we take
Kα+1,j = L(�j, xα+1,j).

Again, properties (A)–(H) are easy to verify.

Case 3. α is a limit and supC ′
α < α. Then Cα \ supCα ′ must have order type �,

so Cα \ supCα ′ can be enumerated as
�0 < �1 < · · · .

Write 
i = �i + 1 and fix a strictly increasing sequence of natural numbers k0 <
k1 < · · · such that

K
i ,j ⊂ K
i+1 ,j for all j ≥ ki .
This is possible by applying (C). Now let

Kα,j =

⎧⎨
⎩
K
0,j if j < k0 and

K
i+1 ,j if ki ≤ j < ki+1.
(11)

In other words, we take finite intervals from the sequences 〈K
i ,j : j < �〉 to form
the αth sequence; see Figure 3. Let us go through properties (A)–(H) now.
Property (A) holds since Kα,j = K�+1,j for some � ∈ Cα .
To check (B) assume ki ≤ j < ki+1. Then

Kα,j = K
i+1,j ⊂ K
i+1 ,j+1.
If j + 1 < ki+1 also then

Kα,j+1 = K
i+1 ,j+1,
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so Kα,j ⊂ Kα,j+1. If j + 1 = ki+1 then K
i+1 ,j+1 ⊂ K
i+2,j+1 = Kα,j+1, and so
Kα,j ⊂ Kα,j+1. In turn, (B) holds.
To check (C) let � < α. Pick i such that � < �i ; we would like to show that if
k�,α = max{ki , k�,
i } works. So suppose that j ≥ k�,α and k� ≤ j < k�+1 for some
� < �. Now

K�,j ⊂ K
i ,j ⊂ K
i+1 ,j ⊂ · · · ⊂ K
�+1 ,j = Kα,j
because j ≥ k�,
i and j ≥ ki , ki+1, . . . , k� .
To check (D) let 
 ∈ C ′

α and recall that �0 = supC
′
α < α.

Assume first that 
 < �0. ThenC�0 = Cα∩�0 and so 
 ∈ C ′
�0
. ThusK
+1,j ⊂ K�0,j

by the inductive assumption (D). However K�0,j ⊂ K�0+1,j = K
0 ,j by (B). Thus
K
+1,j ⊂ K
0 ,j for an arbitrary 
 ∈ C ′

α ∩ �0.
Assume that ki ≤ j < ki+1. Then j ≥ k0, . . . , ki and so

K
0,j ⊂ K
1,j ⊂ · · · ⊂ K
i+1 ,j = Kα,j.
Hence K
+1,j ⊂ Kα,j as required.
If 
 = �0 then K
+1,j = K
0,j ⊂ Kα,j by the above calculation. So ultimately (D)
holds.
Property (F) holds becauseKα,j = K�+1,j for some� < α and [K�+1,j ]� ⊂ K�+1,j
by the inductive assumption (F).
Property (G) holds because

Kα =
⋃
j<�

Kα,j

and Kα,j is countably closed by (F).
Finally, to check Property (H) first note thatKα ⊇ ⋃

�<α K� by (C). On the other
hand

� � � �

�

� Kα

K
1

K
0
� �

� �

� �


1

α � � �


0

k0 k1

�

⊂ ⊂

⊂⊂ ⊂ ⊂

⊂

Figure 3. Case 3 and the construction of 〈Kα,j : j < �〉.
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Kα =
⋃
j∈�
Kα,j ⊂

⋃
i,j∈�

K
i ,j =
⋃
i∈�
K
i ⊂

⋃
�<α

K�

by (11).
This finishes Case 3.

Case 4. α is a limit and supC ′
α = α.Now, instead of previous rows, we use the j

th

column of the already constructed matrix 〈K�,i : � < α, i < �〉 to provide the new
model Kα,j . That is, we let

Kα,j =

⎧⎨
⎩
⋃
�∈C ′

α
K�+1,j if |Cα| ≤ �j and

K0,j if |Cα| > �j .
(12)

Note that |Cα| ≤ �j for almost all j < � since |Cα| < �. So, since 〈�j : j < �〉
is increasing, the set {j < � : Kα,j = K0,j} is a finite initial segment of �.
We need to check that properties (A)–(H) are satisfied, so lets start with (A): if
Kα,j = K0,j then this is clear so we can assume |Cα| ≤ �j . This and |K�+1,j | ≤ �j
implies that |Kα,j | ≤ �j . Furthermore, �j + 1 ⊆ K�+1,j ⊆ Kα,j too.
We will show that Kα,j is an increasing union of elementary submodels of H (�)
and so an elementary submodel ofH (�) itself. If � < 
 ∈ C ′

α then C
 = Cα ∩ 
 and
so � ∈ C ′


 . Thus K�+1,j ⊂ K
,j ⊂ K
+1,j by the inductive hypothesis (D) and (B).
This finishes the proof of (A).
Property (B) is clear from the inductive assumption (B).
Property (C): Given � < α, we pick 
 ∈ C ′

α \ (� + 1). If j ≥ k�,
 then K�,j ⊂
K
,j ⊂ K
+1,j ⊂ Kα,j . So k�,α = k�,
 satisfies the requirements.
Property (D) holds by definition and Property (E) is void in the current case.
Property (F): we can assume that cf(α) > � otherwise there is nothing to
prove. Consider an arbitrary a ∈ [

Kα,j
]�
. Then there is I ∈ [

C ′
α

]�
such that

a ⊂ ⋃
�∈I K�+1,j .

Pick 
 ∈ C ′
α \ (sup I + 1) and note that I ⊆ C ′


 as well (since C
 = 
 ∩ Cα).
In turn,

⋃
�∈I K�+1,j ⊂ K
,j by (D); so a ⊂ K
,j ⊆ K
+1,j . K
+1,j is countably

closed so a ∈ K
+1,j . Finally, K
+1,j ⊂ Kα,j by the definition ofKα,j so a ∈ Kα,j as
desired.
Property (G): we assume that cf(α) = � otherwise (F) implies that Kα,j are
countably closed.
Pick a sequence of ordinals �0 < �1 < · · · in C ′

α which is cofinal in α and let

i = �i + 1. Fix a strictly increasing sequence of natural numbers k0 < k1 < · · · as
well such that

K
i ,j ⊂ K
i+1 ,j for all j ≥ ki . (13)

Let

K∗
α,j =

⎧⎨
⎩
K
0,j if j < k0 and

K
i+1 ,j if ki ≤ j < ki+1.
To prove (G) we will show that Kα =

⋃
j<� K

∗
α,j . First, note that (K

∗
α,j)j<� is

increasing, and K∗
α,j ⊆ Kα,j ⊆ Kα for almost all j < � (whenever |Cα| ≤ �j).

Hence
⋃
j<� K

∗
α,j ⊆ Kα .
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Now, assume that y ∈ Kα ; then y ∈ Kα,j for some j < � and so y ∈ K�+1,j for
some � ∈ C ′

α . Pick i < � such that � + 1 < 
i and let � = max{ki , k�+1,
i , j} + 1.
We would like to show

Claim 14.1.2. y ∈ K∗
α,� .

Proof. First, note that

y ∈ K�+1,j ⊂ K�+1,� ⊂ K
i ,�
as � > k�+1,
i , j. Also, there is an i

′ < � (at least i) such that ki′ ≤ � < ki′+1 and
then K∗

α,� = K
i′+1,� . Finally, � ≥ ki , ki+1, . . . , ki′ implies that
K
i ,� ⊂ K
i+1 ,� ⊂ · · · ⊂ K
i′+1,� = K∗

α,� .

Thus y ∈ K∗
α,� . �

So we verified property (G).
Property (H): first, Kα ⊇ ⋃

�<α K� immediately follows from (C).
On the other hand,

Kα =
⋃
j<�

Kα,j =
⋃
j<�

⋃
�∈C ′

α

K�+1,j =
⋃
�∈C ′

α

⋃
j<�

K�+1,j =
⋃
�∈C ′

α

K�+1 ⊂
⋃
�<α

K�

by (12).
This concludes Case 4 and hence the inductive construction of the matrix

〈Kα,j : α < κ, j < �〉. In the turn, we constructed the desired sage model in Case II
as well; this finishes the proof of Theorem 8.1. �
Let us remark that if one only aims to construct a high Davies-tree (which is not
necessarily sage) then weaker assumptions suffice. We say that�∗∗∗

�1,�
holds if there is

a sequence (Cα)α<�+ and a clubD ⊆ �+ such that for every α ∈ D with cf(α) ≥ �1
the following holds:

(v1) Cα ⊆ α and Cα is unbounded in α;
(v2) for all V ∈ [Cα]� there is � < α such that V ⊆ C� ∈ [Cα]� .
We only state the following theorem without proof:

Theorem 14.3. There is a high Davies-tree for κ over x whenever

1. κ = κ� and
2. �� = �+ and �∗∗∗

�1,� holds for all � with c < � < κ and cf(�) = �.

§15. Final thoughts and acknowledgments. We hope that the reader found the
above results and proofs as entertaining and instrumental as we did when first
working through these diverse topics. Our goal with this article was to demonstrate
that Davies-trees and highDavies-trees can provide a general framework for solving
combinatorial problems by the most straightforward approach: list your objectives
and thenmeet these goals one by one inductively. In places where originally cumber-
some inductions were applied, Davies-trees and high Davies-trees allow a reduction
to the simplest cases, i.e., one needs to deal with countable or size c approximations
of the final structure even when the goal is to construct something of much bigger
size. It is our belief that this technique will find its well deserved place in many more
proofs in the future.
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